磁电式传感器是利用电磁感应原理
磁电式传感器

磁电式传感器磁电感应式传感器又称电动势式传感器,是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。
它是利用导体和磁场发生相对运动而在导体两端输出感应电动势的。
它是一种机-电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出阻抗小,又具有一定的频率响应范围(一般为10~1000 Hz),所以得到普遍应用。
磁电感应式传感器是以电磁感应原理为基础的。
由法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通变化时,线圈中所产生的感应电动势E (V)的大小取决于穿过线圈的磁通 的变化率,即磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等,一般可将磁电感应式传感器分为恒磁通式和变磁通式两类恒磁通式磁电感应传感器结构与工作原理恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
这类结构有动圈式和动铁式两种,如图所示。
磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度d x/d t 成正比的感应电动势E ,其大小为式中:N 为线圈在工作气隙磁场中的匝数;B 为工作气隙磁感应强度;l 为每匝线圈平均长度。
当传感器结构参数确定后,N 、B 和l 均为恒定值,E 与d x/d t 成正比,根据感应电动势E 的大小就可以知道被测速度的大小。
由理论推导可得,当振动频率低于传感器的固有频率时,这种传感器的灵敏度(E /v )是随振dtd Ne φ-=d d x E N Blt=-动频率而变化的;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。
不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的,但一般频响范围为几十赫至几百赫。
低的可到10 Hz 左右,高的可达2 kHz 左右。
磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。
二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。
磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。
当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。
三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。
四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。
2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。
3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。
4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。
5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。
6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。
7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。
8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。
9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。
五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。
2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。
传感器原理及其应用 第6章 磁电式传感器

材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。
(精选)磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告一.磁电式转速传感器的工作原理与特点磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器,属于非接触式转速测量仪表。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。
可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。
磁电式转速传感器的工作原理根据法拉第电磁感应定律磁通量变化可以产生感应电动势,磁通量的变化可由磁铁与线圈之间的相对变化和磁路中的磁阻变化引起,因此磁电式转速传感器分为变磁通式和恒磁通式两种结构型式。
变磁通式结构中,永久磁铁与线圈均固定,动铁心的运动使气隙和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构,又分为开磁路与闭磁路两种结构,如图1(a)、(b)。
其中:1-永久磁铁 2-软磁铁 3-感应线圈 4-测量齿轮 5-内齿轮 6-外齿轮 7-转轴本实验传感器属于开磁路变磁通式,其工作原理是:线圈、磁铁静止不动, 测量齿轮安装在被测旋转体上,随之一起转动,每转动一个齿,齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产生感应电势,其变化频率等于被测转速与测量齿轮齿数的乘积。
4321N S闭磁路变磁通式:它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成, 内外齿轮齿数相同。
当转轴连接到被测转轴上时, 外齿轮不动, 内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化, 从而引起磁路中磁通的变化,使线圈内产生周期性变化的感生电动势。
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
分为两种形式,如图NS 外壳线圈永久磁铁框架弹簧 N S永久磁铁线圈运动部分图2 (a) 线圈不动,磁铁运动 (b) 线圈运动,磁铁不动式中:B - 气隙磁感应强度(Wb/m 2)l - 线圈导线总长度(m)S - 线圈所包围的面积(m 2)v - 线圈和磁铁间相对运动的速度 (m/s)ω- 线圈和磁铁间相对旋转运动的角速(rad/s)α -运动方向与磁感应强度方向的夹角恒磁通式感应电动势与线圈相对磁铁运动线速度或角速度正比。
磁电感应式传感器

磁电感应式传感器
磁电感应式传感器简称感应式传感器,也称为电动式传感器。它 利用电磁感应原理,将运动速度转换成线圈中的感应电动势输出。它 的工作不需要外加电源,而是直接从被测物体吸收机械能量并转换成
传感器。由于这种传感器电路简单,性能稳定,输出功率较大,输出 阻抗小,一般不需要高增益放大器,用一般的放大器即可,因而大大 简化了配用的二次仪表电路。它还具有一定的频率响应范围(一般为 10~1 000 Hz),适用于振动、位移、转速、扭矩等参数的测量。这 种传感器在各工程系统中获得了较普遍的应用。其缺点是传感器的尺 寸和质量都较大。
e=-B0lW0v 1-2) 式中,B0为工作气隙磁感应强度;W0为线圈处于工作气隙磁 场中的匝数,称为工作匝数;l为每匝线圈的平均长度。
磁电感应式传感器
四、 动铁式ቤተ መጻሕፍቲ ባይዱ动速度传感器的应用
图1-3所示为动铁 式振动速度传感器的结 构图,它是一种惯性式 传感器,其活动质量是 一个由上下两个圆柱形 弹簧支承的活动磁钢。
图1-3 动铁式振动速度传感器的结构
磁电感应式传感器
磁钢在一内壁经镀铬研磨的不锈钢导向套筒中活动,磁钢大 多选用铸造铝镍钴永磁合金。磁钢两端各压入一个越磨越光的金 钯合金套环,因此,当磁钢在套筒中滑动时,摩擦极小,有利于 传感器敏感小的振动。磁钢套筒的两端用两个堵头焊封,使磁钢 弹簧和堵头成为不可拆的整体。
两个线圈绕在非导磁性金属(无磁不锈钢)骨架上,并与壳 体固连。骨架内壁固定着导向套筒,套筒与线圈骨架都起电磁阻 尼作用。线圈用高强度漆包线绕制,两个线圈的连接应保证其产 生的电动势为相加。为提高耐温绝缘强度,线圈上浸渍一层无机 绝缘材料。
磁电感应式传感器
在传感器壳盖上焊有一插座,插座上引有两根合金导电丝。 插座与合金导电丝均选用膨胀合金4J29,并用热膨胀系数相近的 玻璃粉在高温下烧结,使之相互熔封在一起,起到了良好的密封 和绝缘作用。
《传感器及其应用》第四章习题答案

第四章 思考题与习题1、简述磁电感应式传感器的工作原理。
磁电感应式传感器有哪几种类型?答:磁电感应式传感器是以电磁感应原理为基础的,根据法拉第电磁感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场的磁通量变化时,线圈中所产生的感应电动势e 的大小取决于穿过线圈的磁通φ的变化率,即:dtd Ne Φ-= 根据这个原理,可将磁电感应式传感器分为恒定磁通式和变磁通式两类。
2、某些磁电式速度传感器中线圈骨架为什么采用铝骨架?答:某些磁电式速度传感器中线圈采用铝骨架是因为线圈在磁路系统气隙中运动时,铝骨架中感应产生涡流,形成系统的电磁阻尼力,此阻尼起到衰减固有振动和扩展频率响应范围的作用。
3、何谓磁电式速度传感器的线圈磁场效应,如何补偿?答:线圈磁场效应是指磁电式速度传感器的线圈中感应电流产生的磁场对恒定磁场作用,而使其变化。
如公式v BlN e 0-=知,由于B 的变化而产生测量误差。
补偿方法通常是采用补偿线圈与工作线圈串接,来抵消线圈中感应电流磁场对恒定磁场的影响。
4、为什么磁电感应式传感器在工作频率较高时的灵敏度,会随频率增加而下降? 答:由理论推到可得传感器灵敏度与频率关系是:42020220220)(1)(1)2()1()(ωωωωξωωξωωωω-===+-=NBl v e k v NBl e v 取 当振动频率低于传感器固有频率时,这种传感器的灵敏度是随振动频率变化;当振动频率远大于固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随振动频率增加而下降。
5、变磁通式传感器有哪些优缺点?答:变磁通式传感器的优点是对环境条件要求不高,能在-150—+900C 的温度条件下工作,而不影响测量精度,也能在油、水雾、灰尘等条件下工作。
缺点主要是它的工作频率下限较高,约为50Hz ,上限可达100kHz ,所以它只适用于动态量测量,不能测静态量。
磁电式传感器结构图分析 各种磁电式传感器介绍

磁电式传感器结构图分析各种磁电式传感器介绍磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它能把被测对象的机械能转换成易于测量的电信号,是一种无源传感器。
磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定。
磁电式传感器的原理结构磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
根据电磁感应定律,当W匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e与磁通变化率dΦ/dt有如下关系:根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。
下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构(a)旋转型(变磁));(b)平移型(变气隙)其中永久磁铁1(俗称“磁钢”)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
变磁式结构在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
这类结构有两种,如下图所示。
图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。
气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动时,线圈中产生的感应电势e为式中B——气隙磁通密度(T);l——气隙磁场中有效匝数为W的线圈总长度(m)为l=laW(la为每匝线圈的平均长度)v——线圈与磁铁沿轴线方向的相对运动速度(ms-1)。
磁电感应式传感器工作原理

图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。
磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。
磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。
本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。
二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。
根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。
这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。
根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。
2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。
磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。
磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。
根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。
3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。
磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。
常见的磁电材料包括铁电材料和磁电材料。
电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。
封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。
相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。
4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。
当存在磁场时,磁电材料会产生相应的电场变化。
根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。
磁电式传感器原理

磁电式传感器原理
磁电式传感器是一种常用的物理量测量装置,它利用磁电效应实现对磁场的测量。
磁电效应是指当磁场作用于特定的材料时,会在材料中产生电势差或电流。
磁电式传感器的工作原理可以分为两个步骤:磁场的感应和电信号的转换。
首先,当磁场作用于磁电式传感器中的磁敏材料时,磁敏材料内部的自由电子会受到力的作用,从而形成一个电势差或电流。
这是由于磁场会改变电子的运动轨迹,导致电荷在材料中的分布发生变化。
这个电势差或电流的大小与磁场的强度成正比。
然后,磁电式传感器会将产生的电势差或电流信号转换成可用的测量信号。
这通常通过将电势差转换成电压信号或通过电流信号经过放大和滤波后得到。
这样的测量信号可以用来表示磁场的强度或与其他物理量的关系。
磁电式传感器有许多应用领域,包括磁场测量、运动传感、接近开关等。
它们通常具有灵敏度高、响应速度快、稳定性好等特点,可以实现对磁场的准确测量。
同时,磁电式传感器还可以通过改变磁敏材料的性质或结构,实现对不同范围和分辨率的测量需求。
磁电式传感器原理及应用

系为
式中:z为传感0 器z定子、转子的齿
数。
2 霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一 种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其 变化,可在各种与磁场有关的场合中使用。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿 命长,安装方便,功耗小,频率高(可达1 MHz),耐振动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀。
f Zn/ 60
式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电 动势频率(Hz)。这样当已知Z,测得f就知道n了。
开磁路式转速传感器结构比较简单,但输出信号小,另外当被 测轴振动比较大时,传感器输出波形失真较大。在振动强的场 合往往采用闭磁路式转速传感器。
被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙 平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地 变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转 速n(r/min)成正比,即f = n/30。在这种结构中,也可以用齿轮 代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出 信号频率f 同前式。
1.霍尔效应
半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄 片,当有电流I 流过薄片时,在垂直于电流和磁场的方向上将 产生电动势EH,这种现象称为霍尔效应。
B
C
D
A
磁感应强度B为零时的情况
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
当有图示方向磁场B作用时
数料R中H=的1电/(n子q)浓,度由。材料为物磁理场性和质薄所片决
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。
磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。
这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。
本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。
一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。
当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。
这种传感器通常用于测量速度、长度、位移等物理量。
其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。
金属感应片固定在壳体上,通过连接线连接到测量电路。
2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。
因此,通过测量电动势,可以确定磁场强度或相应的物理量。
3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。
此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。
二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。
当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。
这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。
1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。
半导体通常被夹在两个导电片之间,形成一个霍尔电场。
2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。
霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。
3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。
此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。
三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。
电磁传感器

如下关系:
e W d dt
(1-2)
根据以上原理,人们设计出两种磁电式传感器结构:变磁 通式和恒磁通式。变磁通式又称为磁阻式, 图1-1是变磁通式磁
电传感器,用来测量旋转物体的角速度。
4
4
3
2
1
3
1 A 6
N
S A 7 5 6 5
(a )
(b )
图1-1(a)为开磁路变磁通式:线圈、磁铁静止不动,测量齿
B o lW R Rf
(1-5)
10
而传感器的输出电压和电压灵敏度分别为
U o IoR f B o lWvR R Rf
f f
(1-6)
SU
Uo v
B o lWR R Rf
(1-7)
当传感器的工作温度发生变化或受到外界磁场干扰、受到机械
振动或冲击时,其灵敏度将发生变化,从而产生测量误差,其 相对误差为
轮安装在被测旋转体上,随被测体一起转动。每转动一个齿,
齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中
产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的 乘积。这种传感器结构简单,但输出信号较小,且因高速轴上 加装齿轮较危险而不宜测量高转速的场合。
5
图1-1(b)为闭磁路变磁通式传感器,它由装在转轴上的内齿 轮和外齿轮、永久磁铁和感应线圈组成,内外齿轮齿数相同。 当转轴连接到被测转轴上时,外齿轮不动,内齿轮随被测轴而 转动,内、外齿轮的相对转动使气隙磁阻产生周期性变化,从
v——相对运动速度。
9
1.1.2 磁电感应式传感器基本特性 当测量电路接入磁电传感器电路时,如图1-3所示,磁电传 感器的输出电流Io为
检测 二、填空题

第二章填空题1、灵敏度是传感器在稳态下(输出量变化)对(输入量变化)的比值。
2、系统灵敏度越(高),就越容易受到外界干扰的影响,系统的稳定性就越(差)。
3、(漂移)是指传感器在输入量不变的情况下,输出量随时间变化的现象。
4、要实现不失真测量,检测系统的幅频特性应为(常数),相频特性应为(线性)。
5、传感器的灵敏度是指(在稳态信号下输出量变化对输入量变化的比值)。
6、衡量传感器的静态特性的指标包含(线性度)、(灵敏度)、(迟滞)、(重复性)、和(漂移)。
(要求至少列出两种)7、一个高精度的传感器必须有良好的(静态特性)和(动态特性),才能完成信号无失真的转换。
8、传感器的动态特性是指传感器测量动态信号时,传感器输出反映被测量的(大小)和(波形)变化的能力。
研究传感器的动态特性有两种方法(时域的阶跃响应法)和(频率响应法)。
9、阶跃响应特性是指在输入为(阶跃函数)时,传感器的输出随(时间)的变化特性。
常用响应曲线的(上升时间)(响应时间)、(超调量)等参数作为评定指标。
10、频率响应特性是指将(频率)不同而(幅值)相等的正弦信号时间输入传感器,其输出正弦信号的幅值、相位与频率之间的关系。
频率响应特性常用的评定指标是(通频带),(时间常数),(固有频率)。
11、某位移传感器,当输入量变化5mm 时,输出电压变化300mv,其灵敏度为(60mv/mm)。
12、某传感器为一阶系统,当受阶跃信号作用时,在t=0 时,输出为10mV;t→∞时,输出为100mV;在t=5s 时,输出为50mV,则该传感器的时间常数为:(8.5s)。
第三章填空1、单位应变引起的(电阻值变化量)称为电阻丝的灵敏度系数。
2、产生电阻应变片温度误差的主要因素有(电阻温度系数)的影响和(试件材料和电阻丝材料的线膨胀系数)的影响。
3、直流电桥平衡条件是(相邻两臂电阻的比值相等)。
4、直流电桥的电压灵敏度与电桥的供电电压的关系是(正比)关系。
磁电式传感器

磁电式传感器磁电式传感器利用电磁感应原理将输入运动速度变换成感应电势输出,是一种有源传感器。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。
并且,它具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
有时磁电式传感器也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz。
磁电式传感器的构成磁电式传感器构成:磁路系统、线圈1、磁路系统由它产生恒定直流磁场。
为了减小传感器的体积,一般都采用永久磁铁;2、线圈由它运动切割磁力线产生感应电动势。
作为一个完整的磁电式传感器,除了磁路系统和线圈外,还有一些其它元件,如壳体、支承、阻尼器、接线装置等。
磁电式传感器的原理及特性(1)工作原理磁电式传感器的工作原理如图1 所示,它主要由旋转的触发轮(被等分的齿轮盘,上面有多齿或缺齿)和相对静止的感应线圈两部分组成。
当柴油机运行时,触发轮与传感器之间的间隙周期性变化,磁通量也会以同样的周期变化,从而在线圈中感应出近似正弦波的电压信号。
(2)输出特性由磁电式传感器工作原理可知,其产生的交流电压信号的频率与齿轮转速和齿数成正比。
在齿数确定的情况下,传感器线圈输出的电压频率正比于齿轮的转速,其关系为式中,n 为发动机转速,r/ s;z 为触发轮被等分的齿数;f 为磁电式传感器的输出信号频率,Hz 。
磁电式传感器的输出电压不仅与传感器和触发轮间的间隙( d )有关,而且与n 有关。
为了设计合理的磁电式传感器信号处理模块,本研究在不同的d 以及n 条件下,通过大量的试验测出传感器的输出电压特性。
图2 为不同的n 条件下,7 X 传感器输出峰值电压与d 的关系;图3 为在不同的d 条件下,7 X 传感器输出峰值电压与n 的关系。
48X 传感器输出峰值电压信号特征也如此。
从图中可看出,在同一d 条件下,传感器输出的峰值电压随n 升高而增大;在同一n 条件下,d 越小, 其输出峰值电压越高。
磁电式传感器的工作原理

磁电式传感器的工作原理
磁电式传感器是一种常见的电磁感应传感器,其工作原理利用磁场对电流产生作用力的特性。
磁电式传感器通常由磁铁和线圈组成。
当磁铁靠近或远离线圈时,会在线圈中产生一个变化的磁场。
根据法拉第电磁感应定律,当磁场的变化通过线圈时,会在线圈两端产生感应电动势。
这个感应电动势会导致线圈两端产生电流。
同时,根据安培力定律,磁场对电流也会产生作用力。
因此,磁电式传感器通过测量线圈中的电流大小或产生的磁场变化来检测外部磁场的变化。
具体来说,当磁铁靠近线圈时,线圈中的磁场会增强,导致感应电动势增大,进而产生更大的电流。
当磁铁远离线圈时,线圈中的磁场会减弱,感应电动势减小,导致电流变小。
因此,通过测量线圈中的电流大小或磁场的变化,可以对外部磁场的强度或位置进行检测。
磁电式传感器广泛应用于工业自动化、交通运输、医疗设备等领域。
常见的应用包括位置传感、速度检测、角度测量等。
这些应用都是基于传感器对外部磁场变化的高灵敏度和快速响应能力。
磁电式传感器(1)

★优点:结构简单、体积小、坚固、频率响应宽(从直流到
微波)、动态范围(输出电动势的变化)大、非接触、使用寿 命长、可靠性高、易于微型化和集成化 。
★缺点:转换率较低、温度影响大、要求转换精度较高时
必须进行温度补偿 。
一、霍尔效应
图7-11所示,一块长为 、l宽为w、厚为d的N型半导体簿 片,位于磁感应强度为B的磁场中,B垂直于 l -w平面。沿l
个高梯度磁场,磁场梯度可达1T/mm,灵敏度较高, 但其可测量的位移量特别小,一般 z 0.5mm。
2.转速测量
图(a)是把永磁体粘贴在旋转体上部,图(b)是把永磁体 粘贴在旋转体边缘。每个永磁体都形成一个小磁场,当旋转体转 动时,则霍尔电势发生突变。图(c)是其输出信号波形。永磁 体越多,分辨率越高,但最小脉冲周期不能小于计数周期。
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
霍尔效应演示
d a
b c
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧
偏移,在半导体薄片c、d方向的端面之间建立起霍尔电势。
在力FB的作用下,电子向半导体片的一个侧面偏转,在该
侧面上形成电子的积累,而在相对的另一侧面上因缺少电子而
一、工作原理:
根据电磁感应定律,线圈两端的感应电势e正比于匝链线 圈的磁通的变化率,即
e W d
dt Φ—匝链线圈的磁通;W—线圈匝数。
★若线圈在恒定磁场中作直线运动并切割磁力线时,则线
圈两端产生的感应电势e为
e WBl dx sin WBlvsin
dt
B—磁场的磁感应强度;x—线圈与磁场相对运动的位移; v—线圈与磁场相对 运动的速度;θ—线圈运动方向与磁场方向之间的夹角; W—线圈的有效匝 数; l—每匝线圈的平均长度。
电流传感器分类

电流传感器分类
电流传感器是一种用来检测电路中电流大小的传感器设备。
根据原理和测量范围的不同,电流传感器可以分为多种类型。
1. 电磁式电流传感器:利用电磁感应原理,通过测量磁场强度来检测电路中的电流大小。
常用于高电流测量,如电力变压器、发电机等。
2. 电势式电流传感器:利用欧姆定律,通过测量电路中的电压来计算电流大小。
常用于低电流测量,如电子电路、仪器仪表等。
3. Hall效应电流传感器:利用Hall效应原理,通过测量磁场中电荷载流子的效应来检测电路中的电流大小。
常用于直流电流测量和高精度电流测量。
4. 磁致伸缩电流传感器:利用磁致伸缩效应,通过测量磁场中的形变来检测电路中的电流大小。
常用于高精度电流测量。
5. 光电式电流传感器:利用光电效应原理,通过测量光电元件中的光电流来检测电路中的电流大小。
常用于直流电流测量和高精度电流测量。
以上是常见的几种电流传感器类型,不同类型的电流传感器适用于不同的电流测量场合。
在选择电流传感器时,应根据实际需要和测量要求进行综合考虑。
- 1 -。
磁电式传感器解析,磁电式传感器的原理结构及其应用

磁电式传感器解析,磁电式传感器的原理结构及其应用
磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它能把被测对象的机械能转换成易于测量的电信号,是一种无源传感器。
磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定。
磁电式传感器的原理结构磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;
利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
根据电磁感应定律,当W匝线圈在均恒磁场内运动时,设穿过线圈的磁通为,则线圈内的感应电势e与磁通变化率d/dt 有如下关系:
根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。
下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构
(a)旋转型(变磁));(b)平移型(变气隙)
其中永久磁铁1(俗称磁钢)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
变磁式结构
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动线圈切割磁力线而产生。
这类结构有两种,如下图所示。
图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。
气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动时,线圈中产生的感应电势e为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。
有时也称作电动式或感应式传感器, 只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz 。
磁电式传感器具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
根据电磁感应定律,当W 匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e 与磁通变化率d Φ/dt 有如下关系:
dt d W e φ-=
(5-1)
根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。
图5.1所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
其中永久磁铁1(俗称“磁钢”)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
图5.1 变磁通式结构(a)旋转型(变磁阻); (b)平移型(变气隙)
在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
这类结构有两种,如图5-2所示。
图(a)为动圈式,图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。
气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动是,线圈中产生的感应电势e 为:
图5.2 恒磁通式结构 (a)动圈式;(b)动铁式
Blv e =
(5-2)
式中 B ——气隙磁通密度(T);
l——气隙磁场中有效匝数为W 的线圈总长度(m)为l=la W (la 为每匝线圈的平均长度);
ν——线圈与磁铁沿轴线方向的相对运动速度(ms -1)。
当传感器的结构确定后,式(5-2)中B 、la 、W 都为常数,感应电势e 仅与
相对速度v 有关。
传感器的灵敏度为:
Bl v e S ==
(5-3)
为提高灵敏度,应选用具有磁能积较大的永久磁铁和尽量小的气隙长度,以提高气隙磁通密度B ;增加la 和W 也能提高灵敏度,但它们受到体积和重量、
内电阻及工作频率等因素的限制。
为了保证传感器输出的线性度,要保证线圈始终在均匀磁场内运动。
设计者的任务是选择合理的结构形式、材料和结构尺寸,以满足传感器基本性能要求。
一.传递矩阵
㈠.机械阻抗
图5.3(a)所示的质量为m 、弹簧刚度为k ,阻尼系数为c 的单自由度机械振动系统。
设在力F 作用下产生的振动速度和位移分别为ν和x ,由此可列出
力平衡方程:
⎥⎦⎤⎢⎣⎡+++=⎰t x vdt k cv dt dv m
F 0)0( (5-4)
图5.3(b)所示的由电阻R 、电感L 和电容C 组成的串联电路,设电源电压为u ,回路电流为i 、电荷为q 。
由此可列出电压平衡方程:
⎥⎦⎤⎢
⎣⎡+++=⎰t q idt C Ri dt di L u 0)0(1 (5-5)
这两个微分方程式虽然机电内容不同,但形式相同。
因此,这两个系统为一对相似系统。
一个系统可以根据求解它的微分方程来讨论其动态特性,故上述两相似系统的动态特性必然一致,可以实现机电模拟。
在电路中存在着电阻抗,它是将电流与
电压联系起来的一个参数,可以设想,如同电路中的电阻抗一样,假设机械系统存在“机械阻抗”Z M 。
类似于电系统,由式(5-4)可
得:)/(ωωk m j c v F Z M -+== (5-6)
可见Z M 是将机械系统中某一点上的运动响 图5.3 一对相似系统 (a)单自 应与引起这个运动的力联系起来的一个参数。
由度机械振动系统;(b)RLC 串联电路
由此可得,作简谐运动的线性机械系统的机械阻抗的定义为:
机械阻抗Z M (复数)=激振力(复数)/运动响应(复
数) (5-7)
引用机械阻抗概念来分析机械系统的动态特性,就可以用简单的代数方法求得描述动态特性的传递函数,而不必求解微分方程。
㈡.传递矩阵
在图5.2所示的传感器中,作用在运动部件(质量块)上的力有:
弹簧力:<![endif]> 阻尼力:c v vZ f c e ⋅==
惯性力:m m m m m Z v v m j v Z v f )()(0-=⋅==ω
电磁力:Bli f t =
质量块上力的平衡方程式为:
m t c k f f f f =++
当振动体振动速度为v 0、质量块速度为v m 、传感器壳体与质量块相对运动
速度为v t (v t = v 0-v m )时,由力平衡关系,机械阻抗定义和(5-6)可得:
0)(v jm f m k j
jm c v t ωω=+-+
(5-8) 令00v jm Z v f m ω==为由被测体的运动速度v 0
产生的、作用在质量块上的等效激振力。
将式(5-6)代入式(5-8),则有:
t m f Z v f +=0
(5-9)
对磁电式传感器,其传感器常数为:*==M Bl M
设线圈电感为L 、内电阻为R ,则Z e =R +j lω。
如果传感器与测量电路的输入端相连,则电路输入阻抗即为传感器负载阻抗Z e0,通常Z e0=R f 。
由于传感器作测量用,电气端电源e o =0,故e =iZ e0=iR f。
因此实际磁电式传感器的传递矩阵为:
⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡*****e i M M Z M Z M Z Z M e i Z M M
Z v f e M e M e M 1101100101 (5-10) 或将其展开成:
e M i M Z v e M
Z i M Z Z M f e
e e M ****-=-+
=1)(
(5-11)
二.动态特性 由上(5-11)将ω0jmv f =,0/e Z e i -=及)/(m k m j c Z M -+=ω代入第一式,即可求得传感器的频率传递函数
)1)(()/()(200
000+-++-=-+++-==****
m k m j c Z Z m j MM Z M m jk m c c mZ j Z Z mZ j MM M v e j H e e e e e e e ωωωωωωω (5-12) 由于传感器的固有角频率为m k
n =ω,故式(5-12)可改写为:
⋅++++-+-=*
*
][])(1[)(000200m j Z Z MM c Z Z Z Z Z Z M j H e e e e e n e e e ωωωω (5-13)
上式为复数形式,其频率响应特性如图5.4所示。
图中S 为随频率而变的传感器灵敏度。
Bl M S c ==为传感器常数。
传感器作为电压输出时,一般e f e Z R Z >>=0,故式(5-13)可简化为:
⋅++--=
m j R Bl c Bl j H f n ωωωω/])([])(1[)(22
(5-14) 由式(5-14)和图 5.4可以看出:
(1).当被测振动体的振动频率ω低于传感器的固有频率ω,即(ω/ω)<1时,传感器的灵敏度随频率变化而明显地变化。
(2).当被测体振动频率远高于传感器的固有频率时,灵敏度接近为一常数,它基本上不随频率变化。
在这一频率范围内,传感器的输出电压与振动速度成正比。
这一频段即传感器 图5.4 磁电式传感器的频响特性
的工作频段,或称作频响范围。
这时传感器可看作是一个理想的速度传感器。
(3).当频率更高时,由于线圈阻抗的增加,灵敏度也将随着频率的增加而下降。
必须指出,以上是对惯性式磁电传感器而言的。
对于动圈与测杆相固连的直接式磁电传感器,其上限工作频率取决于传感器的弹篑刚度k 值。
一般说来,直接式传感器频响范围可从零到几百Hz ,高至10kHz 。
一.测振传感器
磁电式传感器主要用于振动测量。
其中惯性式传感器不需要静止的基座作为参考基准,它直接安装在振动体上进行测量,因而在地面振动测量及机载振动监视系统中获得了广泛的应用。
如航空发动机、各种大型电机、空气压缩机、机床、车辆、轨枕振动台、化工设备、各种水、气管道、桥梁、高层建筑等,其振动监测与研究都可使用磁电式传感器。
常用的测振传感器有动铁式振动传感器、圈式振动速度传感器等。
二.磁电式力发生器与激振器
前已指出磁电式传感器具有双向转换特性,其逆向功能同样可以利用。
如果给速度传感器的线圈输入电量,那么其输出量即为机械量。
在惯性仪器——陀螺仪与加速度计中广泛应用的动圈式或动铁式直流力矩器就是上述速度传感器的逆向应用。
它在机械结构的动态实验中是非常重要的设备,用以获取机械结构的动态参数,如共振频率、刚度、阻尼、振动部件的振型等。
除上述应用外,磁电式传感器还常用于扭矩、转速等测量。
本章知识点
磁电式传感器的基本工作原理;传递矩阵分析动态特性的方法。