界面连接及其界面行为知识点

界面连接及其界面行为知识点
界面连接及其界面行为知识点

研究界面行为的必要性:

分析连接接头的形成机制阐明连接接头的形成原理保证提高连接质量

在气体吸附层之下为3--4nm厚的氧化膜层,常由氧化物的水合物、氢氧化物和碱式碳酸盐等成分组成

润湿:是指液体与固体接触后造成体系(固体+液体)自由能降低的过程。

?浸湿(浸渍润湿)沾湿(附着润湿)铺展润湿

PA=2σ/r 可见附加压力与表面张力成正比,与界面曲率半径成反比。

钎缝不致密性缺陷:钎缝中的夹气、夹渣、夹气夹渣、气孔和未钎透等。

直接测量接触角的困难和不精确性,所以在工程上还经常采用测量铺展面积、润湿时间和润湿力等方法。

影响钎料润湿性的因素:热力学观点来看,界面张力即比表面自由焓,它与各相的物性、成份、温度有关,所以润湿角必然受这些因素的影响。从动力学观点来看,润湿角必然受时间的影响。

第二章

推动力:浓度梯度(化学位梯度)

分类:一是母材向液态钎料中的溶解;二是钎料组分向固态母材中的扩散

般可将扩散现象可以分成自扩散和互扩散两类。互扩散还可以分成“原子扩散”和“反应扩散”两类

●按照扩散优先发生的部位来划分,又可分为晶内扩散(体扩散)晶界扩

散表面扩散晶格内面扩散(网格状扩散)选择性扩散

激活能的值取决于物质本质、晶体点阵类型、激活原子种类等

扩散系数D在扩散过程中并非常数,它与晶体结构、原子尺寸、合金成份、温度等因素有关

一般有如下这些机制:空位扩散机制换位扩散机制间隙扩散机制位错扩散机制晶界扩散机制表面扩散机制

影响因素:扩散温度、基体金属的性质、扩散元素的性质、扩散元素的浓度、合金元素、晶格类型、固溶体类型、晶体缺陷、磁性转变、其他因素.

钎料组分的扩散量与浓度梯度、扩散系数、扩散时间和扩散面积有关

钎缝的成份和组织常常是不均匀的,一般由三个区域组成(见右图),即:母材上

靠近界面的扩散区,与之相邻的钎缝界面区和钎缝中心区。

第三章

为去除材料表面的氧化膜,可以采用物理的方法和化学的方法

金属表面的氧化膜的去除分为两个阶段,首先是钎前去膜,其次是钎焊时去膜。氧化膜的去除机制因去膜方式和材料的差异而不同,大体上有以下几种方式:

机械刮擦——使氧化膜破碎

物理方式:

超声波振动——使氧化膜脱落

化学方式

常用硬钎剂:以硼砂、硼酸酐及其混合物为基体,添加碱金属或碱土金属的氟化物、氟硼酸盐等组元构成钎剂

常用软钎剂可以分为:

无机盐类软钎剂

?无机软钎剂

无机酸类软钎剂

树脂基软钎剂(以松香为主体)

?有机软钎剂

非树脂基软钎剂

免清洗钎剂

?其他水溶性钎剂

醇溶性钎剂

无机盐类软钎剂中最常用的是氯化锌和氯化铵,主要用于配合锡铅钎料钎焊钢、铜及铜合金。

无机酸类软钎剂主要有磷酸、盐酸和氢氟酸等

机软钎剂分为松香基软钎剂和非松香基软钎剂。

非松香基软钎剂:以有机物为主体,但不含有松香等树脂类物质的软钎剂。这类钎剂的组成成分主要包括以下几类物质:

?有机醇

?有机酸

?有机卤化物

?有机胺和氨类化合物

氯化物钎剂主要含有三类物质:碱金属及碱土金属的氯化物碱金属及碱土金属的氟化物重金属的氯化物

第四章

钎焊接头虽然是依靠钎料熔化后填满间隙而形成的,但它的强度并非简单地由钎料的强度所决定,其强度还取决于焊过程中的各种金属学因素、工艺因素、接头结构因素和使用因素。

钎焊接头可能有各种形式。但就其两被连接工件之间的相对位置来看,不外乎为对接、搭接、角接和T型接头几种基本形式。

确定接头间隙时要考虑以下几方面的因素:母材与钎料的匹配及其机械性能,钎焊接头的形式钎料与母材间的相互作用,钎焊缺陷及钎着率等

在确定钎焊间隙时除了要考虑材料热膨胀系数差异的影响之外,还要考虑下列因素的影响:

母材与钎料之间的相互作用程度钎剂工件表面粗糙度接头长度

第五章

不同材料在给定的连接工艺条件下,能否形成优质接头主要取决于被连接材料的物理性能、化学性能、化学成分和工艺措施。

扩散连接接头质量不仅与连接温度、连接时间、压力、真空度、连接表面状态等工艺因素有关,更重要的是和材料的物理化学性能有关。

异种材料扩散连接时,两种材料的晶体结构、原子直径、元素的电负性等直接

决定能否在界面产生元素扩散,从而决定能否进行连接。

材料的晶体类型与性质

1 离子型晶体

(2) 原子型晶体

(3) 分子型晶体

(4) 金属型晶体

相图是描述系统的状态、温度、压力及元素成分之间关系的一种图解,

扩散连接过程可以大致分为物理接触、接触表面的激活、扩散及形成接头三个过程。

扩散连接过程中,氧化膜的消除有以下途径:解吸升华溶解表面变形去膜化学反应

过渡液相连接大致可分为以下三个阶段。

1、液相的生成

2 、等温凝固过程

3 、成分均匀化

热应力的影响因素1)材料因素2)接头形状因素(3)温度分布的影响

第六章

热裂纹包括焊缝热裂纹、HAZ液化裂纹和再热裂纹。

第七章

、钛合金的成分

1.α-钛合金

β-钛合金

α+β钛合金

TiAl具有密度小、弹性模量高和抗氧化性能好等特点。因此,它是一种很有应用前景的航空与航天高温材料。但由于其室温塑性差,无法直接用于生产。研究结果表明,合金化和微观组织的控制可改善其室温塑性。此外,提高合金程度的纯度也有助于提高其塑性。

TiAl与40Cr钢直接扩散连接界面层的形成及长大过程可分为四个阶段:

)物理接触阶段TiC及脱碳层的形成阶段Ti3Al+FeAl+FeAl2层形成阶段4)各反应层的成长阶段

TiAl/Ti界面层的形成过程1)形成界面的有效物理接触2)生成Ti(ss.Al)层3)形成(Ti3Al+TiAl)层4)各反应层长大

第八章

新型陶瓷具有耐高温、抗腐蚀、耐磨及尺寸稳定、弹性模量大、热膨胀系数小、密度低和化学性质稳定等特点,但由于陶瓷塑性差,冷加工困难,不易制成大型或形状复杂的构件,因而其单独使用受到一定限制。

陶瓷连接的主要问题:(1)陶瓷和金属很难润湿

(2)界面存在很大的热应力

(3)容易生成脆性化合物(4)界面化合物很难进行定量分析(5)缺少数值模拟的基本数据

(6)接头强度的影响因素、质量控制方法

及其可靠性评价缺乏系统研究

2.影响因素

(1)连接温度的影响(2)连接时间(3)连接压力的影响

(4)表面加工状态的影响(5)连接气氛的影响

连接气氛是指被连接的陶瓷与金属在扩散连接过程中所处的环境,主要有真空、惰性气氛和氧化性气氛三种类型

的影响

(6)中间层选择的影响

Al2O3与其它金属的扩散连接

1.直接扩散连接

2采用中间层进行扩散连接

扩散连接工艺对接头性能的影响

1.表面状态的影响

2.环境气氛的影响

3.连接温度的影响

.SiC/Ti的界面反应

主要包括四个方面:(1)界面反应相的变化过程2)界面反应相的形成条件(3)反应相的成长规律4) 接头的力学性能

SiC/TiAl的扩散连接

反应相的形成过程

(1)表面物理接触阶段

(2)TiC层出现阶段

(3)(Ti5Si3Cx +TiC)层出现阶段

(4)各反应层的成长

连接条件对反应层厚度的影响

连接压力的影响

连接时间的影响

连接温度的影响

高中化学知识点—胶体的性质及其应用

高中化学知识点规律大全 ——胶体的性质及其应用 胶体 [分散系、分散质和分散剂] 一种(或几种)物质的微粒分散到另一种物质里形成的混合物,叫做分散系.如NaCl溶解在水中形成的NaCl溶液就是一种分散系.在分散系中,分散成微粒的物质,叫做分散质.如NaCl溶液中的NaCl为分散质.分散质分散在其中的物质,叫做分散剂.如NaCl溶液中的水为分散剂. [胶体]分散质微粒的直径大小在1 nm~100nm之间的分散系,叫做胶体. 说明①胶体是以分散质粒子的大小为特征的,它只是物质的一种存在形式.如NaCl溶于水中形成溶液,但如果分散到酒精中则可形成胶体.②根据分散剂所处状态的不同,胶体可分为三种:a.液溶胶(溶胶):分散剂是液体,如Fe(OH)3胶体、AgI胶体、淀粉胶体和蛋白质胶体等.b.气溶胶;分散剂是气体,如雾、云、烟等.c.固溶胶,如烟水晶、有色玻璃等. [渗析]把混有离子或分子杂质的胶体装入半透膜袋,并浸入溶剂(一般是水)中,从而使离子或分子从胶体中分离出去的操作,叫做渗析. 说明通过渗析可用于分离胶体与溶液或净化、精制胶体. [溶液、胶体和浊液(悬浊液或乳浊液)的区别与联系] 分散系溶液胶体悬(乳)浊液 分散系 的微粒组成单个分子或离子 若干分子的集合体或单个的大分 子 大量分子集合而成的固体小颗粒 (或小液滴) 分散系 的微粒 直径 <1 nm 1 nm~100 nm >100 nm 外观均一、透明、稳定均一、透明、稳定不均一、浑浊、不稳定,静置后 易沉淀(或分层) 能否透 过半透 膜 能不能不能 能否透 过滤纸 能能不能 是否有 丁达尔效应没有有 颗粒直径接近100nm的溶液也有 丁达尔效应 实例食盐水、碘酒Fe(OH)3胶体、AgI胶体、淀粉溶 胶 泥浆水、油水、牛奶 联系都是分散质分散到分散剂中形成的混合体系 3.胶体的性质及其应用 解释说明应用 性质丁达尔效 应 强光束通过胶体时,从侧面可 看到一条光亮的“通路”的现 象 胶体的丁达尔现象是由于胶 体微粒使光线散射而产生 的.溶液中的溶质微粒太小, 没有这种现象 用于鉴别胶体和溶液 布朗运动 在胶体中,胶体微粒(简称胶 粒)不停地作无规则的运动 胶体作布朗运动的原因是因 为水(分散剂)分子从各方面撞 击胶粒,而每一瞬间胶粒在不 同方向受到的力是不同的,所 以胶粒运动方向随时都在改 变,因而形成布朗运动 证明物质是不断运动的,是使 胶体保持稳定的原因之一

(完整word版)道路工程材料知识点考点总结

道路工程材料知识点考点 绪论 ● 道路工程材料是道路工程建设与养护的物质基础,其性能直接决定了道路工程质量和服务寿命和结 构形式。 ● 路面结构由下而上有:垫层,基层,面层。 ● 面层结构材料应有足够的强度、稳定性、耐久性和良好的表面特性。 第一章 ● 砂石材料是石料和集料的统称 ● 岩石物理常数为密度和孔隙率 ● 真实密度:指规定条件下,烘干岩石矿质实体单位真实体积的质量。 ● 毛体积密度:指在规定条件下,烘干岩石矿质实体包括空隙(闭口、开口空隙)体积在内的单位毛 体积的质量。 ● 孔隙率:是指岩石孔隙体积占岩石总体积(开口空隙和闭口空隙)的百分率。 ● 吸水性:岩石吸入水分的能力称为吸水性。 ● 吸水性的大小用吸水率与饱和吸水率来表征。 ● 吸水率:是岩石试样在常温、常压条件下最大的吸水质量占干燥试样质量的百分率。 ● 饱和吸水率:是岩石在常温及真空抽气条件下,最大吸水质量占干燥试样质量的百分率。 ● 岩石的抗冻性:是指在岩石能够经受反复冻结和融化而不破坏,并不严重降低岩石强度的能力。 ● 集料:是由不同粒径矿质颗粒组成的混合料,在沥青混合料或水泥混凝土中起骨架和填充作用。 ● 表观密度:是指在规定条件下,烘干集料矿质实体包括闭口空隙在内的表观单位体积的质量。 ● 级配:是指集料中各种粒径颗粒的搭配比例或分布情况。 ● 压碎值:用于衡量石料在逐渐增加的荷载下抵抗压碎的能力,也是石料强度的相对指标。压碎值是对石料的标准试样在标准条件下进行加荷,测试石料被压碎后,标准筛上筛余质量的百分率。1000 1?='m m Q a (1m :试验后通过2.36mm 筛孔的细集料质量) ● 磨光值:是反映石料抵抗轮胎磨光作用能力的指标,是决定某种集料能否用于沥青路面抗滑磨耗层 的关键指标。 ● 冲击值:反映粗集料抵抗冲击荷载的能力。由于路表集料直接承受车轮荷载的冲击作用,这一指标 对道路表层用料非常重要。 ● 磨耗值:用于评定道路路面表层所用粗集料抵抗车轮磨耗作用的能力。 ● 级配参数: ?? ???分率。质量占试样总质量的百是指通过某号筛的式样通过百分率和。筛分级筛余百分率之总分率和大于该号筛的各是指某号筛上的筛余百累计筛余百分率率。量占试样总质量的百分是指某号筛上的筛余质分级筛余百分率i i i A a ρ 沥青混合料 水泥混合料 粗集料 >2.36mm >4.75mm 细集料 <2.36mm <4.75mm

胶体界面熟记公式

《胶体与界面化学》常用公式 1. 比表面积(S0):S0 = s/m or S0= s/v 2.表面能σ=(δG /δA)T,P 3. Laplace方程 4.Kelvin公式凸液面 5.油滴在水中的溶解度 6.Gibbs 表面吸附公式 液-液界面: 气-液界面: 7..润湿方程 粘附功:(1-74a) 浸湿功:(1-75a) 铺展系数:(1-76a) 8. Clausius-Clapeyron方程式 https://www.360docs.net/doc/34324092.html,ngmiur吸附等温式 10..Freundlich 吸附等温式 11..Henry 吸附等温式θ=H p 12..二常数BET吸附等温式 13..吸附剂在稀溶液中的吸附量: 14..布朗运动位移公式

15. Fick第一定律 第二定律 16.爱因斯坦扩散定律 17. 斯托克斯球体阻力:f球=6πηr, 18. 等效圆球阻力系数: 19. 粒子溶剂化效应: 20.Stokes球形粒子沉降速度方程式 21.沉降系数比 22.由沉降系数比S和扩散系数D, 求粒子的摩尔质量M的公式: 23.沉降-扩散平衡方程式 24.大分子的稀溶液渗透压: 25.德拜-尤格尔近似方程: (Ψ0<25.7mv, 距固体表面为x处的电位分布) 26. 扩散双电层的厚度 27. Hückel电泳淌度公式 (球形粒子κa<0.1)

28斯莫鲁霍夫斯基(Smoluchowski)电泳淌度公式 (κa>100) 29. 粒子表面上的ξ电位: 30.HLB值的计算 1、基数法:适用于阴离子型和非离子型表面活性剂。 计算公式:HLB=∑H –∑L+7 (5-18) 2、重量百分数法适用于聚氧乙烯基的非离子型表面活性剂 计算公式:(5-19)

高中化学:胶体的性质知识点

高中化学:胶体的性质知识点 1.胶体的性质与作用: (1)丁达尔效应: 由于胶体粒子直径在1~100nm之间,会使光发生散射,可以使一束直射的光在胶体中显示出光路. (2)布朗运动: ①定义:胶体粒子在做无规则的运动. ②水分子从个方向撞击胶体粒子,而每一瞬间胶体粒子在不同方向受的力是不同的. (3)电泳现象: ①定义:在外加电场的作用下,胶体粒子在分散剂里向电极作定向移动的现象. ②解释:胶体粒子具有相对较大的表面积,能吸附离子而带电荷.扬斯规则表明:与胶体粒子有相同化学元素的离子优先被吸附.以AgI胶体为例,AgNO3与KI反应,生成AgI溶胶,若KI过量,则胶核AgI吸附过量的I-而带负电,若AgNO3过量,则AgI吸附过量的Ag+而带正电.而蛋白质胶体吸附水而不带电.③带电规律: 1°一般来说,金属氧化物、金属氢氧化物等胶体微粒吸附阳离子而带正电;2°非金属氧化物、金属硫化物、硅酸、土壤等胶体带负电; 3°蛋白质分子一端有-COOH,一端有-NH2,因电离常数不同而带电; 4°淀粉胶体不吸附阴阳离子不带电,无电泳现象,加少量电解质难凝聚. ④应用: 1°生物化学中常利用来分离各种氨基酸和蛋白质. 2°医学上利用血清的纸上电泳来诊断某些疾病. 3°电镀业采用电泳将油漆、乳胶、橡胶等均匀的沉积在金属、布匹和木材上.4°陶瓷工业精练高岭土.除去杂质氧化铁. 5°石油工业中,将天然石油乳状液中油水分离. 6°工业和工程中泥土和泥炭的脱水,水泥和冶金工业中的除尘等. (4)胶体的聚沉:

①定义:胶体粒子在一定条件下聚集起来的现象.在此过程中分散质改变成凝胶状物质或颗粒较大的沉淀从分散剂中分离出来.. ②胶粒凝聚的原因:外界条件的改变 1°加热:加速胶粒运动,减弱胶粒对离子的吸附作用. 2°加强电解质:中和胶粒所带电荷,减弱电性斥力. 3°加带相反电荷胶粒的胶体:相互中和,减小同种电性的排斥作用.通常离子所带荷越高,聚沉能力越大. ③应用:制作豆腐;不同型号的墨水不能混用;三角洲的形成. 2.胶体的制备: 1)物理法:如研磨(制豆浆、研墨),直接分散(制蛋白胶体) 2)水解法: Fe(OH)3胶体:向20mL沸蒸馏水中滴加1mL~2mL FeCl3饱和溶液,继续煮沸一会儿,得红褐色的Fe(OH)3胶体.离子方程式为: Fe3++3H2O=Fe(OH)3(胶体)+3H+ 3)复分解法: AgI胶体:向盛10mL 0.01mol?L-1KI的试管中,滴加8~10滴0.01mol?L-1AgNO3,边滴边振荡,得浅黄色AgI胶体. 硅酸胶体:在一大试管里装入5mL~10mL 1mol?L-1HCl,加入1mL水玻璃,然后用力振荡即得.离子方程式分别为:Ag++I-=AgI(胶体)↓ SiO32-+2H++2H2O=H4SiO4(胶体)↓ 复分解法配制胶体时溶液的浓度不宜过大,以免生成沉淀. 3.常见胶体的带电情况: (1)胶粒带正电荷的胶体有:金属氧化物、金属氢氧化物.例如Fe(OH)3、Al(OH)3等; (2)胶粒带负电荷的胶体有:非金属氧化物、金属硫化物、硅酸胶体、土壤胶体; (3)胶粒不带电的胶体有:淀粉胶体.特殊的,AgI胶粒随着AgNO3和KI相对量不同,而带正电或负电.若KI过量,则AgI胶粒吸附较多I-而带负电;若AgNO3过量,则因吸附较多Ag+而带正电。

专题讲解-界面现象-胶体化学

表面吉布斯自由能和表面张力 1、界面: 密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。 2、界面现 象: 由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同: 1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零; 2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。 由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。 3、比表面(Ao) 表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。用数学表达式,即为: =A/V A 高分散体系具有巨大的表面积。下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。

4、表面功 在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。 -δω’=γdA (γ:表面吉布斯自由能,单位:J.m-2) 5、表面张力 观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。如下面的例子所示: 计算公式: -δω'= γdA (1) 式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。 我们从另一个角度来理解公式(1)。先请看下面的例子。 从上面的动画可知:肥皂膜将金属丝向上拉的力就等于向下的重力(W 1+W 2 ),即 为

高中化学复习知识点:胶体

高中化学复习知识点:胶体 一、单选题 1.[宁夏石嘴山市第三中学2019届三模]化学与生活、生产、社会可持续发展密切相关,下列有关说法正确的是 A.“霾尘积聚难见路人”,雾霾所形成的气溶胶没有丁达尔效应 B.石油裂解制取乙烯、丙烯等化工原料不涉及化学变化 C.电热水器用镁棒防止金属内胆腐蚀,原理是牺牲阳极的阴极保护法 D.我国发射的“嫦娥三号”卫星中使用的碳纤维复合材料,是一种有机高分子材料2.当光束通过下列分散系时,能产生丁达尔现象的是 A.Fe(OH)3胶体B.氯化钠溶液C.盐酸D.硫酸溶液3.下列关于古籍中的记载说法正确的是 A.《本草经集注》中关于鉴别硝石(KNO3)和朴硝(Na2SO4)的记载:“以火烧之,紫青烟起,乃真硝石也”,该方法应用了显色反应 B.氢化钙的电子式是:Ca2+[∶H]2– C.目前,元素周期表已经排满,第七周期最后一种元素的原子序数是118 D.直径为20nm 的纳米碳酸钙属于胶体 4.下列颜色变化与氧化还原反应无关的是() A.湿润的红色布条遇氯气褪色 B.紫色酸性KMnO4溶液通入乙烯气体后褪色 C.浅黄色Na2O2固体露置于空气中逐渐变为白色 D.棕黄色FeCl3饱和溶液滴入沸水中变红褐色 5.下列分散系能产生“丁达尔效应”的是 A.泥水B.氯化铜溶液C.溴蒸汽D.淀粉溶液6.历史上被称为“世界八大公害”和“20 世纪十大环境公害”之一的洛杉矶光化学烟雾事件使人们深刻认识到了汽车尾气的危害性。汽车尾气中氮氧化物和碳氢化合物受紫外线作用可产生二次污染物光化学烟雾,其中某些反应过程如图所示。下列说法不正确的是()

A.烟雾是一种固溶胶,其分散剂是空气B.O2和O3是氧的两种同素异形体C.反应I 属于氧化还原反应D.NO2不是酸性氧化物 7.某学生以铁丝和Cl2为原料,进行如图三个实验。下列说法不正确的是 A.实验①所涉及的物质均为电解质B.实验②未发生氧化还原反应 C.实验③可以制得Fe(OH)3胶体D.实验③发生的反应为复分解反应8.下列物质属于胶体的是() A.食盐B.豆浆C.酒精D.BaSO4 9.实验室用渗析的方法分离淀粉和食盐的混合液,其装置如图所示。Na+与Cl-能穿过半透膜进入烧杯,而淀粉高分子则留在半透膜袋中。下列分离混合物的方法中,与渗析操作的原理相似的是 A.用萃取分液的方法分离溴和水 B.用层析的方法分离溶液中的Cu2+和Fe3+ C.用蒸馏的方法分离甲醇和乙醇 D.用过滤的方法分离碳酸钙固体和氯化钙溶液 10.下列实验,对应的现象及结论都正确且两者具有因果关系的是

界面与胶体

1.毛细管中形成的弯曲液面,无论是凸液面还是凹液面,所产生的附加压力恒为正值,方向均指向弯曲液面的曲率中心 2.湿润性液体在毛细管中上升的高度与毛细管内径成反比关系,与液面的表面张力成正比关系。 3.球形液滴的半径越小,饱和蒸汽压越大,溶液中的气泡半径越小,气泡内液面的饱和蒸汽压越小。 4.常见的亚稳态包括:过饱和蒸汽、过冷液体、过热液体和过饱和溶液。 5.在一定的T、P下,向纯水中加入少量表面活性剂,此时,表面活性剂在溶液表面层的浓度将大于其在溶液本体中的浓度。此时,溶液的表面张力将小于纯水的表面张力。 6.根据溶于水后是否解离可以极爱那个表面活性剂分为离子型和非离子型两大类。离子型表面活性剂又可以按产生离子的电荷性质分为阳离子型、阴离子型和两性型表面活性剂。 7.固体在等温、等压下可以自发地吸附气体,则该过程的△G<0 ,△S<0 △H<0。 8.临界胶束浓度(CMC)和亲水亲油平衡(HLB)是表面活性剂的两个重要参数。 9.根据分散相和分散介质的聚集状态进行分类,胶体系统可以分为:固溶胶、液溶胶和气溶胶。 10.溶胶系统的电动现象:主要指电泳和电渗。 11.胶粒收到分散介质分子碰撞而处于不停息的、无规则的运动状态,这种现象是:布朗运动。 12.在外加电场的作用下,胶体粒子在分散介质里向阴极或阳极定向移动的现象叫做电泳。该现象证明了胶体粒子带点。 13.胶体系统的电动现象主要指:电泳和电渗。 14.把混有离子或分子的胶体装入半透膜袋中,并把这个袋放在溶剂中从而使离子或分子从胶体溶液里分离出来的操作叫做渗析。这个操作证明胶体粒子直径比离子或分子大。应用 该方法可以净化、精制胶体。 15.ζ电势越高,表面:胶粒带电越多,滑动面与溶液本体之间的电势差越大,扩散层厚度越厚。(结论) 16.溶液的丁达尔效应是其高度分散性和多相不均匀性的反映。 17.高分子化合物对溶胶同时具有絮凝和稳定作用。 18.使胶体聚沉的主要方法有:加入电解质、加入带相反电荷的胶体、加热。 19.使溶胶聚沉所需电解质最低浓度称为电解质对溶胶的聚沉值。聚沉值越小的电解质,其聚沉能力越强。 20.胶体的流变性质是指胶体在外力作用下变形和流动的性质。 21.将一束光线通过胶体,从侧面看到一条光亮的通路,这是由于胶体粒子对光的散射造成的,这种现象叫做丁达尔效应。利用该现象可以鉴别胶体和溶液。 判断: 1.表面活性分子开始形成一定形状的胶束所需的最低浓度称为临界胶束浓度(CMC) T 2.表面活性剂的HLB值越大,表示该表面活性剂的亲水性越强T 3.溶胶是均相系统,在热力学上是稳定的 F 4.溶胶系统是指分散相的粒径大于1000nm的分散系统 F 5.胶体系统的主要特征是高度分散性、多相不均匀性和热力学不稳定性。 F 6.在加入少量大分子溶液时,会促使溶胶的聚沉,这种现象称为敏化作用。T 7.聚沉值越大的电解质其聚沉能力越小;反之,聚沉值越小的电解质其聚沉能力越强T 8.ζ电势越高,表明:胶粒带电越多T

材料表面与界面名词解释和简

材料表面与界面 1、材料表界面对材料整体性能具有决定性影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、化学反应、复合等等,无不与材料的表界面密切有关。 2、应用领域:a. 航空和航天器件; b.民用;c.特种表面与界面功能材料; d.界面是复合材料的重要特征。 3、隐形涂料:这种涂料含有大量的铁氧体粉末材料,依靠其自身自由电子的重 排来消耗雷达波的能量。 4、表面与界面概念:常把从凝聚相(固相、液体)过渡到真空的区域称为表面; 从一个相到另一个相之间的区域称为界面. 5、表界面尺寸:可以是一个原子层或多个原子层,其厚度随材料的种类不同而 不同。 6、在物质的气、液、固三态中,除了两种气体混合能完全分散均匀而不能形成 界面外,三种相态的组合可构成五种界面:液-气,液-液,固-气,固-液,固-固。 7、物质的分类。从形态上:固体,液体,气体,胶体,等离子体。从结构上: 晶体,无定形。 8、固体表面的分类:理想表面;清洁表面(高温热处理,离子轰击加退火,真 空解理。真空沉积。场致蒸发等)。吸附表面。 9、清洁表面发生的常见重要物理化学现象:(a)表面弛豫;(b)重构;(c) 偏析又称偏聚或分凝;(d)台阶化;(e) 形成化合物;(f)吸附 10、表面处离子排列发生中断,体积大的负离子间的排斥作用,使C1-向外移动,体积小的Na+则被拉向内部,同时负离子易被极化,屏蔽正离子电场外露外移, 结果原处于同一层的Na+和C1-分成相距为0.020 nm的两个亚层,但晶胞结构基本没有变化,形成了弛豫。 11、重构:表面原子重新排列,形成不同于体相内部的晶面。 12、偏析又称偏聚或分凝指化学组成在表面区域的变化但结构不变。 13、台阶化表面附近的点阵常数不变,晶体结构也不变,而形成相梯度表面。 14、形成化合物:指表面化学组成和结构都发生改变,在表面有新相生成。 15、吸附指表面存在周围环境中的物种。分类:物理吸,附和化学吸附。 16、物理吸附:外来原子在固体表面上形成吸附层,由范德华力作用力引起,则此吸附称为物理吸附。特点:物理吸附过程中没有没有电子转移、没有化学键的生成和破坏,没有原子重排等等,产生吸附的只是范德华力。物理吸附的作用力是范德华力,包括:定向力/偶极力、诱导力、色散力;作用力。 17、化学吸附:外来原子在固体表面上形成吸附层由化学键作用力引起,则此吸附称为化学吸附。特点:表面形成化学键;有选择性;需要激活能;吸附热高(21- 42 KJ/mol)。吸附的物种可以是有序=也可以是无序=吸附在表面,也可以是单层=,也可以是多层=吸附。因表面的性质和被吸附的物种而定。 18、表面产生吸附的根本原因:(1)电荷在凝聚相表面发生迁移,包括负电荷的电子迁移和正电荷的离子迁移。(2)表面存在可以构成共价键的基团:A、过渡金属原子空的d轨道如Pt(5d96s1);B、化学反应成键。 19、固体的表面特性:①表面粗糙度r : 实际表面积与光滑表面积之比值。表面粗糙度测定方法:1)干涉法:适合测量精密表面;2)光学轮廓法;3)探针法;4)比较法;5)感触法。

胶体与表面化学知识点整理

第一章 1.胶体体系的重要特点之一是具有很大的表面积。 通常规定胶体颗粒的大小为1-100nm(直径) 2.胶体是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。 胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。 气溶胶:云雾,青烟、高空灰尘 液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏 固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金 第二章 一.溶胶的制备与净化 1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在 2.胶体的制备方法:(1)凝聚法(2)分散法 二.溶胶的运动性质 1.扩散:过程为自发过程 ,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m2/s,D越大,质点的扩散能力越大 扩散系数与质点在介质中运动时阻力系数之间的关系为:(为阿伏加德罗常数;R为气体常数) 若颗粒为球形,阻力系数=6(式中,为介质的黏度,为质点的半径)故,此式即为Einstein第一扩散公式 浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。 2.布朗运动:本质是分子的热运动 现象:分子处于不停的无规则运动中 由于布朗运动是无规则的,因此就单个粒子而言,它们向各方向运动的几率是相等的。在浓度高的区域,单位体积的粒子较周围多,造成该区域“出多进少”,使浓度降低,这就表现为扩散。扩散是布朗运动的宏观表现,而布朗运动是扩散的微观基础 Einstein认为,粒子的平均位移与粒子半径、介质黏度、温度和位移时间t之间的关系:,此式常称为Einstein-Brown位移方程。式中是在观察时间t内粒子沿x轴方向的平均位移;r为胶粒的半径;为介质的粘度;为阿伏加德罗常数。 3.沉降

哈工大材料学院-材料表界面复习资料

复习内容: 一液体表面 1研究液体结构的基本假设。 (1)组成液体的原子(或分子)分布均匀、连贯、无规则;(2)液体中没有晶态区域和能容纳其他原子或分子的孔洞;(3)液体的结构主要由原子间形成的排斥力决定。 2间隙多面体,径向分布函数。 液体结构的刚性球自由密堆可以用间隙多面体来表示,其中原子处在多面体间隙的顶点。液体自由密堆结构的5种理想间隙:(a)四面体间隙;(b) 八面体间隙;(c)三棱柱的侧表面被覆盖3个半八面体间隙;(d)阿基米德反棱柱被覆盖2个半八面体间隙;(e)正方十二面体 四面体间隙占了主要地位,所以四面体间隙配位是液体结构的另一特征,四面体配位中的各相邻原子的间距就成为液体结构的最近邻原子间距。 随着温度升高(低于材料熔点Tm),原子间距增加,原子震动幅度提高,但仍然保持有序结构。这时的原子数量的变化不再是一系列离散的线,所以再用原子数量(N(r))来表示不同径向距离(r)处原子的分布就显得不太合适,而通常采用的方法是用在不同径向距离(r)处原子出现的密度来表示。用密度分布函数ρ(r)来代替离散的数量值N(r)时,分布函数的峰值就代表了在距离中心原子r处原子出现的概率。 3液体原子结构的主要特征。 (1)液体结构中近邻原子数一般为5~11个(呈统计分布),平均为6个,与固态晶体密排结构的12个最近邻原子数相比差别很大; (2)在液体原子的自由密堆结构中,四面体间隙占了主要地位。 (3)液体原子结构在几个原子直径范围内是短程有序的,而长程是无序的。 4 液体表面张力的概念及影响因素。 液体表面分子或原子受到内部分子或原子的吸引,趋向于挤入液体内部,使液体表面积缩小,因而在液体表面切向方向始终存在一种使液体表面积缩小的力,液体表面这种沿着切向方向,合力指向液体内部的作用力,就称为液体表面张力。 液体表面张力影响因素很多,如果不考虑液体内部分子或原子向液体表面的偏聚和外部原子或分子对液体表面的吸引,影响液体表面张力的因素主要有: (1)液体自身结构:液体的表面张力来源于液体内部原子或分子间的吸引力,因此液体内部原子或分子间的结合能的大小直接影响到液体的表面张力的大小。一般来说,液体中原子或分子的结合能越大,液体表面张力越大,一般液体表面张力随结构不同变化趋势是:金属键结合物质>离子键结合物质>极性共价键结合物质>非极性共价键结合物质 (2)表面所接触的介质:液体的表面张力的产生是由于处于表面层的原子或分子一方面受到液体内部原子或分子的吸引,另一方面受到液体外部原子或分子的吸引。当液体处在不同介质环境时,液体表面的原子或分子与不同物质接触所受的作用力不同,因此导致液体表面张力的不同。一般来说,介质物质的原子或分子与液体表面原子或分子结合能越大,液体表面能越小,反之越大 (3)温度:随着温度的升高,液体密度下降,液体内部原子或分子间的作用力降低,液体内部原子或分子对表面原子或分子的吸引力减弱,液体表面张力下降。最早给出的预测液体表面张力与温度关系的半经验表达式为: γ= γ0(1-T/T c)n 式中T c为液体的气化温度,γ0为0K时液体的表面张力。 5液体表面偏聚。 液体中溶质原子向液体表面偏聚可以降低液体的表面能,因此是自发进行的过程。表面能随组成液体的比例变化越大,产生表面偏聚倾向性越大。

材料表面界面考试知识点整理

1.原子间的键合方式及性能特点 原子间的键合方式包括化学键和物理键,其中化学键又分为离子键,共价键和金属键,物理键又包括分子键和氢键. 2.原子的外层电子结构,晶体的能带结构。 3.晶体(单晶、多晶)的基本概念,晶体与非晶体的区别。 单晶:质点按同一取向排列,由一个核心(晶核)生长而成的晶体;多晶:由许多不同位向的小晶体(晶粒)所组成的晶体.

4.空间点阵与晶胞、晶面指数、晶面间距的概念,原子的堆积方式和典型的晶体结构。 空间点阵:呈周期性的规律排列的阵点所形成的具有等同的周围环境的三维阵列; 晶胞:在空间点阵中,能代表空间点阵结构特点的最小平行六面体,反应晶格特性的最小几何单元; 晶面指数: 在晶格中,通过任意三个不在同一直线上的格点作一平面,称为晶面,描写晶面方位的一组数称为晶面指数.一般选取晶面在三个坐标轴上的截距,取倒数作为晶面指数; 晶面间距:两近邻晶面间的垂直距离; 原子的堆积方式:六角堆积和立方堆积; 典型的晶体结构:面心立方结构,体心立方结构,密排六方结构. 5.表面信息获取的主要方式及基本原理 可以通过光子,电子,离子,声,热,电场和磁场等与材料表面作用,来获取表面的各种信息,或者利用原子线度的极细探针与被测材料的表面近距离接近,探测探针与材料之间的信号,来获取表面信息. 电子束技术原理: 离子束技术原理:离子比光子电子都重,它轰击表面时产生的效应非常明显.离子不但具有电荷还有电子结构和原子结构,当离子与表面接近时,除具有静电场和接触电势差作用外,它本身还可以处于不同的激发电离态,离子还可以与表面产生各种化学反应,总之,离子与表面作用后,提供的信息非常丰富. 光电子能谱原理: 扫描探针显微镜技术原理: 6.为什么XPS可获得表面信息,而X射线衍射只能获得体信息? [略] X射线衍射(XRD)是利用晶体形成X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法.将具有一定波长的X射线照射到晶体上时,X射线因在晶体内遇到规则排列的原子或离子而发生散射,

界面现象问答题【自己整理

1液滴会自动成球形,固体表面有吸附作用,溶液的表面也会有吸附现象,请给予热力学解释。 答:在一定的T、p下,系统的吉布斯函数越低越稳定。G =σ A 液滴自动呈球形是因为相同体积时,液滴的表面积最小。固体表面和液体表面有吸附作用是因为可通过吸附作用来降低表面的不对称性,降低表面张力,使吉布斯函数降低。 2工业上常用喷雾干燥法处理物料。 答:根据开尔文公式可知,微小液滴的饱和蒸气压比普通平液面的饱和蒸气压的大,因此在同样温度下更易挥发,使物料达到干燥的目的。 3用同一滴管在同一条件下分别滴下同体积的三种液体,水、硫酸水溶液、丁醇水溶液,则它们的滴数最多的是哪一个,最少的是哪一个? 答:把水的表面张力看为定值,加入硫酸后硫酸水溶液的表面张力增大,加入丁醇后丁醇水溶液的表面张力减小,表面张力越大越易形成球状。所以硫酸的滴数最少,丁醇滴数最多。 4、解释下列各种现象及其产生原因 (1)均匀混合的油水系统经静止后会自动分层; (2)自由液滴或气泡通常呈球型; (3)粉尘大的工厂或矿山容易发生爆炸事故。 答:(1)均匀混合的油水系统静止后分层是液体自动缩小界面积的现象。均匀混合的油水系统是多相分散体系,相与相之间的界面积很大,界面能很高,处于不稳定状态,因而会自动缩小界面积而使系统趋于稳定。 2)自由液滴或气泡也是液体自动缩小界面积的现象。一方面由于体积一定时,球型液滴表面积最小,另一方面若形成凸凹不平的不规则表面,在凸凹处分别受到相反方向附加压力的作用,在这些不平衡力的作用下,必然会形成球型表面,各处压力均衡,系统才处于稳定状态。 3)粉尘是细小的固体颗粒分散在空气中形成的分散系统,颗粒越小,表面积越大,表面能越高,因处于极不稳定的状态。当遇到明火、撞击等不安全因素时,就会导致系统的燃烧甚至爆炸。 5、纯水和矿泉水注满玻璃杯时,哪一个的液面会更高于杯口? 答:矿泉水中含有无机盐离子,可使水的表面张力增大,进而增大了水于玻璃杯壁的接触角,所以矿泉水的液面会更高于杯口 6、气、固相反应CaCO3(s)——CaO(s)+ CO2(g)已达平衡。在其他条件不变的情况下,若把CaCO3(s)的颗粒度变的极小,则平衡如何移动? 答:正向移动。微小晶体的蒸汽压比普通晶体的大,其化学势也高 7、在一定温度和压力下,为什么物理吸附都是放热过程? 答:因为物理吸附基本上相当于气体的凝聚过程,而这个过程是要放出液化热的。另外,从吸附热力学上看吸附过程是一个自动进行的过程,因此在恒温、恒压下随着吸附的进行,系统的吉布斯函数是减小的,即ΔT,pG<0。再者气体分子吸附在固体表面上是气体分子由在三维空间运动转移到二维空间上运动,分子的平动受到了制约,从宏观上看表现为熵减的过程,即吸附过程为ΔS<0的过程。在恒温、恒压下,存在 ΔT,pG=ΔH-TΔS 因为ΔG<0,ΔS<0,所以吸附焓必然小于零。严格讲这一结论只对物理吸附才成立 1、晴朗的白天看天空为什么呈蔚蓝色,而晚霞却呈红色? 白天看到的是太阳光在空气中的散射光,晚霞是看到的透射光。 2、在两块光滑的玻璃之间放些水后叠合在一起,若使之上下分开为什么要很费力?

胶体(知识点+例题+练习)

胶体 【教学目标】掌握分散系的分类、常见胶体、胶体的制备、胶体的性质及应用。 【重点】胶体的性质及其应用。 【知识点+例题】 一、分散系 1. 分散系:一种物质(或几种物质)以粒子形式分散到另一种物质里所形成的混合物,统称为分散系。 2. 分散质:分散系中分散成粒子的物质。 3. 分散剂:分散质分散在其中的物质。 (1)三类分散系的本质区别是分散质粒子的大小,分散系的性质(如是否透明、均一、稳定)都是由它决定的。同种分散质在不同分散剂中可以得到不同的分散系,如NaCl溶于水得溶液,溶于酒精得胶体。 (2)液体分散系的稳定性质 ①溶液是最稳定的分散系 溶质以分子、原子或离子(直径<1 nm)的形式自发地分散在溶剂中,形成均一、稳定的混合物。 ②浊液是不稳定的分散系 因为分散质粒子是大量分子的集合体,分散质粒子容易在重力的作用下沉降或沉淀,故表现出浑浊、不稳定、不透明、不均一的外观特征。 ③胶体是介稳性的分散系 胶体之所以具有介稳性,主要是因为胶体粒子可以通过吸附而带有电荷。同种胶体粒子的电性相同,在通常情况下,它们之间的相互排斥阻碍了胶体粒子变大,使它们不易聚集。胶体粒子所作的布朗运动也使得它们不容易聚集成质量较大的颗粒而沉降下来。 (3)胶体与溶液的外观相似。 分散系溶液胶体浊液分散质粒子大小<1 nm 1 nm~100 nm >100 nm 分散质粒子分子、原子或离子许多分子的集合体或单个高 分子 巨大数目分子的集合 体 性质外观均一、透明均一、有的透明不均一、不透明

稳定性 稳定 介稳体系 不稳定 能否透过 滤纸 能 能 不能 半透膜 能 不能 不能 是否有丁 达尔效应 无 有 无 能否发生 电泳现象 不能 能 不能 实例 饱和NaCl 溶液、澄清 的石灰水 豆浆、牛奶 泥浆水、Ca(OH)2的悬 浊液 二、胶体 1.胶体的本质特征 胶体粒子的直径在1 nm ~100 nm 之间是胶体区别于其他分散系的依据,同时也决定了胶体的性质。 2.胶体的分类 (1)按分散剂????? 液溶胶 如:Fe(OH)3 胶体,分散剂为液体固溶胶 如:有色玻璃、烟水晶,分散剂 为固体 气溶胶 如:烟、雾、云,分散剂为气体 (2)按分散质? ???? 分子胶体 如:淀粉胶体、蛋白质胶体 粒子胶体 如:Fe(OH)3胶体 3.Fe(OH)3胶体的制备注意要点 (1)实验操作中,必须选用氯化铁饱和溶液而不能用氯化铁稀溶液。原因是若氯化铁溶液浓度过低,不利于氢氧化铁胶体的形成。 (2)向沸水中滴加FeCl 3饱和溶液,而不是直接加热FeCl 3饱和溶液,否则会因溶液浓度过大直接生成Fe(OH)3 沉淀而无法得到Fe(OH)3胶体。 (3)实验中必须用蒸馏水,而不能用自来水。原因是自来水中含电解质、杂质较多,易使制备的胶体发生聚沉。 (4)往沸水中滴加氯化铁饱和溶液后,可稍微加热煮沸,但不宜长时间加热。原因是长时间加热将导致氢氧化铁胶体聚沉。 (5)要边加热边摇动烧杯,但不能用玻璃棒搅拌,否则会使Fe(OH)3胶粒碰撞成大颗粒形成沉淀。

胶体界面现象问题答案修改版

?胶体界面现象问题答案 1.为什么自然界中液滴、气泡总是圆形的为什么气泡比液滴更容易破裂?同样体 积的水,以球形的表面积为最小,亦即在同样条件下,球形水滴其表面吉布斯自由能相对为最小。气泡同理。半径极小的气泡内的饱和蒸气压远小于外压,因此在外压的挤压下,小气泡更容易破裂。 2.毛细凝结现象为什么会产生?根据Kelvin公式RTln(pr/po)=2Vγ/r, 曲率半径极小 的凹液面蒸气压降低,低于正常饱和蒸气压,即可以在孔性固体毛细孔中的凹液面上凝结。因毛细管曲率半径极小,所以会产生毛细凝结现象。 3.天空为什么会下雨人工降雨依据什么原理向高空抛撒粉剂为什么能人工降雨 天上的雨来自空中的云,空中的云其实就是水的气溶胶,它来自地面的水汽蒸发。当 水蒸气压大于水的饱和蒸汽压,云中水滴增大,达到一定程度,也就是不能被上升 的气流顶托住的时候,水滴(冰滴、雪花)就会落到地面上,即是我们所见的雨、雹、雪。 ?只有过饱和水蒸气的云才能实施人工增雨。雾状小水滴的半径很小,根据开尔文公式,由于小水滴的饱和蒸气压p r*大于水的饱和蒸汽压,水滴难以长大,可以添加碘化银、干冰,增大粒径(干冰还降低温度),降低p r* ,使水滴凝结。 ?实施人工隆雨时就是向空中撒入凝结核心,使最初的小水滴的曲率半径加大,这时小水滴的饱和蒸气压小于高空中的蒸气压,从而形成降雨。 4.为什么会产生液体过热现象加入沸石为什么能消除过热现象 ?液体中的小气泡,r <0, p r*

高考化学知识点考点总结溶液与胶体

考点十四溶液、饱和溶液、不饱和溶液 1.溶液的概念:一种或几种物质分散到另一种物质里形成的均一、稳定的混合物。 2.溶液的组成:溶液=溶质+熔剂 溶质:被分散的物质。如食盐水中的NaCl;氨水中的NH3;碘酒中的I2 溶剂:溶质分散其中的物质。如食盐水、氨水中的水;碘酒中的酒精 3.溶解过程:溶质分散到溶剂里形成溶液的过程叫溶解。物质溶解时,同时发生两个过 程: 溶解是一个物理、化学过程,并伴随着能量变化,溶解时溶液的温度是升高还是降低,取决于上述两个过程中放出和吸收热量的相对大小。如:浓硫酸稀释溶液温度升高,NH4NO3溶于水溶液温度降低。 4.溶解平衡 在一定条件下,溶解速率等于结晶速率的状态叫溶解平衡。溶解平衡是动态平衡,溶解和结晶仍在进行。达到溶解平衡的溶液是饱和溶液,它的浓度一定,未达到溶解平衡的溶液是不饱和溶液,通过加入溶质、蒸发溶剂、改变温度等方法可使不饱和溶液成为饱和溶液。 未溶解的固体溶质溶液中的溶质 [例1](2011·眉山市)向200C的饱和澄清石灰水(甲溶液)中投入适量的氧化钙粉末,充分反应,下列说法错误的是( ) A.溶液温度末冷却到200C时,溶液一定是饱和溶液 B.溶液温度末冷却到200C时,溶质质量分数比甲溶液大 C.溶液温度恢复到200C时,溶液质量比甲溶液小 D.溶液温度恢复到200C时,溶液的溶质质量分数和甲溶液的相等 [解析]Ca(OH)2的溶解度随着温度的升高而降低。向200C的饱和澄清石灰水中投入适量的氧化钙粉末,加入的CaO会与水反应生成Ca(OH)2,不仅消耗了溶剂水,并且 反应会放出大量的热,使溶液的温度升高,所以当溶液的温度等于200C时,肯定 会有溶质Ca(OH)2析出,所得的溶液仍为饱和溶液,溶质的质量分数不变。 [答案]B 考点十五溶解度、溶质的质量分数 1.固体的溶解度 (1)定义:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,叫

江苏大学_材料表界面_期末知识点——wjl版

1.表面能:系统增加单位面积时所需做的可逆功J/m*m 2.吸附热:吸附过程中的热效应。物理吸附热效应相当于气体的凝聚热, 化学相当于化学键能 3.物理吸附:吸附作用力为范德瓦尔分子力,由表面原子和吸附原子之间 的极化作用而产生。 4.化学吸附:静电库仑力,发生电子转移,改变吸附分子结构。 5.毛细现象:吸附压力引起的毛细管内外页面的高度差的现象 6.超疏水:表面与水的接触角大于150,滚动角小于10 7.润湿:固体表面上的气体或液体被液体或另一种液体取代的现象,原因, 接触后吉布斯自由能小于0 8.亲水物质:能被水润湿的物质,如玻璃、石英 9.疏水物质:不能被水润湿的物质,如石墨、硫磺 10.接触角:三相交界处自固液界面经过液体内部到气液界面的夹角叫接触 角 11.粘附功:液柱由两液体构成,拉开后原来AB 界面消失,出现新的A\B,消耗的能量称为粘 附功 12.内聚能:均相物质分离成两部分,产生两个新界面,消耗的能量称为内

聚能 13.接触角滞后现象:于粗糙或不均匀表面上,液滴可以处于稳定平衡态或 者亚稳定平衡态。 14.粘附润湿:液体接触固体,变气液表面和气固表面为液固表面的过程。 15.浸湿过程:气固为液固所取代的过程 16.铺展润湿:液体于固体表面接触后,于固体表面上排除空气而自行铺展 的过程,也是一个以液固界面取代气固界面同时液体表面随之扩展的过程。 17.静接触角:当液体在固体表面达到平衡时,气液的界线与液固的界线之 间的夹角称为接触角,此时为静态接触角 18.动态接触角:液体在固体表面接触角随时间变化而变化的过程,是动态 接触角 19.表面活性剂:加入少量时能显著降低溶液表面张力并改变体系界面状态 的物质。 20.Krafft 温度:离子型表面活性剂的溶解度随温度变化的特点是在足够低 的温度下,溶解度随温度升高而慢慢增大,当温度达到某一定值后,溶解度会突然增大。溶解度开始突然增大的温度叫Krafft 温度。 21.表面接枝:表面接枝是通过紫外光、高能辐射、电子束、等离子体等技 术,是聚合物表面产生活性中心,引发乙烯基单体在聚合物表面接枝聚合,或利用聚合物表面的活性基团通过化学反应接枝。表面接枝聚合,大分子偶合反应,以及添加接枝共聚物。 22.金属的腐蚀:金属及合金在外围介质的化学或电化学作用下发生破坏的 过程称为金属腐蚀。 23.玻璃相:陶瓷配料中除主晶相以外的其他组分(有时包括)在一定温度 下共熔,然后“冻结”成非晶态固体。 24.复合材料:复合材料是以两种或两种以上不同材料通过一定的工艺复合 而成的多相材料。 25.增强材料:在复合材料中,凡能提高机体的机械强度、弹性模量等力学 性能的材料称为增强材料。

材料表面与界面-习题含答案

第一章 1、什么是Young 方程?接触角的大小与液体对固体的润湿性好坏有怎样的关系? 答:Young 方程:界面化学的基本方程之一。它是描述固气、固液、液气界面自由能γsv,γSL ,γLv 与接触角θ之间的关系式,亦称润湿方程,表达式为: γsv -γSL =γLv COSθ。该方程适用于均匀表面和固液间无特殊作用的平衡状态。 关系:一般来讲,接触角θ的大小是判定润湿性好坏的依据,若θ=0.cosθ=1,液体完全润湿固体表面,液体在固体表面铺展;若0<θ<90°,液体可润湿固体,且θ越小,润湿性越好;90°<θ<180°,液体不润湿固体;θ=180°,完全不润湿固体,液体在固体表面凝集成小球。 2、水蒸气骤冷会发生过饱和现象,在夏天的乌云中,用飞机撒干冰微粒,试气温骤降至293K ,水气的过饱和度(P/Ps )达4,已知在293K 时,水的表面能力为0.07288N/m ,密度为997kg/m 3,试计算: (1)在此时开始形成雨滴的半径。 (2)每一雨滴中所含水的分子数。 答:(1)根据Kelvin 公式有 '2ln 0R RT M P P ργ= 开始形成的雨滴半径为: 0ln 2'p p RT M R ργ= 将数据代入得:

m R 101079.74ln 997293314.8018.007288.02'-?=?????= (2)每一雨滴中所含水的分子数为N=N A n ,n=m/M=rV/M ,得 个661002.6018.03997)1079.7(14.34)(34233103'=???????===-A A N M R N M V N ρπρ 3、在293k 时,把半径为1.0mm 的水滴分散成半径为1.0μm 的小水滴,试计算(已知293K 时水的表面Gibbs 自由为0.07288J .m -2)(1)表面积是原来的多少倍?(2)表面Gibbs 自由能增加了多少?(9分) 答:(1)设大水滴的表面积为A 1,小水滴的总表面积为A 2,则小水滴数位N ,大 水滴半径为r 1,小水滴半径为r 2。 21221244r r N A A ππ= 又因为将大水滴分散成N 小水滴,则 32313434r N r ππ= 推出 3 21???? ??=r r N =93100.1mm 0.1=??? ??um 故有 ()()10000.140.141022 912=???=mm um A A ππ 即表面积是原来的1000倍。 (2)表面Gibbs 自由能的增加量为 ()()212212421r Nr r A A dAs G A A -=-==??πγγ =4*3.142*0.07288*[109*(10-6)2-(10-3)2]

相关文档
最新文档