PLC与变频器之间的关系
PLC与变频器通讯在电机控制中的应用
PLC与变频器通讯在电机控制中的应用PLC(Programmable Logic Controller)和变频器(Variable Frequency Drive)是工业控制中常用的设备。
在电机控制中,PLC和变频器通讯的应用非常广泛,可以达到更精密、更高效的控制效果。
一、PLC和变频器的基本原理PLC是一种可编程的工业控制器,它可以接收各种输入信号(如按钮、传感器等),根据预设的程序执行各种控制操作(如输出信号、报警等),实现工业自动化控制。
PLC控制通常采用数字信号控制。
变频器是一种能够实现调节电机转速的设备,它能够根据控制信号改变电机的功率输出,从而实现电机的精准控制。
变频器控制通常采用模拟信号控制。
PLC与变频器的通讯可以通过串口通讯、以太网通讯等方式实现。
在通讯过程中,PLC 需要向变频器发送控制命令,并接收变频器发回的状态信息,以保持控制系统的运行。
同时,PLC还需要将这些信息整合到系统中,实现全局控制。
1、实现电机启动和停止:PLC可以通过与变频器通讯,实现精准的电机启动和停止。
例如,在冷却塔的控制中,PLC通过与变频器通讯,控制电机的启停和转速,实现冷却塔的自动控制。
2、实现电机转速控制:PLC可以向变频器发送电机转速控制命令,变频器在接收到命令后,控制电机的转速。
例如,在风机控制中,PLC通过与变频器通讯,实现风机的转速控制,从而调节风机的风量。
3、实现电机故障检测和报警:通过与变频器通讯,PLC可以获取电机的运行状态信息,例如电机的电流、电压等参数,实现电机故障检测和报警。
例如,在矿车控制中,PLC通过与变频器通讯,实现矿车电机的故障检测和报警,保障矿车的安全运行。
总之,PLC与变频器通讯在电机控制中的应用具有良好的控制效果,能够实现更加精准、高效的电机控制。
未来,随着工业控制技术的不断发展,PLC与变频器通讯的应用将会得到进一步的扩展和应用。
变频器与PLC通讯连接方式图解
变频器与PLC通讯连接方式图解变频器与plc连接方式一般有以下几种方式①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。
这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。
②利用PLC的开关量输出控制变频器。
PLC的开关输出量一般可以与变频器的开关量输入端直接相连。
这种控制方式的接线简单,抗干扰能力强。
利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。
使用继电器触点进行连接时,有时存在因接触不良而误操作现象。
使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。
另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。
例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。
③PLC与RS-485通信接口的连接。
所有的标准西门子变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。
单一的RS-485链路最多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。
链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站)西门子RS485连接Plc和变频器通讯方式1、PLC的开关量信号控制变频器PLC可以通过程序控制变频器的启动、停止、复位;也可以控制变频器高速、中速、低速端子的不同组合实现多段速度运行。
但是,因为它是采用开关量来实施控制的,其调速曲线不是一条连续平滑的曲线,也无法实现精细的速度调节。
变频器与PLC的通讯控制原理及应用分析
变频器与PLC的通讯控制原理及应用分析经济的快速发展促进了我国工业的进步与发展,交流电机是现今在工业领域中应用较为广泛的电动机,为实现对于交流电机的调控现今在其控制中多采用的是变频器来加以实现的,使用PLC与变频器的组合控制已经成为了主要的控制方式之一。
在以往的变频器控制中PLC的控制方式主要采用的是PLC控制继电器的启停来控制变频器的启停,而无法实现对于交流电机的精确控制。
为更好地使用PLC来对变频器进行控制可以通过使用PLC与变频器的通讯来实现对于变频器的精确控制。
文章就如何做好PLC与变频器之间的通讯来实现对于交流电机的控制进行了分析阐述。
标签:变频器;PLC通讯;交流电机前言交流电机是现今采用较多也是较为广泛的电机形式.通过在交流电机的控制中使用变频器可以实现对于交流电机的变频控制,以更好的对交流电机的转速、扭矩进行精确的控制。
而对于变频器数量较多、电机分布较为广发内的场合由于需要控制的变频器较多而PLC中需要控制的I/O输出点数和DA数模的转换通道将较多将极大的影响PLC对于变频器控制的可靠性和稳定性。
通过在PLC与变频器的控制中采用PLC与变频器的控制中采用PLC以RS-485的通讯方式来实现对于变频器的方便控制。
1 RS-485控制通讯系统的组成及通讯参数的设置RS-485串行通讯采用的是典型的无协议通信,在通讯的过程中无须经过固定协议、无须数据交换而是主要通过通信端口来进行指令的传输。
某型CPIH型PLC中采用的是两个RS-485通信解接口,在使用RS-485通信协议中需要对所使用的串口进行预置。
通过使用RS-485通信方式所能控制的变频器最多可以能够实现对于32台交流变频器的控制,因此在进行通信前首先需要对通讯端口进行正确的硬件连接和相应的参数设置。
在使用PLC对多台变频器进行通讯控制时,需要在最末端的变频器添加阻值为100Ω的阻抗,并将拨码开关引脚为1的拨码拨为ON状态。
显示为变频器的终端有电阻的存在。
PLC与变频器通讯在电机控制中的应用
PLC与变频器通讯在电机控制中的应用PLC(可编程逻辑控制器)和变频器是现代工业自动化控制中常用的设备。
它们在电机控制中起着非常重要的作用,特别是在生产线和设备自动化中。
在实际应用中,PLC和变频器的通讯技术被广泛应用于电机控制系统中,以实现对电机运行状态的监测、控制和调节。
下面将详细介绍PLC与变频器通讯在电机控制中的应用。
一、PLC与变频器简介1. PLC(可编程逻辑控制器)PLC是一种可编程的数字电子计算机,用于工业自动化领域。
它使用可编程存储器保存指令,执行特定的逻辑、序列控制、定时、计数和算术运算等功能,控制各种类型的机器或生产流程。
PLC的工作原理是通过接收输入信号(传感器、按钮、开关等),根据预设的程序进行逻辑判断和运算,最终输出控制信号(执行器、驱动器、报警信号等)来控制设备或生产过程。
2. 变频器变频器是一种用于控制交流电机转速的设备,通过改变供电频率和电压,实现对电机转速的调节。
它能够根据系统需求调整电机的运行速度和输出扭矩,从而适应不同的工作负载和运行条件。
变频器还可以对电机进行软启动、停止、过载保护等功能,以提高电机的运行效率和可靠性。
在电机控制系统中,PLC与变频器的通讯技术是非常重要的。
它实现了PLC与变频器之间的数据交换和指令传递,使得电机控制系统能够实现更加高效和灵活的控制。
1. 通讯接口现在的PLC和变频器通常都提供了多种通讯接口,如RS-232、RS-485、以太网等。
这些接口能够实现PLC与变频器之间的数据通讯和控制指令传递。
PLC通过通讯接口与变频器建立连接,并发送控制指令、运行参数、故障诊断信息等数据到变频器,同时接收变频器的运行状态、反馈信息等数据,从而实现对电机的实时监测和控制。
2. 通讯协议为了实现PLC与变频器之间的数据通讯,需要使用一种通讯协议来规范数据的格式、传输方式和通讯规程,常用的通讯协议有Modbus、Profibus、Ethernet/IP等。
变频器与plc恒压供水工作原理
变频器与plc恒压供水工作原理
恒压供水系统是用于保持水压稳定的自动化系统,可以根据水压需求自动调节
水泵的运行速度和水量。
变频器和PLC(可编程逻辑控制器)是恒压供水系统中
重要的组成部分,它们协同工作来实现恒压供水。
首先,让我们了解变频器的工作原理。
变频器是一种电力调节设备,可以通过
调节电源的频率来控制电机的转速。
在恒压供水系统中,变频器用来控制水泵的转速,根据实时水压的反馈信号调整电机的运行频率。
当水压低于设定值时,变频器将增加电机的转速以增加水的流量;当水压高于设定值时,变频器将降低电机的转速以减少水的流量,从而保持水压稳定。
其次,PLC是恒压供水系统的主控制器。
它通过读取传感器收集的水压信号,
以及根据预设的控制算法来控制变频器的运行。
PLC可以接收来自传感器的信号,并根据这些信号做出决策,例如控制变频器调整电机的转速,或者打开/关闭阀门
来调节水的流量。
PLC可以通过触摸屏或计算机进行编程和监控,以便操作人员
可以实时监测系统的运行状态并进行必要的调整。
综上所述,变频器和PLC通过协同工作来实现恒压供水。
变频器控制水泵的
转速,根据实时水压信号对电机的运行频率进行调整;而PLC则是整个系统的主
控制器,读取传感器信号并根据预设的控制算法来控制变频器的运行。
这种自动化控制系统可以确保恒定的水压,提高供水系统的运行效率和稳定性。
总之,变频器和PLC是恒压供水系统中关键的组成部分,它们的工作原理是
通过协同工作来实现恒压供水。
这种自动化控制系统能够有效地维持水压稳定,提高供水系统的性能和运行效率。
变频器与PLC的联动控制
变频器与PLC的联动控制随着现代工业自动化的发展,变频器和PLC成为了工业控制领域中常用的设备。
它们分别担负着驱动电机和控制各种自动化设备的重要任务。
而将变频器和PLC进行联动控制,可以实现更加灵活和高效的工业生产过程。
本文将详细介绍变频器与PLC的联动控制原理、应用和优势。
一、变频器和PLC的基本介绍1. 变频器变频器,即交流变频调速器,是一种通过调整电源频率和电压来控制电机转速的装置。
它可以使电机实现无级调速,适用于各种需要调整转速的场合。
2. PLCPLC,即可编程逻辑控制器,是一种专门用于控制自动化设备的计算机控制系统。
它可以编程实现各种逻辑运算,对输入输出信号进行处理,并控制各种执行器的动作。
二、变频器与PLC的联动控制原理变频器与PLC的联动控制主要基于以下几个原理。
1. 通信协议变频器和PLC之间需要通过某种通信协议进行数据传输和控制命令的交互。
常用的通信协议包括Modbus、Profibus等。
2. 输入输出信号交互PLC可以通过输入模块接收传感器或者其他设备的信号,然后根据预设的逻辑进行处理,并通过输出模块控制变频器的启停、转速等参数。
3. 控制策略根据实际需求,可以通过PLC编程实现不同的控制策略。
例如,根据流量传感器检测到的流量信号,PLC可以调整变频器的输出频率,以达到预期的流量控制效果。
三、变频器与PLC的联动控制应用变频器与PLC的联动控制在工业自动化领域有广泛的应用。
以下是几个常见的例子。
1. 水泵控制系统通过变频器和PLC联动控制,可以实现水泵的自动控制。
根据PLC程序中的逻辑,通过检测水位、压力等信号,PLC可以控制变频器的启停和转速,以确保水泵的正常运行。
2. 输送带控制系统在自动化生产线上,通过变频器和PLC的联动控制,可以实现对输送带的运行速度和方向的精确控制。
根据PLC的程序逻辑,可以根据工件的数量和位置,实时调整变频器的输出频率和方向,使输送带与生产线的工作同步。
plc和变频器通讯教程
plc和变频器通讯教程PLC(可编程逻辑控制器)和变频器通讯,是现代工业自动化领域中常见的一种应用。
PLC用于控制生产线的运行,而变频器则用于控制电机的转速。
通过PLC和变频器的通信,可以实现对电机的远程控制和监控。
下面是一个关于PLC和变频器通讯的教程,包含了硬件连接、通信协议、通信参数的配置等步骤。
一、硬件连接在PLC和变频器之间建立通信连接之前,需要确定两者之间的硬件连接方式。
通常,PLC和变频器之间使用RS485接口进行通信。
首先,需要将PLC和变频器的RS485接口连接起来。
具体连接方式如下:1. 将PLC的RS485接口的A线连接到变频器的RS485接口的A线;2. 将PLC的RS485接口的B线连接到变频器的RS485接口的B线;3. 保持PLC和变频器的地线连接到一块;4. 确保所有连接都紧固可靠。
二、通信协议PLC和变频器之间的通信需要使用一种特定的通信协议。
常见的通信协议包括Modbus、Profibus、Ethernet等。
在选择通信协议时,需要根据实际需要和硬件设备的兼容性来确定。
本教程以Modbus通信协议为例。
三、PLC参数设置在PLC的编程软件中,需要进行一些参数的设置。
具体步骤如下:1. 设置通信口的类型为RS485;2. 设置通信口的波特率和数据位数,通常为9600波特率和8数据位;3. 设置Modbus通信协议的相关参数,包括通信地址、数据格式、校验位等。
四、变频器参数设置在变频器的设置面板中,也需要进行一些参数的设置。
具体步骤如下:1. 设置通信口的类型为RS485;2. 设置通信口的波特率和数据位数,需与PLC的设置一致;3. 设置Modbus通信协议的相关参数,包括通信地址、数据格式、校验位等。
五、PLC编程设置在PLC的编程软件中,需要编写一些代码来实现PLC与变频器的通信。
具体步骤如下:1. 在PLC的程序中创建一个通信模块;2. 在通信模块中配置通信口和通信协议的相关参数;3. 编写代码实现PLC向变频器发送指令、读取状态等操作;4. 调试程序,确保通信正常。
台达变频器与PLC通讯功能的实现方法
台达变频器与PLC通讯功能的实现方法一、引言在自动化控制系统中,变频器作为一个重要的控制设备,常常与PLC (可编程逻辑控制器)进行通讯。
变频器与PLC的通讯功能的实现,可以实现在PLC控制下对变频器进行远程控制,从而实现对电机的速度、转向等参数的控制,提高整个系统的稳定性和灵活性。
二、PLC与变频器通讯的基本原理1.串行通讯原理:PLC与变频器之间的通讯一般采用串行通讯方式,即通过串行通信口发送和接收数据。
PLC通过串行通信口将控制命令和参数发送给变频器,变频器接收到数据后进行相应的操作,并将反馈的数据发送给PLC,PLC 再根据反馈数据进行相应的处理。
2.通讯协议选择:通讯协议是PLC与变频器之间通讯的规则,不同的厂家和型号的变频器通常采用不同的通讯协议。
在选择通讯协议时,需要考虑PLC和变频器的兼容性,以及通讯速度、稳定性等因素。
常用的通讯协议有Modbus、Profibus、CANopen等。
三、台达变频器与PLC通讯实现方法1.Modbus通讯协议实现方法:Modbus是一种常用的通讯协议,因为其简单、可靠而被广泛应用于自动化领域。
实现变频器与PLC的通讯,可以选择Modbus RTU或Modbus TCP通讯方式。
(1)Modbus RTU通讯方式在Modbus RTU通讯方式下,PLC通过RS485接口与变频器连接。
PLC发送Modbus RTU格式的命令帧,包括从站地址、功能码、寄存器地址等信息,变频器接收到命令后进行相应的操作,并将结果通过RS485接口发送给PLC。
(2)Modbus TCP通讯方式在Modbus TCP通讯方式下,PLC与变频器之间通过以太网连接。
PLC通过以太网发送Modbus TCP格式的命令帧,包括从站地址、功能码、寄存器地址等信息,在以太网中传输。
变频器接收到命令后进行相应的操作,并将结果通过以太网发送给PLC。
2.Profibus通讯协议实现方法:Profibus是一种采用国际标准的工业现场总线,具有高速、可靠等特点。
plc控制变频器的方法
plc控制变频器的方法一、PLC与变频器连接基础1.1 硬件连接的要点PLC和变频器要想协同工作,首先得把硬件连接好。
这就好比两个人要合作,得先握个手建立联系一样。
一般来说,常见的连接方式有模拟量连接和通信连接。
模拟量连接呢,就像是用一根线来传递信号,这个信号是连续变化的,像水流一样。
比如说,PLC输出一个0 10V或者4 20mA的模拟量信号给变频器,来控制变频器的输出频率。
而通信连接就高级一些了,就像是两个人用一种特殊的语言在对话。
像Modbus通信协议,PLC和变频器通过这个协议来交换数据,速度快而且准确。
不过这通信连接也有点小脾气,参数设置得特别小心,就像走钢丝一样,一个不小心就可能出问题。
1.2 电源与接地的讲究电源和接地可是个大问题,这就像盖房子打地基一样重要。
电源要是不稳定,就像人走路一脚深一脚浅,PLC和变频器都没法好好工作。
接地呢,得做到可靠接地,要是接地不好,就像人站在摇晃的船上,信号会受到干扰,设备可能会出现莫名其妙的故障。
咱可不能在这方面马虎大意,不然到时候设备出问题了,就像热锅上的蚂蚁,急得团团转也没用。
二、PLC编程控制变频器2.1 简单控制逻辑PLC编程来控制变频器,简单的逻辑就像搭积木一样。
比如说,我们要实现一个电机的启动停止和简单的调速功能。
在PLC程序里,我们可以用一个简单的开关量信号来控制变频器的启动停止,这就像按电灯开关一样简单。
然后通过模拟量输出模块来输出一个电压或者电流信号去控制变频器的频率,就像调收音机的频道一样,想要快就把频率调高,想要慢就把频率调低。
2.2 复杂控制逻辑要是复杂一点的控制逻辑,那可就像解一道复杂的数学题了。
例如,根据不同的工艺要求,实现多段速控制。
这时候,PLC程序里就得写一些判断语句,就像交通警察指挥交通一样,根据不同的情况来决定变频器的输出频率。
还有一些情况,需要根据传感器反馈回来的信号来动态调整变频器的输出,这就像根据天气情况来调整穿衣一样,得灵活多变。
PLC自动控制技术在变频器中的应用
PLC自动控制技术在变频器中的应用摘要:电气工程中有很多的电动机需要长期或者间歇运行,有的需要变频控制,有的为了更加精细地控制产品指标和生产参数,采用多元化的控制方式,包括直接启动、软启动、正反转启动、降压启动、变频器控制等。
变频器控制在自动控制中有着举足轻重的作用,包括启停控制、运行、故障、电流、频率给定、频率切换等方式,电机扭矩等大量的电信号需要与PLC进行数据交换,采用一对一硬接线的方式可以实现控制目的,但需要很多的接线进入PLC模块,这会影响系统的性能,工作量很大,容易出错,且成本高。
采用PLC与变频器通信的方式来控制电机,可以实现更好的控制效果。
基于此,本文探讨PLC自动控制技术在变频器中的应用。
关键词:PLC;变频器;自动控制应用一、PLC技术概述(一)工作原理PLC为可编译逻辑控制器,是一种新型的控制系统,由于系统中采用了现代化技术,可对被控制模块实施专业化、自动化管理。
PLC技术可分为输入采样、用户程序运行和输出更新三个阶段。
第一阶段,该技术允许综合学习和分析读取相关数据,以相对牢固地存储相关数据。
第二阶段PLC技术主要进行科学合理的扫描。
计算用户显示的梯形数据,确保其逻辑和可靠性,并在固定文件中显示数据的实际处理条件和结果。
在第三阶段,PLC技术允许初始数据传输、在固定区域中完整显示数据,然后向外传输数据。
CPU技术在PLC技术的开发中起着关键作用,因为它能够相应地处理数据,确保这些过程的可靠性和效率,并能够更好地检测和分析自动化系统的实际运行情况。
随着我国科学的发展,近年来,PLC技术从长远来看已有了积极的发展。
但是,PLC的运行机理与我们平常所见或所用的普通电脑装置有很大的区别。
通常,PLC的工作模式是周期性重复扫描,集中数据采集和更新,并按次序指令执行。
我们把整个扫描过程称为一个循环。
从内部工程师的观点,扫描周期可以分为三个阶段:输入信号扫描,工业控制程序的执行,以及输出信号的更新。
PLC与变频器的连接方式
PLC与变频器的连接方式
plc与变频器一般有三种连接方法。
1、利用PLC的模拟量输出模块掌握变频器
PLC的模拟量输出模块输出0~5V电压信号或4~20 mA电流信号,作为变频器的模拟量输入信号。
掌握变频器的输出频率,这种掌握方式接线简洁,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需实行分压措施使变频器适应PLC的电压信号范围,在连接时留意将布线分开,保证主电路一侧的噪声不传至掌握电路。
2、利用PLC的开关量输出掌握变频器
PLC的开关输出量一般可以与变频器的开关量输入端直接相连。
这种掌握方式的接线简洁,抗干扰力量强。
利用PLC的开关量输出可以掌握变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为简单的掌握要求,但只能有级调速。
3. PLC与485通信接口的连接
大部分的通用变频器都有一个RS485串行接口(有的也供应RS232接口),采纳双线连接,其设计标准适用于工业环境的应用对象。
单一的RS485链路最多可以连接30台变频器,而且依据各变频器的地址或采纳广播信息,都可以找到需要通信的变频器。
链路中需要有一个主掌握器(主站),而各个变频器则是从属的掌握对象(从站)。
采纳串行接口有以下优点:
(1)大大削减布线的数量。
(2)无须重新布线,即可更改掌握功能。
(3)可以通过串行接口设置和修转变频器的参数。
(4)可以连续对变频器的特性进行监测和掌握。
PLC与变频器之间通信(USS)
传统的PLC与变频器之间的接口大多采用的是依靠PLC的数字量输出来控制变频器的启停,依靠PLC的模拟输出来控制变频器的速度给定,这样做存在以下问题:1、需要控制系统在设计时采用很多硬件,价格昂贵2、现场的布线多容易引起躁声和干扰3、PLC 和变频器之间传输的信息受硬件的限制,交换的信息量很少。
4、在变频器的启停控制中由于继电器接触器等硬件的动作时间有延时,影响控制精度。
5、通常变频器的故障状态由一个接点输出,PLC能得到变频器的故障状态,但不能准确的判断当故障发生时,变频器是何种故障。
如果PLC通过与变频器进行通讯来进行信息交换,可以有效地解决上述问题,通讯方式使用的硬件少,传送的信息量大,速度快,等特点可以有效地解决上述问题,另外,通过网络,可以连续地对多台变频器进行监视和控制,实现多台变频器之间的联动控制和同步控制,通过网络还可以实时的调整变频器的参数。
目前各个厂家的变频器都相继的开发出了支持连网的功能,比如,很多变频器都有了支持现场总线(如:DEVICENET、PROFIBUS、AS_I)等的接口协议,可以很方便的与PLC进行数据通信。
现在主要介绍西门子S7-200和Micro Master变频器之间的通讯协议USS,使用USS通讯协议,用户可以通过程序调用的方式实现S7-200和Micro Master变频器之间的通信,编程的工作量小,通讯网络由PLC和变频器内置的RS485通讯口和双绞线组成,一台S7-200最多可以和31台变频器进行通讯,这是一种费用低、使用方便的通讯方式。
一、USS通讯协议介绍USS通讯协议的功能,所有的西门子变频器都带有一个RS485通讯口,PLC作为主站,最多允许31个变频器作为通讯连路中的从站,根据各变频器的地址或者采用广播方式,可以访问需要通讯的变频器,只有主站才能发出通讯请求报文,报文中的地址字符指定要传输数据的从站,从站只有在接到主站的请求报文后才可以向从站发送数据,从站之间不能直接进行数据交换。
PLC与变频器的连接方式
PLC与变频器的连接方式有多种方式:1)通过开关量输出输入信号方式:就是将PLC的开关量输出信号连接到变频器的输入端子上用开关量信号开控制启动、停止、正转、反转、调速(多段速)还可以用PLC的模拟量输出信号(0-10V或4-20mA)控制转速2)用通信方式大部分变频器都有通信接口(大多是RS485接口)可以使用PLC的RS485(RS232是需要加转换器)与变频器的RS485接口通过通信方式控制启动、停止、正转、反转、调速还可以通过这种方式修改变频器的参数PLC控制变频器的方式呢有很多种,最常见的呢就是两种。
第一、硬接线的方式。
变频器自带的DI,DO,AI,AO口子与PLC的DI,DO,AI,AO通过线连接起来。
实现方法大体就是通过编程控制PLC的DO模块输出,为变频器提供一对干触点(无源触点),再用这对干触点来驱动变频器的启动,停止或者电动等。
然后PLC的AO模块输出4-20mA等模拟信号连接到变频器的AI口子实现一个模拟给定控制变频器输出频率达到调速的目的。
变频器的DO口子可以输出一些如运行、故障等状态信号接入PLC的DI模块,当然也有变频器的AO口子输出如变频器的频率、温度、电流等4-20mA模拟信号进入PLC的AI 模块;第二、通讯的方式。
而通讯的方式呢现在最常见的是Profibus-DP的方式。
这需要变频器支持这种通讯方式,一般是需要附加订一个DP通讯板(硬件)安装在变频器上面,当然也有通讯板外置然后通过光纤与变频器的控制单元连接的如ABB的NPBA-12通讯模块。
PLC与变频器之间连接好DP通讯线缆,其他不需要任何硬连接的线了。
那么接下来的工作就是通过PLC编程来控制变频器,了。
PLC控制变频器的启动和停止:用PLC的数字量输出点,如果PLC是继电器输出,可以直接接变频器的启动信号端子。
如果是电压输出,可以通过继电器转换为无源触点后接启动信号端子。
这样控制PLC的输出与否即可启动/停止变频器。
PLC与变频器的连接方式
PLC与变频器的连接方式有多种方式:1)通过开关量输出输入信号方式:就是将PLC的开关量输出信号连接到变频器的输入端子上用开关量信号开控制启动、停止、正转、反转、调速(多段速)还可以用PLC的模拟量输出信号(0-10V或4-20mA)控制转速2)用通信方式大部分变频器都有通信接口(大多是RS485接口)可以使用PLC的RS485(RS232是需要加转换器)与变频器的RS485接口通过通信方式控制启动、停止、正转、反转、调速还可以通过这种方式修改变频器的参数PLC控制变频器的方式呢有很多种,最常见的呢就是两种。
第一、硬接线的方式。
变频器自带的DI,DO,AI,AO口子与PLC的DI,DO,AI,AO通过线连接起来。
实现方法大体就是通过编程控制PLC的DO模块输出,为变频器提供一对干触点(无源触点),再用这对干触点来驱动变频器的启动,停止或者电动等。
然后PLC的AO模块输出4-20mA等模拟信号连接到变频器的AI口子实现一个模拟给定控制变频器输出频率达到调速的目的。
变频器的DO口子可以输出一些如运行、故障等状态信号接入PLC的DI模块,当然也有变频器的AO口子输出如变频器的频率、温度、电流等4-20mA模拟信号进入PLC的AI 模块;第二、通讯的方式。
而通讯的方式呢现在最常见的是Profibus-DP的方式。
这需要变频器支持这种通讯方式,一般是需要附加订一个DP通讯板(硬件)安装在变频器上面,当然也有通讯板外置然后通过光纤与变频器的控制单元连接的如ABB的NPBA-12通讯模块。
PLC与变频器之间连接好DP通讯线缆,其他不需要任何硬连接的线了。
那么接下来的工作就是通过PLC编程来控制变频器,了。
PLC控制变频器的启动和停止:用PLC的数字量输出点,如果PLC是继电器输出,可以直接接变频器的启动信号端子。
如果是电压输出,可以通过继电器转换为无源触点后接启动信号端子。
这样控制PLC的输出与否即可启动/停止变频器。
PLC与变频器之间的关系
PLC与变频器之间的关系随着国家在供水行业的投资力度加大,水厂运行自动化水平不断提高,PLC在供水行业应用逐步增多。
触摸屏与PLC配套使用,使得PLC的应用更加灵活,同时可以设置参数、显示数据、以动画等形势描绘自动化过程,使得PLC的应用可视化。
变频恒压供水成为供水行业的一个主流,是保证供水管网在恒压的重要手段。
现代变频器完善的网络通信工程,威电机的同步运行,远距离集中控制和在线监控等提供了必要的支持。
通过与PLC连接的触摸屏,可以使控制更加直观,操作更加简单、方便。
组合应用PLC、触摸屏及变频器,采用通信方式对变频器进行控制来实现变频恒压供水。
1、系统结构变频恒压供水系统,它主要由PLC、变频器、触摸屏、压力变送器、动力及控制线路以及泵组组成。
用户可以通过触摸屏控制系统的运行,也可以通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。
通过安装在出水管网上的压力变送器,把出口压力信号变成4~20mA或0~10V 标准信号送入PLC内置的PID调节器,经PID运算与给定压力参数进行比较,输出运行频率到变频器。
控制系统由变频器控制水泵的转速以调节供水量,根据用水量的不同,PLC频率输出给定变频器的运行频率,从而调节水泵的转速,达到恒压供水。
PLC设定的内部程序驱动I/O端口开关量的输出来实现切换交流接触器组,以此协调投入工作的水泵电机台数,并完成电机的启停、变频与工频的切换。
通过调整投入工作的电机台数和控制电机组中一台电机的变频转速,使系统管网的工作压力始终稳定,进而达到恒压供水的目的。
2、工作原理该系统有手动和自动两种运行方式。
手动方式时,通过控制柜上的启动和停止按钮控制水泵运行,可根据需要分别控制1#~3#泵的启停,该方式主要供设备调试、自动有故障和检修时使用。
自动运行时,首先由1#水泵变频运行,变频器输出频率从0HZ上升,同时PID调节器把接收的信号与给定压力比较运算后送给变频器控制。
PLC与变频器通讯在电机控制中的应用
PLC与变频器通讯在电机控制中的应用在工业自动化中,PLC(可编程逻辑控制器)和变频器通讯在电机控制中起着至关重要的作用。
PLC和变频器的联接可以实现对电机的精准控制,提高生产效率,降低能耗,减少运行成本。
本文将详细介绍PLC与变频器通讯在电机控制中的应用。
1. 变频器的基本原理变频器是将交流电转换为可变频率和可变电压的设备,它可以实现对电机的速度控制。
通过改变变频器的输出频率和电压,可以调整电机的转速,实现对电机的精确控制。
变频器广泛应用于工业生产中,可以提高设备的性能,降低能耗,延长设备的使用寿命。
2. PLC与变频器通讯的原理PLC作为工业控制系统中的核心部件,可以通过各种通讯接口与其他设备进行连接。
在电机控制中,PLC通常与变频器进行通讯,实现对电机的控制和监控。
PLC可以通过MODBUS、PROFIBUS、以太网等通讯协议与变频器进行通讯,实现对变频器的参数设置、运行状态监控和报警处理。
3. PLC与变频器通讯的应用场景(1)电机启停控制通过PLC与变频器的通讯,可以实现对电机的启停控制。
PLC向变频器发送启动指令,变频器接收指令后控制电机启动,并根据设定的参数进行速度调节。
在停止时,PLC可以向变频器发送停止指令,变频器接收指令后将电机停止。
(2)电机转速控制PLC与变频器通讯还可以实现对电机的转速控制。
通过PLC发送速度设定值,变频器根据设定值调整输出频率和电压,从而实现对电机转速的精确调节。
这种控制方式可以根据生产需求随时调整电机的转速,确保生产线的稳定运行。
(3)故障监测与报警处理在电机控制中,PLC与变频器通讯还可以实现对电机运行状态的实时监控和故障报警处理。
通过监测电机的运行参数,如电流、转速、温度等,当发生异常情况时,PLC可以及时向操作员发出报警信号,提示操作员进行故障处理。
监测到电机运行异常情况时,还可以执行相应的保护措施,避免设备损坏和生产事故的发生。
(4)数据采集与分析通过PLC与变频器通讯,可以实现对电机运行数据的实时采集和存储。
ABB变频器与PLC的通讯
ABB变频器与PLC的通讯现场总线通讯是现有工业自动化控制里重要的一个环节,采用现场通讯可以极大地降低工业现场的线路复杂的问题。
现我港卸船机采用ABB系统的PLC和变频器进行现场总线通讯,对其进行简要介绍如下:一.字与位的换算关系位为最基本的单位,8位为一字节,每个字有两个字节,所以每一个字有16位,此为数字电路基础。
二.控制字与状态字控制字是现场总线系统控制传动单元的基本手段,控制字由现场总线控制器发送给传动单元即变频器。
状态字是一个包含了状态信息的字,它由传动单元发送给现场总线控制器。
PLC与变频器可简单认定为大脑与四肢的关系,所有大脑发出的命令由四肢进行执行,同时四肢是否执行需要反馈与大脑。
三.数据集的概念在ABB变频器通讯中存在数据集的概念,每一个数据集拥有三个字,即三个字组成数据集。
命令字(控制字)为数据集1、3、5……。
若71.5参数设置为10则命令字数据集为10、12、14……。
同理状态字数据集为2、4、6……若71.5参数设置为10则状态字数据集为11、13、15……。
71.5参数的意义为和上位机进行现场总线通讯的第一个数据集的数据集号。
我港采用的变频器内部参数71.5参数设置为10。
(以下所涉及到的数据集全部按照75.1参数为10进行说明)。
由此参数分配地址的数据集是发给传动的第一个数据集也是命令字。
而下一个数据集就是来自传动的第一个数据集即状态字,所有两者之间的通讯为一问一答的方式。
四.变频器90 92组参数的意义90和92组参数是用于用户定义的PLC与变频器之间通讯的内容。
90组为命令字,92组为状态字,其中命令字最多有6个字,92组参数有9个字。
命令字对应于数据集16和数据集18。
状态字对应于数据集13,数据集15和数据集17。
若将直流总线电压值传送至PLC则需要对92.1-92.9的任意一个的内容更改为107,那么传送至PLC的内容即为直流总线电压值,那么107所代表的含义为第一组参数的第7个参数的内容。
PLC与变频器之间是怎样通信的
PLC可编程控制器与变频器的RS-485通讯应用一、控制要求:以FX2N-485-BD为通讯适配器,实现用PLC程序控制变频运转(正反转)及运行频率改变。
二、系统配置1.系统硬件组成和连接(1)三菱FX2N-16MR PLC可编程控制器一台;(2)三菱 FR-A500 变频器一台;(3) FX2N-485-BD通讯适配器,用于PLC和变频器之间的数据的发送与接收;(4) 通讯电缆采用五芯电缆自行制作。
2.I分配表输入点定义X2X2X3正转X4反转X5串行数据传送X6改变运行频率三、程序设计1.PLC和变频器之间的RS-485通讯协议程序中PLC可编程控制器中置位M8161进行8BITS数据转输;通讯格式置D8120为H0C96(无协议/无SUM CHECK/RS232,485F/无尾/无头/19200bps/1停止位/偶校验/8位数据长;不使用CR或LF代码);根据该通讯格式在变频器作相应设置;发送通讯数据使用脉冲执行方式(SET M8122)。
2.数据定义运行控制命令的发送[M8161=1,8位处理模式,使用变频器通讯格式为A’附图1)];1)实现PLC程序对变频器正转运行控制(控制代码(ASCII):ENQ 01 HFA 1 H02 (sum));格式A中各字节含义如下:第一字节为通讯请求信号ENQ,对应程序为MOV H05 D10;第二、三字节为变频器01站号,对应程序为MOV H30 D11 MOV H31 D12;第四、五字节为指令代码HFA,对应程序为 MOV H46 D13 MOV H41 D14;第六字节为等待时间,对应程序为 MOV H31 D15;第七、第八字节为指令代码数据内容:正转运行H02,对应程序为:MOV H30 D16MOV H32 D17;第九、第十字节为总和校验代码,对应程序为:ASCI D28 D18 K2;总和校检码指令对应程序为:CCD D11 D28 K7;当按下X5及点动X3时,通讯数据被发送到变频器,变频器将正转运行;2)实现PLC程序对变频器反转运行及停止控制;将上面的范例程序中修改MOV H32 D17为MOV H34 D17时,按下X5及点动X4时即可实现反转运行;修改MOV H32 D17为MOV H30 D17时,可实现停止。
PLC与变频器通讯在电机控制中的应用
PLC与变频器通讯在电机控制中的应用PLC(可编程逻辑控制器)和变频器是电机控制中常用的两个设备。
它们之间的通讯可以实现对电机的精确控制,并且在工业自动化领域得到广泛应用。
我们来了解一下PLC和变频器的概念和原理。
PLC是一种专门用于工业自动化控制的电子设备,通过编程来控制和监控生产过程中的各个部分,实现自动化生产。
而变频器则是一种能够改变电机转速和输出功率的装置,通过改变电源频率来控制电机的速度和运行方式。
PLC与变频器通讯可以分为串口通讯和网络通讯两种方式。
在串口通讯中,PLC和变频器之间通过串口进行数据传输;而在网络通讯中,PLC和变频器通过以太网或者其他网络方式进行数据交换。
1. 电机的启停控制:PLC通过与变频器通讯来实现对电机的远程启停控制。
通过在PLC程序中设置相应的逻辑条件和指令,可以实现对电机的启动、停止和反转等操作,从而实现对电机的远程控制。
2. 电机的转速控制:通过PLC与变频器通讯,可以实现对电机转速的精确控制。
PLC可以通过发送数据命令给变频器,来改变变频器的输出频率和电压,从而实现对电机转速的精确调节。
5. 电机运行状态监测:通过与变频器通讯,PLC可以实时监测电机的运行状态和工作参数。
通过读取变频器的反馈信号和控制数据,可以实现对电机的故障检测、报警和保护等功能,提高电机的安全性和可靠性。
PLC与变频器通讯在电机控制中的应用非常广泛,可以实现对电机的精确控制和监测。
通过PLC的编程和变频器的调节,可以实现电机的启停、转速、转向和负载等控制,提高电机的运行效率和稳定性,同时也可以实现对电机的远程监控和故障保护,提高生产自动化水平和生产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该系统有手动和自动两种运行方式。手动方式时,通过控制柜上的启动和停止按钮控制水泵运行,可根据需要分别控制1#~3#泵的启停,该方式主要供设备调试、自动有故障和检修时使用。自动运行时,首先由1#水泵
ห้องสมุดไป่ตู้
组合应用PLC、触摸屏及变频器,采用通信方式对变频器进行控制来实现变频恒压供水。
1、系统结构
变频恒压供水系统,它主要由PLC、变频器、触摸屏、压力变送器、动力及控制线路以及泵组组成。用户可以通过触摸屏控制系统的运行,也可以通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。通过安装在出水管网上的压力变送器,把出口压力信号变成4~20mA或0~10V标准信号送入PLC内置的PID调节器,经PID运算与给定压力参数进行比较,输出运行频率到变频器。控制系统由变频器控制水泵的转速以调节供水量,根据用水量的不同,PLC频率输出给定变频器的运行频率,从而调节水泵的转速,达到恒压供水。PLC设定的内部程序驱动I/O端口开关量的输出来实现切换交流接触器组,以此协调投入工作的水泵电机台数,并完成电机的启停、变频与工频的切换。通过调整投入工作的电机台数和控制电机组中一台电机的变频转速,使系统管网的工作压力始终稳定,进而达到恒压供水的目的。
PLC与变频器之间的关系随着国家在供水行业的投资力度加大,水厂运行自动化水平不断提高,PLC在供水行业应用逐步增多。触摸屏与PLC配套使用,使得PLC的应用更加灵活,同时可以设置参数、显示数据、以动画等形势描绘自动化过程,使得PLC的应用可视化。
变频恒压供水成为供水行业的一个主流,是保证供水管网在恒压的重要手段。现代变频器完善的网络通信工程,威电机的同步运行,远距离集中控制和在线监控等提供了必要的支持。通过与PLC连接的触摸屏,可以使控制更加直观,操作更加简单、方便。