(八年级数学教案)因式分解复习教案
初中数学因式分解教案
初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
因式分解教案(优秀4篇)
因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。
I found he was lying on the ground.我发现他躺在地上。
【拓展】(1)lie有“位于”的意思。
A temple lies on the top of the mountain.一座寺庙位于山顶之上。
(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。
lie也可用作名词,意为“谎言”。
Don’t lie to me.不要向我撒谎。
The boy told a lie to me.这个男孩向我撒了谎。
(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。
die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。
I hope you can pass the exam.我希望你能通过考试。
【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。
I wish you to finish the work in time.我希望你及时完成这项工作。
3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。
(完整版)八年级下册初二数学《因式分解》教案
因式分解【知识梳理】因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
1 1 1即:多项式几个整式的积例:-ax -bx -x(a b)3 3 3因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。
(1) 整式乘法是把几个整式相乘,化为一个多项式;(2) 因式分解是把一个多项式化为几个因式相乘;(3) 因式分解的最后结果应当是积”的形式。
【例题】判断下面哪项是因式分解:珈(口+b+tr) 3x+6y-2 = 3(x+j)-2因式分解的方法提公因式法:定义:如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,从而将多项式化成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
系数---取各项系数的最大公约数字母---取各项都含有的字母指数---取相同字母的最低次幕(指数)【例题】12a3b3c 8a3b2c36a4b2c2的公因式是______________________ .【解析】从多项式的系数和字母两部分来考虑,系数部分分别是12、— & 6,它们的最大公约33 323 422 3 2 3 2数为2;字母部分abc, abc,abc都含有因式a b c,故多项式的公因式是2a b c .小结提公因式的步骤:第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号【基础练习】1. ax 、ay 、— ax 的公因式是 __________ ; 6mn 2、— 2m 2 n 3、4mn 的公因式是 ____________ . 2 •下列各式变形中,是因式分解的是()1A. a 2— 2ab + b 2— 1=( a — b ) 2— 1 B . 2x 2 2x 2x 2(1 丄)xC . (x + 2) (x — 2)= x 2— 4D . x 4— 1=( x 2 + 1) ( x + 1) (x — 1)3. 将多项式—6x 3y 2 + 3x 2y 2— 12x 2y 3分解因式时,应提取的公因式是() A. — 3xyB . — 3x 2yC . — 3x 2y 2D . — 3x 3y 34. 多项式a n — a 3n + a n + 2分解因式的结果是()A . a n (1 — a 3 + a 2)B . a n (— a 2n + a 2)C . a n (1 — a 2n + a 2)D . a n (— a 3 + a n )5 .把下列各式因式分解:—2x 2n — 4x n x (a — b ) 2n + xy (b — a ) 2^16. 应用简便方法计算:(1) 2012— 201(3)说明 3200 — 4X 3199+ 10>3198 能被 7 整除.5x 2y + 10xy 2— 15xy3x ( m — n ) + 2 (m — n )3 (x — 3) 2— 6 (3 — x )y (x — y ) 2—( y — x ) 3(2) 4.3 >199.8+ 7.6 >199.8— 1.9 >199.8【提高练习】1. 把下列各式因式分解:(1) _______________________________________ — 16a 2b -8ab= ; (2) x 3 (x — y ) 2 — x 2 (y — x ) 2= _______________________ 2. 在空白处填出适当的式子:3. 如果多项式x 2 + mx + n 可因式分解为(x + 1) (x — 2),则m 、n 的值为(4. (— 2) 10+(— 2) 11 等于()1-,求 x (x + y ) 2 (1 — y )— x (y + x ) 2 的值27. 因式分解:(1) ax + ay + bx + by ;(1) x (y — 1) — ( )=(y — 1) (x + 1 );(2) — ab 2 — b 3c (27 9)(2a + 3bc ). A . m =1, n = 2B . m =— 1, n = 2C . m = 1, n = — 2D . m =— 1, n = — 2A . — 210B . — 211C . 2105 .已知x , y 满足2x y x 3y6,求 7y (x — 3y ) 1,2— 2 (3y — x ) 3的值.6.已知 x + y = 2, xy(2) 2ax + 3am — 10bx — 15bm .运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
14.3 因式分解【教案】八年级上册数学
14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。
人教版八年级数学上册教学设计14.3 因式分解
人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。
教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。
本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。
但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。
四. 教学重难点1.重点:因式分解的方法和技巧。
2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。
五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。
六. 教学准备1.准备相关教学PPT和教学素材。
2.设计好教学问题和练习题。
3.准备好黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。
例如:已知二次函数的图像,求其解析式。
2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。
通过PPT展示提公因式法、公式法等具体的因式分解方法。
3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。
教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。
(完整版)因式分解——公式法教案
因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
所以分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
所以,因式分解的学习是数学学习的重要内容。
依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。
所以公式法是分解因式的重要方法之一,是现阶段的学习要点。
三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。
(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。
3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。
整式和因式分解复习教案
整式和因式分解复习教案第一章:整式的概念与性质1.1 内容概述本节主要回顾整式的定义、分类及其基本性质。
1.2 教学目标(1) 理解整式的概念,掌握整式的分类;(2) 掌握整式的加减法、乘法运算规则;(3) 理解整式的系数、次数、度等基本性质。
1.3 教学重点与难点重点:整式的概念、分类、基本性质;难点:整式的运算规则及性质的灵活运用。
1.4 教学方法采用讲授法、例题解析法、小组讨论法等。
1.5 教学过程(1) 复习整式的定义及分类;(2) 复习整式的加减法、乘法运算规则;(3) 复习整式的系数、次数、度等基本性质;(4) 进行典型例题讲解与分析;(5) 学生练习,教师点评。
第二章:因式分解的概念与方法2.1 内容概述本节主要回顾因式分解的定义、方法及其应用。
(1) 理解因式分解的概念,掌握因式分解的方法;(2) 学会运用因式分解解决实际问题。
2.3 教学重点与难点重点:因式分解的概念、方法;难点:因式分解在实际问题中的应用。
2.4 教学方法采用讲授法、例题解析法、小组讨论法等。
2.5 教学过程(1) 复习因式分解的定义及方法;(2) 复习因式分解在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第三章:提公因式法与公式法3.1 内容概述本节主要回顾提公因式法与公式法在因式分解中的应用。
3.2 教学目标(1) 掌握提公因式法与公式法的运用;(2) 学会运用提公因式法与公式法解决实际问题。
3.3 教学重点与难点重点:提公因式法与公式法的运用;难点:提公因式法与公式法在实际问题中的应用。
采用讲授法、例题解析法、小组讨论法等。
3.5 教学过程(1) 复习提公因式法与公式法的定义及运用;(2) 复习提公因式法与公式法在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第四章:因式分解的应用4.1 内容概述本节主要回顾因式分解在实际问题中的应用。
4.2 教学目标(1) 学会运用因式分解解决实际问题;(2) 培养学生的数学应用能力。
初中数学因式分解教案(推荐6篇)
初中数学因式分解教案(推荐6篇)初中数学因式分解教案(一)教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x24和y225学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2b2=(a+b)(ab)如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2=2②b2=2③0.16a4=2④1.21a2b2=2⑤2x4=2⑥5x4y2=2解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2例2:下列多项式能否用平方差公式进行因式分解①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2解答:①1.21a2+0.01b2能用②4a2+625b2不能用③16x549y4不能用④4x236y2不能用初中数学因式分解教案(二)因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
初二数学因式分解教案优秀10篇
初二数学因式分解教案优秀10篇因式分解教案篇一教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式。
陈锦星八年级数学教案3因式分解(二)
旭博教育一对一个性化辅导教案讲义:课题—分解因式(二)学生:陈锦星学科:数学教师:麦明秀日期: 2012-8-20 ★考点分析:1、掌握分解配方法、公式法、十字相乘法的灵活运用:2、培养学生分析式子,总结规律的能力3、培养学生归纳总结的能力,拓展学生的视野。
★重难点重点:配方法、公式法的灵活运用难点:配方法★教学过程:一、复习导入1、因式分解(1)x2+3x-10 (2)5x2-8x-13(3)4x2+15x+9 (4)15x2+x-2二、新知识讲解:(一)预备知识例1、配方:填上适当的数,使下列等式成立:(1)x2+12x+ =(x+6)2(2)x2―12x+ =(x―)2(3)x2+8x+ =(x+ )2从上可知:常数项配上一次项系数的一半的平方。
例2、用配方法解方程x2+2x-1=0时分析:先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解。
解:①移项得__________________②配方得__________________(两边同时加上一次项系数一半的平方)即(x+_____)2=__________③x+__________=__________或x+__________=__________④x1=__________,x2=__________配方法:通过配成的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。
3、解方程(1)x2-4x+3=0 (2)x2+6x+9=8同步练习1、将下列各方程写成(x+m) 2=n的形式(1)x2-2x+1=0 (2)x2+8x+4=02、解下列方程(1) x2一l0x十25=7;(2) x2十6x=1.(二)中考应用(必做题)解方程:在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?(一)知识点1:配方法例3、分解因式1.x 2-2xy-35y 2 2.x 2-12x-15 3.x 2-9xy+4y 2同步练习 1、x 2-10x+5 2.x 2-12x+6 3.x 2+7xy-28y 2例4、因式分解1. 3x 2-12x-15 2.2x 2-4xy-35y 2 3.2x 2-9xy+4y 2同步练习1. 4x 2-12x-18 2.3x 2-9xy-35y 2 3.4x 2-9xy+4y 2例3、分解因式1、52+-bx x2、c bx x +-23、c bx ax +-2小结:对于任意的c 、、b a )0(≠a ,c bx ax +-2=))((21x x x x --其中a ac b a b x 24221-+-=,aac b a b x 24222---=,另ac b 42-=∆ 以上就是分解因式的公式法,(解方程也可以应用),但前提是0>∆例4、用公式法分解因式1.2552--x x 2.7622--x x 3.5432--x x同步练习1.2852--x x 2.7922--x x 3.2432+-x x三、巩固练习1、20x 2+( )+14y 2=(4x-7y)(5x-2y). 2.x 2-3xy-( )=(x-7y)(x+4y).3.x 2+( )-28y 2=(x+7y)(x-4y). 4.x 2+( )-21y 2=(x-7y)(x+3y).5.kx 2+5x-6=(3x-2)( ),k=______.6.6x 2+5x-k=(3x-2)( ),k=______.7.6x 2+kx-6=(3x-2)( ),k=______.8.18x 2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.9.18x 2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.10.已知()223f x x x =++,⑴求()f x 的最值;⑵若[]3,2x ∈--,求()f x 的最值。
人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例
(一)知识与技能
1.让学生掌握因式分解的基本概念,理解因式分解的意义和作用。
2.使学生掌握提公因式法和公式法这两种基本的因式分解方法,并能够运用这两种方法进行简单的因式分解。
3.培养学生运用因式分解解决一些实际问题的能力,提高学生的数学应用意识。
4.培养学生运用数学知识分析和解决问题的能力,提高学生的数学思维水平。
2.问题导向的教学策略:本节课通过设计具有层次性和挑战性的问题,引导学生进行思考和探究,使学生在解决问题的过程中掌握因式分解的方法。这种问题导向的教学策略不仅培养了学生的逻辑思维能力,还提高了学生的创新解题能力。
3.小组合作的实践:通过组织学生进行小组合作,让学生在合作中探究和解决问题,提高了学生的实践能力。同时,小组合作也培养了学生的团队协作意识和交流沟通能力,使学生在合作中得到成长。
三、教学策略
(一)情景创设
1.生活情境:通过引入生活中的实际问题,让学生感受因式分解在实际生活中的应用,激发学生的学习兴趣。
2.故事情境:讲述与因式分解相关的历史故事,让学生了解因式分解的发展历程,增强学生的文化素养。
3.问题情境:创设具有挑战性和启发性的问题,引发学生的思考,引导学生进入学习状态。
2.利用故事情境:讲述与因式分解相关的历史故事,如“笛卡尔和因式分解”,激发学生的学习兴趣。
3.提出问题:创设具有挑战性和启发性的问题,如“你能将一个多项式分解成几个整式的乘积吗?”,引发学生的思考,引导学生进入学习状态。
(二)讲授新知
1.提公因式法:引导学生观察和分析多项式,找出公因式,并进行提取,让学生理解并掌握提公因式法。
2.组织讨论:引导学生积极参与讨论,鼓励学生提出自己的观点和思路,培养学生的团队协作能力。
因式分解教案 (优秀5篇)
因式分解教案(优秀5篇)初二数学因式分解教案篇一1、shouldshould是情态动词,意为“应当,应该”。
表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。
其主要用法有:(1)表示责任和义务,意为“应该”。
You should take your teacher’s advice.你应该听从你老师的建议。
You shouldn’t be late for class.你不应该上课迟到。
(2)表示推断,意为“可能,该”。
The train should have already left.火车可能已经离开了。
(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to 更加委婉。
You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。
2、need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。
sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。
You didn’t need to come so early.你不必来这么早。
The flowers need watering.花需要浇水。
(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。
He need not go at once.他不必立刻走。
Need he go at once?他必须立刻走吗?用must提问的句子,其否定回答常用needn’t。
— Must he hand in his homework this morning?他必须今天上午交作业吗?— No, he needn’t.不,不必了。
因式分解集体备课
因式分解集体备课教案
一、教学目标
知识与技能:使学生掌握因式分解的基本概念和基本方法,能够进行简单的因式分解。
过程与方法:通过观察、归纳、演绎等方法,培养学生的数学思维能力。
情感态度与价值观:培养学生对数学的兴趣和爱好,培养其独立思考、勇于探索的精神。
二、教学内容与步骤
导入:通过复习整式的乘法,引出因式分解的概念。
讲解与示范:讲解因式分解的方法,如提公因式法、公式法等,并进行相应的例题示范。
学生实践:学生自己尝试进行因式分解,教师进行个别指导。
总结与归纳:总结因式分解的步骤和注意事项,强调因式分解与整式乘法的联系和区别。
作业与拓展:布置相关练习题,要求学生掌握基本的因式分解方法,同时鼓励他们尝试更高级的因式分解技巧。
三、教学方法与手段
教学方法:采用讲解与实践相结合的方法,注重学生的参与和体验。
教学手段:利用多媒体课件展示教学内容,同时结合板
书进行讲解和演示。
四、教学评价与反馈
课堂互动:通过提问、讨论等方式,了解学生对因式分解的掌握情况。
课后反馈:布置作业,要求学生完成相关练习题,并收集学生的反馈意见。
评价与调整:根据学生的反馈意见,对教学方法和手段进行调整,以提高教学效果。
五、教学反思与改进
总结本次集体备课的优点和不足之处。
探讨如何更好地激发学生的学习兴趣和提高他们的学习效果。
交流教学心得和经验,共同提高教学水平。
八年级数学下册 4.1 因式分解教案1 北师大版(2021-2022学年)
课题:4.1因式分解教学目标:1、理解因数分解的概念,能判断一个式子的变形是否为因式分解。
2、体会因式分解与整式乘法在整式变形过程中的互逆关系。
3、培养学生类比的数学思想和逆向运算的能力,逐步形成独立思考,主动学习的习惯.重点与难点分析:重点:因式分解的概念.难点:理解因式分解与整式乘法的相互关系,并运用它们寻求因式分解的方法.课前准备:教师准备:多媒体课件.学生准备:复习整式的乘法。
教学过程:一、创设情境,自然引入拼图游戏:( 老师课件出示)四个图形能不能拼成一个大的长方形?思考:拼成前后它们面积有什么样的关系?通过前后的面积相等,老师写出关系式,左边是一个多项式,右边是一个整式的乘积的形式,这就是我们即将学习的内容:因式分解的问题.(老师板书课题:4。
1因式分解.)复习回顾:1.整式乘法有几种形式?(1)单项式乘以单项式(2)单项式乘以多项式: a(m+n)=_______(3)多项式乘以多项式:(a+b)(m+n)=_____________2。
乘法公式有哪些?(1)平方差公式: (a+b)(a-b)=_______(2)完全平方公式:(a±b)2=___________处理方式:让学生独立思考回答,然后老师找个学生用鼠标拼图演示.设计意图:通过一个拼图游戏引入新课,想让学生感受它们面积相等,为因式分解的推出做好铺垫,同时提高学生的学习兴趣,在玩中学,在学中玩。
同时复习回顾整式乘法为新学知识做准备。
二、师生互动,探究新知活动一:议一议993-99能被100整除吗?你是怎样想的?与同伴交流.993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993—99能被100整除.还能被哪些正整数整除?(99,98,980,990,9702)(老师点拨:回答这个问题的关键是把993—99化成了怎样的形式?)从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.活动二:比一比如果将上面问题中的99换成a,你能尝试把a3—a 化成了几个整式积的形式吗? a3-a=a (a2-1)=a(a-1)(a+1)从上面的推导过程看,等号左边是一个多项式,而等号右边是变成了几个整式积的形式.处理方式:学生自己独立完成,小组内互相矫正。
八年级数学上册《因式分解》教案设计范文
八年级数学上册《因式分解》教案设计范文八年级数学上册《因式分解》教案设计范文一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:(1)7/9 ×13-7/9 ×6+7/9 ×2= ;(2)-2.67×132+25×2.67+7×2.67= ;(3)992–1= 。
设计意图:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题P165的探究(略);2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
北师大版八年级数学下册第四章《因式分解》复习 教案
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
因式分解教案锦集6篇
因式分解教案锦集6篇因式分解教案篇1(一)学习目标1、会用因式分解进行简单的多项式除法2、会用因式分解解简单的方程(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的推理过程是本节课的难点。
(三)教学过程设计看一看1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:①________________②__________2.应用因式分解解简单的一元二次方程.依据__________,一般步骤:__________做一做1.计算:(1)(-a2b2+16)÷(4-ab);(2)(18x2-12xy+2y2)÷(3x-y).2.解下列方程:(1)3x2+5x=0;(2)9x2=(x-2)2;(3)x2-x+=0.3.完成课后练习题想一想你还有哪些地方不是很懂?请写出来。
____________________________________(四)预习检测1.计算:2.先请同学们思考、讨论以下问题:(1)如果A×5=0,那么A的值(2)如果A×0=0,那么A的值(3)如果AB=0,下列结论中哪个正确( )①A、B同时都为零,即A=0,且B=0;②A、B中至少有一个为零,即A=0,或B=0;(五)应用探究1.解下列方程2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值(六)拓展提高:解方程:1、(x2+4)2-16x2=02、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?(七)堂堂清练习1.计算2.解下列方程①7x2+2x=0②x2+2x+1=0③x2=(2x-5)2④x2+3x=4x因式分解教案篇2第6.4因式分解的简单应用背景材料:因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。
八年级数学下册平方差公式法因式分解教案设计
八年级数学下册平方差公式法因式分解教案设计一、教学目标:1. 让学生掌握平方差公式的结构特征和运用方法。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力,培养学生的逻辑思维和运算能力。
二、教学内容:1. 平方差公式的介绍和记忆。
2. 平方差公式在因式分解中的应用。
3. 平方差公式解决实际问题。
三、教学重点与难点:1. 教学重点:平方差公式的记忆和运用,以及因式分解的方法。
2. 教学难点:平方差公式的灵活运用,解决实际问题。
四、教学方法:1. 采用讲解法,引导学生理解平方差公式的内涵。
2. 采用案例分析法,让学生通过具体例子掌握平方差公式的运用。
3. 采用练习法,巩固学生对平方差公式的记忆和运用。
五、教学过程:1. 导入新课:通过复习平方根的概念,引出平方差公式。
2. 讲解平方差公式:讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 案例分析:给出具体例子,让学生运用平方差公式进行因式分解。
4. 练习巩固:设计练习题,让学生独立完成,巩固对平方差公式的运用。
5. 总结拓展:总结本节课所学内容,引导学生思考如何运用平方差公式解决实际问题。
6. 布置作业:设计课后作业,让学生进一步巩固平方差公式的运用。
六、教学评价:1. 课后作业:检查学生对平方差公式的掌握程度,以及能否运用公式进行因式分解。
2. 课堂练习:观察学生在课堂练习中的表现,了解他们对平方差公式的理解和运用情况。
3. 学生反馈:听取学生的反馈意见,了解他们在学习过程中的困惑和问题。
七、教学反思:1. 对教学方法的反思:思考本节课所采用的教学方法是否有效,是否需要调整。
2. 对教学内容的反思:分析平方差公式的讲解是否清晰,学生是否能够理解和记忆。
3. 对教学进度的反思:考虑是否需要调整教学进度,以满足学生的学习需求。
八、教学拓展:1. 平方差公式的应用:引导学生思考平方差公式在解决实际问题中的应用。
2. 因式分解的其他方法:介绍其他因式分解的方法,如提取公因式法、交叉相乘法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解复习教案
八年级数学教案
教学目标:
1•知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.
2•过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.
3•情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.
教学重、难点:用提公因式法和公式法分解因式.
教具准备:多媒体课件(小黑板)
教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这
种变形就是因式分解•什么叫因式分解?
知识详解
知识点1因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
【说明】(1)因式分解与整式乘法是相反方向的变形.
例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验.
怎样把一个多项式分解因式?
知识点2提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc二m(a+b+c就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m 所得的商像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-
4ab+2a=2a(4ab-2b+1).
探究交流
下列变形是否是因式分解?为什么?
(1) 3x2y-xy+y二y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n( x2-x+1)=x n+2-x n+1+x n.
典例剖析师生互动
例1用提公因式法将下列各式因式分解.
(1) -x3z+x4y;⑵ 3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成- (a-b),然后再提取公因式.
小结运用提公因式法分解因式时,要注意下列问题:
(1) 因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.
(2) 如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。
这时注意到(a-b) n=(b-a) n(n 为偶数).
(3) 因式分解最后如果有同底数幕,要写成幕的形式.
学生做一做把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知识点3公式法
(1)平方差公式:a2-b2=(a+b)(a-b)即两个数的平方差,等于这两个数的和与这个数的差的积.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2 士2ab+b2=(a ±其中,a2士2ab+t叫做完全平方式.即两个
数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方例如:4x2-12xy+9y2=(2x)2-22x 3y+(3y)2=(2x-3y)2.
探究交流
下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x -1= (x-1)2.
例2把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本题旨在考查用完全平方公式分解因式.
学生做一做把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
综合运用
例3分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式
小结解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式.是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止.
探索与创新题
例4 若9x2+kxy+36y2是完全平方式则k= .
分析:完全平方式是形如:a2 士2ab+b即两数的平方和与这两个数乘积的2倍的和(或差).
学生做一做若x2+(k+3)x+9是完全平方式则k= .
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题.
各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。
自我评价知识巩固
1. 若x2+2(m-3)x+16是完全平方式,则m的值等于()
A.3
B.-5
C.7.
D.7 或-1
2. 若(2x)n-81=(4x2+9)(2x+3)(2x-3则n 的值是( )
A.2
B.4
C.6
D.8
3•分解因式:4x2-9y2二 4.已知x-y=1,xy=2求x3y-2x2y2+xy3的值. 5•把多项式1-x2+2xy-y2分解因式
思考题分解因式(x4+x2-4)(x4+x2+3)+10.
附:板书设计
因式分解
因式分解的定义探究交流探索创新提公因式法典例剖析课堂小结公式法&n
八年级数学教案
bsp; 综合运用自我评。