小学奥数干货-5-2-1 数的整除之四大判断法综合运用(一).教师版

合集下载

数的整除判断技巧

数的整除判断技巧

数的整除判断技巧数的整除判断是数学中的基础概念之一,它涉及到了整数的性质和运算规则。

在进行整除判断时,我们需要掌握一些技巧和方法,以便能够更快、更准确地判断一个数是否能够整除另一个数。

下面将介绍一些常用的整除判断技巧:1.除法法则整除是除法的一个基本概念,即整数a除以整数b,如果能够得到整数商,则a能够整除b,反之则不能整除。

这是最常用、最直观的整除判断方法。

2.末位法则末位法则是指判断一个数能否整除另一个数的时候,只需要判断两个数的个位数是否能够整除。

例如,要判断120是否能够整除10,可以直接判断0是否能够整除10,显然是能够整除的。

3.因数分解法对于一个给定的数,我们可以使用因数分解的方法将其分解成若干个质数的乘积。

例如,要判断一个数是否能够整除24,我们可以将24分解成2×2×2×3的形式,然后判断这些质数是否能够整除另一个数。

如果能够整除,则原数也能够整除;反之,则不能整除。

4.尾数法则尾数法则是指判断一个数能否整除另一个数的时候,只需要判断两个数的最后几位数是否能够整除。

例如,要判断一个数能否整除210,可以直接判断该数的最后两位数是否能够整除210的最后两位数。

如果能够整除,则原数也能够整除;反之,则不能整除。

5.公因数法如果判断一个数能否整除另一个数,可以先判断两个数的公因数。

如果两个数有相同的公因数,那么被除数能够整除除数;反之,则不能整除。

例如,要判断72能否整除120,可以先求出它们的公因数,如24和12,而72能够整除24,则可以判断72能够整除120。

上述是几种常用的整除判断技巧,应用它们可以快速判断一个数能否整除另一个数。

在实际问题中,我们还可以根据具体的整除性质和条件,灵活运用这些技巧进行整除判断。

同时,我们需要注意到整除的一些特殊情况1.被除数为0的情况:任何非零数除以0都是无意义的,因此0不能被任何数整除。

2.除数为0的情况:任何非零数除以0都是无穷大或无穷小,因此任何数都不能整除0。

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

【教师版】小学奥数5-5-2 带余除法(二).专项练习及答案解析

1.能够根据除法性质调整余数进行解题 2.能够利用余数性质进行相应估算 3.学会多位数的除法计算 4. 根据简单操作进行找规律计算带余除法的定义及性质 1、定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2、余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数;⑵ 余数小于除数.3、解题关键理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.模块一、带余除法的估算问题例题精讲知识点拨教学目标5-5-2.带余除法(二)【例 1】修改31743的某一个数字,可以得到823的倍数。

问修改后的这个数是几?【考点】带余除法的估算问题【难度】3星【题型】解答【解析】本题采用试除法。

823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.【答案】33743【例 2】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】小学数学夏令营【解析】由48412÷=÷=,48412÷=知,一组是10或11人.同理可知48316÷=,4859.6知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组10人.【答案】10【例 3】一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.【考点】带余除法的估算问题【难度】3星【题型】解答【解析】因为一个两位数除以13的商是6,所以这个两位数一定大于13678⨯=,并且小于⨯+=;又因为这个两位数除以11余6,而78除以11余1,这个两位数13(61)91为78583+=.【答案】83【例 4】在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【考点】带余除法的估算问题【难度】3星【题型】解答【解析】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余0)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.【答案】99【例 5】托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.【考点】带余除法的估算问题【难度】3星【题型】解答【关键词】圣彼得堡数学奥林匹克【解析】除以3、6和9的余数分别不超过2,5,8,所以这三个余数的和永远不超过++=,既然它们的和等于15,所以这三个余数分别就是2,5,8.所以该25815数加1后能被3,6,9整除,而[3,6,9]18=,设该数为a,则181=-,即a m18(1)17=-+(m为非零自然数),所以它除以18的余数只能为17.a m【答案】17模块二、多位数的余数问题【例 6】 2000"2"2222个除以13所得余数是_____.【考点】多位数的余数问题 【难度】3星 【题型】填空【解析】 方法一、我们发现222222整除13,2000÷6余2,所以答案为22÷13余9。

最新的六年级奥数知识点:数的整除.doc

最新的六年级奥数知识点:数的整除.doc

最新的六年级奥数知识点:数的整除
这篇最新的六年级奥数知识点:数的整除是特地为大家整理的,希望对大家有所帮助!
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号|,不能整除符号;因为符号∵,所以的符号;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

小学奥数教师版-5-4-4 完全平方数及应用(一)

小学奥数教师版-5-4-4 完全平方数及应用(一)

5-4-4.完全平方数及应用(一)教学目标1.学习完全平方数的性质;2.整理完全平方数的一些推论及推论过程3.掌握完全平方数的综合运用。

知识点拨一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

5-2-1数的整除之四大判断法综合运用(一).教师版

5-2-1数的整除之四大判断法综合运用(一).教师版

5-2-1. 数的整除之四大判断法综合运用(一)教课目的1.认识整除的性质;2.运用整除的性质解题;3.整除性质的综合运用 .知识点拨一、常有数字的整除判断方法1. 一个数的末位能被 2 或5 整除,这个数就能被 2 或 5整除;一个数的末两位能被 4 或 25 整除,这个数就能被4或 25整除;一个数的末三位能被8 或 125 整除,这个数就能被8 或 125 整除;2.一个位数数字和能被 3 整除,这个数就能被 3 整除;一个数各位数数字和能被9 整除,这个数就能被 9 整除;3. 假如一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11 整除,那么这个数能被11整除 .4. 假如一个整数的末三位与末三位从前的数字构成的数之差能被7、11 或13 整除,那么这个数能被7、 11或 13整除 .5.假如一个数能被99 整除,这个数从后两位开始两位一截所得的所有数(假如有偶数位则拆出的数都有两个数字,假如是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99 的倍数,这个数必定是 99 的倍数。

【备注】(以上规律仅在十进制数中建立 .)二、整除性质性质 1假如数a和数b都能被数c整除,那么它们的和或差也能被 c 整除.即假如c︱ a,c︱ b,那么 c︱ (a±b).性质 2假如数a能被数b整除,b又能被数 c 整除,那么 a 也能被 c 整除.即假如b∣a,c∣b,那么 c∣ a.用相同的方法,我们还能够得出:性质 3假如数a能被数b与数c的积整除,那么a 也能被 b 或 c 整除.即假如bc∣ a,那么 b∣ a, c∣ a.性质 4假如数a能被数b整除,也能被数 c 整除,且数 b 和数 c 互质,那么 a 必定能被 b与 c 的乘积整除.即假如 b∣ a, c∣ a,且 (b, c)=1,那么 bc∣ a.比如:假如 3∣ 12,4∣ 12,且 (3 ,4)=1 ,那么 (3 ×4) ∣ 12.性质 5假如数a能被数b整除,那么am 也能被 bm 整除.假如b|a,那么 bm|am(m 为非 0 整数);性质 6假如数a能被数b整除,且数c 能被数 d 整除,那么ac 也能被 bd 整除.假如b|a ,且 d| c ,那例题精讲模块一、 2、5 系列【例 1】975 935 972 □ ,要使这个连乘积的最后 4 个数字都是 0,那么在方框内最小应填什么数?【考点】整除之2、5 系列【难度】 2 星【题型】填空【分析】积的最后 4 个数字都是0,说明乘数里起码有4个因数 2和 4个因数 5.5 5 39 ,5 187,975 935 972 2 2 243,共有 3 个 5,2 个 2,因此方框内起码是22520.【答案】 2 2 5 20【例 2 】从 50 到 100 的这 51 个自然数的乘积的末端有多少个连续的0?【考点】整除之2、5 系列【难度】 4 星【题型】解答【分析】第一, 50、60、 70、80、 90、 100 中共有 7 个 0.其次, 55、 65、 85、 95 和随意偶数相乘都能够产生一个0,而 75 乘以偶数能够产生 2 个 0,50 中的因数 5 乘以偶数又能够产生 1 个 0,因此一共有7 4 2 1 14个0.【答案】 14 个连续的 0【例 3 】把若干个自然数1、2、3、连乘到一同,假如已知这个乘积的最末十三位恰巧都是零,那么最后出现的自然数最小应当是多少?【考点】整除之2、5 系列【难度】4星【题型】解答【分析】乘积末端的零的个数是由乘数中因数 2 和 5 的个数决定的,有一对 2 和 5 乘积末端就有一个零.由于相邻两个自然数中必然有一个是 2 的倍数,而相邻 5 个数中才有一个 5 的倍数,因此我们只需观察因数 5 的个数就能够了. 5 5 1,10 5 2 ,15 5 3 , 20 5 4 ,25 5 5,30 5 6 ,,发现只有25、50、75、100、这样的数中才会出现多个因数5,乘到 55 时共出现11213 个因数 5,因此起码应当写到 55。

小学奥数数论讲义 7-数的整除之四大判断法综合运用强化篇

小学奥数数论讲义 7-数的整除之四大判断法综合运用强化篇

数的整除之四大判断法综合运用数的整除之四大判断法2系列:被2整除只需看末位能否被2整除被4整除只需看末两位能否被4整除被8整除只需看末三位能否被8整除,依此类推5系列: 被5整除只需看末位是否为0或5被25整除只需看末两位能否被25整除,即只可能是00,25,50,75被125整除只需看末三位能否被125整除,即只可能是000,125,250…3系列:被3整除只需看各位数字之和能否被3整除被9整除只需看各位数字之和能否被9整除判断7、11、13整除特征的方法⑴如果该数是1001的倍数,则必然能被7、11、13整除;⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,如果差是7或11或13的倍数,这个数也能被7或11或13整除;⑶从末三位开始,三位为一段,如果奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数也能被7或11或13整除。

特殊的11:奇数位数字之和与偶数位数字之和的差能否被11整除。

【例1】要使26ABCD6能被36整除,A、B、C、D表示四个不同的自然数,而且所得的商最小,那么A、B、C、D分别是多少?【巩固】要使26ABCD6能被36整除,A、B、C、D表示四个不同的自然数,而且所得的商最大,那么A、B、C、D分别是多少?【例2】小强叔叔给45名工人发完工资后,把总钱数写在一张纸上,可是由于他吸烟不小心,火星落在纸上,把这笔帐的总数烧去两个数字,67□8□,小强叔叔记得每名工人的工资都一样,而且都是整数元,那么这每名工人的工资可能是多少呢?【巩固】五位数3□07□能同时被11和25整除,那么这个五位数是多少?【例3】求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除。

【巩固】在五位数中,能被11整除且各位数字和等于43,这样的数有多少?【例4】⑴一个多位数(两位及两位以上),并且含有数字0,如果它能被11整除,那么这个多位数最小是多少?⑵一个多位数(两位及两位以上),它的各位数字互不相同,并且含有数字0,如果它能被11整除,那么这个多位数最小是多少?【巩固】一个多位数,它的各个数位数字之和为13,如果它能被11整除,那么这个多位数最小是多少?【例5】20082008…200808能被99整除,那么,n的最小值为多少?n个2008【巩固】(全国小学数学奥林匹克)如果20052005…200501能被11整除,那么n的最小值是。

数的整除判断技巧

数的整除判断技巧

数的整除判断技巧首先,最简单的整除判断方法就是尝试用一个数去除以另一个数,如果能整除,则说明这两个数是整除关系。

但是这种方法需要不断尝试,当面对大数时并不高效。

因此,数的整除判断技巧就显得非常重要。

1.规则判断法:规则判断法适用于一些特定的数和整除规则。

常见的规则判断包括:a.个位数法:如果一个数能整除10,那么这个数一定以0结尾。

b.偶数法:如果一个数能整除2,那么这个数一定是偶数。

c.5的倍数:如果一个数能整除5,那么这个数一定以0或者5结尾。

d.9的倍数:如果一个数能整除9,那么这个数的各位数字之和一定能整除9e.11的倍数:如果一个数能整除11,那么这个数的奇数位之和与偶数位之和的差一定能整除11通过应用这些规则,我们可以快速判断一个数是否能被特定的数整除,从而减少尝试和计算的次数。

2.质因数分解法:质因数分解是将一个数分解为质数的乘积的方法。

在质因数分解过程中,我们可以同时判断一个数是否能整除另一个数。

举例来说,如果我们要判断一个数能否被3整除,我们可以先将这个数进行质因数分解。

如果这个数的一个或多个质因数中包含3,那么它一定能被3整除。

否则,它不能被3整除。

同样,我们可以通过质因数分解判断一个数是否能被2、5、7等质数整除。

这种方法可以减少我们尝试的次数,加快整除判断的速度。

3.除法法则:在进行整除判断时,我们可以运用除法法则。

如果一个数能被另一个数整除,那么它们相除的商一定是一个整数。

举例来说,如果我们要判断一个数能否被6整除,我们可以将这个数除以6,如果商是一个整数,那么它能被6整除。

否则,它不能被6整除。

同样,我们可以将一个数除以2、3、4等整数,通过观察商是否为整数,来判断一个数是否能被另一个数整除。

4.模运算法则:模运算是计算机科学中非常重要的运算,它可以用于整除判断。

模运算的结果是一个数对另一个数取余的结果。

举例来说,如果我们要判断一个数能否被9整除,我们可以计算这个数对9取余的结果,如果余数为0,那么它能被9整除。

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题小学数的整除数论奥数知识讲解及习题小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的数的整除数论奥数知识讲解及习题,供大家参考。

一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:①末三位上数字所组成的'数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集

数的整除之四大判断法综合运用
数的整除之四大判断法
2系列:被2整除只需看末位能否被2整除
被4整除只需看末两位能否被4整除
被8整除只需看末三位能否被8整除,依此类推
5系列:被5整除只需看末位是否为0或5
被25整除只需看末两位能否被25整除,即只可能是00,25,50,75
被125整除只需看末三位能否被125整除,即只可能是000,125,250…
3系列:被3整除只需看各位数字之和能否被3整除
被9整除只需看各位数字之和能否被9整除
判断7、11、13整除特征的方法
⑴如果该数是1001的倍数,则必然能被7、11、13整除;
⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,如果差是7或11或13的倍数,这
个数也能被7或11或13整除;
⑶从末三位开始,三位为一段,如果奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数也能被7或11或13整除。

特殊的11:奇数位数字之和与偶数位数字之和的差能否被11整除。

【例 1】将自然数N接写在任意一个自然数的右面,如果得到的新整数能被N整除,那么称N为“魔术数”。

问小于1996的自然数中有多少个魔术数?
【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?
【例 3】在六位数ABCDEF中,不同的字母表示不同的数字,且满足A,AB,ABC,ABCD,ABCDE,ABCDEF依次能被2,3,5,7,11,13整除。

则ABCDEF的最小值是,最大值是。

1
〖答案〗
【例 1】14个
【例 2】共有4种可能的排法:1988,1889,8918,8819 【例 3】210769,840736
2
1。

五年级奥数数的整除之四大判断法综合运用(二)学生版

五年级奥数数的整除之四大判断法综合运用(二)学生版

5-2-2.数的整除之四大判断法综合运用(二)教学目标1.五年级奥数数的整除之四大判断法综合运用(二)学生版2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a, c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c ,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【例 3】一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?模块二、7、11、13系列【例 4】以多位数142857314275为例,说明被7、11、13整除的规律.【例 5】已知道六位数20279□是13的倍数,求□中的数字是几?【例 6】 三位数的百位、十位和个位的数字分别是5,a 和b ,将它连续重复写2008次成为:20095555ab ab abab 个.如果此数能被91整除,那么这个三位数5ab 是多少?【例 7】 已知四十一位数555999□(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?【巩固】 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数5050666?555个6个5可被7整除?【例 8】 88888ab ab ab ab ab 是77的倍数,则ab 最大为_________?【例 9】 一个19位数997777044444⋅⋅⋅⋅⋅⋅个个能被13整除,求О内的数字.【例 10】 称一个两头(首位与末尾)都是1的数为“两头蛇数”。

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集

数的整除之四大判断法综合运用
数的整除之四大判断法
2系列:被2整除只需看末位能否被2整除
被4整除只需看末两位能否被4整除
被8整除只需看末三位能否被8整除,依此类推
5系列:被5整除只需看末位是否为0或5
被25整除只需看末两位能否被25整除,即只可能是00,25,50,75
被125整除只需看末三位能否被125整除,即只可能是000,125,250…
3系列:被3整除只需看各位数字之和能否被3整除
被9整除只需看各位数字之和能否被9整除
判断7、11、13整除特征的方法
⑴如果该数是1001的倍数,则必然能被7、11、13整除;
⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,如果差是7或11或13的倍数,这个数
也能被7或11或13整除;
⑶从末三位开始,三位为一段,如果奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数
也能被7或11或13整除。

特殊的11:奇数位数字之和与偶数位数字之和的差能否被11整除。

【例 1】将自然数N接写在任意一个自然数的右面,如果得到的新整数能被N整除,那么称N为“魔术数”。

问小于1996的自然数中有多少个魔术数?
【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?
【例 3】在六位数ABCDEF中,不同的字母表示不同的数字,且满足A,AB,ABC,ABCD,ABCDE,ABCDEF依次能被2,3,5,7,11,13整除。

则ABCDEF的最小值是,最大值是。

〖答案〗
【例 1】14个
【例 2】共有4种可能的排法:1988,1889,8918,8819
【例 3】210769,840736。

小学奥数5-2-3 数的整除之四大判断法综合运用(三).专项练习及答案解析

小学奥数5-2-3 数的整除之四大判断法综合运用(三).专项练习及答案解析

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).知识点拨教学目标5-2-1.数的整除之四大判断法综合运用性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲综合系列【例 1】甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位为1031.如果甲数的数字和为10,乙数的数字和为8,那么甲乙两数之和是_________.【考点】整除之综合系列【难度】3星【题型】填空【关键词】迎春杯,高年级,初赛,第2题【解析】根据弃九法可得知,乘积是310313171113=⨯⨯⨯,适当组合可得知两数为317217⨯=,和为360.⨯=和1113143【答案】360【例 2】有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.【考点】整除之综合系列【难度】3星【题型】填空【关键词】迎春杯,六年级,初赛,第7题)【解析】为了5个数的和最小,那么12=1⨯12=2⨯6=3⨯4。

奥数题解析“数的整除”解题方法

奥数题解析“数的整除”解题方法

奥数题解析“数的整除”解题方法奥数题解析“数的整除”解题方法本文将要教各位同学小学奥数题目中“数的整除”这一问题的解析思路和技巧,提供给各位同学学习。

把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.11与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.2若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

3若一个整数的数字和能被3整除,则这个整数能被3整除。

4若一个整数的末尾两位数能被4整除,则这个数能被4整除。

5若一个整数的末位是0或5,则这个数能被5整除。

6若一个整数能被2和3整除,则这个数能被6整除。

7若一个整数的个位数字截去,再从余下的.数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

【小学奥数】 数的整除之四大判断法综合运用(二).学生版

【小学奥数】  数的整除之四大判断法综合运用(二).学生版

5-2-2.数的整除之四大判断法综合运用(二)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;模块一、11系列【例 1】 以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【例 2】 试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【例 6】 三位数的百位、十位和个位的数字分别是5,a 和b ,将它连续重复写2008次成为:20095555ab ab ab ab 个.如果此数能被91整除,那么这个三位数5ab 是多少?例题精讲【例 7】 已知四十一位数555999□(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?【巩固】 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数5050666?555个6个5可被7整除?【例 8】 88888ab ab ab ab ab 是77的倍数,则ab 最大为_________?【例 9】 一个19位数997777044444⋅⋅⋅⋅⋅⋅个个能被13整除,求О内的数字.【例 10】 称一个两头(首位与末尾)都是1的数为“两头蛇数”。

小学奥数:5-1-2-2 乘除法数字谜(一).教师版

小学奥数:5-1-2-2 乘除法数字谜(一).教师版

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【考点】乘法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第2题 【解析】 乘积是两位数并且是5的倍数,因而最大是95.95÷5=19,所以题中的算式实际上是59915×所以,所填四个数字之和便是1+9+9+5=24 【答案】24例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________ 【考点】乘法数字谜 【难度】2星 【题型】填空【关键词】走美杯,四年级,初赛,第12题,五年级,初赛,第11题【解析】 由⨯=美妙数学数数妙知,“美”不为1,且“美”ד妙”<10,如果“美”为2,根据“美”ד学”的个位数为“妙”,那么“妙”为偶数,即为4,推出“学”为7,又由 “美”+“学”=“数”,可知“数”为9,所以=美妙数学2497。

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集-精品

小学奥数数论讲义 7-数的整除之四大判断法综合运用竞赛集-精品

数的整除之四大判断法综合运用
数的整除之四大判断法
2系列:被2整除只需看末位能否被2整除
被4整除只需看末两位能否被4整除
被8整除只需看末三位能否被8整除,依此类推
5系列:被5整除只需看末位是否为0或5
被25整除只需看末两位能否被25整除,即只可能是00,25,50,75
被125整除只需看末三位能否被125整除,即只可能是000,125,250…
3系列:被3整除只需看各位数字之和能否被3整除
被9整除只需看各位数字之和能否被9整除
判断7、11、13整除特征的方法
⑴如果该数是1001的倍数,则必然能被7、11、13整除;
⑵末三位一段,用前面的数减去末三位或末三位减去前面的数,如果差是7或11或13的倍数,这个
数也能被7或11或13整除;
⑶从末三位开始,三位为一段,如果奇数段数之和与偶数段数之和的差能被7或11或13整除,则该数也能被7或11或13整除。

特殊的11:奇数位数字之和与偶数位数字之和的差能否被11整除。

【例 1】将自然数N接写在任意一个自然数的右面,如果得到的新整数能被N整除,那么称N为“魔术数”。

问小于1996的自然数中有多少个魔术数?
【例 2】用1,9,8,8这四个数字能排成几个被11除余8的四位数?
【例 3】在六位数ABCDEF中,不同的字母表示不同的数字,且满足A,AB,ABC,ABCD ,
ABCDE,ABCDEF依次能被2,3,5,7,11,13整除。

则ABCDEF的最小值是,最大值是。

〖答案〗
【例 1】14个
【例 2】共有4种可能的排法:1988,1889,8918,8819
【例 3】210769,840736。

小学奥数知识名师点拨 例题精讲 带余除法(一).教师版

小学奥数知识名师点拨 例题精讲  带余除法(一).教师版
多少? 【考点】除法公式的应用 【难度】3 星 【题型】解答 【关键词】小学数学奥林匹克 【解析】被除数 除数 商 余数 被除数 除数+17+13=2113,所以被除数 除数=2083,由于被除数是除
数的 17 倍还多 13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968. 【答案】1968
【巩固】计算口÷△,结果是:商为 10,余数为▲。如果▲的值是 6,那么△的最小值是_____。 【考点】除法公式的应用 【难度】1 星 【题型】填空 【关键词】希望杯,五年级,复赛,第 4 题,6 分 【解析】根据带余除法的性质,余数必须小于除数,则有 △的最小值为 7。 【答案】 7
【例 3】 除法算式 □ □ = 208 中,被除数最小等于
5-5-1.带余除法(一).题库
教师版
page 4 of 6
【解析】令第 1 次取的编号为 a,第二次取的编号为 2a+1,第三次取的编号为:2(2a+1)+1=4a+3;还剩下 的编号为:55-7a-4=51 7a,当 a 为 6 时,余下的是 9;当 a 为 7 时,余下的是 2.
【巩固】一个两位数除 310,余数是 37,求这样的两位数。
【考点】除法公式的应用 【难度】1 星 【题型】解答 【解析】本题为余数问题的基础题型,需要学生明白一个重要知识点,就是把余数问题---即“不整除问题”转
化为整除问题。方法为用被除数减去余数,即得到一个除数的倍数;或者是用被除数加上一个“除数 与余数的差”,也可以得到一个除数的倍数。 本题中 310-37=273,说明 273 是所求余数的倍数,而 273=3×7×13,所求的两位数约数还要满足比 37 大,符合条件的有 39,91. 【答案】39 或者 97

数的整除之四大判断法综合运用一教师版

数的整除之四大判断法综合运用一教师版

---数的整除之四大判断法综合运用(一).教师版————————————————————————————————作者:————————————————————————————————日期:ﻩ5-2-1.数的整除之四大判断法综合运用(一)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a, c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、2、5系列【例 1】975935972⨯⨯⨯□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?【考点】整除之2、5系列【难度】2星【题型】填空【解析】积的最后4个数字都是0,说明乘数里至少有4个因数2和4个因数5.9755539=⨯,=⨯⨯,9355187 97222243=⨯⨯,共有3个5,2个2,所以方框内至少是22520⨯⨯=.【答案】22520⨯⨯=【例 2】从50到100的这51个自然数的乘积的末尾有多少个连续的0?【考点】整除之2、5系列【难度】4星【题型】解答【解析】首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的因数5乘以偶数又可以产生1个0,所以一共有742114+++=个0.【答案】14个连续的0【例 3】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?【考点】整除之2、5系列【难度】4星【题型】解答【解析】乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一个是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.551=⨯,……,=⨯,3056=⨯,1553=⨯,2555=⨯,2054=⨯,1052发现只有25、50、75、100、……这样的数中才会出现多个因数5,乘到55时共出现11213+=个因数5,所以至少应当写到55。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师版
page 2 of 6
请关注公众号小学奥数教程获取学生&教师完整版 奥数 qq 群 702534761;微信号:jiaxin0739
注:另两个三位数可以是 912,736 或 932,716 或 916,732 或 936,712。 【答案】 584
【例 7】 若 4b 2c d 32 ,试问 abcd 能否被 8 整除?请说明理由. 【考点】整除之 2、5 系列 【难度】4 星 【题型】解答 【解析】略
被 9 整除,所以它们的差能被 9 整除.
【例 12】1234567891011121314…20082009 除以 9,商的个位数字是_________ 。 【考点】整除之 3、9、99 系列 【难度】3 星 【题型】填空
5-2-1.数的整除之四大判断法综合运用(一).题库
教师版
page 3 of 6
或 13 整除. 5.如果一个数能被 99 整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个
数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是 99 的倍数,这个数一定 是 99 的倍数。 【备注】(以上规律仅在十进制数中成立.)
二、整除性质
性质 1 如果数 a 和数 b 都能被数 c 整除,那么它们的和或差也能被 c 整除.即如果 c︱a, c︱b,那么 c︱(a±b).
【例 8】 在方框中填上两个数字,可以相同也可以不同,使 4□ 32 □ 是 9 的倍数. 请随便填出一种,并检查 自己填的是否正确。
【考点】整除之 3、9、99 系列 【难度】1 星 【题型】填空 【解析】一个数是 9 的倍数,那么它的数字和就应该是 9 的倍数,即 4 □ 3 2 □是 9 的倍数,而 4 3 2 9,
请关注公众号小学奥数教程获取学生&教师完整版 奥数 qq 群 702534761;微信号:jiaxin0739
【关键词】走美杯,初赛,六年级,第 5 题 【解析】 首先看这个多位数是否能为 9 整除,如果不能,它除以 9 的余数为多少。由于任意连续的 9 个自
然数的和能被 9 整除,所以它们的各位数字之和能被 9 整除,那么把这 9 个数连起来写,所得到 的数也能被 9 整除。由于 2009 9 2232 ,所以 1234567891011121314…20082009 这个数除以 9 的余数等于 20082009(或者 12)除以 9 的余数,为 3.那么 1234567891011121314…20082009 除以 9 的商,等于这个数减去 3 后除以 9 的商,即 1234567891011121314…20082006 除以 9 的商,那么 很容易判断商的个位数字为 4。 【答案】 4
生一个 0,而 75 乘以偶数可以产生 2 个 0,50 中的因数 5 乘以偶数又可以产生 1 个 0,所以一共有 7 4 2 1 14 个 0. 【答案】14 个连续的 0
【例 3】 把若干个自然数 1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最 后出现的自然数最小应该是多少?
所以只需要两个方框中的数的和是 9 的倍数.依次填入 3、6,因为 4 3 3 2 6 18 是 9 的倍数, 所以 43326 是 9 的倍数。 【答案】43326(答案不唯一)
【巩固】若 9 位数 2008 □ 2008 能够被 3 整除,则 □ 里的数是__________ 【考点】整除之 3、9、99 系列 【难度】1 星 【题型】填空 【关键词】希望杯,4 年级,初赛,2 题 【解析】根据题目知:20+□ 是 3 的倍数,所以 □ 里填 1 或 4 或 7. 【答案】1或 4 或 7
【例 5】 201 202 203 300 的结果除以 10 ,所得到的商再除以10 ……重复这样的操作,在第____ 次除以10 时,首次出现余数.
【考点】整除之 2、5 系列 【难度】5 星 【题型】填空 【关键词】学而思杯,5 年级,第 7 题 【解析】本题其实为求原式结果末尾有多少个连续的 0 .0 由 5 和 2 相乘得到,最关键在于有多少个 5.
2. 一个位数数字和能被 3 整除,这个数就能被 3 整除; 一个数各位数数字和能被 9 整除,这个数就能被 9 整除;
3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被 11 整除,那么这个数能被 11 整除. 4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被 7、11 或 13 整除,那么这个数能被 7、11
【答案】 1
【例 11】试说明一个两位数,如果将个位数字和十位数字对调后得到一个新的两位数,则新数与原数的差
一定能被 9 整除. 【考点】整除之 3、9、99 系列 【解析】略
【难度】2 星
【题型】解答
【答案】设原来的两位数为 ab ,则新的两位数为 ba . ba - ab (10b a) (10a b) 9(b a) .因为 9(b a) 能
十位是偶数。因为 1~9 中只有 4 个偶数,所以三个数中有两个的个位分别是 2 和 6,另一个的后两 位是 84 或 48。因为三个数的百位都是奇数,所以最小的三位数的百位最大是 5,(另两个分别是 9 和 7)。9 已被百位占用,十位最大的是 8,所以三个三位数中最小的一个最大是 584。
5-2-1.数的整除之四大判断法综合运用(一).题库
性质 2 如果数 a 能被数 b 整除,b 又能被数 c 整除,那么 a 也能被 c 整除.即如果 b∣a, c∣b,那么 c∣a.
用同样的方法,我们还可以得出: 性质 3 如果数 a 能被数 b 与数 c 的积整除,那么 a 也能被 b 或 c 整除.即如果 bc∣a,那
么 b∣a,c∣a. 性质 4 如果数 a 能被数 b 整除,也能被数 c 整除,且数 b 和数 c 互质,那么 a 一定能被 b
【解析】因为连续 3 个自然数可以被 3 整除,而且最后一个自然数都是 3 的倍数,因为 2007 是 3 的倍数,所以 12345678910112007 是 3 的倍数,又因为 123456789101120072008 1234567891011200700 00 2007 1 ,所以 123456789101120072008 除以 3 ,得到的余数是1。
请关注公众号小学奥数教程获取学生&教师完整版 奥数 qq 群 702534761;微信号:jiaxin0739
5-2-1.数的整除之四大判断法 综合运用(一)
教学目标
1. 了解整除的性质; 2. 运用整除的性质解题; 3. 整除性质的综合运用.
知识点拨
一、常见数字的整除判定方法
1. 一个数的末位能被 2 或 5 整除,这个数就能被 2 或 5 整除; 一个数的末两位能被 4 或 25 整除,这个数就能被 4 或 25 整除; 一个数的末三位能被 8 或 125 整除,这个数就能被 8 或 125 整除;
【例 6】 用 1~9 这九个数字组成三个三位数(每个数字都要用),每个数都是 4 的倍数。这三个三位数中最 小的一个最大是 。
【考点】整除之 2、5 系列 【难度】4 星 【题型】填空 【关键词】走美杯,决赛,5 年级,决赛,第 8 题,10 分 【解析】三个数都是 4 的倍数,个位必然都是偶数。当个位是 2 或 6 时,十位是奇数,当个位是 4 或 8 时,
例题精讲
模块一、2、5 系列
5-2-1.数的整除之四大判断法综合运用(一).题库
教师版
page 1 of 6
请关注公众号小学奥数教程获取学生&教师完整版 奥数 qq 群 702534761;微信号:jiaxin0739
【例 1】 975 935 972 □ ,要使这个连乘积的最后 4 个数字都是 0,那么在方框内最小应填什么数? 【考点】整除之 2、5 系列 【难度】2 星 【题型】填空 【解析】积的最后 4 个数字都是 0,说明乘数里至少有 4 个因数 2 和 4 个因数 5.975 5 5 39 ,935 5 187 ,
【答案】由能被 8 整除的特征知,只要后三位数能被 8 整除即可. bcd 100b 10c d ,有 bcd (4b 2c d ) 96b 8c 8(12b c) 能被 8 整除,而 4b 2c d 32 也能被 8 整除,所以 abcd 能 被 8 整除.
模块二、3、9、99 系列
972 2 2 243 ,共有 3 个 5,2 个 2,所以方框内至少是 2 2 5 20 . 【答案】 2 2 5 20
【例 2】 从 50 到 100 的这 51 个自然数的乘积的末尾有多少个连续的 0? 【考点】整除之 2、5 系列 【难度】4 星 【题型】解答 【解析】首先,50、60、70、80、90、100 中共有 7 个 0.其次,55、65、85、95 和任意偶数相乘都可以产
【考点】整除之 2、5 系列 【难度】4 星 【题型】解答 【解析】乘积末尾的零的个数是由乘数中因数 2 和 5 的个数决定的,有一对 2 和 5 乘积末尾就有一个零.由
于相邻两个自然数中必定有一个是 2 的倍数,而相邻 5 个数中才有一个 5 的倍数,所以我们只要观 察因数 5 的个数就可以了.5 5 1 ,10 5 2 ,15 5 3 ,20 5 4 ,25 5 5 ,30 5 6 ,……, 发现只有 25、50、75、100、……这样的数中才会出现多个因数 5,乘到 55 时共出现11 2 13 个因 数 5,所以至少应当写到 55。 【答案】55
除以 9 应余 4。所以框里面最小是 04,六位数为:204727. 【答案】 204727
【例 10】连续写出从 1 开始的自然数,写到 2008 时停止,得到一个多位数:1234567891011……20072008, 请说明:这个多位数除以 3,得到的余数是几?为什么?
【考点】整除之 3、9、99 系列 【难度】2 星 【题型】填空 【关键词】希望杯,四年级,复赛,第 15 题
相关文档
最新文档