SPSS-非参数检验—两独立样本检验_案例解析
使用SPSS做t检验和方差分析
4
2 两独立样本的t检验
P(Sig.)值的意义: 通常我们在计算出t的值后,通过查表得tα(n-1),然后比较t和tα(n1) 决定接受H0还是拒绝H0.
这里假设检验的判断采取另外一种形式:即直接计算检验统计量样本 实现的临界概率P值(也称为检验的P值)。 P值的含义:利用样本实现能够做出拒绝原假设的最小显著水平。 利用临界P值下结论:若P≤α,则拒绝H0;若P>α,则接受H0。P 的计算是复杂的,因为这将会设计抽样分布。现在的统计软件都有 此功能,可以直接比较。
Levene's Test for Equality of Variances
血磷值
Equal variances assumed
Equal variances not assumed
F .038
Sig. .847
Independent Samples Test
t 2.539
2.540
t-test for Equality of Means
3
1 单样本的t检验
One-Sample Statistics
结果:假设H0,样本总体均数=100
打包 的质量
N 9
Mean Std. Deviation
99.978
1.2122
Std. Error M ea n .4041
从左到右依次为t值,自由度(df), P值(Sig.2-tailed), 两均值误差(Mean Difference)、差值95%置信区间
2
1 单样本的t检验
例:某工厂用自动打包机打包,每包标准质量为100kg。 为了保证生产出的正常运行,每天开工后需要先行试 机,检查打包机是否有系统偏差,以便及时调整。某 日开工后在试机中共打了9个包,测得9包质量(kg)为 :99.3, 98.7, 100.5, 101.2, 98.3, 99.7, 99.5, 102.1,100.5。现在需要做出判断,今天的打包机是否 需要作出调整? 假设H0:μ=100; H1: μ≠100
SPSS学习笔记之——两独立样本的非参数检验
一、概述
Mann-Whitney U 检验是用得最广泛的两独立样本秩和检验方法。
简单的说,该检验是与独立样本t检验相对应的方法,当正态分布、方差齐性等不能达到t 检验的要求时,可以使用该检验。
其假设基础是:若两个样本有差异,则他们的中心位置将不同。
二、问题
为了研究某项犯罪的季节性差异,警察记录了10年来春季和夏季的犯罪数量,请问该项犯罪在春季和夏季有无差异。
下面使用Mann-Whitney U检验进行分析。
SPSS版本为20。
三、统计操作
SPSS变量视图:
SPSS数据视图:
进入菜单如下图:
点击进入如下的界面,“目标”选项卡不需要手动设置
进入“字段”选项卡,将“报警数量”选入“检验字段”框,将“季节”选入“组”框中。
再进入“设置”选项卡,选中“自定义检验”单选按钮,选择“Mann-Whitney U(二样本)”检验。
点击“运行”即可。
四、结果解读
这是输出的主要结果,零假设是“报警数量的分布在季节类别上相同”,其P=0.009<0.05,故拒绝原假设,认为报警数量在季节上有统计学差异。
双击该表格,可以得到更多的信息,不再叙述。
SPSS非参数检验—两独立样本检验_案例解析
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种在统计学中常用于比较两个或多个独立样本的方法。
与参数检验不同,非参数检验不需要对数据的分布进行假设,并且适用于非正态分布的数据。
SPSS(统计软件包for社会科学)是一个广泛使用的统计分析软件,它提供了许多非参数检验的功能。
本文将以一个案例为例,解析如何使用SPSS进行两独立样本的非参数检验。
案例描述:一家公司正在评估一个新的培训课程对员工的绩效是否有显著影响。
为了评估培训课程的效果,研究人员随机选择了两组员工,一组接受了培训课程(实验组),另一组没有接受培训课程(对照组)。
研究人员想要比较两组员工在绩效上的差异。
步骤一:导入数据首先,将实验组和对照组的数据分别导入SPSS中。
假设每个样本中有n个观测值。
在SPSS中,每一组数据应该是一个独立的变量(或列),并且每个观测值应该占据矩阵中的一个单元格。
步骤二:选择非参数检验方法在SPSS中,可以使用Mann-Whitney U检验来比较两组独立样本的绩效差异。
该检验的原假设是两组样本来自同一个总体,备择假设是两组样本来自不同的总体。
步骤三:运行非参数检验在SPSS的菜单栏中,依次选择"分析" - "非参数检验" - "独立样本检验(Mann-Whitney U)"。
将实验组和对照组的变量分别输入到"因子1"和"因子2"中。
在"可选"选项中,可以选择在报告中包含各种统计量。
步骤四:解读结果SPSS将输出很多统计信息,包括推断统计、置信区间、效应大小等。
其中,最重要的是U值和显著性。
U值是用来检验两组样本是否来自同一个总体的统计量,显著性则是用来判断差异是否显著。
如果显著性小于0.05,则可以拒绝原假设,认为两组样本在绩效上存在显著差异。
总结:通过上述步骤,我们可以利用SPSS进行两独立样本的非参数检验。
spss教程t检验,非参数检验 ppt课件
9
logisitic回归:概率性非线性回归(二或多分 类)
• 主要用于分析疾病与危险因素的关系。
2021/3/26
spss教程t检验,非参数检验 ppt课件
10
2021/3/26
spss教程t检验,非参数检验 ppt课件
4
3.独立样本t检验:两组数据的均值差异
2021/3/26
spss教程t检验,非参数检验 ppt课件
5
4.单因素方差分析:3个或以上独立组
2021/3/26
spss教程t检验,非参数检验 ppt课件
6
二、若变量不符合正态分布→非参数检验
spss教程t检验,非参数检验
2021/3/26
spss教程t检验,非参数检验 ppt课
1
件
一、t检验:定量资料()的假设检验
• 要求:样本符合
2021/ppt课件
2
1.单样本t检验:单样本
2021/3/26
spss教程t检验,非参数检验 ppt课件
3
2.配对样本t检验:
• 1.两个独立样本秩和检验:等级资料(半定量资料:按不同程度 分组计数)
2021/3/26
spss教程t检验,非参数检验 ppt课件
7
2.K个独立样本秩和检验:(等级资料)
2021/3/26
spss教程t检验,非参数检验 ppt课件
8
3.两个相关样本秩和检验:
2021/3/26
spss教程t检验,非参数检验 ppt课件
spss两独立样本t检验结果解析
spss两独立样本t检验结果解析SPSS是一款非常常用的统计分析软件,它适用于不同领域的全部用户。
SPSS统计软件不仅可以完成数据录入、数据清洗等简单操作,还可以完成数据分析、数据挖掘等复杂的操作。
在进行SPSS两独立样本t检验之前,我们需要了解两个样本的数据情况以及两组数据是否满足t检验的前提条件。
两独立样本t检验的前提条件为:1. 两样本各自服从正态分布。
2. 两样本方差相等(方差齐性)。
下面我们来看一下SPSS两独立样本t检验的结果解析。
首先,我们要在SPSS中输入两组数据,造成数据如下:组别得分组1 85、90、88、75、92、80组2 85、95、75、70、88、82第一步打开SPSS软件后,点击运行拦,然后选择“t检验单样本均数的文件”,进入t检验对话框。
第二步在t检验对话框中选择两独立样本t检验选项。
在窗口中,输入变量对,也就是需要比较的两组数据的变量名。
在本例中,变量对为“得分”和“组别”。
第三步在t检验对话框的“选项”标签页中,选择检验方向和置信区间。
选择一个置信度,通常选择95%或99%。
第四步点击“确定”按钮运行SPSS两独立样本t检验。
运行完成后,我们将获得以下输出:【IMG】输出的表格中包含了两个主要的部分:汇总信息(Summary Information)和检验结果(Test Results)。
检验结果中包括统计量(t值)、自由度(df)和p值。
这些统计量可以用来决定是否拒绝零假设,即两个样本的均值相等。
在本例中,t=1.025,df=10,p=0.325。
根据p值大于0.05,我们不能拒绝零假设,即两组样本的均值可能是相等的。
因为本数据的p值大于0.05,在这个置信度下,我们不能否定零假设,即不能得出两组数据的平均值不同。
因此,可以根据结果推断,“得分”在两个组别之间没有显著差异。
综上述,我们已经学会了如何进行SPSS两独立样本t检验,以及如何解析结果。
在SPSS中使用两独立样本t检验可以让我们更快、更方便地了解两个样本的差异,这对于许多研究者来说非常相关。
两独立样本T检验---SPSS操作详解
两独立样本T检验-SPSS操作详解
为了解某一新药降血压的效果,将28名高血压患者随机分为实验组和对照组,实验组采用新药,对照组采用常规药,测得治疗前后的血压变化,问新药是否优于常规药?
1 打开SPSS软件,定义变量。
变量1设置:name-group , decimals-0 , label-分组, value-(1=新药,2=常规药) 变量2设置:name-value , decimals-0 , label-血压下降值
2 输入数据---血压差=用药前血压-用药后血压
3 单击菜单栏analyze/compare means/independent-samples t test
4 将血压下降值调入test variables下矩形框
5 将分组(group)调入grouping variable 下矩形框
6单击define groups…定义分组group1为1 定义group2为2 单击continue
7 options选项默认
8 bootstrap选项默认
9 单击OK 输出结果
10 结果界面
11 结果解释
表1表示两独立样本t检验基本统计量-group statistics
表2表示两独立样本t检验结果,方差方程的levene检验(Levene’s Test for Equality of Variances 方差齐性检验)F=3.115,P=0.93,认为两样本来自的总体方差齐。
T检验中t=3.18,P=0.005。
按α=0.05水准拒绝H0
,差异有统计学意义。
可认为新药组的降压效果优于常规药。
2017/06/06于深圳
随时交流:ammomeng@。
使用SPSS-进行两组独立样本的t检验、F检验、显著性差异、计算p值
使用SPSS 进行两组独立样本的t检验、F检验、显著性差异、计算p值SPSS版本为SPSS 20.如有以下两组独立的数据,名称分别为“111”,“222”。
111组:4、5、6、6、4222组:1、2、3、7、7首先打开SPSS,输入数据,命名分组,体重和组名要对应,111组的就不要输入到222组了。
数据视图如下:变量视图如下,名称可以改成“分组嗷嗷嗷”“体重喵喵喵”等点击“分析”-“比较均值”-“独立样本T检验”来到这里,分组变量为“分组嗷嗷嗷”,检验变量为“体重喵喵喵”。
【关键的一步】点击分组嗷嗷嗷,进行“定义组”【关键的一步】输入对应的两组数据的组名:“111”和“222”点击确定,可见数据与组名对应上了。
点击“确定”,生成T检验的报告,即将大功告成!第一个表都知道什么回事就不缩了,excel都能实现的。
第二个表才是重点,不然用SPSS干嘛。
F检验:在两样本t检验中要用到F检验,F检验又叫方差齐性检验,用于判断两总体方差是否相等,即方差齐性。
如图:F旁边的Sig的值为.007 即0.007,<0.01, 即两组数据的方差显著性差异!看到“假设方差相等”和“假设方差不相等”了么?此时由于F检验得出Sig <0.01,即认为假设方差不相等!因此只关注红框中的数据即可。
如图,红框内,Sig(双侧),为.490即0.490,也就是你们要求的P值啦,Sig ( 也就是P值) >0.05,所以两组数据无显著性差异。
PS:同理,如果F检验的Sig >.05(即>0.05),则认为两个样本的假设方差相等。
所以相应的t检验的结果就看上面那行。
SPSS两独立样本T检验结果解析
SPSS两独立样本T检验结果解析SPSS(Statistical Package for the Social Sciences)是一款广泛使用的统计分析软件,可以进行各种复杂的数据分析。
其中,两独立样本T检验是SPSS中的常用统计方法之一、下面将对SPSS进行两独立样本T检验结果进行详细解析。
首先要明确两独立样本T检验的目的是比较两个独立样本之间的平均值是否存在显著差异。
在SPSS中,进行两独立样本T检验的步骤如下:1. 打开数据文件(Data Editor)并导入数据。
3. 在下拉菜单中选择“Independent-Samples T Test”(独立样本T检验)。
4. 将需要进行比较的两个变量移动到“Test Variable List”(测试变量列表)中。
5.点击“OK”进行分析。
对于两独立样本T检验的结果解析,主要关注以下几个方面的内容:1. 描述统计(Descriptive Statistics):此部分显示了两个样本的基本统计信息,包括平均值(Mean)、标准差(Standard Deviation)等。
通过比较两个样本的均值可以初步判断是否存在差异。
2. 独立样本T检验(Independent Samples Test):此部分给出了两独立样本T检验的结果。
主要包括t值(t),自由度(df),显著性水平(Sig.)和均值差(Mean Difference)等。
其中,t值用于判断两个样本均值之间的差异是否显著,自由度表示模型中自由变量的约束条件的数量。
显著性水平表示差异的统计显著程度,一般选择显著性水平为0.05,即p值小于0.05时,差异是显著的。
均值差可以用来衡量两个样本之间的差异的大小。
3. Levene's Test for Equality of Variances(Levene方差齐性检验):此部分用于判断两个样本的方差是否相等。
若显著性水平小于0.05,则认为两个样本的方差不相等,这将影响到独立样本T检验的结果。
spss教程:两独立样本t检验
spss教程:两独立样本t检验
操作方法
01
首先需要输入数据,t检验数据的输入格式为区别为一列,数值为一列。
02
接下是做正态性检验。
首先需要拆分文件,对两组数据分别做检验。
即数据——拆分文件
03
然后点一下比较组,把组别调入分组方式这里,再点击确定。
这样就拆分完毕了。
04
继续点分析——非参数检验——旧对话框——1-样本K-S
05
这样就弹出了正态性检验的对话框,将需要分析的数值调入右边的框框,然后勾选上下方检验分布的第一个,正态(也写为常规,一般默认已经勾上),然后点击确定(数值调入右边后,确定键变为可用)
查看结果,第一组的正态性检验P=0.798,第二组为P=0.835,可认为近似正态分布。
07
接着取消拆分。
数据——拆分文件,在跳出来的框框中点一下第一个(分组所有组),然后点确定
08
然后点分析——比较均值——独立样本t检验
将组别调入分组变量,数值调入检验变量
10
接着点一下分组变量下方的定义组,在弹出来的框框中输入组别1、2,再点继续——确定
11
结果出来了。
第一个表格是两组数据的例数、均值、标准差和均数的标准误。
第二个表格前部是方差齐性检验,可看到P=0.141>0.05,具有方差齐性,
然后t检验的P值为0.007,可认为差异有统计学意义。
两独立样本T检验SPSS操作详解
两独立样本T检验SPSS操作详解以下是步骤详解:1.打开SPSS软件,并导入数据文件。
在“文件”菜单中选择“打开”选项,浏览并选择你的数据文件,并点击“打开”。
数据文件需要包含两组要比较的两个变量。
2.选择菜单中的“分析”选项,然后选择“比较均值”子选项,再选择“独立样本T检验”。
3.在弹出的独立样本T检验对话框中,将你要比较的两个变量移动到变量框中。
其中一个变量移动到“依赖变量”框中,另一个变量移动到“提取组变量”框中。
4.点击“定义组”按钮,在出现的对话框中输入两个组的编号,并点击“添加”按钮。
然后关闭“定义组”对话框。
5.在独立样本T检验对话框中,确定其他参数,如显著性水平(默认为0.05)和描述统计量选项。
6.点击“确定”按钮运行分析。
SPSS将计算出两组的均值、标准差、样本大小等统计量,并给出T值、自由度和显著性水平。
7.分析结果将显示在输出窗口的“独立样本T检验”表中。
主要关注的结果包括均值差异、T值、自由度和显著性水平。
8.可以根据需要导出分析结果。
在输出窗口中选择你感兴趣的表格或图表,然后在菜单中选择“文件”选项,再选择“另存为”选项,将分析结果保存为你想要的格式。
需要注意的是,在进行两独立样本T检验之前,要确保数据满足T检验的假设:两组样本是独立的、来自正态分布总体和方差齐性。
如不满足这些假设,可以考虑使用非参数检验或进行数据转换。
此外,对于SPSS软件的具体操作细节可能会因软件版本而有些差异,但基本的步骤和参数设置是相同的。
以上就是两独立样本T检验SPSS操作的详解。
通过SPSS软件进行数据分析可以更方便地得到结果,并为研究者提供科学依据。
统计学SPSS两个独立样本T检验实验报告
四、实验结果及分析
附件一:组统计量表,给出了各个样本的均值,标准差和均值的标准误;
五、自评及问题
掌握了两独立样本t检验的基本原理和spss实现方法,熟悉SPSS软件操作和方法。通过检验得出结论的真否,能够更快更简单的检验数据,对数据的检验让我很快的了解该数据的代表性。
六、成绩
七、指导教师
附件一、
组统计量Βιβλιοθήκη 月份N均值标准差
均值的标准误
汽油价格
1月份
20
1.1775
.03076
.00688
2月份
20
1.1640
.04616
.01032
附件二、
独立样本检验
方差方程的Levene检验
均值方程的t检验
差分的95%置信区间
F
Sig.
t
df
Sig.(双侧)
均值差值
标准误差值
下限
上限
汽油价格
假设方差相等
2.844
.100
1.088
38
.283
.01350
.01240
-.01161
.03861
假设方差不相等
1、能够熟练使用SPSS进行两个彼此独立的来自正态分布总体的样本的T检验,并能对实验结果进行分析;
2、掌握利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异的方法;
3、进一步熟悉SPSS软件的应用。
SPSS实验两个独立样本t检验5
-10.2262
3,分析输出结果
由上面的结果可知:在Levene's Test for Equality of Variances和Equal variances assumed下Sig=0.940>>0.05说明不显著,即表示两个样本的方差是齐性的。接下来看第一行可得,Sig=0.000<0.05表明检验显著即是这学校对三班四班的教学方法有显著差异。且对四班实行的教学方法的确优于三班的。这种好方法值得在学校进一步推广。
从样本数据上看,四班的各项指标均优于三班,这是第二种教学方法即用于四班的方法优于第一种教学方法即用于三班的方法的证据。
2,两个独立样本t检验
由于三班和四班的测试成绩可看成是两个独立的样本,且测试成绩可近似认为服从正态分布,因此,为进一步证实上述判断,可以利用两个独立样本t检验进行统计推断结果如下:
Independent Samples Test
33.470
5% Trimmed Mean
30.744
Median
32.550
Variance
46.739
Std. Deviation
6.8366
Minimum
13.3
Maximum
38.7
Range
25.4
InterquartileRange
6.8
Skewness
-1.314
.512
Kurtosis
两个独立样本t检验(第五次实验报告)
实验数据:
班级
语言表达能力测试得分
学号
3
34.3
0301
3
25.1
0302
3
27
0303
SPSS非参数检验—两独立样本检验_案例解析
SPSS非参数检验—两独立样本检验_案例解析非参数检验是一种不基于总体分布特征的统计方法,适用于数据分布未知、非正态分布或无法满足参数检验假设的情况。
其中一种非参数检验是两独立样本检验,用于比较两组独立样本之间的统计差异。
本篇文章将结合案例解析,详细介绍SPSS软件中如何进行非参数检验的两独立样本检验。
案例背景:工厂生产两种不同形状的零件,为了比较两种零件的尺寸是否存在差异,随机选取了30个零件进行测量。
现在需要使用两独立样本检验来研究这两种零件的尺寸是否存在显著差异。
步骤一:数据导入首先,将收集到的数据导入SPSS软件中。
数据包括两个变量:零件类型(Group)和尺寸(Size)。
将数据按照Excel或CSV格式保存,然后在SPSS中选择"文件"->"导入"->"数据",选择导入文件,并进行数据格式定义。
步骤二:描述性统计分析在进行假设检验之前,首先进行描述性统计分析,以了解样本数据的基本特点。
在SPSS中,选择"分析"->"描述性统计"->"描述性统计",将"Size"变量拖入"变量"框中,然后点击"统计"按钮,选择要统计的统计量(如均值、标准差等),最后点击"确定"按钮进行计算。
步骤三:正态性检验在进行非参数检验之前,需要进行正态性检验,以确定数据是否满足参数检验的假设。
在SPSS中,选择"分析"->"非参数检验"->"单样本分布检验",将"Size"变量拖入"变量"框中,然后点击"选项"按钮,选择要进行的正态性检验方法,如Kolmogorov-Smirnov检验或Shapiro-Wilk检验等。
SPSS进行两配对样本的非参数检验(Wilcoxon符号秩检验)-实验方法-丁香通
SPSS进⾏两配对样本的⾮参数检验(Wilcoxon符号秩检验)-实验⽅法-丁⾹通⼀、概述
⾮参数检验对于总体分布没有要求,因⽽使⽤范围更⼴泛。
对于两配对样本的⾮参数检验,⾸
选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
⼆、问题
为了研究某放松⽅法(如听⾳乐)对于⼊睡时间的影响,选择了10名志愿者,分别记录未进⾏
放松时的⼊睡时间及放松后的⼊睡时间(单位为分钟),数据如下笔。
请问该放松⽅法对⼊睡
时间有⽆影响。
本例可以采⽤配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑⽤⾮参数
检验。
三、统计操作
数据视图
菜单选择
打开如下的对话框。
SPSS20.0实现多个独立样本非参数检验后两两比较
SPSS20.0实现多个独立样本非参数检验后两两比较
SPSS---分析---非参数检验---独立样本(I)...
在出现的名为“非参数检验:两个或更多独立样本”的对话框里,点击“字段”选项卡。
在出现的画面中把要检验的变量放入右边的“检验字段(T)”文本框里,把分组变量
放入其下面的“组(G)”里。
点击“运行”按钮即可。
在输出的结果中,双击“假设检验汇总”图表,在出现的模型浏览器里的右下角的“视图”的
右边下拉菜单里,选中其中的“成对比较”,结果就会出现两两的非参数检验的比较的结果。
注:
①分组变量(G)变量类型(度量标准)需定义为“序号”或“名义”
变量;
②两两比较方法:Mann-Whitney U检验?。
SPSS两独立样本T检验结果解析
SPSS两独立样本T检验结果解析SPSS中的两独立样本T检验是一种用于比较两个独立样本均值是否存在显著差异的统计方法。
在进行T检验时,SPSS会提供多个结果和统计指标,以下将对这些结果进行详细解析。
1.描述统计:首先,SPSS提供了每个样本的基本统计描述,包括样本均值(Mean)、标准差(Standard Deviation)、样本大小(N)等。
这些统计指标可以帮助我们了解样本的基本情况,并对比两个样本的差异。
2.正态性检验:T检验的前提是两个样本都满足正态分布。
SPSS会进行正态性检验,提供Shapiro-Wilk和Kolmogorov-Smirnov两种方法。
若p值大于显著性水平(通常是0.05),则我们可以认为数据满足正态分布假设;若p值小于显著性水平,则我们需谨慎解释数据结果,并可以采用非参数检验方法。
3.方差齐性检验:T检验还要求两个样本的方差齐性。
SPSS提供Levene's Test和Brown-Forsythe两种方差齐性检验方法。
若p值大于显著性水平,我们可以认为两个样本具有方差齐性;若p值小于显著性水平,则需要调整我们对于T检验结果的解释,例如使用修正的T检验方法。
4.独立样本T检验结果:SPSS提供了多个独立样本T检验的结果,包括T值、自由度、双侧p 值、置信区间等。
其中T值表示两个样本均值之间的差异是否显著,自由度用于计算T分布的临界值,p值则用于判断差异是否具有统计学意义,置信区间则给出了均值差异的范围估计。
通常,p值小于显著性水平(例如0.05)可以认为两个样本的均值存在显著差异。
5.效应量指标:除了上述的结果,SPSS还提供了一些效应量指标,可以帮助评估均值差异的大小。
其中,Cohen's d是一种常用的效应量指标,表示两个样本均值差异的标准化大小。
Cohen's d的值越大,表示两个样本的均值差异越大。
6.异常值和离群值:最后,SPSS还可以通过箱线图和散点图等方法帮助我们检查两个样本中是否存在异常值或离群值。
(完整版)SPSS-非参数检验—两独立样本检验_案例解析
SPSS—非参数检验-两独立样本检验案例解析2011—09—16 16:29好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究和分享一下:spss 非参数检验——两独立样本检验,我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的我们采用SPSS进行分析,数据如下所示:点击“分析"选择“非参数检验" 再选择“旧对话框——2个独立样本检验如下所示:在检验类型下面选择"Mann-Whitney U “ 检验类型 (Mann-whitney u 检验等同于对两组数据的Wilcoxon秩和检验和Kruskal—Wallis检验,主要检验两个样本的总体在某些位置上是否相等.)两种工艺类型分别为:甲种工艺和乙种工艺分别用定义值为“1” 和“2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 和组别 2 中分别填入 1和2,点击继续按钮选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:下面对结果,我将进行详细分解:1:N 代表变量个数,甲种工艺秩和为 80乙种工艺秩和为 40,下面来分析“秩和”这个结果如何出来的第一步:我们将”使用寿命“这个变量按照“从小到大”的顺序进行排序,得到如下结果:得到数据如下:甲种工艺: 661 669 675 679 682 692 693乙种工艺:646 649 650 651 652 662 663 672我们将“甲种工艺”和“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序"分别用“序号”代替以上数据序号分别为:1 2 3 4 5 6 7 8 910 11 12 13 14 15得到以下结果:甲种工艺为:6 9 11 12 13 14 15 (加起来刚好等于80)乙种工艺为:1 2 3 4 5 7 8 10 (加起来刚好等于40)结果得到了验证2:“在检验统计量B ”表中可以看出:1:渐进显著性和“单侧显著性”(精确显著性“ 都分别小于 0。
SPSS生物统计分析示例2-两样本t检验
SPSS统计分析示例2(两样本均值t检验)例一:品系I株高cm147128115103142140106112101124穗长cm47383541364646384444穗重g 1.9 1.5 1.1 1.4 1.2 1.8 1.7 1.3 1.7 1.8品系II 株高cm10298869795881029498104穗长cm35354050202544484344穗重g 1.2 1.4 1.6 2.00.60.7 1.7 1.9 1.6 1.8对两个品系株高、穗长和穗重进行平均值t检验:Analyze Compare Means Independent-samples T test…按品系不同分组’Grouping’,分别比较株高、穗长、穗重SPSS输出:汇总表:品系I品系II t株高cm(M±SD)121.80±16.9896.40±5.894.468**穗长cm(M±SD)41.50±4.4838.40±9.740.914穗重g (M±SD)1.54±0.281.45±0.480.511**:P<0.01从t检验的结果看:(1)株高数据不满足方差齐性,用近似t检验,t=4.468 (df=11.136), 双侧检验P=0.001<<0.01,两品系的株高具有极显著差异,品系I株高显著大于品系II(2)穗长数据不满足方差齐性,用近似t检验,t=0.914 (df=12.640), 双侧检验P=0.378>0.05,两品系的穗长无显著差异(3)穗重数据满足方差齐性,用t检验,t=0.511 (df=18), 双侧检验P=0.615>0.05,两品系的穗重无显著差异例二:将20名某病患者随机分为两组,分别用甲乙两药治疗,测得治疗前后的血沉(mm/小时)如下表:试分甲乙两药是否有疗效?两药疗效是否有差异?并用图或表对数据和结果进行描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS-非参数检验—两独立样本检验案例解析
2011-09-16 16:29
好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究和分享一下:spss非参数检验——两独立样本检验,
我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同
下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的
2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的
我们采用SPSS进行分析,数据如下所示:
点击“分析”选择“非参数检验” 再选择“旧对话框——2个独立样本检
验如下所示:
在检验类型下面选择"Mann-Whitney U “ 检验类型(Mann-whitney u 检验等同于对两组数据的Wilcoxon秩和检验和Kruskal-Wallis检验,主要检验两个样本的总体在某些位置上是否相等。
)
两种工艺类型分别为:甲种工艺和乙种工艺分别用定义值为“1” 和
“2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 和组别 2 中分别填入 1和2,点击继续按钮
选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:
下面对结果,我将进行详细分解:
1:N 代表变量个数,甲种工艺秩和为 80
乙种工艺秩和为 40,
下面来分析“秩和”这个结果如何出来的
第一步:我们将”使用寿命“这个变量按照“从小到大”的顺序进行排序,得到如下结果:
得到数据如下:
甲种工
艺: 661 669 675 679 682 692 693
乙种工艺:
646 649 650 651 652 662 663 672
我们将“甲种工艺”和“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序”分别用“序号”代替以上数据
序号分别为:
1 2 3 4 5 6 7 8
9 10 11 12 13
14 15
得到以下结果:
甲种工艺为:
6 9 11 12 13 14 15 (加起来刚好等于80)
乙种工艺为:
1 2 3 4 5 7 8 10
(加起来刚好等于40)
结果得到了验证
2:“在检验统计量B ”表中可以看出:
1:渐进显著性和“单侧显著性”(精确显著性“ 都分别小于 0.05,所以可以得出结论:
一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的
大家可以采用其它“检验类型”来进一步验证这个结论
Mann-Whitney U 统计值可以通过以下计算公式得到:。