PWM逆变器Matlab仿真设计

合集下载

桥式可逆PWM变换器Matlab仿真

桥式可逆PWM变换器Matlab仿真

适用标准文案作业:桥式可逆 PWM 变换器的主电路由四个 IGBT 构成一个 H 桥,并且每一个 IGBT 上均反并联有电力二极管,电力二极管起到续流的作用采纳以下 2 种方式进行仿真,并进行比较剖析:Simulink 的 SimPowerSystemsOrCAD PSpice要求在文件组中画出详尽的原理图、给出元件的详尽模型和参数、仿真设置参数和仿真结果并进行剖析。

议论分类状况以下:(一)占空比为90%时对系统的剖析;(二)占空比为50%时对系统的剖析;(三)占空比为10%时对系统的剖析;在上边所分的三大类中,每一种又分为三小类。

进而对该系统的剖析尽量达到全面。

三小类为:①电动机所带负载为轻载时的状况;②电动机所带负载为适合负载时的状况;③电动机所带负载为重载时的状况;1、Simulink 的 SimPowerSystems(1)原理图以下列图所示(2)元器件参数设置脉冲发生器:逻辑算符:IGBT :直流电机参数:直流电机的励磁电压110V ,励磁电流0.5A ,额定转速2400r/min ,负载转矩· m。

(一)、占空比为90%时对系统的剖析;电动机所带负载为轻载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为适合负载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为重载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:从以上波形图能够看出,当占空比为90%时,电机的输出电压在不一样负载的状况下不受影响。

而转速在不一样的负载下是变化的,轻载时转速略高于额定转速;适合负载时为额定转速;重载时低于额定转速。

电机启动时会产生较大的电枢电流,当转速趋于安稳的时候电枢电流趋近于零。

转矩的变化跟电枢电流近似。

(二)占空比为50%时对系统的剖析;电动机所带负载为轻载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为适合负载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:电动机所带负载为重载时的状况;1、电机的输出电压波形图:2、电机的转速、电枢电流、励磁电流、转矩的波形图:从以上波形图能够看出,当占空比为 50%时,电机的输出电压在不一样负载的状况下不受影响。

基于Matlab_Simulink的双PWM逆变系统仿真

基于Matlab_Simulink的双PWM逆变系统仿真

基于Matlab/Simulink的双PWM逆变系统仿真姚兴佳 张纯明 李宏峰 李美英(沈阳工业大学电气工程学院,沈阳 110023)摘要利用双PWM设计一个交—直—交变流系统,给出设计的基本原理和技术参数要求。

以此建立Matlab/Simulink仿真模型,从空载到满载进行实验研究。

仿真结果表明,设计的变流系统具有良好的电压、电流稳定性和抗干扰性,电压、电流畸变率能够满足变流系统并网的技术要求,可以大大提高实际变流系统的设计能力。

关键词:PWM变流器;Simulink;仿真Simulation of Double PWM Converter System Based onMatlab/SimulinkYao Xingjia Zhang Chunming Li Hongfeng Li Meiying(Electrical Engineering School of Shenyang University of technology, Shenyang 110023)Abstract This paper introduces a AC-DC-AC converter system designed by double PWM, and gives the basic designing principle and technology parameter. Double PWM converter simulation system model is established by above principle, thus experiment research from zero load to full load is operated. The simulation result indicated that the double PWM converter system has good stability and anti-jamming, and the AC system input voltage and current distorts are satisfied with technology require , so the actual designing ability of AC-DC-AC converter system will be improved.Key words:Double PWM Converter;Matlab/Simulink;simulation1引言电力电子技术是20世纪后半叶诞生与发展的一门崭新技术。

两电平三相PWM电压逆变器MATLAB仿真分析

两电平三相PWM电压逆变器MATLAB仿真分析

两电平三相PWM电压逆变器MATLAB仿真分析Three-phase Two-level PWM Converters (discrete)两电平三相PWM电压逆变器1、原理分析如图1,该系统主要由两个独⽴的电路说明两个两电平三相的PWM电压源逆变器。

每个PWM电压源逆变器输⼊为⼀个通过三相变压器⼆次侧得到的交流电,变压器数据为:1kw,208V/ rms 500 var 60Hz。

电路中所有转换器属于开环控制,其中PWM发⽣器是属于离散模块的,这个模块可在离散控制模块库中查找。

这两个电路使⽤相同的直流电压(Vdc = 400V)、载波频率(1080赫兹)、调制指数(m = 0.85)与⽣成频率(f = 60赫兹)。

采⽤变压器漏电感和负载电容进⾏谐波滤波。

这两个电路是:1、三相、两电平转换器(单/三桥臂,六开关器件);2、三相、两级转换器(双/三桥臂,⼗⼆开关器件的H型结构)图1 两电平三相PWM电压逆变器仿真图2、参数设置1、通⽤桥图2 通⽤桥参数设置如图2,参数分别为:·Number of bridge arms:桥臂数量,可以选择1、2、3相桥臂,构成不同形式的整流器·Snubber resistance Rs(Ohms):缓冲电阻Rs,为消除缓冲电路,可将Rs参数设置为inf。

·Snubber capacitance Cs(F):缓冲电容Cs,单位F,为消除缓冲电路,可将缓冲电容设置为0;为得到纯电阻,可将电容参数设置为inf。

·Resistance Ron(Ohms):晶闸管的内电阻Ron,单位为Ω。

·Forward voltage Vf(V):晶闸管元件的正向管压降Vf和⼆极管的正向管压降Vfd,单位为V。

·Measurements:测量可以选择5种形式,即None(⽆)、device voltages (装置电压)、Device currents(装置电流)、UAB UBC UCA UDC(三相线电压与输出平均电压)或All voltages and currents(所有电压电流),选择之后需要通过Multimeter(万⽤表模块)显⽰。

基于matlab的三相桥式PWM逆变电路的仿真实验报告

基于matlab的三相桥式PWM逆变电路的仿真实验报告

基于matlab 的三相桥式PWM 逆变电路的仿真实验报告一、小组成员指导教师二、实验目的1. 深入理解三相桥式 PWM 逆变电路的工作原理。

2. 使用 simulink 和 simpowersystem 工具箱搭建三相桥式 PWM 逆变电路的仿真框图.3. 观察在 PWM 控制方式下电路输出线电压和负载相电压的波形。

4. 分别改变三角波的频率和正弦波的幅值, 观察电路的频谱图并进行谐波分析。

三、实验平台Matlab / simulink / simpowersystem五、实验模块介绍BSi∏* WIVt正弦波, 电路常用到的正弦信号模 块,双击图标,在弹出的窗 口中调整相关参数。

其信号 生成方式有两种:Time based 和SamPle based .OKCancelHelPI,J3. E E 示波器,其模块可以接受多个输入信号,每个端口的输入信号都将在 一个坐标轴中显示。

2.锯齿波发RePeat ing j t able (mask)OIItPUt 炷 repeating SeQUeTlCe Of niunbers SPeCified Ln a IabIe Of I IJH 亡-ValiL 亡 pairs. VaItLeS □f tiinft ShOUIti be JilorL OtoniCalIy IrLCrea≤in⅛ ・生器,产生一个时基和高度 可调的锯齿波序列。

⅞⅛ SOUrCe BlCCk Parameter^r RePtating SeqUtnCeS-ErqU-⅞-π茜ParaJiieterETinIe ValUftEiFUnCtiOn BloCk P ⅛ramet 亡rm : RelatianaI OPeratOr 屋Relational OperatorAPPl ie≡ the selected re IatLOIlaI OlPerator to t h.E inpu Ieft ) input 79xreΞpQΓL^ j ζ□ the it st Qp ⅞Eand ・Main Si SnaI Attr ibu ,t e S Kelatianal OPeratclr :∖-∣ 。

PWM脉宽直流调速系统设计及matlab仿真验证

PWM脉宽直流调速系统设计及matlab仿真验证

PWM脉宽直流调速系统设计及matlab仿真验证————————————————————————————————作者:————————————————————————————————日期:目录1.MATLAB简介 (3)3系统设计及参数计算 (5)3.1系统总体设计 (5)3.1.1 H型双极式PWM原理 (5)3.1。

2双闭环调速系统结构图 (7)3.1。

3双闭环调速系统启动过程分析 (8)3。

2电流调节器设计及参数计算 (9)3。

3转速调节器设计及参数计算 (11)4 MATLAB仿真验证 (14)4.1稳定运行时电流环突然断线仿真分析 (14)参考文献 (19)PWM脉宽直流调速系统设计及matlab仿真验证1.MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。

[MATLAB和MATHEMATICA、MAPLE并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像MAPLE等软件的优点,使MATLAB成为一个强大的数学软件。

2 设计分析直流双闭环调速系统调节器包括转速调节器(ASR)和电流调节器(ACR),从而分别引入了转速负反馈和电流负反馈以调节转速和电流,二者之间实行串级连接.把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。

双闭环PWM逆变器的MATLAB仿真

双闭环PWM逆变器的MATLAB仿真
2 . 1模 型的建 立
3主 要结 论及支 护建 议
采用 C O MS O L M u l t i p h y s i c s 高级数值仿 真软件建立数值模型 , 对 3 . 1巷道围岩进行合理及时的锚杆支护后 , 围岩应力状态将由单向 锚杆对巷道的支护作用进行数值模拟。 模型尺寸取为 3 0 m* 2 5 m , :  ̄道尺 或者二向转变为三 向应力状态。锚杆群作用于围岩形成内部支护结构 寸为 4 x 3 r n ’ 顶板和两帮锚杆长度为 2 . 0 m。边界条件为模型的左右边界 并且在锚杆长度 的一定范围内形成一定承载能力。 施加辊支承 , 模 型底部施加 固定约束 , 模型的上表面施加均布载荷 , 按 3 . 2若顺槽开挖后能够得到及时有效合理的的锚杆支护 , 围岩与锚 埋深 4 0 0 m计算, 边界载荷为 1 8 . 9 MP a 。 杆群共同作用 ,随着围岩变形量增加 ,巷道围岩内部的围压将变得很 表 1模型层位表 高, 因此围岩强度降低 的幅度会变小 , 甚至强度还会有所增加 。 3 . 3可以通过改变锚杆锚索的技术参数 , 来使围岩强度得到有效的 岩性 细砂 岩 煤 煤 页岩 细砂岩 员岩 细 砂岩 提高。使用具有大延伸量 、 高预紧力的锚杆锚索 , 能够有效的提高巷道 ( 由底至顶) 围岩的稳定性; 对巷道最薄弱部位底角及两帮进行加强支护, 提高其残 厚度( m) 4 4 3 4 9 3 余强度 , 增强巷道围岩的整体稳定陛。 3 . 4锚杆支护的重点所在是能否与围岩形成内音 潴 构。 该结构的强 设定模型巷道两帮布置三根锚杆 , 分别对顶部布置 3根锚杆( 间排 度和范围 直接影响着支撑能力 。 在巷道 围 岩受到恒定的单 向强度应力 距1 . 5 m) 和两根锚索( 间排距 l m) ; 帮锚杆布置 3 根锚杆( 间排距 0 . 8 m) 。 时, 单根锚杆的工作阻力参数直接影响着围岩强度 , 内部结构的强度与 设定锚杆长度为 2 m, 直径为 0 . 0 2 m, 锚索长度为 3 . 5 m, 直径为 0 . 0 1 m。 锚杆轴 向上所受的挤压力成正 比;锚杆群的技术参数决定了此结构的 2 . 2模拟结果分析 厚度 , 即锚杆越长减排距越小, 内部支护结构越厚。 得出巷道在锚杆支护作用下的应力分布云图如 图 2 。如图 2 , 空白 3 . 5可以通过提高锚杆长度的中部位置的工作阻力来增强支护强 部分为刚刚开掘的巷道 , 黑色线段为锚杆锚索。颜色越偏红色, 说明应 度。建 曾 加锚汗= 有效长度, 提高锚杆锚杆抗拉强度, 采用全长锚 固。 参考 文献 力值越高。从图中可以看出, 应力的集中点 , 为巷帮锚杆的 1 / 3 左右处 。 巷道围岩采取合理的、 及时的锚杆支护时 , 巷道围岩应力会发生重新分 f 1 1 张益 东, 李晋平. 综放锚杆支护巷道顶煤 内部支护结构承载能力探讨 布,进而产生一定量的变形 ,在与锚杆群所形成的内部结构共同作用 叨. 煤炭 学抿 1 9 9 9 , 2 4 . 2 喉 朝炯. 煤巷锚杆支护口 . 徐州: 中国矿业大学出版社, 1 9 9 9 . 下 ,巷道围岩内部的围压将变得很高 ,因此围岩强度降低的幅度会变 f

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。

在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。

标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。

实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。

逆变器的控制采用PWM方式。

对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。

因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。

2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。

Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。

在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。

控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。

3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。

根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。

基于PWM技术的逆变器设计及Matlab仿真

基于PWM技术的逆变器设计及Matlab仿真

基于PWM技术的逆变器设计及Matlab仿真作者:刁俊涛来源:《科学与财富》2017年第35期摘要:PWM控制技术是逆变电路中应用最广泛的技术,逆变电路则是PWM控制技术最为重要的应用场合。

课题研究基于PWM技术逆变器的原理,用Matlab软件建立基于PWM技术逆变器的电路结构模型,设置好相关参数,并用Matlab里的Simulink模块进行仿真,并对仿真结果的图形进行分析,利用MATLAB的可视化仿真工具Simulink建立该电路模型进行分析,简单、直观,适合电力电子技术的教学及其研究工作。

关键词:PWM;逆变器;Simulink;仿真一、课题来源及设计思路PWM控制技术是逆变电路中应用最广泛的技术,逆变电路则是PWM控制技术最为重要的应用场合。

课题研究基于PWM技术逆变器的原理,用Matlab软件建立基于PWM技术逆变器的电路结构模型,设置好相关参数,并用Matlab里的Simulink模块进行仿真,并对仿真结果的图形进行分析,利用MATLAB的可视化仿真工具Simulink建立该电路模型进行分析,简单、直观,适合电力电子技术的教学及其研究工作。

二、自建注意问题如果要观察模块的内部结构,右键模块,然后选择Look Under Mask即可。

编辑模块封装选择Edit Maks。

把要封装的东西全部用鼠标框起来,选择Edit中的Creat Subsystem就可以将选中的东西封装起来了。

左键单击模块,用Edit中的Mask Subsystem即可进行模块的封装。

同样用Edit 下的Look Under Mask即可观察模块的内部结构。

三、自建模块图形由图1可知,当调制信号的正弦波Ur大于三角载波Uc时,逆变器输出高电平,否则,输出低电平,可设计如图2触发电路,以A相电路上下桥臂为例。

图中用了两个逻辑比较器Relational Operator来比较两列输入波形的大小,Relational Operator的工作原理是,符合图中逻辑关系时,输出1;反之,输出0。

两电平三相PWM电压逆变器MATLAB仿真分析

两电平三相PWM电压逆变器MATLAB仿真分析

Three-phase Two-level PWM Converters (discrete)两电平三相PWM电压逆变器1、原理分析如图1,该系统主要由两个独立的电路说明两个两电平三相的PWM电压源逆变器。

每个PWM电压源逆变器输入为一个通过三相变压器二次侧得到的交流电,变压器数据为:1kw,208V/ rms 500 var 60Hz。

电路中所有转换器属于开环控制,其中PWM发生器是属于离散模块的,这个模块可在离散控制模块库中查找。

这两个电路使用相同的直流电压(Vdc = 400V)、载波频率(1080赫兹)、调制指数(m = 0.85)与生成频率(f = 60赫兹)。

采用变压器漏电感和负载电容进行谐波滤波。

这两个电路是:1、三相、两电平转换器(单/三桥臂,六开关器件);2、三相、两级转换器(双/三桥臂,十二开关器件的H型结构)图1 两电平三相PWM电压逆变器仿真图2、参数设置1、通用桥图2 通用桥参数设置如图2,参数分别为:·Number of bridge arms:桥臂数量,可以选择1、2、3相桥臂,构成不同形式的整流器·Snubber resistance Rs(Ohms):缓冲电阻Rs,为消除缓冲电路,可将Rs参数设置为inf。

·Snubber capacitance Cs(F):缓冲电容Cs,单位F,为消除缓冲电路,可将缓冲电容设置为0;为得到纯电阻,可将电容参数设置为inf。

·Resistance Ron(Ohms):晶闸管的内电阻Ron,单位为Ω。

·Forward voltage Vf(V):晶闸管元件的正向管压降Vf和二极管的正向管压降Vfd,单位为V。

·Measurements:测量可以选择5种形式,即None(无)、device voltages (装置电压)、Device currents(装置电流)、UAB UBC UCA UDC(三相线电压与输出平均电压)或All voltages and currents(所有电压电流),选择之后需要通过Multimeter(万用表模块)显示。

数字化PWM可逆直流调速系统MATLAB仿真

数字化PWM可逆直流调速系统MATLAB仿真
一、课程设计的任务和要求
1.要求
设计一个转速、电流双闭环控制PWM可逆直流调速系统。电动机控制电源采用H型PWM功率放大器,其占空比变化为0~0.5~1时,对应输出电压为-264V~0~264V,为电机提供最大电流25A。速度检测采用光电编码器(光电脉冲信号发生器),且其输出的A、B两相脉冲经光电隔离辩相后获得每转1024个脉冲角度分辨力和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流50A。已知:
Keywords:DCTimingSystem; PWM;Double CloseLoop; PI Adjust
六、成绩评定
指导教师评语:
指导教师签字:
2012年月日
项目
评价
项目
评价
调查论证
工作量、工作态度
实践能力
分析、解决问题能力
质量
创新
得分
七、答辩记录
答辩意见及答辩成绩:
答辩小组教师(签字):
2012年月日
5.肖阳.基于DSP的伺服电机的调速系统的控制设计[D].武汉:武汉理工大学硕士论文,2009.
6.洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.北京:机械工业出版社,2006.
四、课程设计(学年论文)摘要(中文)
本文介绍双闭环PWM直流调速系统原理基础上,根据系统的动、静态性能指标采用工程设计方法设计调节器参数。调速方案的优劣直接关系到系统调速的质量,根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。并运用MATLAB的Simulink和Power System工具箱、面向系统电气原理结构图的仿真方法,实现了转速电流双闭环PWM直流调速系统的建模与仿真。文章重点介绍了调速系统的建模和PWM发生器、直流电机模块互感等参数的设置。给出了PWM直流可逆调速系统的仿真模型和仿真结果,验证了仿真模型及调节器参数设置的正确性。

PWM逆变器Matlab仿真

PWM逆变器Matlab仿真

课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: PWM逆变器Matlab仿真初始条件:输入110V直流电压;要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、得到输出为220V、50Hz单相交流电;2、采用PWM斩波控制技术;3、建立Matlab仿真模型;4、得到实验结果。

时间安排:课程设计时间为两周,将其分为三个阶段。

第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。

第二阶段:根据设计的技术指标要求选择方案,设计计算。

第三阶段:完成设计和文档整理,约占总时间的40%。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)1设计方案的选择与论证 (2)2逆变主电路设计 (2)2.1逆变电路原理及相关概念 (2)2.2逆变电路的方案论证及选择 (3)2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4)2.3.1模型假设 (4)2.3.2利用MATLAB/Simulink进行电路仿真 (5)3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6)3.1正弦脉冲宽度调制(SPWM)原理 (6)3.2SPWM波的控制方法 (7)3.2.1双极性SPWM控制原理及Simulink仿真 (7)3.2.2单极性SPWM控制原理及Simulink仿真 (9)4升压电路的分析论证及仿真 (10)4.1B OOST电路工作原理 (10)4.2B OOST电路的S IMULINK仿真 (11)5滤波器设计 (12)6 PWM逆变器总体模型 (14)7心得体会 (17)参考文献 (18)PWM逆变器MATLAB仿真摘要随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM技术得到了迅速发展,SPWM正弦脉宽调制这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列有点,是一种比较好的波形改善法。

基于PWM技术逆变器仿真的GUI设计

基于PWM技术逆变器仿真的GUI设计

基于PWM技术逆变器仿真的GUI设计基于脉宽调制(PWM)技术的逆变器是一种常用的电力转换设备,它将直流电源转换为交流电源。

在逆变器设计中,仿真是非常重要的一步,可以帮助工程师验证设计的正确性和性能。

本文将介绍一个基于PWM技术逆变器仿真的GUI设计,该GUI可以帮助工程师进行逆变器的仿真及相关参数的调节。

该GUI设计基于MATLAB软件平台,采用图形用户界面(GUI)的形式展示。

用户可以通过该界面进行参数的设置和结果的展示,实现了交互性较强的操作。

界面上主要包括以下几个模块:参数设置、波形展示和结果分析。

在参数设置模块中,用户可以输入逆变器的相关参数,包括输入电压、输出电压、频率等。

用户还可以设置PWM信号的调制比、频率等参数。

根据用户输入的参数,逆变器的工作状态和性能可以得到相应的仿真结果。

波形展示模块用于展示仿真得到的波形,其中包括输入电压、输出电压、PWM信号等波形。

这些波形可以帮助工程师分析逆变器的工作状态和性能。

结果分析模块用于对仿真结果进行分析和评价。

用户可以查看逆变器的输出电压、输入电压波形以及其他相关性能参数,如变换效率、谐波失真等。

通过对这些结果的分析,可以得到对逆变器设计的指导和优化。

该GUI设计基于PWM技术逆变器的仿真,为工程师提供了一个方便、直观的工具,可以帮助他们验证逆变器的设计并进行参数调节。

这样可以节省时间和成本,提高设计效率和准确性。

随着电力技术的不断发展,逆变器在许多领域中得到广泛应用。

一个好的逆变器设计需要经过充分的仿真和测试。

本文介绍的基于PWM技术逆变器的GUI设计,可以为工程师提供一个更方便、直观的仿真工具,帮助他们优化逆变器设计,提高工作效率和产品质量。

PWM逆变器MATLAB仿真

PWM逆变器MATLAB仿真

摘要随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM技术得到了迅速发展,PWM控制就是对脉冲的宽度进行调制的技术。

即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。

PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻。

现在大量应用的逆变电路中,对大部分都是PWM型逆变电路。

可以说 PWM控制技术正是有赖于在逆变电路中的应用,才发展得比较成熟,从而确定了它在电力电子技术中的重要地位。

本次课程设计以IGBT构成的单相桥式逆变电路为基础,控制并得到所需的波形,并通过计算软件matlab/simulink对PWM逆变电路进行仿真设计,得到题目要求的数据指标,并分析得到的结果。

关键词:PWM 逆变 matlab/simulink目录摘要 (1)1 设计方案的选择 (3)2 逆变电路的原理及方案选择 (3)3 PWM原理及控制方法 (4)4 滤波器设计 (6)5 PWM逆变器仿真 (7)5.1 单相桥式逆变器仿真 (7)5.2 PWM仿真 (10)5.3 PWM逆变器总体模型 (13)6 心得体会 (17)参考文献 (18)PWM逆变器MATLAB仿真1 设计方案的选择按照题目要求,已知输入电压为110V直流电,要求得到的是220V、50HZ的单相交流电,这里涉及到两个问题:升压和逆变。

于是就存在两种设计方法,一是进行DC-DC升压变换在进行逆变,另一种是先进行逆变变换再进行升压。

当然,要得到正弦交流电压还要考虑滤波的问题。

若采用方案一,先升压再逆变,这种方案可靠性高、响应速度快、噪声性能好、效率高,但升压电路会在初期产生超调趋势,若采用附加控制的办法减小超调量则会增加逆变器的复杂度和设计成本。

若采用方案二,这种方法效率一般可达90%以上、可靠性高、抗输出的能力较强,其缺点是响应速度慢、体积大、波形畸变较为严重。

由于两个方案各有优缺点,但方案二的设计更为简单,所以我们选择方案二作为本次设计的最终方案。

基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真

基于MATLAB的三相桥式PWM逆变电路的状态空间分析与仿真
CAM=ctrb(A,B);rcam=rank (CAM);N=size(A);n=N(1);
ifrcam ==n
disp('System is controlled')
elseifrcam<n
disp('System is no controlled')
end
ob=obsv(A,C);
rob=rank(ob);
1.2
由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,也就是说,这种交一直一交变频器中的整流器采用不可控的二极管整流器就可以了。逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(Modulation Wave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中常用等腰三角波作为载波,因为等腰三角波是上下宽线性对称变化的波形,当它与任何一个光滑的曲线相交时,在交点的时刻控制开关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲,这正是SPWM所需要的结果。从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。

基于MATLAB的单相PWM逆变电路的仿真研究

基于MATLAB的单相PWM逆变电路的仿真研究
路 应 用 非 常 广 泛 ,如 在 直 流 电源 周期 内载 波u只 在正 极性 或负极 性 单 极 性 S W 控 制 信 号 的 发 生 两 部 PM
向 交 流 负 载 供 电 时 需 要 逆 变 电
路 ; 交 流 电动 机 调 速 用 变 频 器 、

种 极 性 范 围 内变 化 ,所 得 的P M 分 。 W 单 极性 S W 信 号 的S m l n PM iu k i
视化仿真工具Smun 建立单相 桥式单极性控制方式TP i fk i WM逆 变电路 的仿真模 型,通过动 态仿 真,研 究了调 制深度 、载波频率
对输 出电压、负载上电流 的影响 ;并分析 了输 出电压、负载上电流的谐 波特性 。仿真结果表 明建模的正确性,并证 明了该模 型 具有 快捷 、灵活、方便、直观等一系列特点,从 而为 电力电子技术教学和研究 中提供 了一种较好 的辅助工具。 【 关键词 】Ma a/i uik WM逆变电路 ;动态仿真 ;建模 tb Sm l ;P l n
采 用 I B 作 为 开 关 器 件 的单 电压uf 幅值W 1U。 GT 。 的 l 1d =1

一 一 一 一 一

相 桥 式P M 变 电路 如 图 i 示 。 W逆 所 设负 载 为 阻感 负载 , 工作 时V和V ,
3 建模 及 仿真 . 3 1建 模 .
I》 _一 ) 皇王研究…………………… )



基于MA L B T A 的单; P  ̄ WM R 逆 变 电路 的仿 真研 究
温 州医学院 朱 南 张理兵
【 要】逆变 电路是P 摘 WM控制技术 最为重要的应用场合 。这 里在研 究单相 桥
叶卫川 徐俊佩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM逆变器MATLAB仿真1设计方案的选择与论证从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。

除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示:图1-1方案一:先升压再逆变图1-2方案二:先逆变,再升压方案选择:方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。

方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。

从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。

2逆变主电路设计2.1逆变电路原理及相关概念逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。

根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。

2.2逆变电路的方案论证及选择从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论:方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。

在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。

反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。

其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。

VD2图2-1 半桥逆变电路方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对交替各导通180o ,其输出矩形波的幅值是半桥电路的两倍。

全桥电路在带阻感负载时还可以采用移相调压的方式输出脉冲宽度可调的矩形波。

UdVD4图2-2全桥逆变电路方案三:带中心抽头变压器的逆变电路,其主要特点是交替驱动两个IGBT ,通过变压器耦合给负载加上矩形波电压。

两个二极管的作用也是给负载电感中储存的无功能量提供反馈通道,该电路虽然比全桥电路少了一半开关器件,但器件承受的电压约为2Ud ,比全桥电路高一倍,且必须有一个变压器。

V2图2-3带中心抽头变压器的逆变电路方案选择:全桥电路和带中心抽头变压器的逆变电路的电压利用率是一样的,均比半桥电路大一倍。

又由于全桥结构的控制方式比较灵活,所以本篇论文选择单相桥式逆变电路作为逆变器的主电路。

2.3建立单相桥式逆变电路的Simulink的仿真模型2.3.1模型假设1)所有开关器件都是理想开关器件,即通态压降为零,断态压降为无穷大,并认为各开关器件的换流过程在瞬间完成,不考虑死区时间。

2)所有的输入信号包括触发信号、电源电压稳定,不存在波动。

2.3.2利用MATLAB/Simulink进行电路仿真在Simulink工作空间中添加如下元件:Simscape/SimPower Systems /Power Electronics中的Diode、IGBT模块Simscape/SimPower Systems /Electrical Sources/DC Voltage Source模块Simscape/SimPower Systems /Elements/Series RLC Branch模块Simscape/SimPower Systems /Measurements/Current Measurement模块Simscape/SimPower Systems /Measurements/Multimeter模块Simscape/SimPower Systems /powergui模块Simulink/Source/Pulse Generator模块Simulink/Sinks/Floating Scope模块Simulink/Signal Routing/Demux模块利用上述模块构成如下图所示的单相桥式逆变电路模型图2-4单相桥式逆变电路模型各个模块的参数设置如下:“DC Voltage Source”模块幅值设为110V;“powergui”中“Simulation type”选为“continuous”,并且选中“Enable use of ideal switching device”复选框;“Pulse Generator3”中“Amplitude”设为1,由于题目要求输出电压频率为50Hz,即周期为0.02S,所以“Period”设为0.02,“Phase Delay”设为零,即初始相位为零,这一路脉冲送出去用来驱动桥臂1和3;“Pulse Generator1”的“Phase Delay”设为0.01,相当于延迟半个周期,以形成与“Pulse Generator3”互补的触发脉冲用来驱动桥臂2和4,其他参数与“Pulse Generator3”相同;“Solver”求解器算法设为ode45;仿真时间设为5S,之后便可以开始仿真了,仿真后Scope输出波形如下图所示,图中自上而下依次为负载的电压、电流、电源侧电流波形。

图2-5单相桥式逆变电路Scope输出波形从图中可以看出波形与理论上的波形形状相同,说明此逆变电路工作正常。

3正弦脉宽调制(SPWM)原理及控制方法的Simulink仿真3.1正弦脉冲宽度调制(SPWM)原理PWM脉宽调制技术就是对脉冲宽度进行调制的技术。

即通过对一系列脉冲宽度进行调制,来等效的获得所需要的波形(含幅值和形状)。

PWM的一条最基本的结论是:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时其效果基本相同,冲量即窄脉冲面积,这就是我们通常所说的“面积等效”原理。

因此将正弦半波分成N等分,每一份都用一个矩形脉冲按面积原理等效,令这些矩形脉冲的幅值相等,则其脉冲宽度将按正弦规律变化,这种脉冲宽度按正弦规律变化而和正弦波等效的PWM波形叫做SPWM。

示意图如下图所示:图3-1 SPWM示意图3.2 SPWM波的控制方法SPWM波的产生方法有计算法和调制法,计算法很繁琐,不易实现,所以在这里不作介u,把接受调制的信号作为载波绍,重点介绍调制法,即把希望输出的波形作为调制信号ru,通过信号波调制得到所期望的PWM波形。

通常采用等腰三角波作为载波,因为等腰三c角波上任一点的水平宽度和高度呈线性关系且左右对称,当它与任何一个缓慢变化的调制信号波相交时,如果在交点时刻对电路中的开关器件进行通断控制,就可得到SPWM波,常见的SPWM控制方法有单极性SPWM控制,双极性SPWM控制。

3.2.1双极性SPWM控制原理及Simulink仿真所谓的双极性是指在调制信号波的半个周波三角载波有正负两种极性变化。

用调制信号波与三角载波比较的方法可以产生双极性SPWM波,其仿真原理图如下图所示:图3-2 双极性SPWM信号仿真原理图其输出波形如下图所示:图3-3双极性SPWM信号仿真Scope输出波形图现用SPWM波产生模块驱动单相桥式逆变电路工作进行仿真,方法是在Simulink中选中SPWM产生电路,然后右键选择“Create Subsystem”将其放入到一个“Subsystem(子系统)”中,配置好其输入输出引脚,然后右击该模块,选择“Mask Subsystem”对其进行封装,封装后的模块名取为“PWM Subsystem”,原理图如下图所示:图3-4 双极性PWM逆变电路仿真模型电路中RLC皆取默认值,DC Voltage Source值取为110V,仿真后scope输出波形如下图所示:图3-5 双极性PWM逆变电路Scope输出波形3.2.2单极性SPWM控制原理及Simulink仿真所谓的单极性是指在调制信号波的半个周波三角载波有零、正或零、负一种极性变化,单极性型SPWM信号的产生比双极性复杂些,要按调制波每半个周期对调制波本身或者载波进行一次极性反转,其仿真原理图如下图所示:图3-6 单极性SPWM信号仿真原理图将该模块做封装后来驱动单相全桥逆变电路,为了使模型结构更加清晰,本次仿真采用Simulink库中自带的“Universal Bridge(通用桥)”代替由电力电子器件组合而成的桥式逆变电路,仿真模型如下图所示:图3-7单极性PWM逆变电路仿真模型在“Universal Bridge”模块的属性对话框中,令桥臂数为2即构成单相桥式逆变电路;在“DC Voltage Source”中将直流电压值设为110V;PWM发生器的调制度设为0.5,f,即可开始仿真,仿真后频率设为50Hz,载波频率设为基波频率的15倍,所以令=750cScope输出波形如下图所示:图3-8 单极性PWM逆变电路Scope输出波形4升压电路的分析论证及仿真前文提到过升压有两种方案,一是先进行升压再进行逆变,二是先进行逆变再进行升压,这一节主要讨论先通过Boost电路升压再进行逆变的方法。

4.1 Boost电路工作原理升压斩波电路如下图所示。

假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I1,同时C 的电压向负载供电,因C 值很大,输出电压uo 为恒值,记为Uo 。

设V 通的时间为on t ,此阶段L 上积蓄的能量为1on EI t 。

V 断时,E 和L 共同向C 充电并向负载R 供电。

设V 断的时间为off t ,则此期间电感L 释放能量为01()off U E I t -,稳态时,一个周期T 中L 积蓄能量与释放能量相等,即101=(U -E)I on off EI t t (4-1)化简得:0=offT U E t (4-2)输出电压高于电源电压,故称升压斩波电路,也称之为Boost 变换器。

相关文档
最新文档