七年级数学上册第二章有理数及其运算1有理数教案新版北师大版

合集下载

北师大版数学七年级上册2.1《有理数》教案

北师大版数学七年级上册2.1《有理数》教案

北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。

有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。

本节课的内容是学生进一步学习实数、方程、函数等知识的基础。

二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。

但学生在理解有理数的定义和分类方面可能会存在一定的困难。

因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。

三. 教学目标1.了解有理数的定义,掌握有理数的分类。

2.能够进行有理数的运算。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的问题和案例。

2.准备教学PPT。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。

2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。

并通过具体的例子让学生理解和掌握有理数的分类。

3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。

教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。

4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。

教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。

5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。

北师大版初中数学七年级上册《第二章有理数及其运算1有理数》优质课教案_2

北师大版初中数学七年级上册《第二章有理数及其运算1有理数》优质课教案_2

« 3.2实数》教学设计(一)教学目标1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的对应关系。

法”这种对数进行分析、猜测、探索的方法3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点(二)教材分析“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。

由2、n激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。

重点:无理数、实数的意义,在数轴上表示实数。

难点:无理数与有理数的本质区别,实数与数轴上的点的对应关系。

(三)学生分析学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。

思维仍较直观,无理数显得比较抽象,难以理解。

对• 2的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。

(四)设计理念让学生主动参与合作交流,探索、发现,注重知识形成的过程(五)教学方法启发式、探索式教学(六)教学过程复习旧知,揭示矛盾,弓I入概念复习前面所学的有理数的分类,2既然在1与2之间就不是整数,也不是分数,也就是说2不是有理数,但由此题可知' 2确实是存在的,同时n也是如此。

总结-2的特征:无限、不循环,得到无理数的概念。

(以上学生合作探索2特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。

)举例说出无理数,巩固对无理数的理解课本p73课内练习2 掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法叙述数史,剖析概念,扩展数集讲述故事,介绍无理数的来历师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的?有生会答:“有道理的数”与“无道理的数”。

师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)《有理数和无理数之战》在一个早晨,同学小毅一觉醒来,发现窗户外的山坡上在打仗。

北师大版七年级上册数学教案:第二章有理数及其运算

北师大版七年级上册数学教案:第二章有理数及其运算
举例:解释为何0乘以任何数都等于0,以及-3÷(-2)=1.5的运算过程。
(4)混合运算中的运算顺序:学生在进行有理数混合运算时,容易忽视运算顺序,导致计算错误。
举例:强调先计算括号内的运算,再进行乘除运算,最后进行加减运算。
(5)运算律的应用:学生在运用运算律简化运算时,可能不熟练,需要加强练习。
举例:解释为何-3表示3的相反数,理解负数在实际问题中的应用。
(2)有理数的加减运算:特别是在异号相加和减法运算中,理解为何同号相加取相同符号,异号相加取绝对值较大的加数的符号。
举例:讲解-3+2的结果是-1,而不是1,理解其背后的运算规律。
(3)有理数的乘除运算:掌握有理数乘除运算的符号规律,尤其是零与有理数相乘、不为零的有理数相除的规则。
北师大版七年级上册数学教案:第二章有理数及其运算
一、教学内容
本节课选自北师大版七年级上册数学教材第二章“有理数及其运算”。主要内容包括:
1.有理数的概念:整数和分数统称为有理数,介绍正有理数、负有理数和零的概念。
2.有理数的分类:将有理数按照正、负和零进行分类,并了解它们的特点。
3.有理数的加法:掌握同号相加、异号相加、零与有理数相加的法则,并能熟练进行计算。
举例:运用结合律将(3+4)×5简化为3×5+4×5,降低计算难度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和计算的问题?”比如,温度上升和下降,银行存款和取款等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版
技能训练:
设计实践活动或计算练习,让学生在实践中体验有理数乘法的应用,提高运算能力。
在有理数乘法新课呈现结束后,对乘法运算的规则进行梳理和总结。
强调乘法运算的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对有理数乘法知识的掌握情况。
5.培养学生的沟通能力和团队合作能力,能够在小组讨论和合作交流中解决问题。
6.培养学生的创新意识和探索精神,能够关注学科前沿动态。
7.培养学生的社会责任感,能够思考数学与生活的联系。
8.学生能够积极分享学习有理数乘法的体会和心得,增进师生之间的情感交流。
课堂
1.课堂评价:
2.作业评价:
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。在布置的课后作业中,教师应关注学生的计算准确性、解题思路和创新能力。在批改作业时,教师应及时纠正学生的错误,并提供详细的解题指导和鼓励性的评语。同时,教师还可以根据学生的作业表现,了解学生对有理数乘法的掌握情况,为课堂教学提供依据。
(5)5 × (2 + 3) - 2 × (5 - 2)
答案:
(1)4 - 2 × 3 = 4 - 6 = -2
(2)3 × (5 - 2) = 3 × 3 = 9
(3)2 × 2 × 2 = 8
(4)-3 × 4 + 2 × 3 = -12 + 6 = -6
(5)5 × (2 + 3) - 2 × (5 - 2) = 5 × 5 - 2 × 3 = 25 - 6 = 19
(3)-6 ÷ 3 × 2
(4)12 ÷ 3 × (-2)
(5)-8 ÷ 4 × 3

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。

内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。

这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。

二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。

但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。

因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。

三. 教学目标1.理解有理数的概念,掌握有理数的分类。

2.掌握有理数的加减乘除运算规则,能够熟练进行计算。

3.理解有理数的乘方运算规则,能够进行相应的计算。

4.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算规则,特别是乘方运算。

五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,包括基础题和拓展题。

七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。

2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。

3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。

4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。

5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。

6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。

7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。

8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。

教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。

针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。

七年级数学上册第二章有理数及其运算1有理数优秀教案(新版)北师大版

七年级数学上册第二章有理数及其运算1有理数优秀教案(新版)北师大版

1.内容构造特色本章是在小学非负有理数知识的基础上引进负数的.第一介绍有理数的基本看法,而后再学习有理数的运算,并用有理数的知识解决实质问题.本章知识的引入着重从实质情境下手,经过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的看法,初步浸透数形联合的数学思想,经过研究归纳的方式,追求有理数的加法、减法法例和运算律,经过研究规律的方式归纳总结有理数的乘、除法法例和运算律,在现实背景中理解有理数乘方的意义,经过 24 点游戏的建立,训练基本运算能力,培育思想能力,经过计算器的使用,既使学生解脱了繁琐的运算,同时又培育了学生研究数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,累积了初步的数感、符号感和基本的运算能力,本章将进一步研究有理数的有关知识并解决实质问题.教材经过现实生活供给的问题背景,给学生供给了归纳、猜想、考证、推理、计算、沟通等数学活动时机,使学生在活动中发现问题、研究规律,促使了学生对知识的理解和掌握.因此,本章内容在知识的掌握、数学思想方法的浸透、学习能力的培育等方面都是特别重要的.3.教课要点与难点教课要点:(1)有理数的看法,特别是有理数的分类、绝对值、相反数等的看法.(2)有理数大小的比较方法,研究有理数四则运算法例并娴熟计算.(3)用科学记数法表示数.(4)应用有理数的有关知识解决实质问题.教课难点:(1)有理数的看法和有理数的运算.(2)数形联合思想的应用.4.教课目的(1)在详细情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历研究有理数运算法例和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混杂运算 ( 以三步为主 ) ;理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实质问题.5.教课建议第一,教师应尽量从实质问题引入有理数的看法,借助风趣的情境和生活实例帮助学生理解看法,使学生正确地理解正数和负数是表示拥有相反意义的量.也可让学生自己从生活中找寻素材,加深理解;第二,进行有理数运算教课时,鼓舞学生自己研究运算法例和运算律,并在与伙伴沟通的过程中逐渐形成较为规范的解题格式.在该过程中,倡导算法多样化,教课时应减少繁难的笔算,对于出现的繁琐运算,鼓舞学生使用计算器;第三,要重视应用有理数及其运算解决实质问题的教课,让学生会用正负数表示实质问题中的量,能用运算的结果作出合理的解说,并给予实质意义.6.课时分派1 有理数1课时2数轴1课时3 绝对值 1 课时4有理数的加法 2 课时5 有理数的减法 1 课时6有理数的加减混杂运算 3 课时7 有理数的乘法 2 课时8有理数的除法 1 课时9 有理数的乘方 2 课时10科学记数法 1 课时11 有理数的混杂运算 1 课时12用计算器进行运算 1 课时1有理数教课要点与难点教课要点:1.理解并掌握有理数的看法.2.会用正、负数表示生活中拥有相反意义的量.教课难点:有理数的分类.学情剖析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟习,而且已经娴熟地掌握了非负有理数的四则运算法例及运算律,能规范条理地表述运算过程,初步拥有了有条理地思虑和书面表达能力,这些都为本章的学习确立了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,亲密数学与现实的联系,教材对重要的数学内容都是依照“问题情境——成立模型——解说与应用”的表达方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了优秀的数学思想习惯和应意图识,有了必定的解决问题的能力,同时学生在研究详细问题的过程中自主地参加、研究和沟通,具备了必定的主动参加、合作意识和初步的察看、剖析、抽象归纳的能力.教课目的1.了解正数与负数是从实质需要中产生的,并会判断一个数是正数仍是负数.2.会用正、负数表示拥有相反意义的量.3.在负数看法的形成过程中,培育学生的察看、归纳与归纳的能力.教课方法创建情境,以问题为载体给学生供给研究的空间,指引学生踊跃研究.经过小组沟通合作的形式,建立以教师为主导,学生为主体自主研究的讲堂学习环境,使学生在研究合作的过程中掌握知识,提升技术,形成自己的看法.教课过程一、引入新课设计说明教材例题切近学生生活实质,生动开朗,经过对该例设置问题串,由浅入深,指引学生在轻松熟习的氛围中进行思虑,既复习旧知,作好新知学习的铺垫,同时鼓舞学生勇敢想象,充足进行思虑、沟通.阅读教材本节开端部分的内容,回答以下问题:问题 1:你能很快地为这两个队排一下名次吗?你的依照是什么?学生排名次的依照可能不独一,如:数笑容的个数、计算总得分等,只需学生能充足思虑,正确表达出排名次的依照,就进行夸奖.问题 2:在达成表格后,你有什么发现?学生经过填“答错题的得分”这一栏,发现“- 3”“- 2”,这类数字是我们没有学过的数,它是什么数?表示什么意义?和我们从前学过的数有什么关系?——引入新课.教课说明以上问题从学生已有的知识下手,以问题为载体,自然理顺学生解决问题的思路,问题 1 和问题 2 对于开辟学生解题思想有很大帮助,使个性化思想获得鼓舞和发展,同时引入了新课的学习.实践证明,该设计调换了学生的踊跃性,成功引入了新课.二、讲解新课1.达标导学,初探新知经过上边的问题我们看到,生活中的有些量用我们从前学过的数不可以表示了,这些比0小的数,能够用带有“-”的数来表示.比方-10,我们读作“负10”.对于比 0 大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”经常能够省略.问题:“-”能够省略吗?为何?学生回答:不可以够省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组议论,理解新知生活中你见过带有“-”的数吗?设计说明安排一活的目的,主要了鼓舞学生自己找生活中的例子,并在求例的程中领会数的引入是生活的需要.同,能够依据需要,一些学生熟习的例睁开.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.2像 5,1.2 ,3⋯的数叫做正数,它都比0 大.在正数前方加上“-”的数叫做数,如-10,- 3,⋯1:正数和数有什么关系?依据学生对于拥有相反意的量的,使学生通数学模型的察、、归纳、沟通等数学活,一步理解怎用正、数表示生活中拥有相反意的量,掌握正、数的意,培育学生的正、数的数感.2: 0 是正数是数?学生的回答会多种多,甚至有的学生没法回答,里教明确告学生,引入数以后,“ 0”的意就不表示“没有”了,它是正、数的分界,是“基准”.3:“-”的数必定是数?学生回答有必定困.于正数和数的看法,要提示学生注意不要“+”的数就是正数,“-”的数就是数.如-a不必定是数.但此不易引申太多.3.例理,稳固新知明通例的教课,要修业生能正确地表达出数所表示的意以及用正、数表示相反意的量;同,认识其实不是全部的基准都必0.教材例 (例):1:在以上 3 道中正数、数分表示什么量?2:每道的基准分是什么?1 依据学生的回答,上人常把零上的温度、上涨的高度、向的行程等定正的,而把零下的温度、降落的高度、向西的行程等与前方意相反的量定的; 2 要修业生注意其实不是全部的基准都必0,如第 1 小的基准静止不,第 2 小的基准一只球的准量,第 3 小的基准10 kg.明了学生更好地理解稳固正数和数是表示一意相反的量,在例解达成后及充,同通填空的形式范写格式,包含正、数的写及填空的位.通培育学生范地写.达成后教可提学生各中互相反意的量分是什么?基准分是什么?帮助学生更全面地理解本的要点.(1)海平面上的高度正,海平面下的深度,海平面下 150 米作 ________;(2)盈余 100 元作+ 100 元,那么100 元作 ________;(3)假如零上 5 ℃ 作+ 5 ℃,那么零下 5 ℃ 作 ________;(4)某运面粉 7.5 吨作+ 7.5 吨,那么运出 3.8 吨作 ________;(5)西两个相反方向,假如- 4 米表示一个物体向西运 4 米,那么+ 2 米表示________,物体原地不 ________;(6)向南走- 4 米,上是向 ________走了 ________米.4.小活,再探新知在大家分活,列我已学的数,而后将列的全部数适合地分红几,并明分的原因.有理数的分:正整数整数零有理数(按定)整数有理数(按性分数正分数分数正整数正数正分数)零整数数分数整数和分数称有理数.明有理数的看法是本的要点内容,通使学生充足理解有理数的分.2把以下各数填入相数集里:3,- 2,3.5 ,-3, 0,- 3.14 ,- 10%正数会合:⋯;数会合:⋯;整数会合:⋯;有理数会合:⋯.教课明本程通初探、理解、稳固、再探四个,使学生在教的引下,通的探、沟通、合作,自主地解决,稳固知.同的使学生的新知获得了及地稳固掌握,教课成效优秀.三、稳固提升明通三个,使学生本学程中易出和模糊的看法从不一样型加以理解,掌握解技巧.1.小学学的小数能否是有理数?属于分中的哪一?2.判断以下法能否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是数;(3)一个整数不是正整数就是整数;(4)一个分数不是正分数就是分数.3.一:一种商品的准价钱是200 元,但跟着季的化,商品的价钱可浮±10%.(1)±10%的含是什么?(2)你算出商品的最高价钱和最廉价钱;(3)假如以准价钱准,超准作“+”,低于准作“-”,商品价钱的浮范又能够怎表示?答案: 1.有限小数和无穷循小数都是有理数,属于分数;无穷不循小数不是有理数.2.第 (1) , (4) 法正确.3.(1) ±10%的含是在准的基上涨价或降价的幅度不超10%.(2) 最高价钱200+200×10%= 220( 元 ) ;最廉价钱200-200×10%= 180( 元 ) .(3)因 220- 200= 20( 元) ,200- 180= 20( 元 ) ,因此件商品涨价或降价的幅度不超 20元,因此件商品价钱的浮范又能够表示± 20 元.中考接:1.在一条东西向的跑道上,小亮先向东走了8 米,记作“+ 8 米”,又向西走了10 米,此时他的地点可记作()A.+2米B.-2米C.+18米D.-18米2.假如水库的水位高于标准水位 3 m时,记作+ 3 m,那么低于标准水位 2 m时,应记作()A.- 2 m B .- 1 m C .+ 1 m D .+ 2 m 答案: 1.B 2. A教课说明本过程仍旧先让学生独立思虑,再进行小组沟通的方式进行睁开.讲堂上鼓舞学生勇敢讲话,用自己的语言说明原因,进一步培育提升学生的思想表达能力.练习 1 对于有限小数和无穷循环小数都是分数,学生不可以很好的说明原因,考虑到为防止喧宾夺主,教课时可视学生状况适合解说.四、总结反省经过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为何要学习负数,学会了用正、负数表示生活中的拥有相反意义的一对量,还知道了有理数都包含哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易疑惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混杂和重复,应经过判断题或选择题的形式多加练习.评论与反省本节课设计为学生创建了轻松快乐地自主研究沟通的学习环境,四大环节的设计依照学生的认知规律,重在发掘学生潜力,给了学生更多的思虑空间.教课过程中着重发挥学生的主体作用,培育学生在学习互动过程中学会竞争与合作,加强团队相助合作精神.教课时向来让学生处于发现问题、提出猜想、沟通议论的状态中,用自己的思想方式形成自己对于问题独专门理解和认识 .。

七年级数学上册第2章《有理数》教学设计(北师大版)

七年级数学上册第2章《有理数》教学设计(北师大版)

第二章有理数及其运算1.有理数一、学生起点分析学生的知识技能基础:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。

学生活动经验基础:学生在小学通过对温度计的认识活动,学习了用负数解决一些简单的比较大小的问题。

刚进入初中的学生掌握正数、负数的概念程度参差不齐,结合实际正确的表示具有相反意义的量,建立有理数的概念是学习的难点。

二、学习任务分析“有理数”是初中数学学习的重要基础。

本节课的内容是正、负数的概念和有理数的分类。

通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。

为此,本节课的学习任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。

2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。

3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。

三、教学过程设计本节课设计了五个教学环节:第一环节:复习回顾,引入新课,第二环节:创设情境,探索新知,第三环节:实际应用,巩固提高,第四环节:合作交流,能力提升,第五环节:小结反思,布置作业。

第一环节:复习回顾,引入新课活动内容观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米.(登录优教同步学习网,搜索“新课导入:认识正数与负数”)教师出示上图,提出问题:(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?(2)你对负数有什么样的认识?(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。

活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的学习做了铺垫。

北师大版数学七年级上册《 第二章 有理数及其运算 》教学设计

北师大版数学七年级上册《 第二章 有理数及其运算 》教学设计

北师大版数学七年级上册《第二章有理数及其运算》教学设计一. 教材分析《第二章有理数及其运算》这一章节是北师大版数学七年级上册的重要内容,主要介绍了有理数的概念、分类、大小比较、加减乘除运算及其应用。

本章内容是学生学习数学的基础,对后续的学习具有重要意义。

教材通过丰富的例题和练习题,帮助学生掌握有理数的运算方法,培养学生的运算能力和逻辑思维能力。

二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算有一定的理解。

但是,对于有理数的概念、分类、大小比较等可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对负数和分数的运算存在一定的困难,需要教师进行针对性的引导和讲解。

三. 教学目标1.理解有理数的概念、分类、大小比较方法。

2.掌握有理数的加减乘除运算方法,并能灵活运用。

3.培养学生的运算能力和逻辑思维能力。

4.培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.有理数的概念、分类、大小比较。

2.有理数的加减乘除运算方法。

3.运用有理数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和发现。

2.使用实例和练习题,让学生在实践中学习和掌握知识。

3.分组讨论和合作,培养学生的团队合作意识和问题解决能力。

4.教师讲解和引导,帮助学生理解和克服难点。

六. 教学准备1.准备PPT和教学课件,用于展示和讲解。

2.准备实例和练习题,用于让学生练习和巩固。

3.准备小组讨论的问题和任务,用于培养学生的团队合作意识。

七. 教学过程1.导入(5分钟)通过引入实例,如温度、海拔等,引导学生思考和讨论这些实例与有理数的关系,激发学生的兴趣和好奇心。

2.呈现(15分钟)使用PPT和教学课件,呈现有理数的概念、分类、大小比较等内容,并进行讲解和解释。

通过丰富的实例和图示,帮助学生理解和掌握。

3.操练(15分钟)让学生进行有理数的加减乘除运算练习,教师给予指导和讲解。

通过练习题,让学生在实践中学习和掌握运算方法。

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x一. 教材分析《北师大版七年级数学上册》第二章《有理数及其运算》2.1《有理数》是整个初中数学的基础知识,主要介绍了有理数的概念、分类和运算。

本节课的内容对于学生来说是比较抽象的,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识有一定的了解,但是对有理数的概念和运算可能还比较陌生。

因此,在教学过程中,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

三. 教学目标1.了解有理数的概念,能够对有理数进行分类。

2.掌握有理数的加、减、乘、除运算方法。

3.能够运用有理数的运算解决实际问题。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

五. 教学方法采用问题驱动法、实例教学法和练习法,通过引导学生自主探究、合作交流,让学生在实际问题中理解和掌握有理数的概念和运算方法。

六. 教学准备1.PPT课件2.实例和练习题七. 教学过程1.导入(5分钟)通过问题驱动,引导学生思考:在日常生活中,我们经常用到数,比如身高、体重、温度等,这些数都属于什么类型?从而引出有理数的概念。

2.呈现(10分钟)通过PPT课件,呈现有理数的定义、分类和运算方法。

引导学生关注有理数的符号表示和性质,如正负号、绝对值等。

3.操练(10分钟)让学生分组进行练习,运用有理数的运算方法计算各组题目。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师选取一些典型题目,让学生上黑板演示解题过程,其他学生跟学。

通过这种方式,巩固学生对有理数运算方法的掌握。

5.拓展(10分钟)让学生运用所学知识解决实际问题,如计算购物时的找零、温度转换等。

教师引导学生思考,拓展学生思维。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

7.家庭作业(5分钟)布置一些有关有理数运算的练习题,让学生课后巩固所学知识。

2.1 有理数 北师大版数学七年级上册优秀教案

2.1 有理数 北师大版数学七年级上册优秀教案

第二章有理数及其运算2. 1 有理数1. 用生活中的实例引入负数,体会负数引入的必要性和有理数应用的广泛性.使学生了解负数产生的背景,理解正、负数及零的意义.2.会判断一个数是正数还是负数.3. 能用正、负数表示生活中具有相反意义的量.【教学重点】正、负数的意义.【教学难点】负数的意义及0的内涵.采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,并利用计算机辅助教学,增大教学密度.多媒体电教平台.1.创设一些引导问题,为新课做好准备:你在小学学过哪些数呢?请你分类写出你学过的几组数.2.阅读课本内容,并与同伴交流、讨论,发现以前学过的数怎么都不能表示第二队的得分,从而引出新课——有理数(板书).一、创设情境,引入新知1. 数的起古代猎人打了一只老鹰,用数如何表示一只老鹰——有了整数.二人一只西瓜,用数如何表示半只西瓜——有了分数.货币购物,用数如何表示2元3角4分——有了小数.二、合作交流,探究新知2. 负数来于生活例1 2月3日,深圳气温零上15°c,哈尔滨气温零下10°c,若零上15°c,用+15°c表示,那么零下10°c 如何表示?例2 我国有一座世界最高峰——珠穆朗玛峰,高度比海平面高8848米,在新疆境内,还有一个吐鲁番盆地,高度比海平面低155米,若海平面的高度为零度,则它们的高度分别如何表示?全国主要城市某一天的天气预报3. 正、负数的概念像+5,+1.2,等大于零的数,叫做正数.它们都比零大.像-5,-1.5,等在正数前面加上“—”号的数叫做负数,它们都比零小.“ 0 ”既不是正数,也不是负数. “ 0 ”具有中性特征.4. 用正负数表示生活中意义相反的量议一议:举一些生活中象增加与减少,升高与降低,盈利与亏损,零上与零下,收入与支出等实例.财富全球强中的主要零售企业5. 有理数的分类三、应用新知例1(1)在知识竞赛中,如果用 +10 分表示加 10 分,那么扣 20 分怎样表示?(2)某人转动转盘,如果用 +5 圈表示沿逆时针方向转了 5 圈,那么沿顺时针方向转了 12 圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量 0.02 克记作+0.02 克,那么 -0.03 克表示什么?四、巩固新知(1)如果零上5°C 记作+5°C ,那么零下3°C 记作什么?(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨,那么运出3.8吨应记作什么?(4)把下列各数填入相应的图形中内-6.3,20,-8,8%,0,-1,3.4,,五、归纳小结通过本节课的学习,我们知道小学学过的数已经不够用了,要引入负数的学习.我们还学习了正、负数和如何用正负数来表示具有相反意义的量.略.。

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
2.练习有理数的运算:设计一系列有理数的运算题目,要求学生熟练掌握加、减、乘、除等运算规则,并能够正确计算。
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。

北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》

北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》

北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》一. 教材分析《北师大版七年级数学上册》第二章“有理数及其运算”是整个初中数学的基础,而2.1节“有理数”更是这一基础中的基础。

本节内容主要介绍了有理数的定义、分类和基本性质,为后续的数的运算、方程的求解等知识点奠定了基础。

本节课的内容对于学生来说,不仅需要理解和掌握有理数的概念,还需要培养他们的逻辑思维能力和数学语言表达能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。

但是,对于有理数的定义、分类和性质,他们可能还比较陌生。

因此,在教学过程中,需要从学生的实际出发,循序渐进地引导他们理解和掌握有理数的概念,并能够运用有理数解决实际问题。

三. 教学目标1.理解有理数的定义,掌握有理数的分类和基本性质。

2.能够运用有理数解决实际问题,培养学生的数学应用能力。

3.培养学生逻辑思维能力和数学语言表达能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的基本性质。

3.有理数的运算。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究有理数的定义和性质。

2.利用实例和实际问题,让学生感受有理数在生活中的应用。

3.采用小组合作学习的方式,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备一些实际问题,用于引导学生运用有理数解决。

七. 教学过程1.导入(5分钟)利用问题驱动的方式,引导学生回顾实数的概念,进而引出有理数的定义。

例如:“你们知道实数包括哪些类型吗?那么有理数是实数的一部分,它又是怎样的数呢?”2.呈现(15分钟)通过讲解和示例,呈现有理数的定义、分类和基本性质。

在此过程中,引导学生积极参与,主动提问,以理解有理数的概念。

3.操练(15分钟)让学生通过解决实际问题,运用有理数进行计算。

例如:“小明有2.5个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数的定义和性质。

最新北师大版初一数学上册第二章 有理数及其运算 全单元教案含教学反思

最新北师大版初一数学上册第二章 有理数及其运算 全单元教案含教学反思

2.1 有理数教学目标1.借助生活中的实例理解负数、有理数的意义,体会负数引入的必要性和有理数应用的广泛性.2.会判断一个数是正数还是负数,能应用正、负数表示生活中具有相反意义的量,体会数学知识与现实世界的联系.3.在负数概念的形成过程中,培养观察、归纳与概括的能力.教学过程一、情境导入学校组织足球比赛,猛虎队和蛟龙队展开了一场激烈的对决,豆豆所在的猛虎队踢进4个球,失3个球,你能用数学的方式帮助豆豆表示他们队的进失球情况吗?学了有理数的有关知识后,问题不难解决.二、合作探究探究点一:用正、负数表示具有相反意义的量【类型一】会用正、负数表示具有相反意义的量0.8m,那么水位下降0.5m时水位变化记作( )A.0m B.0.5mC.-0.8m D.-0.5m解析:由水位升高0.8m时水位变化记作+0.8m,根据相反意义的量的含义,则水位下降0.5m时水位变化就记作-0.5m,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】用正、负数表示误差的范围请问“500±30(mL)”是什么含义?质检部门对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL,问抽查的产品是否合格?解析:+30mL表示比标准容量多30mL,-30mL表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”表示470~530(mL)是合格范围,503mL,511mL,489mL,473mL,527mL都在合格范围内,故抽查的产品都是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.探究点二:有理数的分类【类型一】有理数的分类-1,6,-3.14,0,-23,8%,2016.正有理数集:{…};负有理数集:{…};非负数集:{…};整数集:{…};分数集:{…}.解析:根据正、负数的意义可知6,8%,2016都是正有理数;-1,-3.14,-23是负有理数;非负数即0和正数,所以6,0,8%,2016是非负数;整数包括正整数、0和负整数,故-1,6,0,2016是整数;分数有-3.14,-23,8%.解:正有理数集:{6,8%,2016…}; 负有理数集:{-1,-3.14,-23…};非负数集:{6,0,8%,2016…}; 整数集:{-1,6,0,2016…}; 分数集:{-3.14,-23,8%…}.方法总结:以前学过的0以外的数就是正数,正数前面加上“-”号就是负数,再看它们是整数还是分数.【类型二】 对“0”的理解( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3个B .4个C .5个D .0个解析:0除了表示“无”的意义,还可以表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.【类型三】 和正、负有关的规律探究问题3个数,你能说出第10个数、第105个数、第2015个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,….解析:(1)对第n 个数,当n 为奇数时,此数为n ,当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n.解:(1)7,-8,9;第10个数为-10,第105个数是105,第2015个数是2015; (2)-7,18,-9;第10个数为110,第105个数是-105,第2015个数是-2015.方法总结:像这样探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数列的特征.三、板书设计有理数⎩⎪⎪⎨⎪⎪⎧整数⎩⎨⎧正整数零负整数分数⎩⎨⎧正分数负分数具有相反意义的量⎩⎨⎧正数负数教学反思教学过程中,强调学生自主探索和合作交流,通过观察身边事物,挖掘生活实例,从中获得数学知识与技能,体验教学活动的方法,培养观察、归纳与概括的能力.2.1 有理数一、 背景知识《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。

北师大版初中数学七年级上册《第二章 有理数及其运算 1 有理数》 优质课教案_0

北师大版初中数学七年级上册《第二章 有理数及其运算 1 有理数》 优质课教案_0

第二章有理数及其运算第一节有理数【学习目标】1.了解正数与负数是从实际需要中产生的;理解正数与负数的概念,会判断数是正数还是负数;2.会用正负数表示具有相反意义的量,体会数学知识与生活的密切联系;3.在负数概念的形成过程中,培养观察、归纳与概括的能力。

【学习方法】自主学习与合作探究相结合。

【学习重难点】重点:用正负数表示具有相反意义的量。

难点:理解正数与负数的概念,会按要求进行数的分类。

【教学过程】一、导入新课1.小学我们学过哪些数?让学生充分发言,补充。

( 自然数、整数、分数、小数、百分数、正数、负数、正整数、负整数、正分数、负分数、带分数、循环小数等等。

)2. 本章将在小学学习的基础上,进一步学习负数,研究有关概念及其运算。

今天,我们就来学习第一节:有理数。

(板书)二、新课1、小明在书上看到,冬日的一天,某地的最高气温为15℃,最低气温达到-12℃,平均气温是0 ℃,这里面的数是什么数?学生回答:15是正数,-12是负数,0既不是正数也不是负数。

2、3/4 ,1/2,0.2,-0.5,它们又是什么数呢?学生回答:分数。

教师补充:我们把有限小数,无限循环小数和百分数都看作分数,但不是所有的小数都是分数。

(圆周率是一个无限不循环小数,它就不能化成分数)。

合作探究(1)、某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分。

三个队答题情况如下表:如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?学生回答。

议一议:生活中你见过其他用负数表示的量吗?(1)、你会读温度计吗?零上5度,零下10度,0度。

该如何表示?(2)、你能用正负数表示下面的量吗?世界最高峰珠穆朗玛峰比海平面高8844.43m,新疆吐鲁番盆地比海平面低155 m。

知识提炼,概括总结:像10、1.2、17、…,这样的数叫做正数,它们都比0大。

在正数前面加上“-”号的数叫做负数,例如-10,-3 …,负数都比0小。

新北师大版初中数学七年级上册 第二单元 有理数及其运算 教案(全)

新北师大版初中数学七年级上册 第二单元 有理数及其运算 教案(全)

2.1.1有理数教学目标:1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学重点:负数的意义.教学难点:负数的意义.教学过程:一、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.二、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还在使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米.教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.三、运用举例 变式练习例:所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:3,-2.5,4,16,-27,0,-34此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.四、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.五、课后作业 见学生用书. 教学后记:这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的. 从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.2.1.2 有理数教学目标:1.使学生理解有理数的意义,并能将给出的有理数进行分类; 2.培养学生树立分类讨论的思想. 教学重点:有理数包括哪些数.教学难点:有理数的分类及其分类的标准. 教学过程:一、从学生原有的认知结构提出问题 1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明. 3.任何一个正数都比0大吗?任何一个负数都比0小吗? 4.什么是整数?什么是分数? 根据学生的回答引出新课. 二、讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数.2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number ”的译名,更确切的译名应译作“比”.3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同.根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.三、运用举例 变式练习例1:将下列数按上述两种标准分类: 1,12,0,-5,13.例2:下列各数是正数还是负数,是整数还是分数: 0,0.5,-2,5,16. 四、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?五、课后作业 见学生用书. 教学后记:在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.2.2 数轴一、教学目标(一)知识目标:1.使学生正确理解数轴的意义,掌握数轴的三要素2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(二)能力目标1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识,提高应用数学的能力2.让学生渗透数形结合的思想方法.(三)情感态度目标1、通过对实数进行分类的练习,让学生进一步领会分类的思想,鼓励学生要从不同角度入手,寻解决问题的多种途径,训练学生的多角度思维,为他们以后更好地工作作准备。

七年级数学上册 第二章 有理数及其运算 第1节 有理数教案 (新版)北师大版

七年级数学上册 第二章 有理数及其运算 第1节 有理数教案 (新版)北师大版

课题:有理数●教学目标:一、知识与技能目标:1.知道什么是负数,并能用正、负数表示实际问题中的数量.2.能说出负数表示的意义.3.能说出有理数的概念,能将有理数正确分类.二、过程与方法目标:1.体验对有理数分类的探索过程,初步感受分类讨论的思想.2.通过教师引导,学生自主探究,体验从实际问题中抽象出数学问题的过程,初步学会数学的类比方法思想方法.三、情感态度与价值观目标:通过对负数和有理数的学习,体会到数学和现实的密切联系,能用所学解决实际问题.●重点:掌握有理数的分类●难点负数表示的意义、有理数的分类及分类标准●教学流程:一、回顾旧知,情景导入通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“数”够用了吗?师:同学们,今天老师在来学校的路上,行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.那么同学们想一下,老师刚才说的一句话中,出现了哪些数,分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).那在生活中,仅有整数和分数够用了吗?请同学们完成课本第23页的表格,并思考老师刚才的问题.师:(一起分析完表格之后)以前学过的数已经不够用了,我们需要一种前面带有“-”的新数来解决生活中的问题.那大家相互讨论一下生活中还有哪些用负数表示的量.学生活动:讨论二、解答困惑,讲授新知学生回答,老师补充.那么我们在生活中在表示温度、方向、价格时会有“零上摄氏度和零下摄氏度”、“向东和向西”“上涨和下降”等词,这些都是表示相反意义的量,在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、实例演练深化认识判断下列说法是否正确1.零上5℃与零下5℃意思一样,都是5℃.(×)2.正整数集合与负整数集合并在一起是整数集合. (×)3.若-a是负数,则a是正数.(√)4.若+a是正数,则-a是负数. (√)5.收入-2000元表示支出2000元.(√)1.某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?沿顺时针转了12圈记作-12圈.2.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g 表示什么?-0.03g表示乒乓球的质量低于标准质量0.03g.3.某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.四、提出问题,启发引导现在我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.问题:那么,有没有一种既不是正数又不是负数的数呢?学生思考并讨论.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数.五、延伸知识,分类思想我们现在对学过的数进行分类,在上课开始的时候,大家说学过的数有整数和分数,那么在学习了正数和负数之后,整数可以分为什么?分数可以分为什么?正整数正分数整数 0 分数负整数负分数整数和分数统称为有理数思考:有理数还可以怎么分类呢?可以按照定义和符号性质分。

北师大版七年级数学上册教案-第二章-有理数及其运算

北师大版七年级数学上册教案-第二章-有理数及其运算

北师大版七年级数学上册教案-第二章-有理数及其运算一、教学目标1.理解有理数的概念,能够正确表示正数和负数。

2.学会有理数的加法、减法、乘法和除法运算,掌握运算律。

3.能够运用有理数解决实际问题。

二、教学重点与难点1.教学重点:有理数的概念,有理数的加法、减法、乘法和除法运算。

2.教学难点:有理数的乘法和除法运算,以及混合运算中的符号法则。

三、教学过程第一课时:有理数的概念及加减法运算一、导入1.回顾小学阶段学习的自然数、整数、分数的概念。

2.提问:在日常生活中,我们经常遇到正数和负数,谁能举例说明?二、新课讲解1.引入有理数的概念:整数和分数统称为有理数,有理数包括正有理数、零和负有理数。

2.讲解正数和负数的表示方法:在数字前面加上“+”或“-”号,分别表示正数和负数。

3.讲解有理数的加法和减法运算:a.加法法则:同号相加,异号相减。

b.减法法则:减去一个数,等于加上这个数的相反数。

三、案例分析1.出示案例:2+3,-5(-2),472.学生分组讨论,尝试运用所学知识解决问题。

四、课堂练习1.学生独立完成课后习题。

2.老师抽取部分学生回答,检查掌握情况。

第二课时:有理数的乘除法运算一、复习导入1.复习有理数的加减法运算。

2.提问:有理数的乘除法运算与加减法运算有何不同?二、新课讲解1.讲解有理数的乘法运算:a.同号相乘得正,异号相乘得负。

b.乘法的交换律、结合律。

2.讲解有理数的除法运算:a.除法的定义:乘法的逆运算。

b.异号除法:同号得正,异号得负。

三、案例分析1.出示案例:(-3)×(-4),2÷(-5),(-6)÷32.学生分组讨论,尝试运用所学知识解决问题。

四、课堂练习1.学生独立完成课后习题。

2.老师抽取部分学生回答,检查掌握情况。

第三课时:有理数的混合运算一、复习导入1.复习有理数的加减法和乘除法运算。

2.提问:在有理数的混合运算中,应注意哪些问题?二、新课讲解1.讲解有理数的混合运算顺序:先乘除,后加减。

北师大版七年级(上)数学第二章有理数及其运算教案:有理数的乘除法和乘方讲义(含答案)

北师大版七年级(上)数学第二章有理数及其运算教案:有理数的乘除法和乘方讲义(含答案)

有理数的乘除法和乘方讲义1.掌握有理数乘除法运算法则和计算题;2.掌握有理数乘方运算法则和计算题.1.乘法运算法则:(1)两数相乘,同号为_____,异号为_____,并把绝对值相乘。

(2)任何数字同0相乘,都得0。

(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。

当负因数有______个数时,积为负;当负因数有______个数时,积为正。

(4)几个数相乘,有一个因数为0时,积为0.2.除法运算法则:(1)除以一个数等于乘以这个数的倒数。

(注意:____没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。

(3)0除以任何一个不等于0的数,都等于0。

(4)0在任何条件下都不能做______。

3.乘方 求n 个相同因数乘积的运算叫做乘方。

参考答案:1.(1)正,负(3)奇数,偶数2.(1)0 (4)除数1.有理数乘法【例1】113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.【解析】把带分数化成假分数,再根据乘法法则,同号两数相乘结果为正即可求出结果。

【答案】原式=(-27)×(-37) 【例2】38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭【解析】根据有理数乘法法则和运算顺序即可算出结果。

【答案】原式=24-2=22练习1.384⎛⎫-⨯ ⎪⎝⎭ 【答案】-6练习2.12(6)3⎛⎫-⨯- ⎪⎝⎭【答案】14练习3.38(4)(2)4-⨯-⨯- 【答案】2练习4. 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭. 【答案】-482.有理数的除法(除法没有分配律)【例3】 (1)601)315141(÷+-;(2))315141(601+-÷. 【解析】第(2)题属于易错题,因为除法没有分配律,只有乘法才有分配律,而一些学生往往因不看清题目而错误地运用运算规律。

【答案】解:(1)解法一:2360602360)602060126015(601)315141(=⨯=⨯+-=÷+-解法二:601)315141(÷+-2360316051604160)315141(=⨯+⨯-⨯=⨯+-= (显然,解法二中运用了乘法分配律后计算方法很简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数及其运算
1 有理数
1.进一步认识负数,会用正负数表示具有相反意义的量.
2.理解有理数的概念,会辨别一个数是否为有理数.
3.能够对有理数进行简单的分类.
重点
会用正负数表示具有相反意义的量,了解有理数的概念及分类.
难点
明确有理数的分类标准,区分有理数.
一、复习导入
问题1:在生活中,我们经常遇到用负数表示的量,你能说出一些例子吗?
问题2:有了负数,数的运算与过去相比有什么区别和联系?
教师提出问题,学生交流讨论后举手回答.
二、探究新知
1.用正负数表示相反意义的量
课件出示问题:
如何用数学语言来表示下列数据:
(1)零上3 ℃和零下12 ℃;
(2)收入800元和支出500元;
(3)增加5 kg 和减少2 kg ;
(4)水位升高0.5 m 和降低1.3 m .
教师提出问题,学生讨论交流后回答问题.老师判断对错,并进一步讲解:
一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,用正数表示.而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的,用负数表示.
2.有理数的概念及分类
课件出示填空题:
(1)像5,1.2,12
,…这样的数叫做________,它们都比________大; (2)在正数前面加上“-”号的数叫做________,如-10,-3等,它们都比________小;
(3)0既不是________,也不是________.0是________和________的分界点,0是________数,也是________数,也是________数.
学生举手回答,教师点评,并进一步讲解:
理解正数和负数时需要注意的问题:①对于正数和负数的意义,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数;②负数是在正数前面加上一个“-”号,如-5,-(+7)等都是负数,负数中的“-”号不能省略,如-5省略“-”号就是5,变成正数了;③0既不是正数,也不是负数.
教师:试将以前学过的所有的数进行分类,并与同桌进行交流.
学生讨论交流后,教师点评,并进一步讲解:
整数与分数统称为有理数.
有理数的分类:
(1)按符号分:
有理数⎩⎪⎨⎪⎧正有理数⎩
⎪⎨⎪⎧正整数正分数 0负有理数⎩⎪⎨⎪⎧负整数负分数
(2)按定义分:
有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数
分数⎩
⎪⎨⎪⎧正分数负分数 三、练习巩固
教材第25页“随堂练习”第1,2题.
四、小结
1.通过这节课的学习,你学到了什么?
2.什么是有理数?有理数是怎么分类的?
五、课外作业
教材第26页习题2.1第2,3题.
本节课是有理数全章的第一节,为以后“数”的学习奠定基础.学生在日常生活中已经有用正负数表示量的经验,但是体会它们的意义却是首次.在教学过程中,教师通过提问等方式,引导学生自主探究正负数的意义及有理数的概念和分类.体现教师的导向作用和学生的主体地位.把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲,为学生提供足够的时间和空间,帮助学生主动探究,鼓励学生表达与交流,使学生轻松、愉快地学习,不断克服学习中的被动情况.。

相关文档
最新文档