不等式与不等式组复习

合集下载

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案一. 教材分析《不等式与不等式组复习》这一课时,是人教版数学七年级下册的教学内容。

本课时主要对不等式与不等式组的概念、性质、解法等进行复习,旨在帮助学生巩固已学知识,提高解决问题的能力。

教材通过对不等式与不等式组的复习,使学生能够熟练运用不等式解决实际问题,为后续学习更高级的数学知识打下基础。

二. 学情分析学生在之前的学习中已经掌握了不等式与不等式组的基本概念、性质和解法。

但部分学生在解不等式组时,对不等号的方向变化、解集的表示方法等方面容易出错。

因此,在复习过程中,教师需要针对这些薄弱环节进行重点讲解和练习,提高学生的解题技能。

三. 教学目标1.知识与技能:使学生熟练掌握不等式与不等式组的概念、性质和解法,能灵活运用不等式解决实际问题。

2.过程与方法:通过复习不等式与不等式组,培养学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:不等式与不等式组的概念、性质和解法。

2.难点:不等式组的解集表示方法和在实际问题中的应用。

五. 教学方法采用讲解法、例题解析法、练习法、小组讨论法等,结合多媒体教学手段,引导学生主动参与复习过程,提高复习效果。

六. 教学准备1.教材、课件和教学资源。

2.练习题和测试题。

3.黑板、粉笔等教学工具。

七. 教学过程利用课件展示不等式与不等式组在实际生活中的应用场景,引导学生回顾已学知识,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示不等式与不等式组的概念、性质和解法,让学生对所学知识有一个全面的了解。

在呈现过程中,教师要点拔重点,解答学生的疑问。

3.操练(10分钟)让学生独立完成练习题,检验学生对不等式与不等式组的掌握程度。

教师巡回指导,对学生在解题过程中遇到的问题进行解答。

4.巩固(10分钟)针对学生在操练过程中出现的问题,教师进行讲解和总结,帮助学生巩固知识点。

中考数学复习专题三-不等式和不等式组(解析版)

中考数学复习专题三-不等式和不等式组(解析版)

中考专题复习知识点1、不等式的解:能使不等式成立的未知数的值叫做不等式的解。

知识点2、不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。

知识点3、不等式的解集在数轴上的表示: (1)x >a :数轴上表示a 的点画成空心圆圈,表示a 的点的右边部分来表示;(2)x <a :数轴上表示a 的点画成空心圆圈,表示a 的点的左边部分来表示;(3)x ≥a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的右边部分来表示;(4)x ≤a :数轴上表示a 的点画成实心圆点,表示a 的点及表示a 的点的左边部分来表示。

在数轴上表示大于3的数的点应该是数3所对应点的右边。

画图时要注意方向(向右)和端点(不包括数3,在对应点画空心圆圈)。

如图所示:同样,如果某个不等式的解集为x ≤-2, 那么它表示x 取-2左边的点 画实心圆点。

如图所示:总结:在数轴上表示不等式解集的要点: 小于向左画,大于向右画;无等号画空心圆圈,有等号画圆点。

知识点4、不等式的性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

知识点5、一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式。

知识点6、解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1。

通过这些步骤可以把一元一次不等式转化为x >a (x ≥a )或x <a (x ≤a )的形式。

知识点7、一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

知识点8、知识点9、解不等式组:求不等式组解集的过程叫做解不等式组。

知识点10、解一元一次不等式组的一般步骤:先分别解不等式组中的各个不等式,然后再求出这几个不等式解集的公共部分。

人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。

(完整版)不等式与不等式组单元复习教案

(完整版)不等式与不等式组单元复习教案

个性化教案 17授课时间:2011年7月22日(2) 备课时间:2011年7月20日年级:八课时:2小时课题:不等式与不等式组学生姓名:胡雪丹教师姓名:宋学文教学目标1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

2、会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

难点重点能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

教学内容一、基础知识梳理1、叫一元一次不等式,把两个或两个以上的合起来,组成一个一元一次不等式组。

2、一般的,几个不等式的解集的,叫做由它们所组成的不等式组的解集。

3、不等式性质1 :不等式性质2:不等式性质3 :4、解不等式组,取解集的法则:5、老师归纳总结1、不等式的基本性质性质1:不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变。

如果a>b,则a+c>b+c,a-c>b-c性质2:不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

如果a>b,并且c>0,那么则ac>bc性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变成相反方向。

如果a>b,并且c<0,那么则ac<bc2、不等式组的公共解集,可用口诀:大大取大,小小取小;大小小大取中间;大大小小取不了。

1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3 (2)2a ----2b (3)- a 3 ------b3(4)4a-3 ---- 4b-3 (5)a-b --- 02、在数轴上表示不等式组x>-2x 1⎧⎨≤⎩ 的解,其中正确的是( )3、已知a>b ,⎩⎨⎧b x a x πφ 的解是 ,⎩⎨⎧--b x a x φφ的解是 。

一元一次不等式与不等式组复习大纲

一元一次不等式与不等式组复习大纲

(2)在同一数轴表达不等式的解集。
x x 1 1 32
解:x 6 x 1 6 1 6
3
2
2x 3(x 1) 6
2x 3x 3 6
-x3
x 3
2x 1 5 ① x 2 1 ②
解:解不等式① 得,x 2
解不等式 ② 得,x 3
-1 0 1
2
34
所以原方程组的解为:2 x 3
第一章一元一次不等式(组)
复习大纲
一、不等式(组)概念 二、不等式的性质 三、一元一次不等式(组)的解法 四、一元一次不等式(组)的应用 五、一元一次不等式(组)与一次函
数的关系。
一、不等式(组)有关概念
1.不等式:用不等号连接的式子。 如:2>-1, a<b, x+y>0等
2.不等式的解:使得不等式成立的未知数的值。 3. 不等式的解集:使得不等式成立的全部未知 数的值。 4.一元一次不等式:(1)只含有一种未知数
惯用不等式性质:
1.若a b, 那么b a。 2.若a - b 0, 那么a b。 3.若a - b 0, 那么a b。
4.若a b, c 0那么ac bc。
5.若a b, c 0那么ac bc。
三、不等式(组)的解法:
1.项合并同类项 (4)系数化为1 2.解不等式组环节: (1)解出不等式的解集
(2)未知数的次数是1 (3)分母中不含有未知数 5.一元一次不等式组的解集:各个不等式的解集 的公共部分。
二、不等式的性质
(1)不等式的两边都加上(或减去) 同一种整式,不等号的方向不变。
(注:移项要变号,但不等号不变。)
(2)不等式的两边都乘以(或除以) 同一种正数,不等号的方向不变。

武汉市七年级数学下册第九章【不等式与不等式组】经典复习题(专题培优)

武汉市七年级数学下册第九章【不等式与不等式组】经典复习题(专题培优)

一、选择题1.已知关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤3.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <-4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.已知01m <<,则m 、2m 、1m ( ) A .21m m m>>B .21m m m >>C .21m m m>> D .21m m m>> 7.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤8.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >39.在数轴上,点A 2A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .1010.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a 的值有( )种. A .3B .2C .1D .0二、填空题12.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x +⎡⎤=⎢⎥⎣⎦,则x 的取值可以是______________(任写一个). 13.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 14.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 15.不等式12x -<的正整数解是_______________.16.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.定义[]x 表示不大于x 的最大整数、{}[]x x x =-,例如[]22=,[]2.83-=-,[]2.82=,{}20=,{}2.80.8=,{}2.80.2-=,则满足{}[]2x x =的非零实数x 值为_______.19.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.20.不等式组12153114xx -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.21.方程组24x y kx y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题22.解下列不等式(组): (1)2132x x-≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩23.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______.24.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x xx +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩25.某公交公司有A ,B 型两种客车,它们的载客量和租金如下表:湖州五中根据实际情况,计划租用A ,B 型客车共5辆,同时送2016~2017学年度八年级师生到基地校参加社会实践活动,设租用A 型客车x 辆,根据要求回答下列问题:(1)用含x 的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若2016~2017学年度八年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.一、选择题1.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .92.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .4.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解5.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个6.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .7.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .8.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数9.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 10.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .11.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-二、填空题12.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 13.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____. 14.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.15.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.16.若关于x 、y 的二元一次方程组23242x y ax y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.17.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 18.若a b >0,cb<0,则ac________0. 19.不等式2x+9>3(x+4)的最大整数解是_____. 20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________21.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题22.解不等式:431132x x +-->,并把解集在数轴上表示出来.23.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果. (1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 24.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x25.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶?(2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶?一、选择题1.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .92.不等式()31x -≤5x -的正整数解有( ) A .1个 B .2个C .3个D .4个3.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .6.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .7.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤8.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤9.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-10.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 11.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足不等式2x+y>8,则m 的值是_____.13.不等式21302x --的非负整数解共有__个. 14.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则ab 的值为___________.15.不等式组63024x x x -⎧⎨<+⎩的解集是__. 16.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.17.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 18.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 19.把方程组2123x y m x y +=+⎧⎨+=⎩中,若未知数x y 、满足0x y +>,则m 的取值范围是_________.20.不等式2x+9>3(x+4)的最大整数解是_____.21.如果不等式组2{223x a x b +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题22.解不等式:431132x x +-->,并把解集在数轴上表示出来.23.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .24.解不等式(组),并在数轴上表示解集:(1)解不等式:4x 1x 13-->; (2)解不等式组:3x x 2,12x x 1.3-≥⎧⎪+⎨>-⎪⎩ 25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-. (1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.。

中考不等式与方程复习有答案

中考不等式与方程复习有答案

不等式与不等式组一、知识要点概述1、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2、不等式(组)的解法(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变.(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集.(3)设a<b,那么:①不等式组的解集是x>b(大大取大);②不等式组的解集是x<a(小小取小);③不等式组的解集是a<x<b(大小、小大中间找);④不等式组的解集是空集(大大、小小题无解).3、不等式(组)的应用会列一元一次不等式(组)解决实际问题,其步骤是:(1)找出实际问题的不等关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.二、典例剖析例1、(1)已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是________.(2)已知关于x的不等式组无解,则a的取值范围是________.分析:对于(1),由题意知不等式的解在x<4的范围内;对于(2),从数轴上看,原不等式组中两个不等式的解集无公共部分.解:(1)由题意得,∴9≤a<12.(2)由(1)得x>a,由(2)得x≤3,因不等式组无解,∴a≤3.说明:确定不等式(组)中参数的取值或范围常用的方法有:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)借助数轴确定.例2、解下列关于x的不等式(组).(1)|x-2|≤2x-10;(2)(2mx+3)-n<3x.分析:对于(1)确定“零界点”x=2(令x-2=0得x=2)分x≥2和x<2,去掉绝对值后求出不等式的解集;对于(2),化为ax<b的形式,再就a的正负性讨论.说明:涉及未知系数或绝对值式子的题目,均可用零点分段讨论法解答.例3、已知3a+2b-6=ac+4b-8=0且a≥b>0求c的取值范围.分析:消去a,b得到关于c的不等式组,解不等式组得c的取值范围.分析:已知不等式组的解集,求某些字母的值(或范围)是不等式组解集确定方法的逆向应用,处理这类问题时,可先求出原不等式组含有字母的解集,然后对照已知“对号入座”,应取有针对性的方法.例6、东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠方法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的关系式;(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种更省钱的购买方案.分析:(2)中比较哪种优惠办法更省钱与购买练习本的数量有关,因此应分类讨论;(3)中因为可同时用两种优惠办法购买,所以需要重新建立关于毛笔枝数的关系式求解.解:(1)依题意,可得y甲=25×10+5(x-10)=5x+200(x≥10);y乙=(25×10+5x)×90%=4.5x+225(x≥10)(2)由(1)有y甲-y乙=0.5x-25当y甲-y乙=0时,解得x=50;当y甲-y乙>0时,解得x>50;当y甲-y乙<0时,解得x<50.所以,当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款,当购买本数在10~50之间时,选择优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙更省钱.(3)①因为60>50,由(2)知不考虑单独选用优惠办法甲购买.若只用优惠办法乙购买10支毛笔和60本书法练习本需付款(25×10+5×60)×90%=495(元)②若用优惠办法乙购买m支毛笔,则须用优惠办法甲购买(10-m)支毛笔,用优惠办法乙购买60-(10-m)=m+50本书法练习本,设付款总金额为P,则:P=25(10-m)+[25m+5(m+50)]×90%=2m+475(0≤m≤10)所以,当m=0即用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本时,P取得最小值为:2×0+475=475(元)故选用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本的方案最省钱.例7、我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A、B 两种产品共80件,生产一件A产品需要甲种原料5kg,乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中一种生产的件数为x,试写出y与x之间的关系式,并利用关系式说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?分析:若设安排生产A种产品x件,根据题意可建立关于x的不等式组,解出不等式组得x 的取值范围.由x为整数在取值范围内确定x的取值,从而得出生产方案,然后由成本的已知条件求出x与y之间的关系式,根据此关系式求出最低生产总成本.解:(1)设安排生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:解得:34≤x≤36因为x为整数,所以x只能取34或35或36.所以该工厂现有的原料能保证生产,有三种生产方案:第一种:生产A种产品34件,B种产品46件;第二种:生产A种产品35件,B种产品45件;第三种:生产A种产品36件,B种产品44件.(2)设生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:y=120x+200(80-x)即y=-80x+16000(x取34或35或36)由式子可知,当x取最大值36时,y取最小值为-80×36+16000=13120元,即第三种方案;生产A种产品36件,B种产品44件,总成本最低,最低生产成本是13120元.说明:利用列不等式组然后求出不等式组的集,在其解集内求出符合条件(一般是整数)的值,是解方案设计型应用题的常用方法.方程与方程组一、知识要点概述1、等式和方程的有关概念、等式的基本性质.2、一元一次方程的解法及最简方程ax=b解的三种情况.(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1.(2)最简方程ax=b的解有以下三种情况:①当a≠0时,方程有唯一解;②当a=0,b≠0时,方程无解.③当a=0,b=0时,方程有无穷多解.3、一元二次方程的一般形式是ax2+bx+c=0(a≠0)其解法主要有:直接开平方法、配方法、因式分解法、求根公式法.4、一元二次方程ax2+bx+c=0(a≠0)的求根公式是:注意:求根公式成立的条件为:①a≠0;②b2-4ac≥0.5、一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac.当△>0时,方程有两个不相等的实数根.当△=0时,方程有两个相等的实数根,即;当△<0时,方程没有实根,反之成立.6、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则7、以两数α、β为根的一元二次方程(二次项系数为1)是x2-(α+β)x+αβ=0.8、解一次方程组的基本思想是消元,常用的消元方法是加减消元法和代入消元法.9、解简单的二元二次方程组的基本思想是“消元”与“降次”.①若方程组中有一个是一次方程,则一般用代入消元法求解;②若方程组中有能分解成两个一次方程的方程,则一般用“分解降次”的方法将原方程组化为两个或四个方程组求解.10、简单的分式方程组的解法,一般是用去分母或换元法将其转化为整式方程组求解,并要验解.11、方程组的解的存在性问题,一般转化为方程的解的存在性问题来研究.二、典例剖析点评:灵活解一元一次方程时常用到以下方法技巧.(1)若括号内有分数时,则由外向内先去括号,再去分母;(2)若有多重括号,则去括号与合并同类项交替进行;(3)恰当用整体思想.例2、解下列关于x的方程.(1)4x+b=ax-8(a≠4)(2)mx-1=nx(3)分析:把方程化为一般形式后,再对每个方程中字母系数可能取值的情况进行讨论.例4、已知m是整数,方程组有整数解,求m的值.分析:先求出y,运用整除的性质求出m的值,需注意所求的整数m要使得x也为整数.解:由原方程组解得,若y有整数解,则2m+9=±1或±2或±17或±34,经检验当2m+9=±1或±17时,m为整数且x也为整数,得m=4或-4或-5或-13.例5、已知关于x的一元二次方程有两个不等的实数根.(1)求m的取值范围;例7、解下列方程(2)3x2+x-7=0分析:对于(1)首先应回避复杂的小数运算,注意此时只运用分数的基本性质而未用到等式有关性质.对于(2)此方程用分解因式法难以行通,故考虑用求根公式.解:(1)原方程化简得方程两边都乘以12(即去分母)得3(35x-5)=4(5-x)-6(25x+5)去括号得:105x-15=20-4x-150x-30移项及合并同类项得:259x=5例8、如果关于x的一元二次方程kx2-2(k+2)x+k+5=0没有实根,试说明关于x的方程(k-5)x2-2(k+2)x+k=0必有实数根.分析:由一元二次方程kx2-2(k+2)x+k+5=0没有实数根,可以得出k≠0,b2-4ac<0,从而求出k的取值范围,再由k的取值范围来说明(k-5)x2-2(k+2)x+k=0必有实数根.解:∵关于kx2-2(k+2)x+k+5=0没有实数根,解得k>4当k=5时,方程(k-5)x2-2(k+2)x+k=0为一元一次方程,-14x+5=0,此时方程的根为.当k≠5时,方程(k-5)x2-2(k+2)x+k=0为一元二次方程∴△=[-2(k+2)]2-4(k-5)·k=4(9k+4)∵k>4且k≠5,∴△=4(9k+4)>0∴此时方程必有两不等实数根,综上可知方程(k-5)x2-2(k+2)x+k=0必有实数根.点评:(1)方程“有实数根”与“有两个实数根”有着质的区别.方程“有实数根”表示方程可能为一元一次方程,此时方程有一实数根,方程也可能为一元二次方程,此时方程有两个实数根,而方程“有两个实数根”,则表示此时方程一定为一元二次方程.点评:构造一元二次方程是解题的常用技巧,构造的主要方法有:(1)当已知等式具有相同的结构,就可以把两个变元看成关于某个字母的一元二次方程;(2)对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.分式方程一、知识要点概述1、分式方程:分母中含有未知数的有理方程叫分式方程.2、解分式方程的基本思想方法是:3、解分式方程必须验根.二、典型例题剖析例1、解方程.分析:根据解分式方程的一般步骤来解此题.解:方程两边同乘以(x+3)(x-2)得:10+2(x-2)=(x+3)(x-2)化简,整理得:x2-x-12=0解之得x1=-3或x2=4经检验可知:x1=-3是原方程的增根,x2=4是原方程的根.∴原方程的根是x=4.分析:用换元法解这些分式方程.解:(1)设x2-x=y,则原方程变为解这个方程得y1=-2,y2=6,当y1=-2时,x2-x=-2,此方程无解;当y2=6时,x2-x=6,∴x1=-2,x2=3.经检验可知:x1=-2,x2=3都是原方程的根.∴原方程的解为x1=-2,x2=3.例3、当m为何值时,关于x的方程无实根?分析:先将分式方程化为整式方程,如果整式方程有实根,那么这些根均是原方程的增根,这样x=0或x=1是所得整式方程的根,如果整式方程无实根,那么原方程也无实根.解:原方程去分母,整理得:x2-x+2-m=0①(1)若方程①有实根,根据题意知,方程①的根为x=0或x=1.把x=0或x=1代入方程①得m=2.而x=0或x=1是原方程的增根.∴当m=2时原方程无实根.(2)若方程(1)无实根,则△=(-1)2-4(2-m)<0解之得∴当时,原方程无实根.综合之,当m=2或时,原方程无实根.例4、若方程有增根,试求m的值.分析:分式方程将会产生增根,即最简公分母x2-4=0,故方程产生增根有两种可能:x1=2,x2=-2.由增根的定义知:x1=2,x2=-2是原分式方程去分母化成整式方程的根,由根的定义即可求出m的值.解:将原方程去分母得:2(x+2)+mx=3(x-2)整理得:(m-1)x=-10 (1)∵原方程有增根,∴x2-4=0∴x1=2,x2=-2.将x1=2代入(1)得2(m-1)=-10∴m=-4将x2=-2代入(1)得-2(m-1)=-10∴m=6所以m的值为-4或6.点评:(1)增根的求法:令最简公分母为0;(2)求有增根的方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程即可.例5、已知a2-a-1=0且求x的值.分析:为求x的值,须将x与a2分离,联想到分式的基本性质,从而原等式含,这样应从条件出发构造倒数关系.解:。

中考复习不等式与不等式组

中考复习不等式与不等式组
1 说出下列数轴所示的不等式的解集
-0.Байду номын сангаас≤x<1.5
x
2:不等式组
x x
2 的解集是( 3
c)
A, x 2 B, x 2 C, x 3 D,2 x 3
3、用不等号填空,若a< b,则
a+c__<__b+c, 5a___<__5b, -5a__>___-5b
4、已知(2a-1)x<4的解为x>
最大解
非负
整数 正整数解

最大整数 解
例3、计时制:3元/小时. 包月(30天)制:60元/月, 另加1元/小时.
什么状况下采用计 时制合算,什么状 况下采用包月制合 算呢?你能用一元 一次不等式解决这 个问题吗?
计时制:3元/小时. 包月制:60元/月,另加1元/小时.
解:设每月上网x小时,假设采用 计时制合算.得:
如果七、八月期间,每天放映5场次,电影票每张 3元,平均每场次能卖出250张,为了确保每场次的票 房收入平均不低于1000元,最少应预售这两个月的 “优惠券”多少张?
考点透析:
1、理解不等式的基本 性质;
2、会解一元一次不等 式(组),并把解集 表达在数轴上;
3、能列解一元一次不
无实数解
例1.用不等式表达下列数量关系:
(1)2x与1的和不大于零.
2x+1<0
(2)x的1/2与3的差不不不大于2.
x-3≤2 (3)a是负数.
a<0
(4)a与b的和是非负数.
a+b ≥ 0
例2、解一元一次不等式,并把解表达在数轴上
解:3 (x-1) ≤ 6 – 2(x-2) 3x – 3 ≤ 6 –2x+4 自然数解 3x+2x ≤6+4+3 5x ≤13 ∴ x ≤13/5

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章 不等式与不等式组【真题模拟练】(解析版)七年级数学下册单元复习(人教版)

第9章不等式与不等式组真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2021•常德)若a b >,下列不等式不一定成立的是()A .55a b ->-B .55a b -<-C .a bc c>D .a c b c+>+【答案】C .【解析】解:A .∵a b >,∴55a b ->-,故本选项不符合题意;B .∵a b >,∴55a b -<-,故本选项不符合题意;C .∵a b >,∴当0c >时,a b c c >;当0c <时,a bc c<,故本选项符合题意;D .∵a b >,∴a c b c +>+,故本选项不符合题意;故选:C .2.(3分)(2021•河北)已知a b >,则一定有4a -□4b -,“□”中应填的符号是()A .>B .<C .D .=【答案】B .【解析】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∴a b >,∴44a b -<-.故选:B .3.(3分)(2021•丽水)若31a ->,两边都除以3-,得()A .13a <-B .13a >-C .3a <-D .3a >-【答案】A .【解析】解:∵31a ->,∴不等式的两边都除以3-,得13a <-,故选:A .4.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<,其中正确的个数是()A .1B .2C .3D .4【答案】A .【解析】解:a b >,∴当0a >时,2a ab >,当0a =时,2a ab =,当0a <时,2a ab <,故①结论错误∴a b >,∴当||||a b >时,22a b >,当||||a b =时,22a b =,当||||a b <时,22a b <,故②结论错误;∵a b >,0b <,∴2a b b +>,故③结论错误;∵a b >,0b >,∴0a b >>,∴11a b<,故④结论正确;∴正确的个数是1个.故选:A .5.(3分)(2021•包头)定义新运算“?”,规定:?2a b a b =-.若关于x 的不等式?3x m >的解集为1x >-,则m 的值是()A .1-B .2-C .1D .2【答案】B .【解析】解∵?2a b a b =-,∴?2x m x m =-.∵?3x m >,∴23x m ->,∴23x m >+.∵关于x 的不等式?3x m >的解集为1x >-,∴231m +=-,∴2m =-.故选:B .6.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是()A .B .C .D .【答案】B .【解析】解:去分母,得:133x x -<+,移项,得:331x x -<+,合并同类项,得:24x -<,系数化为1,得:2x >-,将不等式的解集表示在数轴上如下:故选:B .7.(3分)(2021•贵港)不等式组1231x x <-<+的解集是()A .12x <<B .23x <<C .24x <<D .45x <<【答案】C .【解析】解:不等式组化为123231x x x <-⎧⎨-<+⎩①②,由不等式①,得2x >,由不等式②,得4x <,故原不等式组的解集是24x <<,故选:C .8.(3分)(2021•南通)若关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解,则实数a 的取值范围是()A .78a <<B .78a <C .78a <D .78a 【答案】C .【解析】解:23120x x a +>⎧⎨-⎩①②,解不等式①,得 4.5x >,解不等式②,得x a ,所以不等式组的解集是4.5x a <,∵关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解(整数解是5,6,7),∴78a <,故选:C .9.(3分)(2021•湘潭)不等式组12480x x +⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D .【解析】解:解不等式12x +,得:1x ,解不等式480x -<,得:2x <,则不等式组的解集为12x <,将不等式组的解集表示在数轴上如下:故选:D .10.(3分)(2021•永州)在一元一次不等式组21050x x +>⎧⎨-⎩的解集中,整数解的个数是()A .4B .5C .6D .7【答案】C .【解析】解:21050x x +>⎧⎨-⎩①②∵解不等式①得:0.5x >-,解不等式②得:5x ,∴不等式组的解集为0.55x -<,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .11.(3分)(2020•宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种【答案】B .【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶(6)x -个,依题意,得:500550(6)3100x x +-,解得:4x .∵x ,(6)x -均为非负整数,∴x 可以为4,5,6,∴共有3种购买方案.故选:B .12.(3分)(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .2【答案】B .【解析】解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+,解得:1410x .又∵x 为正整数,∴x 的最大值为4.故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)(2021•苏州)若21x +,且01y <<,则x 的取值范围为.【答案】102x <<.【解析】解:由21x y +=得21y x =-+,根据01y <<可知0211x <-+<,∴120x -<-<,∴102x <<.故答案为:102x <<.14.(3分)(2021•内江)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为.【答案】1116.【解析】解:设123234a b ck ---===,则21a k =+,32b k =+,34c k =-,∴23212(32)3(34)414S a b c k k k k =++=++++-=-+.∵a ,b ,c 为非负实数,∴210320340k k k +⎧⎪+⎨⎪-⎩,解得:1324k-.∴当12k =-时,S 取最大值,当34k =时,S 取最小值.∴14()14162m =-⨯-+=,3414114n =-⨯+=.∴1116n m =.故答案为:1116.15.(3分)(2021•柳州)如图,在数轴上表示x 的取值范围是.【答案】2x >.【解析】解:在数轴上表示x 的取值范围是2x >.故答案为:2x >.16.(3分)(2021•眉山)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是.【答案】32m -<-.【解析】解:解不等式1x m +<得:1x m <-,根据题意得:314m <-,即32m -<-,故答案是:32m -<-.17.(3分)(2021•上海)不等式2120x -<的解集是.【答案】6x <.【解析】解:移项,得:212x <,系数化为1,得:6x <,18.(3分)(2021•丹东)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围.【答案】2m.【解析】解:213xx m-<⎧⎨>⎩①②,解不等式①得:2x<,解不等式②x m>,∵不等式组无解∴2m,故答案为:2m.19.(3分)(2021•荆门)关于x的不等式组()31213x ax x--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是.【答案】56a<.【解析】解:解不等式()3x a--<,得:3x a>-,解不等式1213x x+-,得:4x,∵不等式组有2个整数解,∴233a-<,解得56a<.故答案为:56a<.20.(3分)(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.【答案】33.【解析】解:设x人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元),故5160x>时,解得:32x>,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32133+=(人).则至少要有33人去世纪公园,买40张票反而合算.21.(3分)(2013•乌鲁木齐)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式.【答案】105(20)90n n -->.【解析】解:根据题意,得105(20)90n n -->.故答案为:105(20)90n n -->.22.(3分)(2020•宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.【答案】6.【解析】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是(b a ,b 均为整数),依题意,得:48a bb a >⎧⎪>⎨⎪<⎩,∵a ,b 均为整数∴47b <<,∴b 最大可以取6.故答案为:6.三、解答题(共5小题,满分34分)23.(6分)(2021•陕西)求不等式3125x -+>-的正整数解.【答案】见解析.【解析】解:去分母得:3510x -+>-,移项合并得:315x ->-,解得:5x <,则不等式的正整数解为1,2,3,4.24.(6分)(2017•呼和浩特)已知关于x 的不等式21122m mx x ->-.(1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】见解析.【解析】解:(1)当1m =时,不等式为2122x x->-,去分母得:22x x ->-,解得:2x <;(2)不等式去分母得:22m mx x ->-,移项合并得:(1)2(1)m x m +<+,当1m ≠-时,不等式有解,当1m >-时,不等式解集为2x <;当1m <-时,不等式的解集为2x >.25.(6分)(2021•兴安盟)解不等式组:21612152263x x x x+<+⎧⎪--⎨-⎪⎩,在数轴上表示解集并列举出非正整数解.【答案】见解析.【解析】解:解不等式216x x +<+得:5x <,解不等式12152263x x---得:2x -,将解集表示在数轴上如下:∴不等式组的解集为25x -<,∴不等式组的非正整数解为2-、1-、0.26.(8分)(2021•本溪)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】见解析.【解析】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:4135 52225 x yx y+=⎧⎨+=⎩,解得:3525 xy=⎧⎨=⎩.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元.(2)设可以购买手绘纪念册m本,则购买图片纪念册(40)m-本,依题意得:3525(40)1100m m+-,解得:10m.答:最多能购买手绘纪念册10本.27.(8分)(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?【答案】见解析.【解析】解:(1)设购进1x万元,1件乙种农机具y万元.根据题意得:2 3.533x yx y+=⎧⎨+=⎩,解得:1.50.5 xy=⎧⎨=⎩,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10)m-件,根据题意得:1.50.5(10)9.8 1.50.5(10)12m mm m+-⎧⎨+-⎩,解得:4.87m.∵m为整数.∴m可取5、6、7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.11方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w 万元.1.50.5(10)5w m m m =+-=+.∵10k =>,∴w 随着m 的减少而减少,∴5m =时,15510w =⨯+=最小(万元).∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a 件,乙种农机具b 件,由题意得:(1.50.7)(0.50.2)0.750.25a b -+-=⨯+⨯,其整数解:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。

人教版七年级数学下册《不等式与不等式组复习课》教学设计

人教版七年级数学下册《不等式与不等式组复习课》教学设计

《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。

就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。

这节课是全章复习课。

由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。

教师主要在习题的设计上选好典型例题,复习的知识尽量全面。

教学效果上使不同的学生有不同的收获。

二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

②会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

2、本节内容在教材的地位和作用。

本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。

三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。

3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。

②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:不等式(组)的解法的规范性及实际应用。

不等式与不等式组复习9讲解(七下数学课件)

不等式与不等式组复习9讲解(七下数学课件)

O1
4
∴不等式组的解集为:x≤1.
4、(x+3)/5的值能否同时大于2x+3和1-x的值? 说明理由.
解:列不等式组
(x+3)/5>2x+3 ① (x+3)/5>1-x ②
由①得:x<-4/3;
x+3>10x+15 x+3>5-5x
由②得:x>1/3;
可知,不等式组无解.
∴(x+3)/5的值不能同时大于2x+3和1-x的值.
(2)当15-7a<1时,a>2; (3)当15-7a=1时,a=2.
3、解下列不等式组:
(1)
2x+1>-1 2x+1<3
① ②
解:解不等式①得:x>-1;
解不等式②得:x<1;
将①和②的解集在数轴上表示出来,如图:
-1 O 1 ∴不等式组的解集为:-1<x<1.
3、解下列不等式组:
(2)
-(x-1)>3 2x+9>3
复习 9 不等式与不等式组 (P133)讲评课件
教师:黄春荣
复习巩固 1、解下列不等式,并把它们 的解集在数轴上表示出来: (1)3(2x+7)>23; 解:去括号得:6x+21>23 移项合并同类项得:6x>2 系数化为1得:x>1/3 在数轴上表示x的取值范围,如图:
O 1/3
复习巩固 1、解下列不等式,并把它们 的解集在数轴上表示出来: (2)12-4(3x-1)≤2(2x-16); 解:去括号得:12-12x+4≤4x-32 移项合并同类项得:-16x≤-48 系数化为1得:x≥3 在数轴上表示x的取值范围,如图:

中考数学复习之不等式与不等式组

中考数学复习之不等式与不等式组

中考数学复习之不等式与不等式组一.选择题(共5小题)1.已知x<y,则下列不等式一定成立的是()A.x﹣5>y﹣5B.﹣2x>﹣2y C.a2x<a2y D.2.在数轴上表示不等式组的解集,正确的是()A.B.C.D.3.若定义一种新的取整符号[],即[x]表示不小于x的最小整数.例如:[2.4]=3,[﹣2.9]=﹣2.则下列结论正确的是()①[﹣3.5]+[2]=﹣1;②[x]+[﹣x]=0;③方程[x]﹣x=的解有无数多个;④当﹣1≤x<1时,则[x﹣1]+[x+1]的值为0、1或﹣2;⑤若[x+3]=2,则x的取值范围﹣2<x≤﹣1.A.①②③B.①③④C.①③⑤D.①④⑤4.我们规定:[m]表示不超过m的最大整数,例如:[3.1]=3,[−3.1]=−4,则关于x和y的二元一次方程组的解为()A.B.C.D.5.若整数a使关于x的方程的解为非负数,且使关于y的不等式组的解集为y<−2,则符合条件的所有整数a的和为()A.20B.21C.27D.28二.填空题(共9小题)6.不等式组的所有整数解的和为.7.有若干糖果要分给小朋友,若每人分3个,则余8个;每人分5个,则最后一个小朋友能分到糖果但个数不足3个,则共有个小朋友.8.今年植树节时,某同学栽种了一棵树,此树的树围(树干的周长)为10cm,已知以后此树树围平均每年增长3cm,若生长x年后此树树围超过90cm,则x满足的不等式为.9.用不等式表示:“x的2倍与1的差小于3”是.10.若不等式组的解集中共有3个整数解,则a的取值范围是.11.“x的2倍与y的和不大于2”用不等式可表示为.12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>94”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是.13.现定义一种新的运算:a*b=a2﹣2b,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x≥0的解集为.14.关于x的不等式组整数解有2个,则a的取值范围是.三.解答题(共6小题)15.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.16.某班计划购买两种毕业纪念册,已知购买4本手绘纪念册和1本图片纪念册共需190元,购买2本手绘纪念册和5本图片纪念册共需230元.(1)每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共50本,总费用不超过1900元,则最少要购买图片纪念册多少本?17.解不等式组,并写出不等式组的整数解.18.求不等式组:的整数解.19.计算:(1);(2)解不等式组:.20.(1)解方程组:;(2)解不等式组:.。

(易错题精选)初中数学方程与不等式之不等式与不等式组知识点总复习附解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组知识点总复习附解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组知识点总复习附解析(1)一、选择题1.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x <2的解集故选:A .【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.2.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a ≤- 【答案】B【解析】【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.3.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a<−1.故选A.【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.不等式的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.5.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m >B .1m <C .1m ≠D .1m =【答案】B【解析】【分析】根据不等式的基本性质3,两边都除以m-1后得到x >1,可知m-1<0,解之可得.【详解】∵不等式(m-1)x <m-1的解集为x >1,∴m-1<0,即m <1,故选:B .【点睛】此题考查不等式的解集,熟练掌握不等式的基本性质是解题的关键.6.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.7.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.8.不等式26x -≥0的解集在数轴上表示正确的是( )A .B .C .D . 【答案】B【解析】【分析】先求解出不等式的解集,再表示在数轴上【详解】解不等式:2x-6≥02x≥6x≥3数轴上表示为:故选:B本题考查不等式的求解,需要注意,若不等式两边同时乘除负数,则不等号需要变号9.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.10.不等式组213,151520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x -<得x>-1, 解1510520x x ++-≥得3x ≤, ∴不等式组的解集是13x -<≤,故选:D.【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键.11.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】 先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1, 所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.12.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【分析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A 、a >b ,c=0时,ac 2=bc 2,故A 错误;B 、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B 正确;C 、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C 错误;D 、不等式两边同时加或减同一个整式,不等号的方向不变,故D 错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.13.不等式组354x x ≤⎧⎨+>⎩的最小整数解为( ) A .-1B .0C .1D .2 【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354x x ≤⎧⎨+>⎩①② 解①得x≤3,解②得x >-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x 的范围是本题的关键.14.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.15.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个【答案】B【解析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n【答案】B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.19.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.20.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】 ∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.。

第九章 不等式与不等式组复习题---填空题(含解析)

第九章 不等式与不等式组复习题---填空题(含解析)

人教版七下第19章不等式与不等式组复习题---填空题一.填空题(共49小题)1.(2018春•曲阳县期末)已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.2.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.3.(2018•南京一模)若x+4y=1,则xy的最大值为.4.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是.5.(2018春•徽县期末)若不等式组无解,则a b(用“<,>,≤,≥和=”填)6.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是.7.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于.8.(2018春•阜平县期末)若不等式组无解,则a的取值范围是.9.(2018春•南平期末)若x的取值范围在数轴上的表示如图所示,则x为整数的个数是个.10.(2018春•宿豫区期末)若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=.11.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.12.(2017•牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打折.13.(2017•烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是.14.(2016•新疆)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.15.(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为.16.(2018秋•诸暨市期末)在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对题.17.(2018春•磴口县期末)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对道题.18.(2018春•定西期末)某体育用品专卖店的所有商品都以高出进价的95%标价.一个标价为390元的篮球,要保证专卖店的利润不低于30%,售价不能低于.19.(2018秋•长兴县期末)关于x的不等式(3a﹣2)x<2的解为x>,则a的取值范围是.20.(2018春•丰城市期末)关于x、y的二元一次方程组的解满足不等式x﹣y>4,则m的取值范围是.21.(2018•沙坪坝区)已知关于x的不等式﹣1<的解集为x>1,则a的值是.22.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是.23.(2018秋•昌江区校级期中)已知关于x的不等式ax﹣b>0的解是x<1,则关于x的不等式ax+b >0的解集为.24.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是.25.(2018秋•福田区校级期末)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.26.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为.27.(2018春•上饶县期末)不等式的正整数解的个数是.28.(2018春•澄海区期末)若不等式2(x+1)>3的最小整数解是方程5x﹣2ax=3的解,则a的值为.29.(2018•兰州)不等式组的解集为.30.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是.31.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.33.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是.34.(2017•黑龙江)若关于x的一元一次不等式组无解,则a的取值范围是.35.(2018•沙坪坝区)关于x的不等式组的解集中至少有5个整数解,则整数a的最小值是.36.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是.37.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是.38.(2018•包头)不等式组的非负整数解有个.39.(2018•宜宾)不等式组1<x﹣2≤2的所有整数解的和为.40.(2018•沙坪坝区)若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是.41.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有件玩具.42.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为.43.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有间宿舍,名女生.44.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是.45.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是.46.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有棵.47.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.48.(2017春•老河口市期末)某班组织20名同学去春游,同时租用两种型号的车辆,这两种车司机座位除外,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,有种租车方案.49.(2017春•松滋市期末)运行程序如图所示,规定:“从输入一个值x”到“结果是否>99”为一次程序操作,如果程序操作执行了三次才停止,那么x的取值范围是.人教版七下第19章不等式与不等式组复习题---填空题参考答案与试题解析一.填空题(共49小题)1.(2018春•曲阳县期末)已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=﹣4.【分析】解答此题要理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥2的最小值是a,a=2;x≤﹣6的最大值是b,则b=﹣6;则a+b=2﹣6=﹣4,所以a+b=﹣4.故答案为:﹣4.2.(2018•锡山区校级四模)某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是x≤.【分析】通过找到临界值解决问题.【解答】解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.3.(2018•南京一模)若x+4y=1,则xy的最大值为.【分析】利用(x﹣4y)2=(x+4y)2﹣16xy≥0结合x+4y=1,可得出xy≤,此题得解.【解答】解:(x﹣4y)2=(x+4y)2﹣16xy≥0.∵x+4y=1,∴1﹣16xy≥0,∴xy≤.故答案为:.4.(2018春•岳麓区校级期末)已知关于x的不等式(5a﹣2b)x>3b﹣a的解集是x<,则6ax>7b的解集是x<.【分析】根据不等式的解集,先确定5a﹣2b与0、a与b的关系,代入不等式并求出不等式的解集.【解答】解:∵(5a﹣2b)x>3b﹣a的解集是x<,∴5a﹣2b<0∴x<∴=即24b﹣8a=5a﹣2b∴a=2b当a=2b时,∵5a﹣2b<0即8b<0,∴b<0当a=2b时,不等式6ax>7b可变形为:12bx>7b∴x<故答案为:x<.5.(2018春•徽县期末)若不等式组无解,则a≤b(用“<,>,≤,≥和=”填)【分析】根据“大大小小无解了”求解可得.【解答】解:∵不等式组无解,∴a≤b,故答案为:≤.6.(2018春•海港区期末)已知不等式组的解集是x≤1,则m的取值范围是m≥1.【分析】根据“同小取小”求解可得.【解答】解:∵不等式组的解集是x≤1,∴m≥1,故答案为:m≥1.7.(2018春•襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于2或3.【分析】根据已知不等式组和不等式组的解集得出关于a的不等式组,求出不等式组的解集即可.【解答】解:∵不等式组的解集是3<x<a+2,∴,解得:1<a≤3,∵a为整数,∴a=2或3,故答案为:2或3.8.(2018春•阜平县期末)若不等式组无解,则a的取值范围是a≤﹣3.【分析】不等式组中两不等式整理求出解集,根据不等式组无解,确定出a的范围即可.【解答】解:因为不等式组无解,所以a≤﹣3,故答案为:a≤﹣39.(2018春•南平期末)若x的取值范围在数轴上的表示如图所示,则x为整数的个数是5个.【分析】由不等式的解集在数轴上的表示可得.【解答】解:由数轴知x可以取的整数为﹣2、﹣1、0、1、2这5个,故答案为:5.10.(2018春•宿豫区期末)若(m﹣2)x|3﹣m|+2≤7是关于x的一元一次不等式,则m=4.【分析】根据一元一次不等式的定义即可求出答案.【解答】解:由一元一次不等式的定义可知:解得:m=4故答案为:411.(2018•山西)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:5512.(2017•牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.【分析】设打x折,根据题意得出不等式,求出不等式的解集即可.【解答】解:设打x折,根据题意得:100(1+50%)•x≥100(1+20%),解得:x≥8,即至多打8折,故答案为:8.13.(2017•烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.【分析】根据运算程序,列出算式:3x﹣6,由于运行了一次就停止,所以列出不等式3x﹣6<18,通过解该不等式得到x的取值范围.【解答】解:依题意得:3x﹣6<18,解得x<8.故答案是:x<8.14.(2016•新疆)对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.【解答】解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>4915.(2015•酒泉)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为x>﹣1.【分析】根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.【解答】解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.16.(2018秋•诸暨市期末)在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对19题.【分析】求至少要答对的题数,首先应求出在竞赛中的得分,然后根据题意在竞赛中的得分不低于60列出不等式,解答即可.【解答】解:设他至少应选对x道题,则不选或错选为25﹣x道题.依题意得4x﹣2(25﹣x)≥60得x≥又∵x应为正整数且不能超过25所以:他至少要答对19道题.17.(2018春•磴口县期末)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对14道题.【分析】设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据“对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分”,列出关于x的一元一次不等式,解之即可.【解答】解:设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据题意得:10x﹣5(20﹣x)≥100,解得:x≥,∵x为整数,∴至少答对14道题,故答案为:14.18.(2018春•定西期末)某体育用品专卖店的所有商品都以高出进价的95%标价.一个标价为390元的篮球,要保证专卖店的利润不低于30%,售价不能低于260.【分析】设售价为x元,根据售价﹣进价=利润结合利润不低于30%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:设售价为x元,根据题意得:x﹣≥×30%,解得:x≥260.故答案为:260.19.(2018秋•长兴县期末)关于x的不等式(3a﹣2)x<2的解为x>,则a的取值范围是a <.【分析】根据已知不等式的解集确定出a的范围即可.【解答】解:∵关于x的不等式(3a﹣2)x<2的解为x>,∴3a﹣2<0,解得:a<,故答案为:a<20.(2018春•丰城市期末)关于x、y的二元一次方程组的解满足不等式x﹣y>4,则m的取值范围是m>3.【分析】先把两式相减求出x﹣y的值,再代入x﹣y>4中得到关于m的不等式,求出m的取值范围即可.【解答】解:,①﹣②得,x﹣y=2m﹣2,∵x﹣y>4,∴2m﹣2>4,解得m>3.故答案为m>3.21.(2018•沙坪坝区)已知关于x的不等式﹣1<的解集为x>1,则a的值是6.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据不等式的解集得方程,求出a的值.【解答】解:﹣1<,x+5﹣2<ax﹣2,x﹣ax<﹣2﹣5+2,(1﹣a)x<﹣5,∵该不等式的解集为x>1,∴1﹣a<0且﹣=1,解得a=6,经检验a=6是原分式方程的解,∴a的值是6,故答案为:6.22.(2018秋•沙坪坝区校级月考)已知关于x的不等式﹣1≥的解集为x≤1,则a的值是2.【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据不等式的解集得方程,求出a的值.【解答】解:不等式的两边都乘2,得x+5﹣2≥ax+2即(1﹣a)x≥﹣1,当1﹣a>0,即a<1时,x≥,∵原不等式的解集为x≤1,∴1﹣a<0,即a>1时,∴x≤∴=1,解得a=2故答案为:2.23.(2018秋•昌江区校级期中)已知关于x的不等式ax﹣b>0的解是x<1,则关于x的不等式ax+b >0的解集为x<﹣1..【分析】根据已知条件求出a<0且a=b,再代入解不等式即可.【解答】解:∵ax﹣b>0,∴ax>b,∵关于x的不等式ax﹣b>0的解是x<1,∴=1,且a<0,∴a=b,∴ax+b>0,∴ax>﹣a,∴x<﹣1,故答案为:x<﹣1.24.(2018•湘西州)对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是1.【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【解答】解:∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1.故答案为:1.25.(2018秋•福田区校级期末)关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是6<m≤8.【分析】先表示出不等式3x﹣2m<x﹣m的解集,再由正整数解为1、2、3,可得出3<≤4,解出即可.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.26.(2018秋•沙坪坝区校级月考)不等式3x﹣2≤5x+6的最大负整数解为x=﹣1.【分析】解不等式求出x的范围即可得.【解答】解:∵3x﹣2≤5x+6,∴3x﹣5x≤6+2,﹣2x≤8,则x≥﹣4,∴不等式的最大负整数解为x=﹣1,故答案为:x=﹣1.27.(2018春•上饶县期末)不等式的正整数解的个数是3.【分析】求出不等式的解集,找出解集中的正整数解即可.【解答】解:去分母得:4x﹣6<3x﹣2,解得:x<4,则不等式的正整数解为1,2,3,共3个,故答案为:328.(2018春•澄海区期末)若不等式2(x+1)>3的最小整数解是方程5x﹣2ax=3的解,则a的值为1.【分析】求得x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a 的一元一次方程,通过解该方程即可求得a的值.【解答】解:解不等式2(x+1)>3得:x>,所以不等式的最小整数解为x=1,将x=1代入方程5x﹣2ax=3,得:5﹣2a=3,解得:a=1,故答案为:1.29.(2018•兰州)不等式组的解集为﹣1<x<3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.30.(2018•呼和浩特)若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是a≤﹣6.【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集,再判断即可.【解答】解:∵解不等式①得:x>﹣,解不等式②得:x>﹣a+2,∴不等式组的解集为x>﹣a+2,∵不等式x﹣5>0的解集是x>5,又∵不等式组的解集中的任意x,都能使不等式x﹣5>0成立,∴﹣a+2≥5,解得:a≤﹣6,故答案为:a≤﹣6.31.(2018•贵阳)已知关于x的不等式组无解,则a的取值范围是a≥2.【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【解答】解:,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.32.(2018•聊城)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.33.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是a≤﹣.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可确定a的范围.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式a﹣x<0,得:x>3a,∵不等式组的解集为x>﹣1,则3a≤﹣1,∴a≤﹣,故答案为:a≤﹣.34.(2017•黑龙江)若关于x的一元一次不等式组无解,则a的取值范围是a≥1.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<1,∵此不等式组的解集是空集,∴a≥1.故答案为:a≥1.35.(2018•沙坪坝区)关于x的不等式组的解集中至少有5个整数解,则整数a的最小值是2.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:,解①得x≤2,解②得x>﹣a.则不等式组的解集是﹣a<x≤2.∵不等式至少有5个整数解,∴﹣a<﹣2,解得a>.∴整数a的最小值是2.故答案为2.36.(2018•黑龙江)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.37.(2018•攀枝花)关于x的不等式﹣1<x≤a有3个正整数解,则a的取值范围是3≤a<4.【分析】根据不等式的正整数解为1,2,3,即可确定出正整数a的取值范围.【解答】解:∵不等式﹣1<x≤a有3个正整数解,∴这3个整数解为1、2、3,则3≤a<4,故答案为:3≤a<4.38.(2018•包头)不等式组的非负整数解有4个.【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【解答】解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.39.(2018•宜宾)不等式组1<x﹣2≤2的所有整数解的和为15.【分析】先解不等式组得到6<x≤8,再找出此范围内的整数,然后求这些整数的和即可.【解答】解:由题意可得,解不等式①,得:x>6,解不等式②,得:x≤8,则不等式组的解集为6<x≤8,所以不等式组的所有整数解的和为7+8=15,故答案为:15.40.(2018•沙坪坝区)若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是﹣2<m≤﹣1和1<m≤2.【分析】先求出不等式的解集,根据已知不等式组的整数解得和为﹣9即可得出答案.【解答】解:∵解不等式①得:x≥﹣4,又∵不等式组的所有整数解得和为﹣9,∴﹣4+(﹣3)+(﹣2)=﹣9或(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1=﹣9,∴﹣2<m≤﹣1和1<m≤2,故答案为:﹣2<m≤﹣1和1<m≤2.41.(2018春•东明县期中)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有25件玩具.【分析】设小朋友的人数为x人,玩具数为n件,则n=3x+4,0<n﹣4(x﹣1)<3,且n,x都是正整数,将n=3x+4代入0<n﹣4(x﹣1)<3求出x、n的值,当求出x的值后,求n的值时,根据实数的运算法则求值.【解答】解:设小朋友的人数为x人,玩具数为n件,由题意可得:n=3x+4,0<n﹣4(x﹣1)<3,即:0<3x+4﹣4(x﹣1)<3,解得5<x<8,由于x的是正整数,所以x的取值为6人或7人,当x=6时,n=3x+4=22件;当x=7时,n=3x+4=25件.故最多有25件玩具.故答案为:25.42.(2018春•江岸区校级月考)安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为8或9或10.【分析】设宿舍有x间,则学生有(4x+15)人,根据题意条件建立不等式组求出x的值即可.【解答】解:设宿舍有x间,则学生人数为(4x+15)人根据题意得:0<(4x+15)﹣6(x﹣1)<6解得:<x<且x为正整数∴x=8或9或10故答案为8或9或1043.(2018春•武城县期末)学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房有人住但不满.有5间宿舍,30名女生.【分析】根据题意可得:女生人数=5+所有宿舍人数,可列方程.根据有一间房有人住但不满可列不等式.【解答】解:设有x间宿舍,有y名女生根据题意得:∴<x<7且x为正整数∴x=5或6∴y=30或35且该班女生少于35人∴x=5,y=30故答案为:5,3044.(2018春•如皋市期末)运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是<x≤8.【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【解答】解:由题意得,解不等式①得x≤8,解不等式②得,x>,则x的取值范围是<x≤8.故答案为:<x≤8.45.(2018春•安庆期末)下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是4≤x<11.【分析】输入x,经过第一次运算,结果为3x﹣1<32,经过第二次运算,结果为3(3x﹣1)﹣1≥32,两个不等式联立,形成一元一次不等式组求解,即可得到答案.【解答】解:根据题意得:,解得:4≤x<11,即输入的x的取值范围为:4≤x<11,故答案为:4≤x<11.46.(2018春•三亚期末)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有121棵.【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【解答】解:设共有x人,则有4x+37棵树,由题意得:,解之得:20<x<,∴x=21,∴4x+37=121 (棵),答:这批树苗共有121棵,故答案为:12147.(2018春•滕州市期中)初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为至少6人.【分析】首先依据题意得出不等关系即平均每人分摊的钱不足1.5元,由此列出不等式,进而解决问题.【解答】解:设参加合影的同学人数为x人,则有5+0.5x<1.5x,解得x>5,∵x取正整数,∴参加合影的同学人数至少为6人,故答案为至少6人.48.(2017春•老河口市期末)某班组织20名同学去春游,同时租用两种型号的车辆,这两种车司机座位除外,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,有2种租车方案.【分析】设租用每辆8个座位的车x辆,每辆有4个座位的车y辆,根据车座位数等于学生的人数列出二元一次方程,再根据x、y都是正整数求解即可.【解答】解:设租用8座客车x辆、4座客车y辆,根据题意,得:8x+4y=20,则2x+y=5,所以y=5﹣2x,当x=1时,y=3;当x=2是,y=1;所以有两种租车方案,故答案为:2.49.(2017春•松滋市期末)运行程序如图所示,规定:“从输入一个值x”到“结果是否>99”为一次程序操作,如果程序操作执行了三次才停止,那么x的取值范围是<x≤.【分析】根据运算程序,前两次运算结果小于等于99,第三次运算结果大于99列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤50,解不等式②得,x≤,解不等式③得,x>,所以,x的取值范围是<x≤.故答案为<x≤.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试(解析版)(1)

人教版七年级数学下册第九章不等式与不等式组复习试题七年级数学下册第九章不等式与不等式组复习试题(含答案)一、选择题1.下列选项中是一元一次不等式组的是( )A.B.-C.D.2.下列说法中,错误的是( )A.不等式x<2的正整数解有一个B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个3.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b4.如图,数轴上所表示关于x的不等式组的解集是( )A.x≥2B.x>2C.x>-1D.-1<x≤25.不等式组-的解集表示在数轴上正确的是( )6.不等式6-4x≥3x-8的非负整数解有( )A.2个B.3个C.4个D.5个7.对于实数x,我们规定:[x]表示不小于x的最小整数,例如:[1.4]=2,[4]=4,[-3.2]=-3,若=6,则x的取值可以是( )A.41B.47C.50D.588.张老师带领全班学生到植物园参观,门票每张10元,购票时才发现所带的钱不够,售票员告诉他:如果参观人数50人以上( 含50人)可以按团体票八折优惠,于是张老师购买了50张票,结果发现所带的钱还有剩余.那么张老师和他的学生至少有( )A.40人B.41人C.42人D.43人9.已知4<m<5,则关于x的不等式组--的整数解共有( )A.1个B.2个C.3个D.4个10把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些图书有( )A.23本B.24本C.25本D.26本二、填空题)1.“x的4倍与2的和是负数”用不等式表示为.2.若23x m-1-2>19是关于x的一元一次不等式,则m=.3.不等式4+3x≥x-1的所有负整数解的和为.4.若不等式--无解,则实数a的取值范围是.5.三张卡片A,B,C上分别写有三个式子2x-1,,-3( x-2 ),其中A卡片上式子的值不超过B 卡片上式子的值,但不小于C卡片上式子的值,则x的取值范围是.6.定义新运算:对于任意实数a,b都有a b=3a-b+1,其中等式右边是通常的加法、减法及乘法运算,如:25=3×2-5+1=2,若不等式x m<5的解集表示在数轴上,如图所示,则m的值为.三、解答题1.解不等式3( x-1 )≤,并把它的解集在数轴上表示出来.2.已知:不等式-≤2+x,( 1 )解该不等式,并把它的解集表示在数轴上;( 2 )若实数a满足a>2,说明a是否是该不等式的解.3.解不等式组--并写出该不等式组的最大整数解.4.)已知不等式--1<6的负整数解是方程2x-3=ax的解,试求出不等式组--的解集.5.若不等式组--的解集为-2<x<3,求a+b的值.6.已知二元一次方程组--其中x<0,y>0,求a的取值范围,并把解集在数轴上表示出来.7.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.( 1 )求每辆大客车和每辆小客车的乘客座位数;( 2 )由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.8.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.( 1 )如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?( 2 )如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?参考答案:一、选择题DCCAC BCBBD二、填空题1. 4x+2<0.22.3. -3.4. a≤-1.5.≤x≤6.16. 2.三、解答题( 共66分)1由题意得6( x-1 )≤x+4,6x-6≤x+4,6x-x≤4+6,5x≤10,x≤2,将解集表示在数轴上如下:2.( 1 )2-x≤3( 2+x),2-x≤6+3x,-4x≤4,x≥-1,解集表示在数轴上如下:( 2 )∵a>2,不等式的解集为x≥-1,而2>-1,∴a是不等式的解.3.解( x-1 )≤1,得x≤3,解1-x<2,得x>-1,则不等式组的解集是-1<x≤3.∴该不等式组的最大整数解为3.4∵--1<6,4-5x-2<12,-5x<10,x>-2,∴不等式的负整数解是-1,把x=-1代入2x-3=ax,得-2-3=-a,解得a=5,把a=5代入不等式组,得--解不等式组,得<x<15.5.由--得∴-解得-∴a+b=-1.6.解方程组,得-由题意,得-解得-4<a<.∴解集在数轴上表示为:7. 1 )设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得-解得答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个.( 2 )设租用a 辆小客车人教版七年级下册 第九章 不等式与不等式组单元卷福州屏东中学2018-2019学年第二学期数学校本练习(3)班级: 姓名: 座号: 成绩:一、选择题(本题共6小题,每小题4分,共24分)1.下列不等式中,是一元一次不等式是( )A.x 2-1<0B.x -y ≠0C.x ≥1D.043≤-x2.若m <n ,则下列不等式中正确的是( )A.m -1>n -1B.-2m <-2nC.6m <6nD.44nm >3.关于x 的不等式的解集在数轴上表示如图所示,该不等式的解集是( )A.x ≤2B.x <2C.x ≥2D.x >2 4.如果关于x 的不等式(m -1)x <m -1的解集为x >1,那么m 的取值范围是( ) A.m >-1 B.m >1 C.m <-1 D.m <15.小诚家距离学校2700米,他步行的平均速度为75米/分,跑步的平均速度为180米/分,若他从家到达学校的时间不超过12分钟,则至少需要跑步多少分钟?设小诚需要跑步x 分钟,则可列关于x 的不等式为( ) A.2700180)12(75≤+-x x B.2700180)12(75≥+-x x C.12180752700≤-+x x D.12751802700≥-+xx6.若关于x 的不等式组⎩⎨⎧≥-<-04)1(2a x x 无解,则a 的取值范围为( )A.a ≤3B.a ≥3C.a <3D.a >3二、填空题(本题共6小题,每小题4分,共24分)7. 5与x 的2倍的差是非负数,用不等式表示为 。

邯郸市第一中学七年级数学下册第九章【不等式与不等式组】知识点复习(含解析)

邯郸市第一中学七年级数学下册第九章【不等式与不等式组】知识点复习(含解析)

一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .4.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .5.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-6.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .267.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m8.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤9.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 10.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.关于x 的不等式组x 5x a ≤⎧⎨>⎩无解,则a 的取值范围是________.13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ . 15.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.16.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.17.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________. 18.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.19.若a b >0,cb<0,则ac________0. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).三、解答题22.解不等式组253(2)13212x xxx+≤+⎧⎪⎨+-≤⎪⎩,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x-+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x xx x+>⎧⎪+-⎨-≥⎪⎩.24.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.25.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .23.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .4.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .265.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E 9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数6.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2B .m >2C .m <2D .m ≤27.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a-8.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .9.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-,15,327-,π-,()22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为710.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->-C .1133a b >D .33a b ->-11.不等式1322x x -+>的解在数轴上表示正确的是( ) A .B .C .D .二、填空题12.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >. 其中正确的结论是______(填写正确结论的序号).13.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________.14.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.16.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.17.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .18.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.19.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)20.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .21.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 .三、解答题22.解不等式(或组): (1)2934x x++≤(2)() 47512432x xx x⎧-<-⎪⎨->-⎪⎩23.某商店有A商品和B商品,已知A商品的单价比B商品单价多12元,若购买400件B 商品与购买100件A商品所用钱数相等.(1)求A,B两种商品的单价分别是多少元.(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4,如果需要购买A,B 两种商品的总件数不少于32,且该商店购买的A,B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?说明理由.24.(1)解方程组:35427x yx y-=⎧⎨+=⎩;(2)解不等式组:()3121318xxx x-⎧≥+⎪⎨⎪--<-⎩.25.解下列不等式(组)(1)221 43x x+-≥(2)273125x xx+>-⎧⎪-⎨≥⎪⎩一、选择题1.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .102.下列不等式的变形正确的是( ) A .由612m -<,得61m < B .由33x ->,得1x >- C .由03x>,得3x > D .由412a -<,得3a >-3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数答错题数得分下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数9.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >-B .2m >C .3m >D .2m <-10.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <11.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-二、填空题12.已知点()2,3P a a -在第四象限,那么a 的取值范围是________. 13.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________. 14.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.15.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.16.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.17.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 18.若||2x =,||3y =,且0x y +<,则x y -值为______.19.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.20.若a b >0,cb<0,则ac________0. 21.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题22.解不等式组32,121.25x x x x <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.23.解不等式或不等式组,并把解集在数轴上表示出来. (1)432136x x -+>-; (2)2(1)0210x x +<⎧⎨-⎩.24.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.25.解不等式组:23332x xxx>-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.。

初中复习方略数学第八讲 不等式与不等式组

初中复习方略数学第八讲 不等式与不等式组

5x-1>3x-4
1.(2021·邵阳中考)下列数值不是不等式组-31x≤23-x
的整数解的是( A )
A.-2
B.-1
C.0
D.1
2.(2021·荆州中考)若点 P(a+1,2-2a)关于 x 轴的对称点在第四象限,则 a 的取值
范围在数轴上表示为( C )
3x+2>x-2, 3.(2020·仙桃中考)解不等式组x-3 3≤7-53x, 并把它的解集在数轴上表示出来.
并将解集在数轴上表示出来.
3 >-1.
【思路点拨】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来 即可.
【自主解答】解不等式 2x-3≤1,得:x≤2, x+1
解不等式 3 >-1,得:x>-4, 则不等式组的解集为-4<x≤2, 将不等式组的解集表示在数轴上如图:
x-1<0,
【典例 4】(2021·宿迁中考)解不等式组5x+2
3 > 2 -1. 2(2x-1)>3(3x-2)-6……第一步 4x-2>9x-6-6……第二步 4x-9x>-6-6+2……第三步 -5x>-10……第四步 x>2……第五步
任务一:填空:①以上解题过程中,第二步是依据____________(运算律)进行变形的. ②第________步开始出现错误,这一步错误的原因是________________. 任务二:请直接写出该不等式的正确解集.
【自主解答】(1)设该参赛同学一共答对了 x 道题,则答错了(25-1-x)道题,依题意 得:4x-(25-1-x)=86,解得:x=22. 答:该参赛同学一共答对了 22 道题. (2)设参赛者需答对 y 道题才能被评为“学党史小达人”,则答错了(25-y)道题,依题 意得:4y-(25-y)≥90,解得:y≥23. 答:参赛者至少需答对 23 道题才能被评为“学党史小达人”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设该单位参加旅游的员工有x人。(x,小明同学三次到某超市购买A、B两种商品,其中仅有 一次是有折扣的,购买数量及消费金额如下表:
解答下列问题: (1) 第几次购买的商品有折扣; (2) 求A、B两种商品的原价; (3) 若购买A、B两种商品的折扣数相同,求折扣数 (4) 小明同学再次购买A、B两种商品共10件,在(3) 的折扣数的前提下,这10件商品的消费金额不超过200 元,求至少购买A商品的件数.
记住 不等式, 性质3,乘除负数方向反;
乘除字母要思量,是否为0不能忘。
一,不等式的性质
记住 不等式, 性质3,乘除负数方向反;
乘除字母要思量,是否为0不能忘。
1、如果a<b,那么ac2 _≤__ bc2 如果ac2<bc2,那么a _<__ b
2、当a>b时 : 如果am>bm,那么m _>__ 0. 如果am bm,那么m _≥___ 0.
六,求字母的取值范围
4.已知不等式3(1-x)<2(x+10) - 2 ① 与不等式
4
x 3
a

2(5x 6
12)

(1)如果不等式①的解集与不等式②的解集相同,求a的值
(2)如果不等式①的解集都是不等式②的解,求a的值。
(3)如果不等式②的解集都是不等式①的解,求a的值。
七,不等式(组)的应用
3.求不等式(2x-1)(x+3)>0的解集
变式: 2x 1<0
x3
四,一元一次不等式组
4,对于实数x,我们规定[x]表示不大于x的 最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,
若[ x 4] 5 ,则x的取值可以是( C ) 10
A.40 B.45 C.51 D.56
五,不等式(组)的特殊解
的解,求a的取值范围。
解:把x=1代入不等式组得
解得:-4/3 <a ≤ 1
-1 1-2a
-3a < 4
所以a的取值范围是 -4/3 <a ≤ 1
六,求字母的取值范围
3.
已知关于x,y的方程组
x 2y 1 (1) x - 2y m (2)
(1)求这个方程组的解
(2)当m为何值时,这个方程组的解为
1、不等式组 x>-2 的非正整数解是__-1_,_0. x>-3
2、不等式组
x<2 x<5
的非负整数解是__0_,1_
方法:先求不等式(组)的解集, 再确定整数解问题
五,不等式(组)的特殊解
(2 x-6)<3-x

求不等式组
2
x 1 3
5x 1 5
的正整数解。 1 ②
解:解不等式①得:x<5
并把它的解集在数轴上表示出来.
四,一元一次不等式组
1,解不等式组:
2x 1 5 x 5
3
4
2(x 4) 3x 3
解: 由不等式①得: x≤8
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
∴ 原不等式组的解集为:5≤x≤8
四,一元一次不等式组
2.解不等式组 -1< 2x 1 2 3
解不等式②得:x≥1.4
∴不等式组的解集为1.4≤x<5
∵x为正整数
∴不等式组的正整数解:2、3、4
六,求字母的取值范围
1, 不等式(a-1)x<a-1的解集为x>1 则a 的范围是
六,求字母的取值范围
2,已知x=1是不等式组
3x 5 x 2a 2
3( x a) 4( x 2) 5
2、 下列说法中,错误的是( C ).
A.不等式 x<2 的正整数解只有一个。 B.-2是不等式 2x-1< 0 的一个解。 C.不等式-3x>9的解集是 x>-3。 D.不等式 x<8的整数解有无数多个。
提示:验证解时常代入,要求解集需解不等式
三,一元一次不等式
1.解不等式 2x 1 5 x 5, 34
知识框架

实 际 问 题
等 式 及 其 解




一元一次不等

式及解法


一元一次不等 式组及解法
不等式(组) 的应用
一,不等式的性质
性质1:不等式两边加(或减)同一个数 (或式子),不等号的方向 不变 。
性质2:不等式两边乘(或除以)同一个正 数,不等号的方向 不变 。
性质3:不等式两边乘(或除以)同一个负 数,不等号的方向 改变 。
根据题意得 8(x 10) 200

4(x 37) 8(x 10) ②
解得:15<x<17
∵ x为整数 ∴ x=16 答:这位工人原先每天可做零件16个.
七,不等式(组)的应用
4,某单位计划在新年期间组织员工到某地旅游, 参加旅游的人数估计为10~20人(包括10和20人), 甲、乙两家旅行社的报价都是每位游客200元。经 过协商,甲旅行社表示每位游客可按七五折付款; 乙旅行社表示可免去1位游客的费用,其余按八折 付款。该单位选择哪家比较合算?
七,不等式(组)的应用
3,某工人在生产中,经过第一次改进技术, 每天所做的零件的个数比原来多10个,因而 他在8天内做完的零件就超过200个,后来, 又经过第二次技术的改进,每天又多做37个 零件,这样他只做4天,所做的零件的个数 就超过前8天的个数,问这位工人原先每天 可做零件多少个?
解:设这个工人原先每天做x个零件,
实际问题
结合实际 确定答案
设未知数 解不等式
找出不等关系
列不等式
当应用题中出现以下的关键词, 如大,小,多,少,不小于,不大于,至少,至多等, 应属列不等式(组)来解决的问题, 而不能列方程(组)来解.
七,不等式(组)的应用
1,某蛋糕房销售A、B两种糕点,其单价均为8元 ,单个净利润分别为3元和4元,推广期两种糕点 均六折出售,如某天出售1000个糕点,问其中至
一,不等式的性质
3. 若 a>b,则下列不等式成立的是(D )
A. a-3<b-3
B. -2a>-2b
C. a b 44
D. c-2a < c-2b
4.若a<c<0<b,则abc与0的大小关系是( C)
A. abc<0
B. abc=0
C. abc>0
D. 无法确定
二,不等式的解与解集
1、下列说法中,正确的是( D ) A. x=-3是不等式x+4<1的解。 B. x > 3 2是不等式-2x>-3的解集, C.不等式 x>- 5的负整数解有无数多个。 D.不等式 x<7的非正整数解有无数多个。
少要有多少个B糕点才能保证不亏本?( A )
A、200 B、250 C、750 D、800
七,不等式(组)的应用
2,有大小两种货车,3辆大货车与4辆小货车一 次可以运货18吨,2辆大货车与6辆小货车一次可 以运货17吨。 (1)请问1辆大货车和1辆小货车一次可以分别 运货多少吨? (2)目前有33吨货物需要运输,货运公司拟安 排大小货车共10辆,全部货物一次运完。其中每 辆大货车一次运货花费130元,每辆小货车一次 运货花费100元,请问货运公司应如何安排车辆 最节省费用?
x大于1,y不小于-1.
(3)若以该方程组的解为坐标的点在第
四象限,求m的范围
x
y
m1 2
1-m 4
六,求字母的取值范围
(1)若不等式组 x>2有解,则m的取值范围是_______ x<m
(2)若不等式组 x>2无解,则m的取值范围是_______ x<m
(3)若不等式组 x>2有两个正整数解,
xm
则m的取值范围是_______
六,求字母的取值范围
(1)若不等式组
xm1 x 2 m 1
无解,则
m的取值范围为_______________
(2)若不等式组
xm1 x3
的解集为x>3,
则m的取值范围为_______________
(3)关于x的不等式-2k-x+6>0的正整数解 是1,2,3,求k的范围。
相关文档
最新文档