小学五年级奥数:数的整除知识点汇总+例题解析

合集下载

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学小升初奥数知识:数的整除

小学小升初奥数知识:数的整除

小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。

同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。

这时a叫做b 的倍数,b叫做a的约数。

例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。

由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。

这三个条件只要有一个不满足,就不能叫整除。

例如,16÷5=3.2,商不是整数,所以不能说5整除16。

又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。

2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。

换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。

例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。

(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。

即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。

例如,7│28,28│84,那么就有7│84。

(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。

也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。

例如,13│39,39×4=156,因此13│156。

(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。

即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。

例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步例题1,判断下面12个数的整除性。

23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407,91301301。

(1)哪些数能被4整除?--末尾2位数。

分析:3568、5880、198954、6512、864都是4的倍数,因为末尾2位数都是4的倍数。

(2)哪些数能被8整除?--末尾3位数。

分析:3568、5880、6512、864都是8的倍数,末尾三位数是8的倍数即可。

(3)哪些数能被25整除?---末尾2位数。

分析:8875、93625都是25的倍数,因为末尾2位数是25倍数。

(4)哪些数能被125整除?---末尾3位数。

分析:8875、93625,末尾三位数都是125的倍数。

(5)哪些数能被3整除?-----数字和是3的倍数。

分析:23487、6765、5880、198954、864、91301301都是3的倍数,因为数字和都是3的倍数。

(6)哪些数能被9整除?---数字和是9的倍数。

分析:198954、864,因为数字和是9的倍数。

(7)哪些数能被11整除?--截位判别法或奇偶位和差分析法。

分析:6765、6512、407是11的倍数。

(8)哪些数能被13整除?-截位判别法。

分析:91301301,末尾三位数和末尾三位数之前的数的差是13的倍数。

练习1:在数列3124,312,3823,45235,5289,5588,661,7314中。

(1)哪些数能被4整除?--末尾2位数。

分析:3124、312、5588的末尾两位数都是4的倍数,所以是4的倍数。

(2)哪些数能被3整除?---数字和。

分析:312、5289、7314都是3的倍数,因为数字和是3的倍数。

(3)哪些数能11整除?--截位判别法或奇偶位和差分析法。

分析:3124、5588是11的倍数。

例题2,173()是一个四位数,在括号内依次输入三个数字,分别得到三个四位数,依次分别能被9,11,8整除。

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析数的整除数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

小学五年级奥数专题讲座05:数的整除性(一)...

小学五年级奥数专题讲座05:数的整除性(一)...

小学五年级奥数专题讲座05:数的整除性(一)...小学五年级奥数专题讲座05:数的整除性(一)小升初数学广角第5讲数的整除性(一)三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。

这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。

数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

灵活运用以上整除性质,能解决许多有关整除的问题。

例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。

分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。

因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。

这个七位数是4735800。

例2 由2000个1组成的数111…11能否被41和271这两个质数整除?分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。

按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。

例3 现有四个数:76550,76551,76552,76554。

小学奥数数论知识点 数的整除

小学奥数数论知识点 数的整除

小学奥数数论知识点数的整除学习奥数的作用在于对同学们的长远智力水平的提高,而不是单纯为了成绩。

为大家准备了这篇小学奥数数论知识点以供大家参考。

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。

它可记为:若m/a,m/b,则m/(a?b)。

m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。

如果两个数只有唯一的公约数1,则称这两个数互质。

例如1与12,4与5,5与9,3与25等。

性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。

例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。

性质2中,“两数互质”这一条件是必不可少的。

6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。

根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。

性质3 (传递性)如果c/b,且b/a,那么c/a。

特别是若b/a,m为整数,则有b/(a×m)。

1、形如1993 1993…1993 520,且能被11整除的最小数是。

n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。

最左边一个数字是3,且此六位数能被11整除。

这样的六位数中的最小的数是。

5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。

7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。

小学奥数教程之数的整除

小学奥数教程之数的整除

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

数的整除学生姓名授课日期教师姓名授课时长知识定位本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。

本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。

另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对与学生的代数思维是一个良好的训练也是一个不小的挑战。

知识梳理1.常见数字的整除判定方法(1). 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;(2). 一各位数数字和能被3整除,这个数就能比9整除;一个数各位数数字和能被9整除,这个数就能被9整除;(3). 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.(4). 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)注:在给学生讲解常见数字的判定性质时,要分系列来讲,例如有2系列,5系列,3系列和7,11,13系列,便于记忆。

对于11的单独判定特性需要重点讲解。

2.整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).注:在理解这个性质时,我们要注意,反过来是不成立的,即两数的和(a+b)或差(a-b)能被c整除,这两个数不一定能被c整除.如5 ︱(26+24),但526,524.可以引入下面的问题2∣12,12∣36.2能否整除36?显然,回答是肯定的.这是因为36是12的倍数,12又是2的倍数,那么36一定是2的倍数.由此我们又可以得出:性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am (m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;3.重点难点解析(1).常见数字的整除判定性质(2).将不具有整除判定性质的数字进行分解判定其整除性(3).代数式之间整除性的判断,代数思想的应用(4).试除法的理解和应用4.竞赛考点挖掘(1).与数字谜或算式迷结合的整除判断特性题目(2).代数式之间的整除性问题例题精讲【试题来源】【题目】已知道六位数20□279是13的倍数,求□中的数字是几?【解析】本题为基础题型,利用13的整除判定特征即可知道方格中填1。

奥数五年级第四课 :数的整除

奥数五年级第四课 :数的整除

第六课数的整除概念性质数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?例2在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?例3从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

例4五位数能被72整除,问:A与B各代表什么数字?例5 六位数是6的倍数,这样的六位数有多少个?例6要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?7.能被11整除的数的特征:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大数减小数)如果能被11整除,那么这个数就能被11整除。

例7判断七位数1839673能否被11整除。

例8 用3,3,7,7四个数码能排出哪些能被11整除的四位数?随堂示例: 1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。

数的整除知识点总结数的整除知识整理

数的整除知识点总结数的整除知识整理

数的整除知识点总结数的整除知识整理数的整除知识点总结如下:1. 除数和被除数:一个数被另一个数整除时,被除数称为整数,除数称为除数。

2. 整除关系:如果一个数a能被另一个数b整除,即a ÷ b = c,则称a能被b整除,或者说b能整除a,记作b|a。

3. 余数:当一个数a被另一个数b整除时,如果除完后还有剩余部分,即a ÷ b = c 余 r(0 ≤ r < |b|),则r称为数a除以b的余数。

4. 因数:对于一个数a,如果存在一个数b,使得b能整除a,即a = b × c,则称b 是a的因数,c是a的倍数。

a的因数包括1和a本身。

5.倍数:对于一个数a,如果存在一个数b,使得a能整除b,即b = a × c,则称b 是a的倍数,c是a的因数。

a的倍数包括0和任意正负整数。

6.公约数:对于两个数a和b,如果存在一个数c,既能整除a又能整除b,即c|a 且c|b,则称c是a和b的公约数。

7.最大公约数:对于两个数a和b的公约数中,最大的一个公约数称为a和b的最大公约数,记作gcd(a, b)。

8.最小公倍数:对于两个数a和b的公倍数中,最小的一个公倍数称为a和b的最小公倍数,记作lcm(a, b)。

9.质数:一个大于1的自然数,除了1和它本身外,无法被其他自然数整除的数称为质数。

质数只有两个因数,即1和该数本身。

10.合数:一个自然数,除了1和它本身外,还有其他因数的数称为合数。

合数有多个因数。

11.互质:两个数的最大公约数为1时,称这两个数互质。

12.互质数性质:互质数的乘积等于它们的最小公倍数。

13.素数分解:将一个合数分解成质数的乘积的过程,这个过程叫做素数分解。

这些是数的整除的基本知识点。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题

小学数的整除数论奥数知识讲解及习题小学数的整除数论奥数知识讲解及习题小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的数的整除数论奥数知识讲解及习题,供大家参考。

一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:①末三位上数字所组成的'数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。

五年级奥数第19讲——整除

五年级奥数第19讲——整除

学生课程讲义【基础知识】:同学们在课内已经学习过整除的概念和它的一些性质。

这里我们仅补充一个能被7,11,13整除的特征:一个整数的末三位数与末三位数之前的数字所组成的数之差(以大减小)能被7(11或13)整除,那么,这个数就能被7(11或13)整除。

例如:数96928,因为928-96=832,而832÷13=64,说明832能被13整除,则96928能被13整除。

又例如:数690578,因为690-578=112,而112÷7=16,说明112能被7整除,则690578能被7整除。

另外,如果a能整除b,我们经常使用一个竖条“丨”来表示a、b整除的关系:也就是:a丨b=b÷a【例1】六位数□2004□能被99整除,这个六位数是()。

随堂练习1六位数2003□□能背99整除,它的最后两位数是()【例2】有一个六位数,前四位是2857,即2857□□,这六位数能被11和13整除,请你算出后两位数。

随堂练习2将1996加一个整数,使和能被23与19整除,加的整数要尽可能小,那么所加的整数是()【例3】若四位数9a8a能被15整除,则a代表的数字是()【例4】一个七位数20a0b9c是33的倍数,那么a+b+c=()随堂练习3如果一个九位数A1999311B能被72整除,试求A、B两数的差(大减小)。

【例5】在一个四位数的某位数字前添上一个小数点,再和原来的四位数相减,差的绝对值是1803.6.则原来的四位数是()随堂练习4一个四位数,给它加上小数点后,比原数小2003.4,这个四位数是()。

【例6】如图,在一个圆周上放了一枚黑色的围棋子和2012枚白色的围棋子,若从黑子开始,按顺时针方向,每隔1枚,取走1枚,则当取到黑子时,圆周上还剩()枚白子。

随堂练习5一个三位自然数正好等于它各位数字和的18倍,这个三位自然数是()。

五年级奥数—数的整除性(一)

五年级奥数—数的整除性(一)

数的整除性(一)数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末位是0或5,则这个数能被5整除。

(5)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(7)若一个整数的数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(9)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(10)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

奥数数的整除讲义,理解练习含答案解析

奥数数的整除讲义,理解练习含答案解析

数的整除(1)性质、特征、奇偶性【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b )或差(a - b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a 必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4 (或25 )整除,则这个数能被4 (或25)整除。

(2)若一个数的末三位数能被8 (或125 )整除,则这个数能被8 (或125 )整除。

(3)若一个数的各位数字之和能被3 (或9)整除,则这个数能被3 (或9)整除。

(4 )若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7 (或13)整除,则这个数能被7 (或13)整除。

奇偶性:(1 )奇数土奇数=偶数(2)偶数土偶数=偶数(3 )奇数土偶数=奇数(4)奇数X奇数=奇数(5)偶数X偶数=偶数(6)奇数X偶数=偶数(7)奇数一奇数=奇数(8)•••【典型例题】例1 :」个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2 : 1〜200这200个自然数中,能被6或8整除的数共有多少个?例3 :任意取出1998个连续自然数,它们的总和是奇数还是偶数?例4 :有“ 1”,“2”,“3”,“4”四张卡片,每次取出三张组成三位数,其中偶数有多少个?例5如果41位数芳…299…9能被7整除,那么中间方格内的数字杲几?【精英班】屏20“【竞赛班】例6 :某市举办小学生数学竞赛,共20道题,评分标准是:答对一题给5分,不答一题给1分,答错一题倒扣1分,如果1999 人参赛,问参赛同学的总分是奇数还是偶数?【课后分层练习】1、判断306371A组:入门级能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

小学五年级奥数--数的整除特征(1)

小学五年级奥数--数的整除特征(1)

9□.2□元=9□2□分
• 解:∵28=4×7,根据整除的性质③,

可知4︱9□2□ 且7︱9□2□
• ∴ 根据4的整除特征可知□可以填0、4、8 ,

∵ 7 9020, 7 9424;7 ∣9828。

∴ □处应当填 8 。
• 9828÷28= 351(分)= 3.51(元)
• 答:每支钢笔的价格是 3.51 元。
小学五年级奥数--数 的整除特征(1)
(一)整除——约数、倍数
• 像15÷3=5,63÷7=9这样, • 一般的,如果a、b、c为整数,b≠0,且
a÷b=c,即整数a除以整数b所得的商正好 等于c且没有余数,我们就说a能被b整除 (或者说b能整除a),记作:b︱a, • 否则,称a不能被b整除(或b不能整除a), 记作:b a
数的整除性质1
• 性质1:

如果a、b都能被c整除,那么他们的
和或差也能被c整除。
• 即:如果c︱a , c︱b 那么 c︱(a±b )
• 你能再举出一个例子吗?
数的整除性质2
• 2、我们再来看一组例子: • ① 15能整除45,3×5=15,3和5都能整除
45吗? • ② 3×7=21,21能整除84,3和7都能整除
整除,所以33333333468375能被125整除。
• ③1234567891011121314能不能被3和9整除。
• 回忆:能被3(或9)整除的数的特征:
• 各个数位数字的和能被3(或9)整除。
• 解:1+2+3+4+5+6+7+8+9+1+0+1 +1+1+2+1+3+1+4=60

因为 3 60 9 60
• 所以这个数∣ 能被3整除而不能被9整除。

五年级奥数归类详细讲解——数的整除性

五年级奥数归类详细讲解——数的整除性

第1讲数的整除性(一)三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。

这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。

数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

灵活运用以上整除性质,能解决许多有关整除的问题。

例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。

分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。

因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。

这个七位数是4735800。

例2由2000个1组成的数111…11能否被41和271这两个质数整除?分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。

按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。

例3 现有四个数:76550,76551,76552,76554。

能不能从中找出两个数,使它们的乘积能被12整除?分析与解:根据有关整除的性质,先把12分成两数之积:12=12×1=6×2=3×4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数:数的整除知识点汇总+例题解析
数的整除
数的整除问题,内容丰富,思维技巧性强。

它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。

一、基本概念和知识
1.整除——约数和倍数
例如:15÷3=5,63÷7=9
一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。

例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质
性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),
并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,
那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。

②能被5整除的数的特征:个位是0或5。

③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除.
⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

例如:判断123456789这九位数能否被11整除?
解:这个数奇数位上的数字之和是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20.因为25—20=5,又因为115,所以11123456789。

再例如:判断13574是否是11的倍数?
解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0.因为0是任何整数的倍数,所以11|
0.因此13574是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

例如:判断1059282是否是7的倍数?
解:把1059282分为1059和282两个数.因为1059-282=777,又7|777,所以7|1059282.因此1059282是7的倍数。

再例如:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.
能被30以下质数整除的数的特征
大家知道,一个整数能被2整除,那么它的个位数能被2整除;反过来也对,也就是一个数的个位数能被2整除,那么这个数本身能被2整除。

因此,我们说“一个数的个位数能被2整除”是“这个数能被2整除”的特征。

在这一讲中,我们通过寻求对于某些质数成立的等式来导出能被这些质数整除的特征。

为了叙述起见,我们把讨论的数N记为:
我们已学过同余,用mod 2表示除以2取余数,有公式:
① N≡a0(mod 2)
② N≡a1a0(mod 4)
③ N≡a2a1a0(mod 8)
④ N≡a3a2a1a0(mod 16)
这几个公式表明一个数被2(4,8,16)整除的特性,而且表明了不能整除时,如何求余数。

此外,被3(9)整除的数的特征为:它的各位数字之和可以被3(9)整除。

我们借用同余记号及一些运算性质来重新推证一下。

如(mod 9),如果:
N= a3a2a1a0 = a3×1000+a2×100+a1×10+a0
= a3×(999+1)+a2×(99+1)+a1×(9+1)+a0
= (a3+a2+a1+a0)+(a3×999+a2×99+a1×9)
那么,等式右边第二个括号中的数是9的倍数,从而有
N≡a3+a2+a1+a0(mod 9)
对于mod 3,理由相仿,从而有公式:
⑤ N≡(…+a3+a2+a1+a0) (mod 9)
N≡(…+a3+a2+a1+a0) (mod 3)。

相关文档
最新文档