SPSS-非参数检验—两独立样本检验_案例解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS-非参数检验—两独立样本检验案例解析

2011-09-16 16:29

好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究和分享一下:spss非参数检验——两独立样本检验,

我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同

下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的

2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的

我们采用SPSS进行分析,数据如下所示:

点击“分析”选择“非参数检验” 再选择“旧对话框——2个独立样本检

验如下所示:

在检验类型下面选择"Mann-Whitney U “ 检验类型(Mann-whitney u 检验等同于对两组数据的Wilcoxon秩和检验和Kruskal-Wallis检验,主要检验两个样本的总体在某些位置上是否相等。)

两种工艺类型分别为:甲种工艺和乙种工艺分别用定义值为“1” 和

“2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 和组别 2 中分别填入 1和2,点击继续按钮

选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:

下面对结果,我将进行详细分解:

1:N 代表变量个数,甲种工艺秩和为 80

乙种工艺秩和为 40,

下面来分析“秩和”这个结果如何出来的

第一步:我们将”使用寿命“这个变量按照“从小到大”的顺序进行排序,得到如下结果:

得到数据如下:

甲种工

艺: 661 669 675 679 682 692 693

乙种工艺:

646 649 650 651 652 662 663 672

我们将“甲种工艺”和“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序”分别用“序号”代替以上数据

序号分别为:

1 2 3 4 5 6 7 8

9 10 11 12 13

14 15

得到以下结果:

甲种工艺为:

6 9 11 12 13 14 15 (加起来刚好等于80)

乙种工艺为:

1 2 3 4 5 7 8 10

(加起来刚好等于40)

结果得到了验证

2:“在检验统计量B ”表中可以看出:

1:渐进显著性和“单侧显著性”(精确显著性“ 都分别小于 0.05,所以可以得出结论:

一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的

大家可以采用其它“检验类型”来进一步验证这个结论

Mann-Whitney U 统计值可以通过以下计算公式得到:

相关文档
最新文档