论述物质代谢特点,并在细胞水平说明代谢调节。
生物化学第十四章物质代谢调节

难点:
酶的诱导和阻遏的调节机制
第一节 物质代谢的调节类型特点
一. 神经系统的调节作用
在中区神经的控制下,通过神经递质对效应器发生 直接影响;或者改变某些激素的分泌,再通过各种激 素的相互协调,对整个代谢进行综合调 节。
特点:
短而快 具整体性 直接调 节代谢的作用 多数通过激素发挥作用
二. 激素水平的调节
第五节细胞水平的诱导与阻遏调节机制
一、构成酶与适应酶
根据酶的合成对环境影响的反应不同:
1.构成酶/组成酶
2.适应酶 诱导酶 阻遏酶
二、酶合成的诱导机制---乳糖操纵子
(一)阻遏蛋白的负调控
1. 关闭(无乳糖)
调节基因 操纵 启动子 基因 lacZ lacY
lacA
mRNA
蛋白质 阻遏蛋白 (有活性) Z: -半乳糖苷酶 Y: -半乳糖苷透过酶
通过改变生物体细胞代谢物的浓度,也可以改变某些 酶的活性或含量从而影响代谢反应的速度。
具组织特异性和效应特异性 缓慢而持久 特点: 局部性调 节部分代谢 由神经系统控制分泌
三. 细胞水平的调节
通过代谢物的浓度的改变,来调 节某些酶促反应的速度。 又称酶水平的调节 酶的活性 特点: 酶的数量
细胞水平的调节类型:
3.沉寂子(silencer)
最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的 转录和重排中证实沉寂子的作用的存在。 作用特点: 负调控顺式元件 可不受序列方向的影响 距离发挥作用 并可对异源基因的表达起作用
如: UAS(upstream acticity sequence) CAATbox(-70~-80) GC BOX(-80~-110)
(放大效应)
激素与受体结合 激活腺苷酸环化酶
代谢调节

亲水部分 F1 (α3β3γδε亚基 )
疏水部分 F0 (a1b2c9~12亚基)
每合成一分子ATP 大约有4个H+经通 道进入基质。
ATP合酶结构模式图
28
乙酰辅酶A是三大营养物质代谢共同的中间 代谢物;
三羧酸循环是三大营养物质分解代谢共同 的最后代谢途径;
分解代谢释放的能量均以ATP的形式储存; 从能量供应角度看,三大营养素可以相互
NAD+
⑥ FAD
GDP+Pi GTP
NADH+H+
④
CO2
⑤
CoASH
CO2 CoASH
26
NADH
氧 吸化 链呼
NADH →复合体Ⅰ→Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
琥 珀 酸 氧 化 呼 吸 链
琥珀酸 →复合体Ⅱ →Q →复合体Ⅲ→Cyt c →复合体Ⅳ→O2 27
ATP合酶 (复合物V)
40
①不同的组织器官以不同的物质为主要能量 来源。
②糖供应不足时,脂肪动员加强,增加供能 比例。
③ 一般来说,供能以糖和脂肪为主,节省蛋 白质的消耗。
41
二、三大营养物质与核苷酸代谢间的联系
1. 氨基酸是体内合成核酸的重要原料
天冬氨酸 甘氨酸
谷氨酰胺
丝
一碳单位
组 甘
色
合成嘌呤
合成嘧啶
2. 磷酸核糖由磷酸戊糖途径提供 3. 核苷酸合成所需能量由糖、脂肪的氧化分解供应。 4. 核苷酸的分解代谢与糖、氨基酸的分解代谢有密
变构调节
快速调节 (数秒~数分)
细胞水平
酶结构调节
共价(化学) 修饰调节
代谢调节
酶蛋白的
物质代谢的联系与调节《生物化学》复习提要

物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。
(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。
代谢调节普遍存在于生物界,是生物的重要特征。
(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。
例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。
(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。
(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。
(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。
如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。
第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。
从能量供应的角度看,这三大营养素可以互相代替,并互相制约。
二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。
它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。
(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。
第十一章物质代谢的相互联系及其调节

CTP
血红素合成 ALA合成酶
血红素
(2)变构酶的特点及作用机制
变构酶常由多个亚基构成; 变构效应剂可通过非共价键与调节亚基结合,引起酶构
象改变(T态和R态)或亚基的聚合、分离从而影响酶 的活性; 变构酶的酶促反应动力学不符合米曼氏方程式; 变构效应剂常常是酶的底物、产物或其他小分子中间代 谢物。 变构调节过程不需要能量。
(CH2)4CO HS Co
OH
AO
CH
3
CO
P
丙酮酸脱氢 酶
O CH HC TT
S
二氢硫辛酸 转乙酰酶
C C S Co
H3
A
H SH
(CH2)4CO OH
2 3
HP
S
(CH2)4CO OH
S
S
FAD H2
二氢硫辛酸
脱氢酶 FA D
丙酮酸氧化脱羧
NFAA
D+
NADH +H+
乙酰 丙二酸单 β-酮脂酰转移酶 酰转移酶 合成酶
第一节
物质代谢的相互联系
一、物质代谢的特点
物质代谢的整体性 物质代谢的可调节性 组织器官代谢的特色性 不同来源代谢物代谢的共同性 能量储存的特殊性 NADPH为合成代谢提供还原当量
二、物质代谢的相互联系
(一)能量代谢上的相互联系
物质代谢过程中所伴随的能量的贮存、释放、转移和利 用等称为能量代谢。
现出激素的生物学效应。 根据激素作用受体部位不同,激素可分为:细胞膜受
体激素和细胞内受体激素。
三、整体水平的代谢调节
1.应激状态下的代谢调节
应激是机体在一些特殊的情况下,如严重创伤、感染、中 毒、剧烈的情绪变化等所作出的应答性反应。
细胞水平上的代谢调节

诱导机制
通过核受体介导(AhR,CAR,PXR,PPAR)。 参与药酶诱导的核受体,与相应的配基结合 和激活,受体-配基复合物结合到靶基因启动区 域的相应单元上,调节相应蛋白的mRNA转录, 进而调节蛋白的表达。
CYP450s的抑制
药物进入体内大约有73%是通过代谢消除,而 这其中的3/4是由细胞色素P450酶代谢。因此 CYP450s的抑制作用是引起药物相互作用最 主要的原因之一。 酶抑作用的产生有赖于抑制剂的半衰期、抑制 剂血浓度达稳态时间和被抑制药物血浓度达到 稳定所需时间 CYP450s的抑制分为三种:竞争性抑制、非 竞争性抑制和不可逆转的抑制。
酶的诱导可增加生物转化率,从而降低药物的 浓度,通常表现为药物作用降低;若代谢形成 活性药物则可增加药物的作用或毒性。 酶的抑制可增加药物的浓度,延长药物作用时 间,引起药物毒性反应的增加。 酶的诱导或抑制数量有个体差异,种族、年龄、 疾病、基因的多态性,诱导剂的半衰期和剂量, 以及肝功能等都对其有影响。
竞争性抑制
发生在两种以上药物竞争同一种酶时,其临床 意义主要由药物的相对浓度和其他多种特异性 因素决定,如西米替丁和环内沙星都CYPlA2 对茶碱代谢的抑制剂,但西米替丁对茶碱代谢 的抑制作用比环丙沙星大得多。
有些药物可与不同的P450酶相结合或作为 其竞争性抑制剂,如奎尼丁可暂时将异喹胍 的快乙酰化转为慢乙酰化,但奎尼丁本身却 不被CYP2D6代主要内容
1、细胞水平上的代谢调节——酶水平上的调 节
2、细胞色素P450酶系与代谢性药物相互作用
细胞代谢
细胞是生物机体的结构和功能单位,因此,细 胞代谢是一切生命活动的基础。 细胞代谢包括物质代谢、能量代谢和信息代谢。
物质代谢调节--细胞水平的代谢调节

物质代谢调节(Regulation in Metabolism)物质代谢是生命现象的基本特征,是生命活动的物质基础。
人体物质代谢是由许多连续的和相关的代谢途径所组成,而代谢途径(如糖的氧化,脂肪酸的合成等)又是由一系列的酶促化学反应组成。
在正常情况下,各种代谢途径几乎全部按照生理的需求,有节奏、有规律地进行,同时,为适应体内外环境的变化,及时地调整反应速度,保持整体的动态平衡。
可见,体内物质代谢是在严密的调控下进行的。
代谢调节机制普遍存在于生物界,是生物在长期进化过程中逐步形成的一种适应能力。
进化程度越高的生物,其代谢调节的机制越复杂。
单细胞的微生物受细胞内代谢物浓度变化的影响,改变其各种相关酶的活性和酶的含量,从而调节代谢的速度,这是细胞水平的代谢调节,是生物体在进化上较为原始的调节方式。
较复杂的多细胞生物,出现了内分泌细胞。
高等动物则出现了专门的内分泌器官,这些器官所分泌的激素可以对其他细胞发挥代谢调节作用。
激素可以改变某些酶的催化活性或含量,也可以改变细胞内代谢物的浓度,从而影响代谢反应的速度,这称为激素水平的调节。
高等动物不仅有完整的内分泌系统,而且还有功能复杂的神经系统。
在中枢神经的控制下,或者通过神经递质对效应器直接发生影响,或者通过改变某些激素的分泌,来调节某些细胞的功能状态,并通过各种激素的互相协调而对整体代谢进行综合调节,这种调节即称整体水平的调节。
以上所述的细胞水平的代谢调节、激素水平的调节和整体水平的调节,在高等动物和人体内全都存在,下面分别进行介绍。
细胞水平的代谢调节一、细胞内酶的分隔分布从物质代谢过程中可知,酶在细胞内是分隔着分布的。
代谢上有关的酶,常常组成一个酶体系,分布在细胞的某一组分中,例如,糖酵解酶系和糖元合成、分解酶系存在于胞液中;三羧酸循环酶系和脂肪酸β-氧化酶系定位于线粒体;核酸合成的酶系则绝大部分集中在细胞核内。
这样的酶的隔离分布为代谢调节创造了有利条件,使某些调节因素可以较为专一地影响某一细胞组分中的酶的活性,而不致影响其他组分中的酶的活性,从而保证了整体反应的有序性。
生物化学_第十章_物质代谢的调节

细胞核:核酸合成
内质网:蛋白质合 成;磷脂合成
真核细胞主要代谢途径与酶的区域分布
代谢途径(酶或酶系) 细胞内分布 代谢途径(酶或酶系) 细胞内分布 糖酵解 三羧酸循环 磷酸戊糖途径 糖异生 糖原合成与分解 脂肪酸β氧化 脂肪酸合成 呼吸链 多种水解酶 磷脂合成 胞质 线粒体 胞质 胞质 胞质 线粒体 胞质 线粒体 溶酶体 内质网 氧化磷酸化(呼吸链) 线粒体 尿素合成 胞质、线粒体 蛋白质合成 内质网、胞质 DNA合成 细胞核 mRNA合成 细胞核 tRNA合成 核质 rRNA合成 核仁 血红素合成 胞质、线粒体 胆红素生成 微粒体、胞质 胆固醇合成 内质网、胞质
酮体 乳酸 游离脂酸 葡萄糖
• 以葡萄糖有氧氧化供能为主
(六)红细胞
•能量主要来自糖酵解
(七)肾脏
• 也可进行糖异生和生成酮体; • 肾髓质主要由糖酵解供能;肾皮质主要由脂酸、 酮体有氧氧化供能。
第 二 节 物质代谢的相互联系
Metabolic Interrelationships
一、在能量代谢上的相互联系
酶的隔离分布的意义 —— 避免了各种代谢途径互相干扰,而且有利于它们协调 地发挥作用。
(二)细胞内物质代谢调节的基本方式
在一个代谢途径中,其速率和方向不完全由途径的所 有酶决定和调节,而是由其中的一个或几个具有调节作用
的酶所决定,这些酶称为调节酶(regulatory enzymes)、
关键酶(key enzymes)。或限速酶(rate-limiting enzyme)。由此酶催化的反应称为限速反应。限速酶活性 改变不但可以影响整个酶体系催化反应的总速率,甚至还 可以改变代谢反应的方向。
调节或细胞水平代谢调节。
高等生物 —— 三级水平代谢调节
生化论述题汇总

步阐述。
答:关系主要:(1)糖酵解的中间产物可进入糖的磷酸戊糖途径,而磷酸戊糖途径的产物可 通过基因转移后进入糖酵解途径。
如 ,糖酵解的中间产物 6-磷酸葡萄糖。
(2) 糖酵解途径合成的丙酮酸课进入线粒体进行有氧氧化, 生产乙酰CoA 进行三羧酸循环 和氧化磷酸化。
(3) 糖原分解产物葡萄糖课做为糖原合成原料,糖异生产物葡萄糖是糖酵解的底物,它们 之间是相互抑制,促进协调的。
(4) 糖异生与糖酵解的多数反应是共有的可逆反应,只有少数不可逆的反应需要各自特定 的关键酶催化转化,(5)糖的有氧氧化抑制乳酸酵解。
综上所述,糖的各种代谢途径相互作用,使机体的糖代谢处于平衡状态。
关键酶及代谢调节方式主要有: (1)糖酵解途径的关键酶为 6-磷酸果糖激酶-1,丙酮酸激酶 和己糖激酶,主要通过别构调节和共价调节来进行调节的。
①6-磷酸果糖激酶-1的别构激活剂有:AMP;ADP;F-1,6-2P;F-2,6-2P 。
别构抑制剂为柠檬酸, ATP (高浓度)。
6-磷酸果糖激 酶-2( PFK-2 )可在激素作用下以共价修饰的方式调节酶活性来调节F-2,6-2P 。
②丙酮酸激酶的别构激活剂为1,6-双磷酸果糖,别构抑制剂为 ATP 、丙氨酸。
依赖CAMP 的蛋白激酶 和依赖Ca+,钙调蛋白的蛋白激酶可使丙酮酸激酶磷酸化失活。
③己糖激酶受到 6-磷酸葡萄糖的反馈抑制和长链脂肪 CoA 的别构抑制。
(2)糖有氧氧化关键酶是丙酮酸脱氢酶复合体,有别构调节和共价修饰调节。
别构激活剂为:AMP ,ADP ,NAD+ ;抑制剂为:乙酰 CoA ,NADH ,ATP 。
丙酮酸脱氢酶复合体可被 激素调节磷酸化和去磷酸化来调节其活性。
(3) 磷酸戊糖途径的关键酶是 6-磷酸葡萄糖脱氢酶,受 NADPH/NADP+比值调节,比值升 高,抑制;比值降低,激活。
(4 )糖原合成和分解的关键酶分别是糖原合酶和糖原磷酸化酶。
糖原合酶受共价修饰和别 构调节,激活剂为 ATP ,6-磷酸葡萄糖,抑制剂为 AMP 。
大学生物化学课件物质代谢的联系和调节

(3)肝在蛋白质代谢中的作用
1. 合成多种血浆蛋白质
(四)共同代谢池
体外摄入的营养物或体内各组织细胞的代谢物, 只要是同一化学结构的物质,在进行中间代谢 时,不分彼此,参加到共同的代谢池中参与代 谢,机会均等。 葡萄糖、 氨基酸
(五)ATP是机体能量利用的共同形式 (六) NADPH是合成代谢所需还原当量
第二节 物质代谢的相互联系
一、在能量代谢上的相互联系
全部清蛋白、凝血酶原、纤维蛋白原、Apo A、B、C、 E,部分a1, a2, β球蛋白。
2. AA合成与分解的主要器官。
3. 生成尿素的器官。 肝昏迷氨中毒
(4)肝参与多种维生素和辅酶的代谢 (略)
1. 肝在脂溶性维生素吸收和血液运输中的作用 胆汁酸参与维生素A,D,E,K的吸收。 血液中的运输:视黄醇结合蛋白 维生素D结合蛋白
(二)糖代谢与AA代谢的联系
1. 糖
NEAA (12种)
2. AA 糖 (18种,糖异生,除Leu, Lys)
必需AA 生糖AA 生酮AA 生糖兼生酮AA
(三)脂类代谢与AA代谢的相互联系
1. AA CH3CO-ScoA
FA、胆固醇
2. AA 是合成PL的原料 丝AA、乙醇胺、甲硫AA、胆碱(p160) 肉碱(β-氧化,p156)
饥饿:脂肪动员,脂肪组织分解TG为甘油和FA,释放入血。
6 . 肾:
糖异生、糖酵解、酮体生成 肾髓质,无线粒体,只能酵解供能 肾皮质,主要利用FA、酮体供能
第十二章物质代谢的联系与调节

物质代谢的联系与调节
重点
掌握物质代谢的相互联系及特点。了解物质代谢 调节的意义及方式。熟悉重要物质代谢途径的亚 细胞定位;掌握变构酶的概念及其生理意义;了 解酶含量的调节——酶合成的诱导与阻遏。熟悉 激素与受体作用的特点,熟悉整体的物质代谢调 节。
第一节
物质代谢的相互联系
概论
一切生物的生命都靠代谢的正常运转来维持。机 体代谢途径异常复杂,一个细菌细胞的代谢反应 已在1000个以上,其他高级生物的代谢反应之复 杂可想而知了。生物体是一个组成极其复杂但又 非常精密;代谢反应繁多但又有条不紊;各种物 质代谢都有自己的独立过程但相互之间确联系密 切;互相可以转化但又相互制约。总之,机体是 一个完整统一的新陈代谢反应器。
中间代谢
废物排泄
• 各种物质代谢之间互有联系,相互依存。
㈡ 代谢调节
内外环境 不断变化 影响机体代谢
适应环境 的变化
机体有精细的调节 机制,调节代谢的 强度、方向和速度
㈢ 各组织、器官物质代谢各具特色
结构不同 不同的组 织、器官 酶系的种类、 含量不同 代谢途径不同、 功能各异
肝
组织、器官的代谢特点及联系
替,并互相制约。
● 一般情况下,供能以糖、脂为主,并尽量节约
蛋白质的消耗。
● 任一供能物质的代谢占优势,常能抑制和节约
其他物质的降解。
例如
脂肪分解增强 ATP 增多 ATP/ADP 比值增高
糖分解被抑制
6-磷酸果糖激酶-1被抑制 (糖分解代谢限速酶之一)
• 饥饿时
肝糖原分解 ,肌糖原分解
1~2天 肝糖异生,蛋白质分解
•细胞水平的调节主要为细胞内跨膜的集中和隔离的 分布。见P301。
生物化学-第十四章物质代谢调节

第五节细胞水平的诱导与阻遏调节机制
一、构成酶与适应酶
根据酶的合成对环境影响的反应不同:
1.构成酶/组成酶 2.适应酶
诱导酶 阻遏酶
二、酶合成的诱导机制---乳糖操纵子
(一)阻遏蛋白的负调控
1. 关闭(无乳糖)
调节基因
操纵
启动子 基因 lacZ lacY lacA
mRNA
蛋白质
Z: -半乳糖苷酶
通过改变生物体细胞代谢物的浓度,也可以改变某些 酶的活性或含量从而影响代谢反应的速度。
具组织特异性和效应特异性
特点:
缓慢而持久 局部性调 节部分代谢
由神经系统控制分泌
三. 细胞水平的调节
通过代谢物的浓度的改变,来调 节某些酶促反应的速度。 又称酶水平的调节
特点:
酶的活性 酶的数量
细胞水平的调节类型:
1.GTF(Genaral Transcription Factor) 通用转录因子
2.TBP(TATAbox binding protein) 是唯一能识别TATA盒并与其结合的转录因子,是三种RNA聚合酶
转录时都需要的;
不同基因由不同的上游启动子元件组成,能与不同的转录因子结合, 这些转录因子通过与基础的转录复合体作用而影响转录的效率。现在已 经发现有许多不同的转录因子,看到的现象是:同一DNA序列可被不同 的蛋白因子所识别;能直接结合DNA序列的蛋白因子是少数,但不同的 蛋白因子间可以相互作用,因而多数转录因子是通过蛋白质-蛋白质间 作用与DNA序列联系并影响转录效率的
蛋白激酶 (有活性)
磷酸化酶激酶 (无活性) ATP
磷酸化酶激酶 ADP (有活性)
磷酸化酶b (无活性) ATP
磷酸化酶a ADP(有活性)
物质代谢的整合与调节

(二)肝储存多种维生素
储存维生素A、E、K及B12,富含维生素B1、 B2、B6、泛酸和叶酸。
(三)肝参与多数维生素的转化
❖ 胡萝卜素——维生素A ❖ 维生素PP——NAD+和NADP+ ❖ 泛酸——辅酶A ❖ 维生素B1——焦磷酸硫胺素 ❖ 维生素D3——25-羟维生素D3
五、脂肪组织是储存和释放能量的重要 场所
(一)机体将从膳食中摄取的能量主要储存于脂 肪组织
膳食脂肪:以CM形式运输至脂肪组织储存。 膳食糖:主要运输至肝转化成脂肪,以VLDL形式 运输至脂肪组织储存。部分在脂肪细胞转化为脂肪 储存。
(二)饥饿时主要靠分解储存于脂肪组织的脂 肪供能
饥饿
脂解激素↑
HSL↑ 脂肪动员↑
❖ 体内糖、脂、蛋白质和核酸等的代谢不是 彼此独立,而是相互关联的。
❖ 它们通过共同的中间代谢物,三羧酸循环 和生物氧化等彼此联系、相互转变。
❖ 当一种物质代谢障碍时可引起其它物羟丙酮 丙酮酸
甘油 + FA TG
TAC 乙酰 CoA
胆固醇 酮体
肝 酮体
脂肪酸 甘油
氧化供能
六、肾能进行糖异生和酮体分解
肾髓质无线粒体,主要由糖酵 解供能;肾皮质主要由脂肪酸、酮 体有氧氧化供能。
一般情况下,肾糖异生只有肝 糖异生葡萄糖量的10%。长期饥饿 (5~6周),肾糖异生可达每天40g ,与肝糖异生的量几乎相等。
第五节
物质代谢调节的主要方式
The main way for Regulation of Metabolism
一、心肌优先利用脂肪酸氧化分解供能
代谢调节部分的练习题

第一部分填空1、代谢调节酶一般(主要)分为两大类:变构调节酶和共价修饰酶第二部分单选题1、磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于:( B )A、别(变)构调节酶B、共价调节酶C、诱导酶D、同工酶2、操纵子调节系统属于哪一种水平的调节?( B )A、复制水平的调节B、转录水平的调节C、转录后加工的调节D、翻译水平的调节第三部分判断(对的打“√”,错的打“×”)1、在许多生物合成途径中,最先一步都是由一种调节酶催化的,此酶可被自身的产物,即该途径的最终产物所抑制。
(√)2、细胞内区域化在代谢调节上的作用,除把不同的酶系统和代谢物分隔在特定区间外,还通过膜上的运载系统调节代谢物、辅助因子和金属离子的浓度。
(√)3、分解代谢和合成代谢是同一反应的逆转,所以它们的代谢反应是可逆的。
(×)4、在许多生物合成途径中,最先一步都是由一种调节酶催化的,此酶可被自身的产物,即该途径的最终产物所抑制。
(√)第四部分名词解释1、操纵子-即基因表达的协调单位,它们有共同的控制区和调节系统。
操纵子包括在功能上彼此有关的结构基因和共同的控制部位。
第六部分论述题1、论述物质代谢特点和物质代谢在细胞水平的调节方式。
答案要点:物质代谢的特点是:(1)代谢途径交叉形成网络。
(2)分解代谢和合成代谢的单向性。
(3)ATP是通用的能量载体。
(4)NADPH以还原力形式携带能量。
(5)代谢的基本要略在于形成ATP、还原力和构造单元以用于生物合成。
在细胞水平上的调节方式是:(1)细胞结构和酶的空间分布。
(2)细胞膜结构对代谢的调节和控制作用。
2、哪些化合物是联系糖,脂类,蛋白质和核酸代谢的重要物质?为什么?解答要点:6-磷酸葡萄糖;丙酮酸;乙酰辅酶A是联系糖,脂类,蛋白质和核酸代谢的三大关键中间产物.第一部分填空1、体内氨基酸脱氨基作用的主要方式是联合脱氨基作用。
2、蛋白质脱氨基的主要方式有_氧化脱氨基作用、联合脱氨基作用和嘌呤核苷酸循环。
生物化学第五节 物质代谢调节的主要方式

第五节物质代谢调节的主要方式2015-07-07 71910 0为适应内外环境的变化、实现细胞的各种生物学功能,需对代谢进行精细调节,使各种物质的代谢井然有序,相互协调进行。
这是生物体的基本特征,是在生物进化过程中形成的一种适应能力。
代谢调节的复杂程度随进化程度增加而增高。
单细胞生物主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,即所谓原始调节或细胞水平代谢调节。
高等生物不仅细胞水平代谢调节更为精细复杂,还出现了内分泌细胞及内分泌器官,形成了通过激素发挥代谢调节作用的激素水平代谢调节。
高等动物的代谢调节还涉及复杂的神经系统,形成了在中枢神经系统控制下,多种激素相互协调,对机体代谢进行综合调节的所谓整体水平代谢调节。
上述三级代谢调节中,细胞水平代谢调节是基础,激素及神经对代谢的调节需通过细胞水平代谢调节实现。
一、细胞水平的物质代谢调节主要调节关键酶活性(一)各种代谢酶在细胞内区隔分布是物质代谢及其调节的亚细胞结构基础在同一时间,细胞内有多种物质代谢进行。
参与同一代谢途径的酶,相对独立地分布于细胞特定区域或亚细胞结构(表12-2),形成所谓区隔分布,有的甚至结合在一起,形成多酶复合体。
酶的这种区隔分布,能避免不同代谢途径之间彼此干扰,使同一代谢途径中的系列酶促反应能够更顺利地连续进行,既提高了代谢途径的进行速度,也有利于调控。
表12-2 主要代谢途径(多酶体系)在细胞内的分布(二)关键酶活性决定整个代谢途径的速度和方向每条代谢途径由一系列酶促反应组成,其反应速率和方向由其中一个或几个具有调节作用的关键酶活性决定。
这些在代谢过程中具有调节作用的酶称为关键酶( key enzyme),特点包括:①常常催化一条代谢途径的第一步反应或分支点上的反应,速度最慢,其活性能决定整个代谢途径的总速度。
②常催化单向反应或非平衡反应,其活性能决定整个代谢途径的方向。
③酶活性除受底物控制外,还受多种代谢物或效应剂调节。
物质代谢的特点和调节要求

第
戊
3NADP+
糖 途
3NADP+ +3H+
3NADP+
6-磷酸葡萄糖 脱氢酶
一 阶
径
3NADP+ +3H+ 3CO2
段
5-磷酸核酮糖(C5) ×3
第
二
阶
3-磷酸甘油醛 2×6-磷酸果糖
段
C3
C6
小结
UDP
糖原n+1
糖原n 糖原合酶
UDPG
磷酸化酶
糖原合成和 Pi 分解是两条
不同的途径
糖原n
部位:胞浆
在能量代谢上的相互联系 糖、脂和蛋白质之间的相互联系
Learning objectives:
Definition Location Pathway The rate-limiting enzymes (coenzymes) Regulation Functions Calculate the energy yield
肝脂 类 糖类
无机盐
水
维生素 蛋白质
✓ 合成、储存糖原
✓ 糖原分解为葡萄 糖提供血糖
✓ 糖异生
——对维持血糖恒定起重要作用
酮体 乳酸 自由脂酸
葡萄糖
心
—— 以有氧氧化途径为主
脑
耗能大,耗氧多。 葡萄糖为主要能源。 不能利用脂酸,葡萄糖供 应不足时,利用酮体。
肌 肉
✓ 合成并储存糖原;肌糖原分解不能提供葡萄糖; ✓ 通常以脂酸氧化为主要供能方式;剧烈运动时,
丙酮酸
糖异生
葡萄糖
丙酮酸脱氢酶复合体
乙酰CoA
(脱氢、加水、再脱氢、硫解) β氧化
学习_物质代谢的整合与调节

HSL↑ 脂肪动员↑
肝
酮体
脂肪酸
甘油
氧化供能
六、肾能进行糖异生和酮体生 成
肾髓质无线粒体,主要由 糖酵解供能;肾皮质主要由脂 酸、酮体有氧氧化供能。
一般情况下,肾糖异生只 有肝糖异生葡萄糖量的10%。 长期饥饿(5~6周),肾糖异生 可达每天40g,与肝糖异生的量
第五节
物质代谢调节的主要方 式
The main way for Regulation of Metabolism
糖分解增强
ATP↑
抑制异柠檬酸脱氢酶
(三羧酸循环关键酶)
柠檬酸堆积, 出现线粒体
脂酸合成增加 ,分解抑制
激活乙酰CoA羧化酶
(脂酸合成关键酶)
二、糖、脂和蛋白质代谢通过中 间代谢物而相互联系
糖、脂、蛋白质和核酸通过共同的 中间代谢物、柠檬酸循环、生物氧化等彼 此联系且相互转变。一种物质代谢障碍可 引起其他物质代谢的紊乱。
合成尿素:氨基甲酰磷酸合成酶Ⅰ及鸟氨酸 氨基甲酰转移酶只存在于肝细胞线粒体。
合成谷氨酰胺
四、肝参与多种维生素和辅酶的代 (一)肝在脂溶性谢维生素吸收和血液
运输中具有重要作用
胆汁酸——脂溶性维生素A、D、E和K吸 收
视黄醇结合蛋白——结合运输视黄醇 维生素D结合蛋白——结合运输维生素D
(二)肝储存多种维生素
各种物质代谢之间互有联系,相互依存 。
二、机体物质代谢不断受到精细
调节
内外环 境不断
影响机体代谢
变化
适应环境 的变化
机体有精细的调 节机制,调节代 谢的强度、方向 和速度
三、各组织、器官物质代谢各具特 色
不同的组 织、器官
结构不同
酶系的种类 、含量不同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论述物质代谢特点,并在细胞水平说明代谢调节。
一、物质代谢的特点
(一)整体性:体内各种物质代谢相互联系、相互转变,构成统一整体。
(二)代谢在精细的调节下进行。
(三)各组织器官物质代谢各具特色,如肝是物质代谢的枢纽,常进行一些特异反应。
(四)各种代谢物均有各自共同的代谢池,代谢存在动态平衡。
(五)ATP是共同能量形式
(六)NADPH是合成代谢所需还原当量但分解代谢常以NAD为辅酶。
(一)细胞水平的代谢调节
实际上就是酶的调节,这是单细胞生物主要的调节方式,这也是一切代谢调节的基础,包括酶结构的调节和酶量的调节。
1细胞内酶的隔离分布。
代谢途径有关酶类常常组成酶体系,分布于细胞的某一区域或亚细胞结构中,这就使得有关代谢途径只能分别在细胞不同区域内进行,不致使各种代谢途径互相干扰,要记住体内主要代谢过程发生的亚细胞定位,如脂肪酸β氧化、三羧酸循环在线粒体中进行,而脂肪酸合成,糖异生在胞液中进行,尿素合成在胞液和线粒体中进行。
代谢反应进行的速度和方向是由此代谢途径中一个或几个具有调节作用的关键酶的活性决定的。
这些调节代谢的酶称为关键酶。
它们催化的反应有下述特点:①反应速度最慢,因此又称限速酶,它的活性决定整个途径的总速度②催化单向反应或非平衡反应,它的活性决定整个途径的方向③酶活性可受多种代谢物或效应剂的调节。
代谢调节主要通过对关键酶活性的调节而实现的,可分为快速调节和迟缓调节两类。
快速调节即对酶结构的调节,分为变构调节和共价修饰两种,这类调节方式效应快,但不持久。
迟缓调节即对酶含量的调节,发生较慢,但作用也持久。
2关键酶的变构调节
①变构酶定义在酶一章中已述。
②机制:变构酶常是由两个以上亚基组成的具有四级结构的铁蛋白质。
在酶分子中与底物结合起催化作用的亚基称催化亚基,与变构效应剂结合起调节作用的调节亚基,个别酶催化,调节部位位于同一亚基。
变构效应剂通过非共价键与调节亚基结合,引起酶构象改变,不涉及酶共价键的变化,从而影响酶与底物结合,使酶催化活性受到影响,酶构象的改变可表现为亚基的聚合或解聚等。
③意义:变构调节是细胞水平调节中一种较常见的快速调节,代谢终产物常可对酶起变构抑制作用,此即反馈调节,使代谢物不致过多,也不致过少,也可使能量得以有效利用。
变构调节可使不同代谢途径相互协调。
3酶的化学修饰调节
①定义:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。
②特点:经绝大多数属此类调节方式的酶有无活性(低活性)和有活性(或高活性)两种形式。
这两种形式通过共价外修饰,可互相转变。
以磷酸化为例,酶蛋白分子中丝氨酸、苏氨酸、酪氨酸的羟基是磷酸化的位点,但有些酶经磷酸化后活性升高,而有些酶磷酸化后却活性降低,在去磷酸化才是其活性状态。
化学修饰引起酶的共价键变化,且化学修饰发生的是酶促反应。
一个酶分子可催化多个作用物(酶蛋白)出现组成变化,故有放大效应,催化效率比变构调节高。
磷酸化,脱磷酸化是最常见的化学修饰调节,其本身也是酶促反应,磷酸化由蛋白激酶催化,脱磷酸化由磷蛋白磷酸酶催化,酶发生磷酸化消耗的ATP比合成酶蛋白消耗的ATP要少得多,因此,是体内调节酶活性经济而有效的方式。
对某一酶而言,可同时受变构调节和化学修饰两种方式的调节,然而当效应剂浓度过低,变构调节就不如共价修饰来得快而有效,故在应激情况下,共价修饰尤为重要。
4酶量的调节
由于酶的合成、降解所需时间较长,消耗ATP较多,故酶量调节属迟缓调节。
①酶蛋白的诱导与阻遏
一般将加速酶合成的化合物称为诱导剂,减少酶合成的称阻遏剂,二者是在酶蛋白生物合成的转录或翻译过程中发挥作用,但影响转录较常见,通常底物多为诱导剂,产物多为阻遏剂。
而激素和药物也是常见的诱导剂。
②酶蛋白降解
改变酶蛋白分子的降解速度也能调节细胞内酶含量,此过程主要靠蛋白水解酶来完成。