20181213小学奥数练习卷(知识点:一笔画定理)含答案解析

合集下载

小学奥数著名问题之——一笔画问题习题集

小学奥数著名问题之——一笔画问题习题集

一笔画问题(教师必备)一、欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。

利用一笔画原理,七桥问题很容易解决。

因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。

二、顺便补充两点:(1)一个图形的奇点数目一定是偶数。

因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。

如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。

所以一个图形的奇点数目一定是偶数。

(2)有K个奇点的图形要K÷2笔才能画成。

例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。

如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。

将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即(6÷2)笔画成。

一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。

如左下图中的B,C两个奇点在右下图中都变成了偶点。

所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。

三、到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画,看下面的例题:1.下列图形分别是几笔画?怎样画?2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?4.下图是国际奥林匹克运动会的会标,能一笔画吗?如果能,请你把它画出来。

20181213小学奥数练习卷(知识点:一笔画定理)含答案解析

20181213小学奥数练习卷(知识点:一笔画定理)含答案解析

小学奥数练习卷(知识点:一笔画定理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共4小题)1.如图,某展览馆,甲场有2×2个展室,乙场有2×3个展室,丙场有2×4个展室,丁场有2×5个展室,各场内相邻展室之间都有门相通.从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是()A.甲场B.乙场和丁场C.丙场D.都不能2.如图是小马新家的平面图.新家有6个房间,房间之间有门相通.小马想从某个房间出发,不重复地穿过所有的门走到F房间.那么,他出发的房间是()房间.A.A B.B C.C D.D3.十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是()A.欧拉B.高斯C.牛顿4.近年来智能手机兴起,手机应用的图标也是纷繁多样,下面的几个图标中,能不重复地一笔画完的图标有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(共23小题)5.如图最少笔可以画完.6.请你一笔画出下面的图形(从起点到终点,将依序过点的字母依次填在横线上,写出一种即可):(起点)→→→→→→→→→→→→(终点).7.一辆洒水车给一个社区街道洒水,地图如图.你能否设计一条洒水路线,使洒水车不重复地走遍所有街道,再回到出发点?你的答案为:(填“能”或者“不能”).8.一辆洒水车给如图线段表示街道洒水,不重复、不遗漏地走遍这些街道.请用图中字母标出一种成功的走法:.→→…→.9.如图图形(填“能”或“不能”)一笔不重复得画出.如不能,请在图上添一条线,使它成为一笔画图形(如果能,则不必再填线)10.如图是可以一笔画出的,一共有种不同的一笔画法(起点、终点或顺序只要有一种不同,就算不同的画法).11.瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,成为后来解析几何的基础..(判断对错)12.如图的图形(填“可以”或者“不可以”)用一笔画出.如果可以,应从点开始画(若第一个空格填“不可以”,则第二个空格不填;若第二个空格有多个点满足要求,需要将所有的点都写出来).13.如图,你最少需要笔才能画出这个图形.14.如图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度行进.如果允许选择最短路径的话,能先走遍所有的街道(填“甲”或“乙”)15.如图为一个花园,线段表示花园中供行人行走的小路.园林工人要为花园里的花草浇水.如果要不重复地走遍毎条小路,应该以为入口,以为出口.16.如图一笔画是不可能的,最少添上条连线就可以一笔画成了.17.如图的图形中能不重复地一笔画出的有个.18.如图,四个三边长度分别为3厘米、4厘米、5厘米的直角三角形拼成一个大方形.从中去掉一些线段,使得改动后的图形可以一笔画出,那么去掉的线段长度之和最小是厘米.19.有16个点排成的4×4方阵,如图.请不间断地一笔画出6条直线经过每个点,且最后回到起点.20.某花园一套豪宅的房间(包括卫生间,厨房)的平面图如图所示.每相邻两房间都有门相通,问:从某个房间出发,不重复地走完每个房间.(注:在括号里填“能”或“不能”.)21.如图的图形,要求画出的线段不能重复画,那么这个图形最少笔才能画出.22.在3×5的棋盘上,一个棋子每次可以沿水平或竖直方向移动一小格,但不可以沿任何斜对角线移动.从某些特定的格子开始,要求棋子经过全部的小正方格恰好一次,但不须回到原来出发的小方格上.在这15个小方格中,则有个小方格可以作为这个棋子的起点.23.从P点出发,一笔画出如图,不许走重复路线,一共有种不同的画法.24.在一个连通图中判断一笔画时,大于个奇数点的图形不能一笔画出.25.判断下面连通图,能一笔画的有.(填写代号)26.从图中的点出发到点结束,可以让你用笔在纸上连续不断且不重复地一笔画出图.27.图能一笔画出来吗?若能,请写出画的先后顺序;若不能,请说明理由.三.解答题(共23小题)28.如图能否一笔画成,若不能,你能用什么方法把它改成一笔画?29.某花园的小径如右图所示.一个人能不能从图中第1个点的位置出发,不重复地走过所有小径?如果能,请标出所经过各点的顺序(如:1→2→3→ (1)如果不能,请标出至少必须重复的小径(如1→2,2→3,8→9或11→12等等).30.如图,有一些写有数字的圆圈,请你用线段将水平或竖直方向的相邻圆圈连接起来,使得该图形成为一个连通的图形,要求水平或竖直方向的相邻两个圆圈之间最多只能连2条线段,而且每个圆圈里面的数字表示的是与该圆圈相连接的线段的条数.31.“九点连线”是一道著名的数学题,你能用一笔画4条连续的直线段,把图中所有的9个点都连起来吗?请你在下图画出来.32.用4条直线,一笔画将这12个点连在一起.33.下面是一张地图,从A点到B点,走遍每一条路,不能重复走,应该怎么走?(从A点到B点的线用编号表示)34.在由25个边长为1的正方形组成的5×5的方格网中有3个方格内已经标有3个数3、4、5(如图1所示).请你用一条封闭的折线沿水平或竖直方向把其余22个方格的中心连接起来,要求这条折线在标有数字的方格的所有邻格(邻格指至少有一个公共边界点的两个方格)内发生拐弯的次数恰好与该数相等.问:这条封闭的折线有多少个拐弯处?(示例图2中折线有10个拐弯处)35.如图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?36.请你将下面的图形改成能一笔画成的图形:37.图中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?38.在六面体的顶点B和E处各有一只蚂蚁(见图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?39.如图能否一笔画成,若不能,你能用什么方法把它改成一笔画?40.下面哪个图形能一笔画出?在下面的□里画“√”41.你能不能笔尖不离开纸面地画出四条直线,使得他们通过下图中的九个点,不重不漏.42.下图是一个游乐场的平面图,要使游客走遍每一条路且不重复,问出入口应该设在哪里?43.游动物园.1.小明去猴山有条路.2.设计一条能参观所有景点的线路,线路不重复且能回到起点.用彩笔在图上画出来.44.能否沿此图上的线画出一条线,使得每个节点都恰好经过一次.45.在下面各图形中,加一条或几条线段后,一笔画出每个图形.46.下图是某少年宫的平面图,共有五个大厅,相邻两厅之间都有门相通(D 与E 两厅除外),并且有一个入口和一个出口.问游人能否从入口入,一次不重复地穿过所有的门?如果可以,请指明穿行路线;如果不能,请你想一想,关闭哪扇门后就可以办到?47.如图,两条河流的交汇处有两个小岛,有7座桥连接这两个岛及河岸,一个散步者能不能一次走遍这7座桥,而且每座桥恰好经过1次?48.图中哪些图形可以一笔画出,哪些不能?不能一笔画出的图形最少需要画几笔?49.如图是一座博物馆的示意图,游客从入口进入博物馆,是否能找到一条参观路线,每扇门恰好经过一次?50.在图中,哪些图形可以一笔画出?参考答案与试题解析一.选择题(共4小题)1.如图,某展览馆,甲场有2×2个展室,乙场有2×3个展室,丙场有2×4个展室,丁场有2×5个展室,各场内相邻展室之间都有门相通.从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是()A.甲场B.乙场和丁场C.丙场D.都不能【分析】如图所示,甲丙情况类似,乙丁情况类似,由图可得结论.【解答】解:如图所示,甲丙情况类似,乙丁情况类似,由图可得从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是乙场和丁场,故选:B.【点评】本题考查一笔画定理,考查数形结合的数学思想,正确画出图形是关键.2.如图是小马新家的平面图.新家有6个房间,房间之间有门相通.小马想从某个房间出发,不重复地穿过所有的门走到F房间.那么,他出发的房间是()房间.A.A B.B C.C D.D【分析】首先把图片转换成点线图,同时找到奇点个数,如果有0个或者是2个奇点是可以完成一笔画的,2个奇点一个做为起点另一个作为终点即可.【解答】解:依题意可知:把图进行转换成点线图为:奇点个数是2个分别是A,F两个,那么一个是终点,另一个就是起点一笔画问题,奇数点出发奇数点回.所以出发的是A.故选:A.【点评】本题考查对一笔画的理解和运用,关键问题是找到对应的奇点个数.问题解决.3.十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是()A.欧拉B.高斯C.牛顿【分析】根据数学知识可知:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,这一困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是欧拉;由此解答即可.【解答】解:十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是欧拉;故选:A.【点评】本题属于基础性的数学常识,对于一些数学家和其主要研究成果要知道.4.近年来智能手机兴起,手机应用的图标也是纷繁多样,下面的几个图标中,能不重复地一笔画完的图标有()A.1个B.2个C.3个D.4个【分析】一个图形要能一笔画完成必须符合两个条件:即图形是封闭联通的和图形中的奇点(与奇数条边相连的点)个数为0或2;据此解答即可.【解答】解:图一有6个奇点,不能一笔画;图二没有奇点,能一笔画;图三有2个奇点,能一笔画;图四有4个奇点,不能一笔画;综上所述,能不重复地一笔画完的图标有2个;故选:B.【点评】本题考查的是笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.二.填空题(共23小题)5.如图最少5笔可以画完.【分析】先数出图形中奇点的个数,共有10个,然后根据“奇点数÷2=笔画数”解答即可.【解答】解:图中共有10个奇点,那么需要的笔画数是:10÷2=5(笔);答:最少5笔可以画完.故答案为:5.【点评】笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n.6.请你一笔画出下面的图形(从起点到终点,将依序过点的字母依次填在横线上,写出一种即可):(起点)E→A→B→E→F→G→E→D→G→C→F→B→(终点).【分析】首先找到题中的奇点是B和E.只有两个奇点可以完成一笔画.一个是起点一个是终点即可.【解答】解:依题意可知:E和B是奇点.故答案为:E→A→B→E→F→G→E→D→G→C→F→B→(终点).(不唯一)【点评】本题考查对一笔画的理解和运用,关键找到题中的奇点,问题解决.7.一辆洒水车给一个社区街道洒水,地图如图.你能否设计一条洒水路线,使洒水车不重复地走遍所有街道,再回到出发点?你的答案为:不能(填“能”或者“不能”).【分析】由题意,奇点为商场与服装城,其余均为偶点,两个奇点必然一个为起点、一个为终点才能一次不重复的走遍,可得结论.【解答】解:由题意,奇点为商场与服装城,其余均为偶点,两个奇点必然一个为起点、一个为终点才能一次不重复的走遍,所以不能再回到出发点.故答案为:不能.【点评】本题只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点终点.8.一辆洒水车给如图线段表示街道洒水,不重复、不遗漏地走遍这些街道.请用图中字母标出一种成功的走法:→→→→→→→..→→…→.【分析】在这题中奇数点是E和A,其他点都是偶数点,从奇数点出发到另一个奇数点结束.【解答】解:→→→→→→→.【点评】走法不唯一,也可以从E点出发到A点结束.9.如图图形不能(填“能”或“不能”)一笔不重复得画出.如不能,请在图上添一条线,使它成为一笔画图形(如果能,则不必再填线)【分析】有 2 个奇点或0 个奇点的图形才能一笔画成.该图中有 4 个奇点,所以不能一笔画成.【解答】解:有 2 个奇点或0 个奇点的图形才能一笔画成.该图中有4 个奇点,所以不能一笔画成.添线如上图红色部分(方法不唯一).故答案为不能【点评】本题考查一笔画问题,考查学生分析解决问题的能力,解题的关键是利用有 2 个奇点或0 个奇点的图形才能一笔画成.10.如图是可以一笔画出的,一共有12种不同的一笔画法(起点、终点或顺序只要有一种不同,就算不同的画法).【分析】首先分奇点数为2分别是A,B可以完成一笔画,同时A,B一个是起点一个是终点.考虑其中的一个再乘2即可.【解答】解:依题意可知:首先分析奇点数为2分别是A,B.那么先考虑从A﹣B过程.如果是A﹣C﹣B后面就是2种;如果是A﹣D﹣B后面还是有2种;如果是A﹣B后面有2种;所以从A﹣B共6种.那么从B﹣A也是6种共12种.故答案为:12【点评】本题考查对一笔画的理解和运用,关键问题是找到起点和终点同时枚举法直接易懂.问题解决.11.瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,成为后来解析几何的基础.×.(判断对错)【分析】瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,由此引导了图论和拓扑学的发展;而不是解析几何的基础,由此求解.【解答】解:瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,由此引导了图论和拓扑学的发展;解析几何是在笛卡尔发表的《几何学》的基础上发展而来的;原题说法错误.故答案为:×.【点评】熟知一些数学常识是解决本题的关键.12.如图的图形可以(填“可以”或者“不可以”)用一笔画出.如果可以,应从N或M点开始画(若第一个空格填“不可以”,则第二个空格不填;若第二个空格有多个点满足要求,需要将所有的点都写出来).【分析】这幅图上有两个奇点N和M,所以能一笔画,可以从一个奇点开始到另一个奇点结束.【解答】解:如图的图形可以用一笔画出,应从N或M点开始画.故答案为:可以,N或M.【点评】本题考查的是笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.13.如图,你最少需要2笔才能画出这个图形.【分析】笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n.据此解答即可.【解答】解:图中共有4个奇点,那么需要的笔画数是:4÷2=2(笔);答:最少需要2笔才能画出这个图形.故答案为:2.【点评】本题属于一笔画的规律,关键是正确找到奇点的个数.14.如图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度行进.如果允许选择最短路径的话,甲能先走遍所有的街道(填“甲”或“乙”)【分析】由题意,A,D的节点的个数为奇数,其余点的节点的个数为偶数,所以甲能先走遍所有的街道.【解答】解:由题意,A,D的节点的个数为奇数,其余点的节点的个数为偶数,所以甲能先走遍所有的街道,A为起点,D为终点.故答案为甲.【点评】一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点.15.如图为一个花园,线段表示花园中供行人行走的小路.园林工人要为花园里的花草浇水.如果要不重复地走遍毎条小路,应该以A或G为入口,以G 或A为出口.【分析】图中有2个奇点(A和G),6个偶点,有2个奇点,偶数个偶点,可以一笔完成;根据一笔画定理:奇数进,奇数出即可求解.【解答】解:根据一笔画定理以奇点为入口,奇点为出口所以:A点为入口,G 点为出口或者G点为入口,A点为出口.故答案为:A,G或G,A.【点评】凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点终点.16.如图一笔画是不可能的,最少添上2条连线就可以一笔画成了.【分析】只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.原图中有6个奇点,把这6个奇点中的4个分成2组,分别加上一条线段变成偶点,就可以一笔画成了.【解答】解:如图,加上2条线段,变成只有2个奇点,就可以一笔画成:故答案为:2.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.17.如图的图形中能不重复地一笔画出的有3个.【分析】根据一笔画的特性,图中都是连通图,与奇数(单数)条边相连的点叫做奇点,与偶数(双数)条边相连的点叫做偶点,凡是由偶点组成的连通图,一定可以一笔画成,凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.【解答】解:第1、3个图,全是偶点,能一笔画出;第2个图,1个奇点;第4个图,2个奇点,能一笔画出;第5个图,4个奇点,所以能不重复地一笔画出的有3个.故答案为3.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图猜能一笔画成,难度适中.18.如图,四个三边长度分别为3厘米、4厘米、5厘米的直角三角形拼成一个大方形.从中去掉一些线段,使得改动后的图形可以一笔画出,那么去掉的线段长度之和最小是7厘米.【分析】首先分析能完成一笔画需要有2个奇点或者没有奇点.图中8个奇点变成2个即可.【解答】解:依题意可知:图中有8个奇点,需要去掉三条边剩余2个奇点,无论去掉两条长度为3的和长度为1的,还是去掉长度为5的和两条长度为1的总和都是7.故答案为:7【点评】本题考查对一笔画的理解和运用,关键是枚举最短的即可,问题解决.19.有16个点排成的4×4方阵,如图.请不间断地一笔画出6条直线经过每个点,且最后回到起点.【分析】要能一笔完成,需要都是偶点,或者只有两个奇点,只使用横竖无论怎么样都不能够完成,因此使用斜线构造.【解答】解:如下图:【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.20.某花园一套豪宅的房间(包括卫生间,厨房)的平面图如图所示.每相邻两房间都有门相通,问:不能从某个房间出发,不重复地走完每个房间.(注:在括号里填“能”或“不能”.)【分析】能够一笔画成的图形,首先必须要相连,结果不相连就一定不能一笔画成.能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画;先把房间抽象成一个点,然后连线,看一下是否符合一笔画定理即可求解.【解答】解:把每个房间都看成一个点,则这个图形就是:这样图中一共有5个奇点,不能一笔画,也就是不能从某个房间出发,不重复地走完每个房间.故答案为:不能.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.21.如图的图形,要求画出的线段不能重复画,那么这个图形最少5笔才能画出.【分析】数出一共有多少个奇点,奇点数除以2就是需要画的笔数.【解答】解:一共有10个奇点,需要的笔画数是:10÷2=5(笔);答:这个图形最少笔才能画出.故答案为:5.【点评】对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.公式如下:奇点数÷2=笔画数.22.在3×5的棋盘上,一个棋子每次可以沿水平或竖直方向移动一小格,但不可以沿任何斜对角线移动.从某些特定的格子开始,要求棋子经过全部的小正方格恰好一次,但不须回到原来出发的小方格上.在这15个小方格中,则有8个小方格可以作为这个棋子的起点.【分析】把3×5的图中的格子标号如下:找出每次可以沿水平或竖直方向移动一小格,不重复的走完全程的路线,进而求解.【解答】解:(1)从四个顶点所在的格子中的任意一个出发,都可以,如从A 格出发:同理从E、K、O都可以作为起点,一共有4个起点;(2)C作为起点,如下图:同理M也可以作为起点,一共有2个起点;(3)I格出发,可以不重复走完全程:同理从G出发也可以走完全程不重复,有2个起点.4+2+2=8(个);答:有8个小方格可以作为这个棋子的起点.故答案为:8.【点评】本题根据限制条件,找出所有的路线,进而求解.23.从P点出发,一笔画出如图,不许走重复路线,一共有512种不同的画法.【分析】先从其中的一部分进行研究,直接从外圆画有两种画法(左右),直接从内圆有两种画法(左右),直接画内三角接内圆(左右)有两种画法,那么一共有2×2×2=8种方法,三角形的三个角的部分各有8种方法,再根据乘法原理即可求出全部的不同的画法.【解答】解:2×2×2=8(种)8×8×8=512(种)答:一共有512种不同的画法.故答案为:512.【点评】解决本题先找出每一部分不同的画法,再进一步利用乘法原理求解.24.在一个连通图中判断一笔画时,大于2个奇数点的图形不能一笔画出.【分析】一笔画的规律是:(1)凡是由偶点组成的连通图,一定可以一笔画成.画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图.(2)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点为终点.(3)其他情况的图都不能一笔画出.【解答】解:根据分析可得:在一个连通图中判断一笔画时,大于2个奇数点的图形不能一笔画出.故答案为:2.【点评】本题考查的是一笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.25.判断下面连通图,能一笔画的有a、b、d.(填写代号)【分析】按照一笔画定理,每个部图形只能含有两个奇点活0个奇数点,据此数出各图的奇数点判断即.【解答】解:根据分析可得,图a:奇数点有2个,所以能一笔画,图b:奇数点有2个,所以能一笔画,。

小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

小学数学《一笔画》练习题(含答案)精选全文

小学数学《一笔画》练习题(含答案)精选全文

可编辑修改精选全文完整版小学数学《一笔画》练习题(含答案)什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(f)(e)(d)JIH G F ED C BAJ K IHGFED CB A分析:(a )图:可以一笔画,因为只有两个奇点A 、B ;画法为A →头部→翅膀→尾部→翅膀→嘴. (b )图:不能一笔画,因为此图不是连通图.(c )图:不能一笔画,因图中有四个奇点:A 、B 、C 、D.(d )图:可以一笔画,因为只有两个奇点;画法为:A →C →D →A →B →E →F →G →H →I →J →K →B. (e )图:可以一笔画,因为没有奇点;画法可以是:A →B →C →D →E →F →G →H →I →J →B →D →F →H →J →A.(f )图:不能一笔画出,因为图中有八个奇点.[注意]在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点.[巩固]判断下列图a、图b、图c能否一笔画.E分析:图a是一个连通的图形,图中只有点A和点F两个奇点,所以它能一笔画,其中一种画法如下:A —M—N—A—F—B—C—B—K—C—D—E—D—L—E—F.‘图b是一个不连通的图形,所以不能一笔画.图c是连通图,图中所有点都是偶点,所以能一笔画.其中一种画法如下:A—B—C—D—E—F—D—A—F —C—A.【例2】右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析:本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.[巩固]在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.[数学小游戏] 用一笔画成四条线段把所有的点连起来,怎样画?分析:通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成.如右图:FE DCB ADCBA我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下: 奇点数÷2=笔画数,即2n ÷2=n.【例3】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH G I KLJ F EDCBA 图b DC HG EFBA图c分析:图a :原图有四个奇点,所以不能一笔画,在B,D 两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d 所示.画法:H →A →B →C →D →E →F →I →D →B →I →H →G →F .图b :原图有四个奇点,所以不能用一笔画.去掉K ,L 两点之间的连线,图中只有两个奇点,故 可以一笔画出,如图e 所示.画法:B →C →D →E →F →→J →H →G →I →A →B →K →I →L →E .图c :原图有四个奇点,所以不能用一笔画.在B ,C 两点之间加一条线后,图中只有两个奇点, 故可以一笔画出,如图f 所示.画法:A →E →D →H →A →B →F →C →G →B →C →D注意:a 、b 、c 三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画.图dA BCD EFG H IH GI KLJ F EDCB A 图eDC HG EFBA图f[前铺]观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.DC BA(2)(1)FEC DB A分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按A 与B ,C 与D (或A 与D ,B 与C )分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8).说明:图(6)运用了两种方法,去掉边BC ,添上边AD 与EF.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在. 下面,我们考虑如下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由. (2)架设几座桥可以使游人走遍所有的桥回到出发地?而得到一个由四个点和七条线组成的图形(如图b).在图b 中,点A ,B ,C ,D 四个点均为奇点,显然不能一笔画出这个图形.若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出.如我们可以选择奇点B ,D ,在B ,D 之间连一条线(架一座桥),如图c .在图c 中只有点A 和C 两个奇点,那么我们可以以A 为起点,C 为终点将图形一笔画出.其中一种画法为:A →C →A →B →A →D →B →D →C所以,如果在河岸B 与小岛D 之间架一座桥,游人就可以不重复地走遍所有的桥.(2)在(1)的基础上,再在另外两个奇点A 与C 之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d .那么A ,B ,C ,D 四个点均为偶点,所以图d 可以一笔画出,并且可以以任意点为起点,最后 仍回到这个点.其中一种画法为:A →C →A →C →D →A →B →D →B →A这表明:在河岸B 与小岛D 之间架一座桥后,再在小岛A 与河岸C 之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地.[巩固]如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.EDCBA【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中A,B,C,D,E,F,G,H,I,J十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下:邮局I JHGF E D C B A 邮局邮局【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅A,B,C,D,E 及馆外F 看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线.根据题中条件知,馆外F 与A ,B ,C ,D ,E 各展厅相通,这样将点F 与点A ,B ,C ,D ,E 用线连接;展厅A 与展厅B ,C ,D 相通,将点A 与点B ,C ,D 用线连接;展厅B 除与A 相通外,它还与D ,E 展厅相通,将B 与D ,E 连接;除此之外,展厅C ,D 相通,展厅D ,E 相通,将点C ,D 连接,再将点D ,E 连接(如图a).于是本题要解决的问题就变成了能否将图a 一笔画的问题.可以看出:图a 中共有六个点,其中有四个奇点,它们分别为C ,D ,E ,F ,由一笔画的规律可知,图a 不能一笔画.也就是说,参观者不能够不重复地一次穿过每一扇门.如果允许关闭某一扇门,这相当于在图a 中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门.我们知道,在图a 中有四个奇点C ,D ,E ,F 为了把图a 改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个.为此,我们可以去掉一条连接两个奇点的线,如去掉E 与F 间的连线,相应的图a 就变成了图b .在图b 中,除了原来的C 和D 是奇点外,其余点全部是偶点,故图b 可以一笔画.其中一种画法为:C →F →D →E →B →F →A →B →D →A →C →D .上面的分析表明,如果关闭连接E 、F 两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门. 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门.我们将这个问题转化为一笔画问题来研究.[前铺]右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? FFF F E C D BA EB A分析:我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的问题,变为下图是否一笔画问题.EDC BA图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走. 【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件.长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远.所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为: 800-40×3=680(厘米).蜘蛛的爬行路径为:G →F →C →D →G →H →A →B →E →H(如右图).[注意]这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题.【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号.一辆垃圾清扫车从垃圾站(垃圾站位于C 楼与D 楼之间的P 处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线.本题要求清扫车从P点出发,仍回到P 点.通过观察上图可知,图中有六个奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的.要使清扫车从P 点出发,最后仍回到P 点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线.在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短.为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线.重复的路程分别为:图a :2×2+3=7;图b :3+4×2=11;图C :3×3=9; 图d :3+6×2=15.显然,重复走的路线最短,总路程就最短.从上述计算中就可找到最短路线图,即下面四个图中的图a .408080H G F ED C BA804080H GFED CBA图b 图a图d图c在图a 中,所有点均为偶点,是一笔画图形.清扫车可按如下路径走:P →D →G →D →E →F →G →H →L →H →C →B →L →M →A →B →C →P ,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里).【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局.请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决.在图a 中共有六个奇点E ,F ,G ,H ,I ,J ,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到D 点,这样图中就没有奇点了,从而可以不重复地走遍所有的街道.由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好.在图a 中H 与E 之间有重叠,这样势必会增加李文所走路程的长度,应作调整.经调整后,将重叠部分去掉便得图b .在图b 的圈形闭路IHGJI 中,I ,J ,G ,H 各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米.而如果连IJ 和HG ,增加的长度仅为10×2=20,由此可知图b 需继续作调整,改成图c ,这种连接方法是最好的,它使李文行走的路线最短.根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过 这个闭路总圈长的一半.经过分析可以知道,图c 的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局.这时他的行走路线为:邮局→A →I →J →I →H →G →H →E →D →F →D →G →J →B →C →D →E →邮局 他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米).图a图b图c[小结]本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用.此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈.[巩固]右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A 出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理? 分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K 是中间点,因此必须成为偶点,这样洒水车必须重复走KC 这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:GF 、IJ 、BC.即洒水路线如下右图.全程45+3+6=54(里).1. (例1)判断下列各图能否一笔画.图aG I H F ECD BA图bF ED CBA分析:图a 中九个点全是偶点,因此可以一笔画,其中一种画法为:A →F →B →G →C →H →D →E →H →l →→F →G →l →E →A .图b 中A ,B ,C ,D 四个点均为奇点,故不可以一笔画.图c 中,只有A,C 为奇点,故可一笔画.其中一种画法为:A →D →E →C →H →N →G →M →F →A →B →C .2. (例3)下列各图至少要用几笔画完?分析:(1)4笔;(2)4笔;(3)2笔;(4)1笔;(5)1笔;(6)1笔.3.(例6)右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析:把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.4.(例7)一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?分析:清洁车走的路径为: ABCNPBCDEFMNEFGHOLMHOIJKPLJKA. 即:清洁车必须至少重复走4段1公里的街道,如下图.最短路线全程为28公里.5.(例10)一个邮递员的投递范围如右图,图上的数字表示各段街道的长度.请你设计一条最短的投递路线,并求出全程是多少?分析:邮递员的投递路线如下图,即:路线为:ABCDEDOBOMNLKLGLNEFGHIMOJIJA.最短路线的全程为39+9=48.。

20181213小学奥数练习卷(知识点:图形划分)含答案解析

20181213小学奥数练习卷(知识点:图形划分)含答案解析

小学奥数练习卷(知识点:图形划分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,那么5个三角形最多能将平面分成的部分数是()A.62B.92C.512D.1024第Ⅱ卷(非选择题)二.填空题(共24小题)2.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为,可以划分为个本原格点三角形.3.给出一个正方形,请你动手画一画,将它分为n个小正方形,那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是.4.将图分割成大小形状相似的两块,这两块图形可拼成一个正方形.用粗线条在原图上画出分割线,不必画拼合成的正方形.5.大正方形内有两个小正方形,这两个小正方形可以在大正方形内任意移动(小正方形的任何部分都不能移出大正方形,小正方形的边必须与大正方形的边平行).如果这两个小正方形的重叠面积最小为9,最大为25,并且三个正方形(一个大正方形和两个小正方形)的边长之和为23,则三个正方形的面积之和为.6.如图,6×6的表格被粗线分成了9块,若某块中恰有N个格子,则该块所填数字恰好为1~N;且任意相邻两个格子(有公共点的两个小正方形称为相邻格子)所填数字不同,那么四位数是.7.有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出个同样的等腰梯形.8.如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是cm2.9.如图,一个正方形,与4个等腰直角三角形,恰好拼成一个长方形,如果正方形的面积是16,那么,长方形的面积是.10.在空格中填入数字1﹣5使得每行、每列和每宫(在数独中被粗线分割开的每块称为宫)数字都不重复,斜线相邻的数字也不能相同.那么,第一行从左至右5个数字依次组成的五位数是.11.把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成片.12.如图是长方形,将它分成7部分,至少要画条直线.13.把一张l6cm×32cm的纸裁去一半,再将其中一张裁去一半…继续这样裁下去,直到得到一张lcm×2cm的纸为止,那么一共需裁次.14.如图是一个正方形,请你用直线将它划分成11个互不重叠的小正方形(大小不一定相同).15.将下图中的正方形分割成形状和大小一样的四块,并且每一块恰好都有四种不同的图案.在图中用不同的色笔把它们区分开.16.有一块花格布,如图.请你把它沿格线剪成四块,然后制成一大一小两个正方形的坐垫,相邻小格的图案不同.在图上用粗线画出分割线.17.一个角可以将平面分成2部分.3个角最多可以将平面分成个部分.18.如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形.大三角形的面积是平方厘米.19.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.20.将一个正六边形切割成三个完全相同的小正六边形和三个完全相同的菱形.如果大正六边形的面积为360平方厘米,那么每个菱形的面积是平方厘米.21.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.22.请把下面的图形分成形状、大小都相同的4块,使每一块里面都有“春蕾杯赛”4个字.23.一块底面为正方形的奶油蛋糕,上面、底面和四周都均匀的涂着奶油,如果我们想将它分给4个小朋友,使得每个小朋友分得的蛋糕和奶油都一样多,我们可以用图1的方法,将它分成4等分,现在要将它切成3块,分给3个小朋友,使得每个小朋友分得的蛋糕和奶油都一样多,请在图2中给出你的方法.24.一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积分别是2、8、58,则④、⑤这两块的面积差是.25.一个圆最多可以将平面分成两部分,两个圆最多可以将平面分成4部分,10个圆最多可以将平面分成部分.三.解答题(共25小题)26.把任意三角形分成三个小三角形,使它们的面积的比是2:3:5.27.图中由10个相同的小正方形组成,请用三种方法把它分割成两个大小相等、形状相同的部分(沿图中的线分割).28.数一数,在图1中的不同位置可以画出多少个图2所示的图形?(方向可以旋转)29.如图是一个由36块1×1的小正方形组成的图形.(1)能不能将这个图形剪成三块后拼成一个6×6的正方形?并说明理由.(2)能不能将这个图形剪成18个2×1的长方形?并说明理由.30.请将如图所示的正方形分成两块,使得这两块的形状和大小都相同.并且每一块中都含有A、B、C、D、E五个字母,在图中用斜线或不同色笔区分.31.如图正方形的边长是2米,在其四个角落各放一盆花,若想把正方形面积扩大为原来的2倍,又不移动花的位置,使得花在正方形的边上,可能吗?请在原图上画出示意图.32.将边长是7的大正方形分割为边长分别是1,或2,或3的小正方形,其中至少有多少个边长是1的正方形?在图中画出你的分割方法.答:至少有个边长是1的正方形.33.图1是一个5×5的数字方阵,正中一个小正方形被挖去.请将它划分成8个部分,每个部分的形状是图2中的一种,并且每个部分中的三个数字和相等.请在图1中用粗线表示出划分的方法.34.如图,圆形靶纸上有两个弹孔,一个在内圈,一个在外圈,请将这张靶纸剪成两部分,使得这两部份的形状大小完全相同,并且各有一个弹孔.(请在图上划出剪线即可)35.把如图分割成形状、大小完全一样的8个部分.请在图中画出你的分法.36.在3×3方格中(如图),画一条直线最多可穿过几个方格?(请画图表示)37.在下面的直角梯形中画两条线,分成三个三角形,使它们的面积比为1:2:3.38.如图是某个图形的,你能画出这个图吗?至少想出两种方案,并保留作图痕迹.39.把卡纸上6×6的方格沿格线剪成4块形状相同,大小相等的图形,使得每一块上都有“新”、“年”、“好”三个字.(1)将剪下的4块图形分开粘贴在下面的答题区内.(2)设每个1×1的小方格的边长为1,求每块图形的周长.40.如图,有9只小猴住在同一个正方形卧室中.现在,小猴们都想单独住.猴妈妈只要再砌两个正方形墙,就能让每只小猴都单独住了.你知道怎么砌吗?请直接画在图中.41.将图分割成两部分,两部分恰好能拼成一个正方形.(1)若图中每个小正方形的边长是1,拼成的正方形的边长是多少?(2)用粗线表示分割的路线.42.[构造平行四边形].如图,图中的三条横线互相平行,三条斜线也互相平行,怎样画一条直线,把这个图形分成面积相等的两部分呢?43.如图1所示,在正方形点阵的某些方格中标上数字,然后按如下规则连线:(1)沿虚线连出一条封闭折线;(2)方格中的数字表示封闭折线经过该方格的边数;例如右下角的数字3就表示封闭折线经过了该方格的3条边,左下角的数字0表示就表示封闭折线不经过该方格的边;(3)对于没有数字的方格,折线在经过它时没有边数限制,折线也可以选择不经过没有数字的方格;(4)封闭折线上的每个格点都恰好与另外两个格点相连,其它格点一律不与任何格点相连.依据上述四条规则,图1的答案就是图2.请依据上述四条规则,在图3中画出正确的连线方法.44.某城市准备举行书画展览,为了保证展品安全,展览的保卫部门准备安排保安员值班.情况如下:①展览大厅是长方形,内设均匀分布的3×4个长方形展区,如图1所示.在展厅中,展览的书画被挂在每个展区的外墙上,参观者在通道上浏览书画.②保安员站在固定的位置上,不允许转身,只能监视他的左右两侧和正前方,形如一个“T”形的区域.③展品的安全意味着每一个展区的四面外墙都在保安员的监视范围内.对于如图所示的展示中,最少需要几个保安员能使展品安全?为什么?并在图中标明这些保安员的位置(如图2,要在A处安排一个保安员,就在A处画一个“T”字).45.在一个正六边形中,找出一个三角形,使这个三角形的面积等于正六边形面积的.(直接在图4中画出,并说明理由)46.张家和李家共同拥有一块如图的平行四边形的田地,田地的中间有一用于灌溉的圆形池塘,点O为圆心,现在他们两家想用一条直线把这块田平均分配,并且中间的池塘也要平均分配,你能为他们设计一个分配方案吗?把你的设计图画在原图上,如有必要,请作简要文字说明.47.图中有5个小正方形,请你在图中画一条直线,将这5个小正方形平均分成两部分,每部分所包含的图形两两相同,且面积相等.并请简要说明作图步骤.48.把一个正方形,分别分成7,8个小正方形(画出图形)49.如图是一个正方形,请你将它划分成10个小正方形.50.请将下图分割成大小、形状都相同的4块,每一块中都要带有白子、黑子各一个.参考答案与试题解析一.选择题(共1小题)1.一个三角形将平面分成2个部分,2个三角形最多将平面分成8个部分,那么5个三角形最多能将平面分成的部分数是()A.62B.92C.512D.1024【分析】一个三角形可分内外两部分,第2个三角形有三条边,每条边都可以挂一下原三角形的每个角,这样就产生2×3=6个交点,根据植树间隔问题,这6个交点自然把第2个三角形这样一个封闭图形分成6段(有直有弯),每段穿过一个部分一分为2,新增6个,所以2+6=8部分;第3个三角形的每条边现在可以挂到原有2个三角形的2个角,得到4个点,3条边最多可产生4×3=12个交点,同理这12个交点把第三个三角形本身分成12段,每段穿过一个部分,又新增加12个,共2+6+12=20个;同理,第4个三角形共分成:2+6+12+18;…;所以n个三角形分部分数可总结出一个规律:部分数=2+6+12+18+24+…=2+n×(n﹣1)×3;据此解答.【解答】解:2+5×(5﹣1)×3=2+60=62(个)答:5个三角形最多能把平面分成62部分.故选:A.【点评】像这种长方形、直线、圆、三角形等分平面部分数的问题,对于比较复杂的问题,可以先观察其简单情况,利用等差数列归纳出其中带规律性的东西,然后再来解决较复杂的问题.二.填空题(共24小题)2.在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为7.5,可以划分为15个本原格点三角形.【分析】根据皮克公式:设格点多边形的面积是S,该多边形各边上的格点个数为a个,内部格点个数为b个,则S=a+b﹣1,即可求出图中的格点四边形的面积.【解答】解:皮克公式:S=a+b﹣1图中的格点四边形中,各边上的格点数a=5,内部的格点数b=6,所以格点四边形的面积是:×5+6﹣1=7.5根据题意,本原格点三角形内部没有格点,那么S=×3+0﹣1=0.5,所以7.5÷0.5=15(个),故答案为7.5,15.【点评】本题考查皮克公式的灵活运用.3.给出一个正方形,请你动手画一画,将它分为n个小正方形,那么,通过实验与思考,你认为这样的自然数n可以取的所有值应该是非零自然数的平方.【分析】由于正方形的边长相等,面积等于边长的平方,要实现将其剖分成n 个正方形,自然数n应该是非零自然数的平方.【解答】解:因为大正方形的边长分成相等份的边长,均可以得到正方形,则这样的自然数n可以取的所有值应该是非零自然数的平方,故答案为非零自然数的平方.【点评】完成本题可实际操作一下,只需要每次均分一个小正方形,依次推出即可.4.将图分割成大小形状相似的两块,这两块图形可拼成一个正方形.用粗线条在原图上画出分割线,不必画拼合成的正方形.【分析】由题意正方形的面积为16,推出正方形的边长为4,由此即可解决问题.【解答】解:因为正方形的面积为16,推出正方形的边长为4.分割线如图所示,①与②相似,①放入③位置即可.【点评】本题考查图形的划分,解题的关键是利用数形结合的思想解决问题求出正方形的边长是关键.5.大正方形内有两个小正方形,这两个小正方形可以在大正方形内任意移动(小正方形的任何部分都不能移出大正方形,小正方形的边必须与大正方形的边平行).如果这两个小正方形的重叠面积最小为9,最大为25,并且三个正方形(一个大正方形和两个小正方形)的边长之和为23,则三个正方形的面积之和为189.【分析】利用两个小正方形的重叠面积最大为25,可得最小正方形的面积为25.设另一个小正方形的边长为x,则大正方形的边长为x+5﹣3=x+2,根据三个正方形(一个大正方形和两个小正方形)的边长之和为23,建立方程,可得三个正方形(一个大正方形和两个小正方形)的边长,即可求出三个正方形的面积之和.【解答】解:两个小正方形的重叠面积最大为25,可得最小正方形的面积为25,边长为5.大正方形内有两个小正方形,则设另一个小正方形的边长为x,则大正方形的边长为x+5﹣3=x+2,所以根据三种边长的和得出5+x+x+2=23,解得x=8,所以三个正方形的面积的和为52+82+102=189,故答案为189.【点评】本题考查图形划分,考查最大与最小问题,考查学生分析解决问题的能力,正确求出三个正方形(一个大正方形和两个小正方形)的边长是关键.6.如图,6×6的表格被粗线分成了9块,若某块中恰有N个格子,则该块所填数字恰好为1~N;且任意相邻两个格子(有公共点的两个小正方形称为相邻格子)所填数字不同,那么四位数是4252.【分析】按题意,首先可以确定是只有一个方格的位置H处,只能填1;而B所在的那块只有2个方格,只能填1和2,而B与1相邻,故只能填2;A处只能填3或4,而B下面的三个方格只能填1、2、3,A处只能填4,因为E处的方格只能填1,而I处只能填3,则C处填5,D处填2.【解答】解:根据分析,首先可以确定是只有一个方格的位置H处,只能填1;而B所在的那块只有2个方格,只能填1和2,而B与1相邻,故只能填2;A处只能填3或4,而B下面的三个方格只能填1、2、3,A处只能填4,因为E处的方格只能填1,而I处只能填3,则C处填5,D处填2.填法如下图:综上,A:4,B:2,C:5,D:2故答案是:4252.【点评】本题考查图形划分,突破点是:根据每个区域数字的特征,判断每个方格的数字.7.有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出4029个同样的等腰梯形.【分析】由于等腰梯形的纸片,上底长度为2015,下底长度为2016,它们上下底的长度相差1,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则剪出的梯形的下底长度约大于2016﹣2015=1,依此即可求解.【解答】解:(2015﹣1)×2+1=2014×2+1=4028+1=4029(个)答:最多可以剪出4029个同样的等腰梯形.故答案为:4029.【点评】考查了图形划分,本题理解剪出的梯形的下底长度约大于2016﹣2015=1是解题的关键.8.如图,用一条线段把一个周长是30cm的长方形分割成一个正方形和一个小的长方形.如果小长方形的周长是16cm,则原来长方形的面积是56cm2.【分析】由大长方形到小长方形周长减少了:30﹣16=14(厘米),相当于减少了两条正方形的边长,所以正方形的边长是:14÷2=7(厘米),也就是原来长方形的宽是7厘米;那么原来长方形的长为:16÷2﹣7+7=8(厘米),面积是:8×7=56cm2.【解答】解:根据分析可得,30﹣16=14(厘米),正方形的边长:14÷2=7(厘米),原来长方形长:16÷2﹣7+7=8(厘米),面积:8×7=56(平方厘米);答:原来长方形的面积是56cm2.故答案为:56.【点评】本题是比较复杂的求面积问题,关键是利用类似“差不变”原理求得正方形的边长也就是原来长方形的宽.9.如图,一个正方形,与4个等腰直角三角形,恰好拼成一个长方形,如果正方形的面积是16,那么,长方形的面积是192.【分析】图中的三角形都是等腰直角三角形,所以将图形分割,利用正方形的面积是16,可得结论.【解答】解:图中的三角形都是等腰直角三角形,所以将图形分割,如图所示,由于正方形的面积是16,所以长方形的面积是16+4×(4×6×2)=192,故答案为192.【点评】本题考查图形划分,考查学生的动手能力,正确分割图形是关键.10.在空格中填入数字1﹣5使得每行、每列和每宫(在数独中被粗线分割开的每块称为宫)数字都不重复,斜线相邻的数字也不能相同.那么,第一行从左至右5个数字依次组成的五位数是53124.【分析】按题意,L、H与4相邻,故不能为4,第二列中只有能是D为4;L、H 处只能是1和5,由于H与5在一条斜线上,故不能为5,所以L为5,H为1;而F与5同列,故不能为5,而E、F与1、2同行,只能是3和5,故F 为3,E为5;在第一宫中,D为4,A、B只能是1和5,因B与5相邻,故B不能是5,故B是1,A是5;在第一行中,只剩下C必为4.【解答】解:根据分析,L、H与4斜线相邻,故不能为4,第二列中只有能是D 为4;L、H处只能是1和5,由于H与5在一条斜线上,故不能为5,所以L为5,H 为1;而F与5同列,故不能为5,而E、F与1、2同行,只能是3和5,故F为3,E 为5;在第一宫中,D为4,A、B只能是1和5,因B与5相邻,故B不能是5,故B 是1,A是5;在第一行中,只剩下C必为4.综上,第一行从左至右5个数字依次组成的五位数是:53124.故答案是:53124.【点评】本题考查图形划分,突破点是:根据每行每列的数字不能重复,可以推测出第一行的数字.11.把一张边长为11厘米的正方形纸片,剪成若干边长小于11的整数厘米的正方形纸片(不必全相同,允许重复剪成同一种尺寸,纸片没有浪费),最少能剪成11片.【分析】可以将整个边长为11厘米的正方形纸片分割成边长为1厘米的小正方形,然后再分,11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的再细分,直至分完.【解答】解:根据分析,如图;11厘米若分成两个边长一样的正方形,则无法保证边长为整数,故只能一个是6厘米,另一个为5厘米,故可以分成一个6厘米的正方形,两个边长为5厘米的正方形,剩下的还至少可以分成三个边长为3的正方形,最后剩下中间的8个小方格,再分,至少可以分成一个边长为2的小正方形,和4个边长为1的小正方形.综上,共可以分成:1+2+3+1+4=11个正方形.故答案是:11.【点评】本题考查图形划分,突破点是:将图形先划分成面积较大的正方形,然后再分,最后即可求得正方形的最少个数.12.如图是长方形,将它分成7部分,至少要画3条直线.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.【解答】解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.13.把一张l6cm×32cm的纸裁去一半,再将其中一张裁去一半…继续这样裁下去,直到得到一张lcm×2cm的纸为止,那么一共需裁8次.【分析】根据图形的拆拼(切拼)方法可知,每次裁去一半,纸的一条边是原来的一半,依此计算即可求解.【解答】解:因为16÷2÷2÷2÷2=1(厘米),32÷2÷2÷2÷2=2(厘米),所以一共需要裁4+4=8(次).答:一共需要裁8次.故答案为:8.【点评】此题属于操作题,做题时最好是先结合实物进行分割,进行观察,然后得出答案.14.如图是一个正方形,请你用直线将它划分成11个互不重叠的小正方形(大小不一定相同).【分析】先把正方形的相邻的两条边都4等分,然后以每份的长度作为小正方形的边长,做出7个小正方形(如下图),同理,然后再把剩下的部分边长2等分,做出4个小正方形即可.【解答】解:根据分析画图如下:【点评】本题考查了图形的划分,关键是结合图形的特点和需要画的小正方形的个数,确定把边长几等分.15.将下图中的正方形分割成形状和大小一样的四块,并且每一块恰好都有四种不同的图案.在图中用不同的色笔把它们区分开.【分析】首先以这个8×8方格的中心作为对照,然后再用粗线按照要求把正方形平分,使每一部分都有这四个图形,即可得解.【解答】解:根据题干分析可得:【点评】解答此类问题的关键是先确定方格的中心,再根据各个图形的分布特点,画图分析即可解答,锻炼了学生的几何直观和抽象思维能力.16.有一块花格布,如图.请你把它沿格线剪成四块,然后制成一大一小两个正方形的坐垫,相邻小格的图案不同.在图上用粗线画出分割线.【分析】因为制成一大一小两个正方形的坐垫,又要求相邻小格的图案不同,根据这块花格布的特点,可分成4×4和3×3的正方形,如图所示(见解答部分).【解答】解:【点评】此题考查了学生对图形的识别,以及分析判断和操作能力.17.一个角可以将平面分成2部分.3个角最多可以将平面分成16个部分.【分析】先作一个角A,再作角B使B的每边都与A的两边相交,这时平面已被分为7部分;再作一个角C,使C的每边都与图中已有的4条边相交,这样就把平面分为了16部分,据此即可解答.【解答】解:根据题干分析画图如下:。

20181213小学奥数练习卷(知识点:重叠问题)含答案解析

20181213小学奥数练习卷(知识点:重叠问题)含答案解析

小学奥数练习卷(知识点:重叠问题)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.92.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a第Ⅱ卷(非选择题)二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是平方厘米.(单位:厘米)4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长厘米.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=平方厘米.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为平方厘米.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为平方厘米.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是平方厘米.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长厘米.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是平方厘米.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是千克,小红体重是千克,小敏体重是千克.19.两个长方形如图叠放,图上已标出一些线段的长.EF=.20.图中,三张大小一样的等边三角形透明玻璃纸,各被分为49个大小相同的小等边三角形,每张玻璃纸上都各有16个小等边三角形涂上了阴影,如果把这三张玻璃纸重叠在一起,看到的阴影小等边三角形共有个.21.如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是cm2.22.如图,有6个边长是1的小正方形,一个压着一个,上面的正方形的一个顶点恰好是下一个正方形的中心,上面正方形的中心的下面恰好是下面正方形的一个顶点,那么这个图形最后所形成的多边形的周长是;如果一共有20个边长是1的正方形按上述方法叠在一起,那么最后形成的多边形的周长是.23.如图,两个正方形的边长分别为10厘米和7厘米,甲、乙两块空白区域的面积之和为87平方厘米,那么阴影部分的面积是平方厘米.24.5个相同正方形纸片按相同的方向叠放在一起(如图),相邻两个正方形的一个角都与另一个正方形的中心点重合,如果所构成图形的周长是120厘米,那么这个图形覆盖的面积是平方厘米.25.今天是12月19日,我们将由边长为1的阴影小正方形组成的数字1、2、1、9放在8×5的大长方形中,将大长方形旋转180°,就变成了“6121”,如果将这两个8×5的大长方形重叠放置.那么重叠的阴影格子共有个.26.今天是12月19日,我们将电子数字1、2、1、9放在如图中8×5的长方形中,每个阴影小格子都是边长为1的正方形,将它旋转180°,就变成了“6121”,如果将这两个8×5的长方形重叠放置,那么重叠的1×1的阴影格子共有个.27.3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是平方厘米.28.将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为厘米.29.如图,五个圆相交后被分成了九个区域,现在两个区域里已分别填上数字15、16,请在另外七个区域里分别填进2,3,4,5,7,8,9这七个数字,使每个圆内的数字和是20.30.如图所示,一个正方形和一个长方形有一部分重叠,阴影部分甲比阴影部分乙的面积大6平方厘米,正方形的面积是10平方厘米,长方形的长为8厘米,则长方形的宽是厘米.31.如图是同一个等腰三角形的螺旋.这个等腰三角形中的最大角是100°.灰色三角形的编号是0,余下的三角形编号分别1、2、3、4、…,后一个三角形分别与前一个三角形有一条边重合,如图所示.从图中可以看出3号三角形只是部分地覆盖了0号三角形.请问第一个完全覆盖0号三角形的是号三角形.三.解答题(共19小题)32.某校四年级四个班总共有176名学生,其中一班和二班共有87名,一班和三班共有82名,二班和三班共有85名,那么,四班有多少名学生?33.两个相同的正方形重合在一起,将上层的正方形向右移动3厘米,再向下移动5厘米,得到如图所示的图形,已知阴影部分的面积是57平方厘米,求正方形的边长.34.小丽把两根长1米的纸条粘在一起,成为一根长170厘米的纸条,中间粘贴起来的纸条长度是厘米.35.如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).36.两个相同的长方形纸片,每块面积为48平方厘米.如图所示叠放在一起盖住的面积为72平方厘米.已知重叠部分的四边形ABCD的一条对角线BD为6厘米,则每张长方形纸片的长是多少厘米?37.如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?38.三条边长分别为5厘米、12厘米、13厘米的直角三角形,如图1,将它的短直角边对折到斜边上去与斜边重合,如图2.那么图2中阴影部分(即未被盖住部分)的面积是多少平方米?39.(如图)五环图由内径为4分米,外径为5分米的5个圆环组成,其中相交的小曲边四边形的面积都相等,已知5个圆环盖住的总面积是122.5平方分米.每个小曲边四边形的面积是.40.如图,小正方形的被阴影部分覆盖,大正方形的被阴影覆盖,那么,小正方形的阴影部分与大正方形阴影部分面积之比是.41.桌子上放有甲、乙、丙三个正方形,甲、丙有部分重叠,乙、丙有部分重叠.甲、丙重叠部分占甲正方形面积的;乙、丙重叠部分占乙正方形面积的.丙正方形与甲、乙正方形重叠部分占丙正方形面积的.甲正方形和乙正方形面积的和是丙正方形面积的求:甲正方形面积与乙正方形面积的比.(要求化为最简整数比)42.桌面上放有四张大小不同的正方形纸片边长分别为2,3,4,5,若分别取走边长为2,3,4,5的正方形纸片中的一个,则剩下的三张纸片覆盖的面积分别减少2,3,4,5,那么四张纸片覆盖的面积是多少?43.城中小学四年级有四个班.已知四(1)班、四(2)班共81人,四(2)班、四(3)班共83人,四(3)班、四(4)班共86人,四(1)班比四(4)班多2人,问四个班各有多少人?(只写答案,不列式)44.将同样大小的长方形纸像如图那样重叠在一起,每个长方形的长是12厘米,每个重叠部分是2厘米.那么,10张这样的纸连接起来的长度是多少厘米?45.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是46.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?47.如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分.则两个正方形的空白部分的面积相差多少平方厘米?48.五个大球与三个小球共重42克,五个小球与三个大球共重38克,则大球与小球各重多少克?49.阿明在喝茶的时候做了一个小实验.他把一根筷子笔直的插到杯底,他量了一下被水浸湿部分的长度是10厘米.他把筷子掉个头,将另一端笔直的插到杯底,这时候他发现,筷子干的部分比湿的部分短10厘米.那麽这根筷子长多少厘米?50.两块大小不同的等腰直角三角板,直角边分别是10厘米和6厘米,如图那样重合,求重合部分(阴影部分)的面积.参考答案与试题解析一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.9【分析】大正方形的面积是10×10=100平方厘米,它的阴影部分的面积是100﹣9=91平方厘米;同理,小正方形的面积是7×7=49平方厘米,它的阴影部分的面积是49﹣9=50平方厘米;然后求两个阴影部分的面积差即可.【解答】解:(10×10﹣9)﹣(7×7﹣9)=91﹣40=51(平方厘米)答:图中两个阴影部分的面积相差51平方厘米.故选:A.【点评】本题考查了重叠问题,本题还可以这样解答:因为重叠部分的面积是9平方厘米,所以两个阴影部分的面积差,就等于两个正方形的面积差,即10×10﹣7×7=51平方厘米.2.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a【分析】这六个正方形重叠在一起,第一个和最后一个正方形的长度为3a+3a,中间4个正方形的长度是2a×4=8a,把这些长度加起来就是这个图形的周长.【解答】解:3a+3a+2a×4=14a,答:这个图形的周长是14a;故选:B.【点评】此题考查了学生空间想象力以及分析图形的能力,同时考查了图形周长的计算方法.二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是14.25平方厘米.(单位:厘米)【分析】要求一共遮盖的面积,把正个图行补全为一个长1.5+2+1=4.5厘米、宽为3+1=4厘米的大长方形的面积,减去左上角、右上角、右下角的长方形的面积,长和宽的数据已经算出标在图上,然后求出面积差即可.【解答】解:1.5+2+1=4.5(厘米)3+1=4(厘米)4×4.5﹣1.5×1﹣1.5×1﹣0.5×1.5=18﹣3﹣0.75=14.25(平方厘米)故答案为:14.25.【点评】此题属于重叠问题,重点搞清重叠的是哪一部分,是解决本题的关键.4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是51.2.【分析】先作辅助线,在黄色纸片中截出面积为a的部分,又因为红色部分是正方形,所以可得等量关系式:黄色面积﹣a=绿色面积+a,由此列方程求出a 的面积;再由红黄绿的比例关系列出比例式解答即可.【解答】解:作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14﹣a=10+a解得:a=2设空白部分面积为x,将上图转化为,14﹣2=1210+2=12所以,=解得:x=7.2正方形盒子的面积为:12+20+12+7.2=51.2答:正方形盒子的面积是51.2.故答案为:51.2.【点评】本题考查了比较复杂的重叠问题,关键是求出中间黄与绿的重叠部分.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是13.【分析】重叠部分是一个边长是1小正方形,用4个大正方形的面积和减去3个小正方形的面积,就是被盖住桌面的面积.【解答】解:2×2×4﹣1×1×3=16﹣3=13答:它们在桌面上所能覆盖的面积是13.故答案为:13.【点评】本题的重点是求出每张纸覆盖的面积,再求覆盖的总面积.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长5厘米.【分析】由于最后一张的末尾没有粘接,所以10张纸条粘接在一起共有9处重叠,所以用现在的总长度41厘米,加上9个1厘米求出没重叠前的总长度和,然后再除以10即可解决问题.【解答】解:(41+1×9)÷10=50÷10=5(厘米)答:原来的每张纸条都长5厘米;故答案为:5.【点评】明确10张纸条粘接在一起共有9处重叠,是解答此题的关键.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=14平方厘米.【分析】由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解方程可得S.【解答】解:由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解得S=14.故答案为14.【点评】本题考查重叠问题,考查方程思想,正确建立方程是关键.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为6平方厘米.【分析】将两个图形重合,可得重叠部分,即可求出重叠部分的面积.【解答】解:重叠部分如图所示,重叠部分的面积为6平方厘米.故答案为6.【点评】本题考查重叠问题,考查数形结合的数学思想,正确作出重叠部分是关键.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.【分析】最大的正方形的边长是长方形的宽,也就是11厘米,次大的正方形的边长是19﹣11=8厘米,再小一点的正方形的边长是11﹣8=3厘米,最后剩余小长方形的长是3厘米,宽是8﹣3﹣3=2厘米,再根据长方形的面积公式求解即可.【解答】解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.故答案为:6.【点评】首先根据最大的正方形的边长是长方形的宽确定出最大正方形的边长,再依次找出其它正方形的边长,最后得出阴影部分的长和宽,再根据长方形的面积=长×宽求解.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为72平方厘米.【分析】求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米,可得小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.进而小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),即可求出两个小长方形的面积.【解答】解:正方形的面积为196平方厘米,所以边长为14厘米.重叠面积为1平方厘米,所以边长为1厘米;较大正方形是较小正方形面积的4倍,因此大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米所以小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),所以两个小长方形的面积为36×2=72(cm2)故答案为72.【点评】本题考查面积的计算,考查重叠问题,考查学生分析解决问题的能力,求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米是关键.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是360厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于①到②,③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90厘米,绳子的全长是90×4=360厘米.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于:①到②、③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90(厘米),绳子的全长是90×4=360(厘米).答:这根绳子的总长度是360厘米.故答案为:360.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,进而可求出x,从而求得绳子的全长.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是1155.【分析】将阴影部分看成两个平行四边形重叠在一起,重叠部分是一个菱形,菱形的两条对角线长度分别是AE和,所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,所以一共是正方形面积的,再根据分数乘法的意义求出阴影部分的面积.【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是1155.故答案为:1155.【点评】解决本题关键是得出重叠的菱形部分的面积与正方形面积的关系,从而得出阴影部分是正方形面积的几分之几,再根据分数乘法的意义求解.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是384平方厘米.【分析】放入一张长为32厘米宽为28厘米的相片,则被照片覆盖的部分的面积是这张相片的面积,分别求出相框和相片的面积,然后用相框的面积减去相片的面积即可.【解答】解:40×32﹣32×28=32×(40﹣28)=32×12=384(平方厘米)答:相框中没有被照片覆盖的部分的面积是384平方厘米.故答案为:384.【点评】此题考查了长方形面积公式的灵活运用.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长250厘米.【分析】六根木条依次首尾相接钉在一起,重叠部分有6﹣1=5(次);要减少10×5=50(厘米);所以钉好后木条总长是:50×6﹣50=250(厘米);据此解答.【解答】解:根据分析可得,50×6﹣10×5,=300﹣50,=250(厘米);答:钉好后木条总长250厘米.故答案为:250.【点评】本题可以按植树问题解答,先求出间隔数也就是重叠的次数,知识点:重叠的次数=段数﹣1.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是20平方厘米.【分析】60×3=180,此时未重叠面积计算了一次,阴影部分面积计算了两次,3张纸板重叠部分的面积计算了三次,180﹣100=80,此时减去了3张板盖住的总面积,则阴影部分面积计算了一次,3张纸板重叠部分的面积计算了两次;80﹣40,此时减去了阴影面积,则3张纸板重叠部分的面积计算了两次;所以,三张纸板重叠部分的面积为40÷2=20平方厘米;由此解答即可.【解答】解:(60×3﹣100﹣40)÷2=40÷2=20(平方厘米);答:3张纸板重叠部分的面积是20平方厘米.故答案为:20.【点评】此题属于重叠问题,比较复杂,应认真分析题意,看清要求的是什么,必须求出什么,重叠的部分是多少,进而解答得出结论.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是38千克,小红体重是34千克,小敏体重是31千克.【分析】把小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克,这三部分体重和相加,就是这个三个小朋友体重的2倍,再除以2,求出3个小朋友的体重,然后减去72千克,就是小敏的体重,同理求出其它小朋友的体重.【解答】解:三人的体重和;(72+69+65)÷2=206÷2=103(千克)小敏:103﹣72=31(千克)小红:103﹣69=34(千克)小芳:103﹣65=38(千克)答:小芳体重是38千克,小红体重是34千克,小敏体重是31千克.故答案为:38,34,31.【点评】解决本题关键是求出这三个人体重和的2倍.19.两个长方形如图叠放,图上已标出一些线段的长.EF=32.【分析】连接ED,三角形AED的面积是:(15+25)×20÷2=400,又因为三角形AED的面积是长方形AEDG的面积的一半,所以长方形AEDG的面积是:400×2=800,所以,EF的长:800÷25=32,据此解答.。

20181213小学奥数练习卷(知识点:凑数谜)含答案解析

20181213小学奥数练习卷(知识点:凑数谜)含答案解析

小学奥数练习卷(知识点:凑数谜)题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共2小题)1.如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.42.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1B.2C.4D.6第Ⅰ卷(非选择题)评卷人得分二.填空题(共43小题)3.在下列横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且没有汉字代表7,“迎”、“春”、“杯”均不等于1,那么“迎”、“春”、“杯”所代表三个数字的和是..4.有算式:(好问+好学)×学问=410,其中的“好问”、“好学”、“学问”表示三个自然数,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么,好问+好学+学问=.(备注:这里“好问”,“好学”,“学问”都是两位数)5.在×=这个等式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么,=.6.在下面加法竖式中,八个不同的字母分别代表2~9这八个数字,其中相同的字母代表相同的数字,不同的字母代表不同的数字,那么=.7.如图十个不同的字母分别表示0﹣9这十个不同的数字,如果下面的加法竖式是成立的.那么是,是,是.8.在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是.9.如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数.10.如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是或.11.把1、2、3、4、5、6、7、8填入如图的○内,使每边上三个数的和相等而且最大,这个最大的每边三个数的和是,再把○填完整.12.如图的竖式中,同样的图形代表相同的数字,不同的图形代表不同的数字.要使竖式正确,△里应该填,◇里应该填,□里应该填.13.观察上式中的算式谜,两个三位数的乘积是一个五位数ABC62,已知这两个三位数是由6个不同的数字组成,那么三位数=.14.在如图的算式迷中填入适当的数字使竖式成立,则竖式中两个乘数之和为.15.在如图的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则“”所代表的三位数是.16.如图的竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,当竖式成立时,“尊”、“敬”、“的”、“大”、“师”五个汉字代表的数字之和是.17.在下面算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么下面的积是.18.在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是.19.下面的数字谜中的不同的汉字代表不同的数字,那么四位数““的最小值是.20.“二零一六学而思杯赛”九个汉字代表九个不同的数字,并满足如下算式,那么,四位数的最大值是.++=2016.21.请将1~6分别填入如图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有2条直线上各有2个圆圈);那么两位数=.22.在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.23.四位数除以两位数的余数恰好为,如果不同的汉字表示不同的数字且和不互质,那么四位数最大是.24.如图的两个竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字,那么六位数=.25.请将0﹣9分别填入下面算式的方框中,每个数字恰用一次,或已将“1”、“3”、“0”填入,若等式成立,那么等式中唯一的四位被减数是.26.如图,一个环上有6个圆圈,如果从标S的圆圈开始填入数字1~6,填入哪个数字,就以顺时针方向前进几个圆圈填下一个数字(这个数字可任意填写),如果恰好可以将1~6全部填入,则称为完全环,如图所示就是一种完全环的填法.请将如图的完全环补充完整,那么5位数ABCDE是.27.在中的圆圈中填入从1到16的自然数(每一个数用而且只能用一次),使连接在同一直线上的4个圆圈中的数字之和都相等,这称为一个8阶幻星图,这个相等的数称为8阶幻星图的幻和.那么,8阶幻星图的幻和为,并继续完成以下8阶幻星图.28.如图,三个圆圈两两相交组成了七个部分,在七个部分中填入3~9这七个数,使得每个圆圈中四个数的和都是23,则图中“△”处应填入.29.在如图的算式中,a,b表不同的数字,都不为0.那么,这个算式的答数是.30.在如图所示的算式谜中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则“陈”+“杯”+“好”+“啊”=.31.在图中,分别将1﹣9这九个数字填入九个圆圈内,使两条直线上的五个数字和相等,那么中心处的圆圈内可以填入的数字是.32.如图所示,在□中填上适当的数,使除法竖式算式成立,那么被除数等于.33.如图的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么所代表的三位数是.34.在图中的乘法算式中,不同汉字代表不同数字,相同汉字代表相同数字,在算式的方格中填入适当的数字,使得算式成立,那么所代表的三位数是.35.如图,将1~6这六个数字填入图中的圆圈内,使得每一个圆圈内的数字等于其下面相邻两个圆圈内的数字之差(大减小),当然,最下面三个圆圈内的数字不用遵从这个规定(这三个圆圈没有下面相邻的圆圈了).那么,最上面的那个圆圈内的数字为(有多个答案的话都要写出来)36.正四面体PQRS的四个顶点与六条棱上各写着一个数,一共有10个数,这10个数为1、2、3、4、5、6、7、8、9、11.每个数都使用一次,每条棱上的数表示其连接的两个顶点上的数之和,棱PQ上的数为9,则棱RS上的数为.37.在如图的两个空白的圆圈内填入适当的自然数,使得三角形每条边上三个数的和都相等,那么,左下角的圆圈内应填.38.如图减法算式中,不同的汉字代表不同的数字.那么四位数的最小值是.39.请在如图的每个箭头里填上适当的数字,使得箭头里的数字表示箭头所指方向有几种不同的数字.那么四位数是(如图是一个3×3的例子).40.如图算式中,最后的乘积为.41.在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是.42.将0~9这10个数字分别填入加法竖式的方框中,那么和的最大值是.43.在空格内填入数字1﹣6,使得每个雪花和三个方向上六个格内数字都不重复,如图1是一个完整的例子,请填出如图2空格中的数字,那么图中四个英文字母所代表的四位数是44.如图算式中,不同的汉字代表不同的数字.如果=2015,且是质数,那么=.45.将1~7填入下左图的○中,使得图中四个三角形的三个顶点数之和都等于11.A+B=.评卷人得分三.解答题(共5小题)46.把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.47.在图的算式中,A,B,C,D代表0~9中四个各不相同的数字,且A是最小的质数,求四位数.48.在如图的算式中,“希“、“望”、“杯”三个字分别代表0~9中三个不同的数字,求“希望杯”代表的数.49.一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.50.将1、2、…、7填入下图的圆圈内,要求每个数值能且只能使用一次,每个圆圈内的数都等于箭头指向这个圆圈的所有圆圈内的数之和的个位数.参考答案与试题解析一.选择题(共2小题)1.如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.【点评】本题是考察对凑数谜的理解和运用,关键的问题是使用排除法.问题解决.2.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1B.2C.4D.6【分析】“”一定是111的倍数,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n≠1,然后根据n=2、3、4、5、6逐个筛选即可.【解答】解:根据分析可得,“”,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n≠1,n=2,则“”=37×6(符合要求)或74×3(不符合要求),n=3,则“”=37×9(不符合要求),n=4,则“”=74×6(不符合要求),n=5,则“”=37×15(不符合要求),n=6,则“”=74×9(不符合要求),所以,“”=37×6=222,即“好”字代表的数字是2.故选:B.【点评】本题解答的突破口知道“好好好”一定是37与3倍数,再根据不同汉字代表不同的数字验证解答即可.二.填空题(共43小题)3.在下列横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且没有汉字代表7,“迎”、“春”、“杯”均不等于1,那么“迎”、“春”、“杯”所代表三个数字的和是15..【分析】确定不含5,为7的倍数,且不为49,考虑3,6,9的分配,即可得出结论.【解答】解:若含5,则必为“加”,此时=56,3和9各剩一个,无法满足,所以不含5,为7的倍数,且不为49,考虑3,6,9的分配.第一种情况,吧=9,则3,6在左侧,且不是3的倍数,则=14或28,无解;第二种情况,9在左侧,则3,6在右侧,可得1×2×4×9×7=63×8,所以“迎”、“春”、“杯”所代表三个数字的和是15.故答案为15.【点评】本题考查凑数谜,考查学生的计算能力,确定不含5,为7的倍数,且不为49,考虑3,6,9的分配是关键.4.有算式:(好问+好学)×学问=410,其中的“好问”、“好学”、“学问”表示三个自然数,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么,好问+好学+学问=51.(备注:这里“好问”,“好学”,“学问”都是两位数)【分析】先把410分解质因数,然后根据“相同的汉字代表相同的数字,不同的汉字代表不同的数字”拆分变形为三个自然数的和即可.【解答】解:(好问+好学)×学问=410=41×2×5=41×10=(20+21)×10所以,好问+好学+学问=20+21+10=51故答案为:51.【点评】解答此题的关键是把410分解质因数.5.在×=这个等式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么,=1207、1458、1729.【分析】根据式子的特点,我们可从“个位分析”入手,B×A的个位是B,可能分为:第一种,A=1,B为2﹣﹣9;第二种,A是奇数3、7、9,B=5;第三种,A为2、4、8,B没可取的值;第四种,A=6,B为2、4、8.然后用“枚举法”对第一、二、四种存在的情况一一检验,即可得出答案.【解答】解:因为B×A的个位是B,所以可能有下列4种情况:第一种,A=1,B为2﹣﹣9时,有12×21=252,13×31=403,14×41=574,15×51=765,16×61=976均不符合舍去而17×71=1207,18×81=1458,19×91=1729这三个都符合;第二种,A是奇数3、7、9,B=5时,有35×53=1855,75×57=4275,95×59=5605均不符合,舍去;第三种,A为2、4、8,B直接没有可取得值,所以舍去;第四种,A=6,B为2、4、8时,62×26=1612,64×46=2944,68×86=5848均不符合舍去.综上可得符合的有:17×71=1207,18×81=1458,19×91=1729故:ACDB=1207、1458、1729.【点评】用枚举法来对此题解答,注意不要有遗漏即可.6.在下面加法竖式中,八个不同的字母分别代表2~9这八个数字,其中相同的字母代表相同的数字,不同的字母代表不同的数字,那么=2526.【分析】首先找到题中的特殊情况,结果中的首位字母只能是数字2,再看个位数字满足O+X=10,同时十位满足W+I=9,枚举即可排除.【解答】解:依题意可知:首先分析数字是从2﹣9的,那么3个不同数字相加最大进位是2,所以N=2;再根据个位数字为E,那么O+X=10.向前进位1,然后得出W+I=9;分析数字和为9的数字有3+6或者是4+5.数字和为10的有3+7或者4+6.那么得出结论根据4和6的数字重复,得数数字10的一定是3+7.当O=3时.I的数字是4或者是5,T+S结果需要为20或21,没有满足条件的数字.当O=7,I的数字是4或5.T+S结果需要为16或者17.那么9+8满足条件.剩下的数字E=6.故答案为:2526.【点评】本题是考查凑数谜的理解和应用,关键问题是找到题中的特殊情况,字母N和E就是本题的突破口.问题解决.7.如图十个不同的字母分别表示0﹣9这十个不同的数字,如果下面的加法竖式是成立的.那么是29786,是850,是31486.【分析】根据此式得特点,先从个位和十位入手,推出G、H的取值,再考虑千位和万位的情况,推出N与B的取值及AM的数字特点;然后以前面已推出的结果为条件再推出CD的取值,之后是H的取值与A、M取值,最后剩下的数是E的值,这样一步步就得出结果了.【解答】解:①由个位上E+G+G=E,十位上D+F+F和的个位上数是D⇒个位上没有进位,十位上有进位,G与F可能是0或5⇒G=0,F=5.②由千位上的B落下和是N,万位上A落下的和是M⇒B≥8,N为0或者1,A+1=M⇒A、M为连续的两个自然数.又因G=0⇒N=1,B=9,百位上的进位是2即C+D+D+1(进位1)的进位是2⇒D 必须为6、7、8⇒A、M在2、3、4中⇒H≠3.③经检验D是6、7均不行,只有D=8,C=7可以⇒H=4⇒A=2,M=3.④剩下的只有6,所以E=6.综上得:A=2,B=9,C=7,D=8,E=6,F=5,G=0,H=4,M=3,N=1.故:ABCDE是29786,DFG是850,MNHDE是31486.【点评】解此题的关键是抓住式子的特点,找出突破口才行的.8.在如图的乘法算式中,A、B、C、D、E、F、G、H、I分别表示彼此不同的一位数,则“FIGAA”表示的五位数是15744.【分析】首先找到题中的特殊情况,根据第一个乘积是三位数,尾数相同可以枚举排除,再根据A和C确定B,然后就可以求解.【解答】解:依题意可知:A、B、C、D、E、F、G、H、I共9个数字,题中没有数字0.再根据结果是三位数,那么首位字母可以是C=2,A=4或者C=3,A=9不满足三位数的条件.所以A=4,C=2.再根据进位B=9,E=8.根据E+H=A=4那么H=6,A加上进位等于I=5.所以D=3,F=1.即:49×32=15744.故答案为:15744.【点评】本题考查凑数谜的理解和运用,突破口就是字母C和第一个乘积是三位数限制了百位数字不能太大,问题解决.9.如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有10种情况使得这五个和恰为五个连续自然数.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可确定每个顶点处有几种选值,再确定共有几种情况.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,并且2与1,4与5不能组合,这样就有如下组合:因为每个顶点有2种不同的选值,所以共有2×5=10种;答:共有10种情况使得这五个和恰为五个连续自然数.故答案为:10.【点评】此题重点考查学生的数字分析与组合能力,关键是确定一个顶点有几种选值.10.如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是3或4.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可解决问题.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,根据这点可知,和“杯”在一条线段上的“华”可能是3或4,(2与1的和不在新的和内,5必须与3组合).答:“华”代表的数字是3或4.故答案为:3;4.【点评】此题考查了数字分析推理能力,难点是确定新的5个连续自然数比原来5个连续自然数多多少.11.把1、2、3、4、5、6、7、8填入如图的○内,使每边上三个数的和相等而且最大,这个最大的每边三个数的和是15,再把○填完整.【分析】1+2+3+4+5+6+7+8=36,36÷4=9,4个交点的和最大是5+6+7+8=26,26不能被4整除,所以只有24符合要求,即4个交点的和最大是24,然后求出幻和,然后凑数即可.【解答】解:1+2+3+4+5+6+7+8=3636÷4=926不能被4整除,所以只有24符合要求,即4个交点的和最大是24,所以幻和是:9+24÷4=15因为,3+7+6+8=24所以,四个顶点上的数可以是3、7、6、8,6+2+7=7+5+3=3+4+8=8+1+7所以,填图如下:【点评】本题考查了极值问题与幻方问题的综合应用,关键是确定最大的幻和.12.如图的竖式中,同样的图形代表相同的数字,不同的图形代表不同的数字.要使竖式正确,△里应该填1,◇里应该填9,□里应该填0.【分析】(1)两个三位数的和不可能是两千多,所以可以判断△是1;(2)根据和的末位数字是8,可以确定◇是4或者9;根据百位数字其中一个是1,那另一个至少8,也可能是9,两者结合就判断◇是9;(3)根据十位数字8,加进上来的1,加□得9,可以判断□为0.【解答】解:△里应该填1,◇里应该填9,□里应该填0.【点评】此题抓住数的特征找出突破口进行分析推理.13.观察上式中的算式谜,两个三位数的乘积是一个五位数ABC62,已知这两个三位数是由6个不同的数字组成,那么三位数=906.【分析】首先根据数字1推理出第一个乘数的首位数字是2.第二行的结果中尾数是6.个位没有进位上面的数字是0.继续推理即可.【解答】解:依题意可知:①首先根据数字1推理出第一个乘数的首位数字是2.第二行的结果中尾数是6.那么根据结果中十位数字是6,推理出第三行结果的十位上是数字0.②再根据结果的尾数是2,第一个乘数百位数字是2,那么第二个乘数的个位与第一个乘数相乘的积是第三行的四位数,个位上只能是数字7.③再判断第一个乘数的十位数字8才能符合十位和百位都是0.推理出第一行的四位数字是2002.③第一个乘数是286.④第二个乘数的百位数字需要小于4才能保证第五行乘积的结果是三位数.第二个乘数的百位数字只能是3.286×317=90662.故答案为:906【点评】本题考查对凑数谜的理解和运用,关键是找到题中第一个四位数的结果2002的由来问题解决.14.在如图的算式迷中填入适当的数字使竖式成立,则竖式中两个乘数之和为310、810.【分析】为了好表述两个乘数用AB2×CDE表示.根据2与D积个位数的特点推算出D=5,然后再依次去推断、检验E、B、A、C的取值,最后把得出的两个乘数进行相加即可.【解答】解:为了好表述两个乘数用AB2×CDE表示.①2×D积的个位数是0⇒D为0或5,如D=0,就不存在AB2×D的积□□0了⇒只能D=5.②2×E积的个位是6⇒E为3或8.若E=3时,B×3积的个位数是1⇒B=7,A×3+2(进位)和要有进位⇒A≥3⇒AB2×D最小是372×5积不符合□□0的形式⇒E=3不行⇒只能E=8.③B×E+1(进位)=B×8+1(进位)和的个位数是1⇒B为0或5.若B=0⇒A≥2;又因AB2×D即最小是202×5不符合□□0的形式⇒B=0不行⇒只能B=5.④AB2×D=□□0,即A52×5=□□0⇒A=1.⑤2×C积的个位数是2⇒C为1或6.若C=1,AB2×C=□□2即152×1=152符合□□2的形式,所以行;若C=6,AB2×C=152×6=912也符合□□2的形式,所以也行;综上得:AB2×CDE有152×158和152×658两种.152+158=310,152+658=810.故:竖式中两个乘数之和为310、810.【点评】此题根据竖式给出的数字的特点,主要是利用了两数相乘积个位数的数字进行的推断.15.在如图的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,则“”所代表的三位数是709.【分析】首先分析陈+省+身的结果尾数是6,如果是26那么只能是9+9+8才行不符合题意,所以陈+省+身=16,继续推理即可.【解答】解:依题意可知:陈+省+身的结果尾数是6,如果是26那么只能是9+9+8才行不符合题意,所以陈+省+身=16根据十位推理出陈+省=7.根据百位陈=7.所以陈=7,省=0,身=9.故答案为:709.【点评】本题考查对凑数谜的理解和运用,关键是找到个位的数字和是16.问题解决.16.如图的竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,当竖式成立时,“尊”、“敬”、“的”、“大”、“师”五个汉字代表的数字之和是22.【分析】首先分析津可能是0或者是5.天也可能是0或者是5,如果津是5有进位不符合题意.津=0.天=5.继续推理即可求解.【解答】解:依题意可知:①津可能是0或者是5.天也可能是0或者是5,如果津是5有进位不符合题意.津=0.天=5.②省+进位后结果个位是敬同时还需要向前进位只能是省=9,并且是2的进位才能符合题意.③陈加1个进位等于尊.④大+大+身结果是20多的没有重复数字的可能的情况是6+6+8+1进位尾数是1不符合题意.7+7+8+1尾数是3首位没有数字填写,只能是8+8+7+1进位尾数是4.⑤陈=2,尊=3,师=6符合条件.3+1+4+8+6=22.故答案为:22【点评】本题考查对凑数谜的理解和运用,关键是找到题中百位向千位进位2.问题解决.17.在下面算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么下面的积是68523、68524、68529.【分析】先据c与ade的乘积是ade本身,可得c为1;再由d+0没有进位和c+b=6,得到b=5;后由d+0=8与其后面的进位情况推算出d=7;再后由d+b+a=1b与b+d的进位情况推出a=2,至此可得e的可能值,即知道了积68bae是多少了.【解答】解:①e×c=e,d×c=c,a×c=a⇒c=1;②c+b=6,d+0没有进位⇒b=5;③d+0=8,d+b+a的最大进位是2⇒d=6或7,可6已有⇒d=7;④d+b+a=1b⇒7+5+a=15⇒b+d有进位时a=2,没有进位时a=3⇒b+d=1a,b+d=3⇒5+7=12成立,5+7=3这是不成立的⇒a=2;⑤因式子中有了0、6、8和a=2,b=5,c=1,d=7⇒e可以为:3、4、9.68bae=68523、68524、68529.故:下面的积是68523、68524、68529.【点评】此题只要找准突破点C,推得它的值,后面其它的值就好推算了,所以找准突破点是关键.18.在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=3,4+2=6,3+2=5,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是2143.故答案为2143.【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.19.下面的数字谜中的不同的汉字代表不同的数字,那么四位数““的最小值是1026.【分析】数字谜中出现了“黄金三角”,所以可知“学”=1,“三”=9,“而”=0,四位数““最小,可令“思”=2,则“未”+“年”=11,经尝试“好”+“来”+“级”=16时,““取得最小值.【解答】解:数字谜中出现了“黄金三角”,所以可知“学”=1,“三”=9,“而”=0,四位数““最小,可令“思”=2,则“未”+“年”=11,经尝试“好”+“来”+“级”=16时,““的最小值为1026,填法如下(不唯一):.故答案为1026.【点评】本题考查凑数字,考查学生分析解决问题的能力,抓住四位数为最小值,。

小学奥数著名问题之_一笔画问题习题集

小学奥数著名问题之_一笔画问题习题集

一笔画问题(教师必备)一、欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。

利用一笔画原理,七桥问题很容易解决。

因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。

二、顺便补充两点:(1)一个图形的奇点数目一定是偶数。

因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。

如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。

所以一个图形的奇点数目一定是偶数。

(2)有K个奇点的图形要K÷2笔才能画成。

例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。

如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。

将线段GF和BJ 去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即(6÷2)笔画成。

一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。

如左下图中的B,C两个奇点在右下图中都变成了偶点。

所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。

三、到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画,看下面的例题:1.下列图形分别是几笔画?怎样画?2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?4.下图是国际奥林匹克运动会的会标,能一笔画吗?如果能,请你把它画出来。

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

20181213小学奥数练习卷(知识点:竖式数字谜)含答案解析

小学奥数练习卷(知识点:竖式数字谜)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48第Ⅱ卷(非选择题)二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是.5.已知除法竖式如图:则除数是,商是.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是.11.将下面的乘法竖式补充完整,最后一行的乘积是.12.如图是一个乘法数字谜,最后的乘积为13.图中的乘法竖式,最后结果为.14.如图,乘法竖式中已经填出了3和8,那么,乘积是.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是.24.如图的两个竖式中,相同汉字代表相同数字,不同汉字代表不同数字.两个△和两个□中填入的数字分别相同:那么,“花园探秘”的值是.25.如图,将竖式填写完全后,所得的乘积是.26.请把如图所示的算式谜补充完整,那么被除数为.27.在下面的空格中填入合适的数字,使得乘法竖式成立,其中的乘积为.28.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.29.已知图中的除法竖式成立,则被除数等于.30.在如图的方格中填入适当的数字,使乘法竖式成立,那么乘积是.31.如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字.所有的汉字都不为0,也不与图中已经出现的数字相同,那么四位数“中环杯棒”=.32.已知0.+0.b=,相同的字母代表相同的数字,不同的字母也可以代表相同的数字(比如a=b=1),则=.33.将如图的乘法竖式数字填充完整,其中,两个乘数的和是.34.在如图的每个方框中填入一个数字,使得乘法竖式成立,那么,这个算式的乘积是.35.如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是36.在如图的每个方框中填入一个适当的数字,使得乘法算式成立,乘积等于.37.在图中的竖式除法中,被除数为?38.在下面算式的每个方框中填入一个适当的数字,使得乘法竖式成立,两个乘数之和是39.在下面算式的每个方框中填入一个适当的数字,使得乘法整式成立,两个乘数之和是40.如图除法竖式中的商是.41.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么四位数=.42.请在如图的每个方框中填入适当的数字,使得竖式成立(现已填入“2015”)那么竖式中乘积的最大值是.43.在每个方框中填入一个数字,使得乘法竖式成立,那么这个算式的乘积是.44.请将0~9折10个数分别填入如图的10个方框中,使得减法算式成立.如果“6”、“1”这两个数字分别填在被减数的前两个方框中,那么算式的差是.45.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.三.计算题(共1小题)46.在下面□中填入合适的数.四.解答题(共4小题)47.下面竖式中的两个乘数之和为多少.48.在如图算式中的所有空格内各填入一个数码,使得算式成立.49.a,b,c,d,e都是自然数,且0<c<b<a<d<e≤9,若如图的算式成立,求.50.如图,一个四位数加上一个三位数和为2015,这两个数的数字和等于.参考答案与试题解析一.选择题(共1小题)1.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.【点评】本题考查对竖式谜的理解和运用,关键是找到只有1的进位问题解决.二.填空题(共44小题)2.根据下面的乘法竖式,可判断出最后的乘积是9708.【分析】假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,然后再根据两位数与一位数相乘的规律即可求出A、B、D的数字.【解答】解:为方便说明,假设两位数为AB,三位数为8CD,由竖式中可知:该两位数与三位数相乘后,中间一行没有,故C必为0,由竖式可知:AB×8还是两位数,故A必为1,由于1B×D是三位数,故B必定大于1,因为1B×8是两位数,所以B不能大于2,故B只能等于2,所以两位数为12,由于12×D是三位数,故D必定为9,所以三位数为809,故最后乘积为12×809=9708,故答案为:9708.【点评】本题考查竖式数字谜,解题的关键是熟练运用两个数相乘的竖式运算规律,本题属于中等题型.3.如图是一个空白的除法竖式迷.要使计算成立,商最大时,被除数是10879.【分析】注意观察竖式可知五位数中,万位是1,千位为0,除数的十位只能是1,由于商要最大,所以商的百位最大为9,从9开始讨论即可得出答案.【解答】解:为方便说明:可用字母表示各个空格,如图所示,由于竖式除法可知:FGH减去KL后是所得的数是个位数,从而可知F=1,G=0,K=9,由于要使商最大,∴A最大为9,可从9开始尝试,由于K=9,9乘以DE后所得的两位数,十位为9,故D=1,E只能是1或0,当E=0时,所以除数为10,此时KL必定为90,由于FGH减去KL所得的数为个位数,即10H减去90所得数为个位数,由减法可知,该式不可能成立,当E=1时,所以除数为11,此时KL必定为99,由于商要最大,所以B先从9开始考虑,当B=9时,此时OP=99,由于MN减去OP所得的数为个位数,即MN减去99所得的数为个位数,由减法可知:此式不可能成立,所以B=8,此时OP=88,由于商要最大,所以C可以从9开始考虑,当C=9时,此时SM=99,由于余数为0,所以QR=SM=99,所以J=9,所以MN=88+9=97,所以H=8,I=7,所以被除数为10879,除数为11,此时商最大为989,故答案为:10879,【点评】本题考查竖式数字谜,解题的关键是根据竖式除法以及竖式减法先得出F、G、K的值,然后根据商最大判断A、B、C的情况,本题属于中等题型.4.如图,在方框中填入适当的数字,使得竖式成立,则所得结果的各位数字和最大是36.【分析】首先根据已知数字找到能确实的数字,然后根据进位和找到数字的最大和最小再排除即可.【解答】解:根据题意可知求最大:根据已知数字0判断第一个乘数的十位有可能是0或者5,再因为数字6,只能是与5的乘积加上一个进位.故第一个十位数字是5.根据乘数的乘积有数字6并且是三位数,那么首位数字乘积加上一个进位就是小于10的,那么3×2=6满足条件而且最大1×5=5满足条件而且最小;①当第一个乘数的首位数字是2,第二个乘数的首位是3.再根据含有数字1的结果是4位数,而且是偶数乘以5加上进位满足1的条件.最大是4,那么第一个乘数的个位数字就是4.即:254×342=86868(数字和为36)②当第一个乘数的首位数字是1,第二个乘数的首位数字是5时152×582=88464(数字和为30)也是满足条件的,故答案为:36【点评】本题考查对数式谜的理解和综合运用,关键在找到确定数字,再进行枚举排除.问题解决.5.已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.【点评】根据题意,由除法竖式的计算方法进行推算即可.6.如图的式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为142857.【分析】根据汉字代表数字的特点,设出相同的文字用同一个字母代替,利用给出的算式列出等式,进一步利用数字特点解答即可.【解答】解:设“学奥林匹克“=A,“数”=B,则3×(A+100000B)=10A+B,3A+300000B=10A+B,7A=299999B,A=42857B.只可能B=1,符合题意,从而A=42857,B=1.所以被乘数是142857.故答案为:142857.【点评】考查了竖式数字谜,此题主要抓住相同的文字,设出同一个字母表示,再利用十进制列出等式,进一步利用数字特点解答即可.7.在乘法竖式的□中填入合适的数字,使竖式成立.这个乘法算式的积是8820.【分析】(1)根据两个乘数的末尾数字相乘得0,可以第一个乘数的末尾可能是0或5,在根据第一个乘数的末尾数字与第二个乘数的十位数字相乘的末尾数字是5,可以确定第一个乘数的个位就是5.(2)根据第一个乘数与第二个乘数个位6相乘得一千多,就能确定第一个数的百位数字是2或3,分别计算245÷6=1470,345×6=2070,由此断定第一个乘数就是245.(3)因为积是八千多,所以能确定第一个乘数245乘第二位乘数的十位数字积是六百多或七百多,由此确定第二个数的十位数字是3.【解答】解:245×36=8820.【点评】抓住积的特征联系乘数各位数字进行推理.8.填入合适的数字,使如图所示乘法竖式成立.两个乘数的和是925.【分析】根据第一个因数的个位与第二个因数十位乘积的末位数是1,可确定第一个因数和第二个因数的十位是1,或9,或3、7,如是1,第二个因数的十位与第一个因数相乘的积是二位数,与算式矛盾;如是9,则第一个因数应是几十九,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3或7,如是7,则第一个因数应是几十七,它与2的乘积不可能得到几百零几,所以第一个因数的个位是3,第二个因数的十位是7,据此可推出第一个因数的十位是5,进而推出第二个因数的百位是8.【解答】解:53+872=925答:两个乘数的和是925.故答案为:925.【点评】本题的重点是根据第一个因数的个位与第二个因数十位乘积的末位数是1,来推出第一个因数和第二个因数十位上的数是多少.9.请将下面的乘法竖式补充完整,那么,最后一行的五位数是30975.【分析】根据竖式乘法以及乘法与加法的法则即可求出答案.【解答】解:为方便说,各空格标示字母,如图所示,由竖式可知:E=0,由于ABC×5是一个四位数,且最高为1,若A=1时,此时1BC×5不可能是四位数,故A=2,由于2BC×D=2F5,故D=1,且B=F,因为1+F=10,所以F=9,所以ABC表示三位数是295,DE5表示三位数是105,所以最后结果为30975故答案为:30975【点评】本题考查竖式数字谜,解题的关键是熟练竖式乘法,以及乘法、加法的法则,本题属于中等题型.10.下面的加法竖式中,所有数字互不相同,其中,数字2、0、1、6已经填好,那么,这个加法竖式的和是1053.【分析】此题的思路就是根据黄金三角得出C=9.知道ABDEF从3、4、5、7、9中选,再根据条件推算ADF,最后推出BE即可.【解答】解:式子中的空格用字母表示,如上图.(1)因出现黄金三角,所以C一定为9.(2)由题目要求数字互不相同,所以ABDEF只能是3、4、5、7、8.(3)A+2+D应该有的情况为:①AD取3与4、5、7、8的组合有:3+4+2=9,9已有不行;3+5+2=10,0已有不行;3+7+2=12,2已有不行;3+8+2=13,3已有不行.②AD取4与5、7、8的组合有:4+5+2=11,1已有不行;4+7+2=13,3没有可以;4+8+2=14,4已有不行.③AD取5与7、8的组合有:5+7+2=14,4没有可以;5+8+2=15,5已有不行.④AD取7、8组合,7+8+2=17,7已有不行.综上可得:AD取4与7,5与7两种组合符合条件.若AD为4、7时,F=3⇒BE为5、8.当B=5时,B+6+1=12,即E为2不是5,所以不行;当B=8时,B+6+1=15,即E=5行.若AD为5、7时,F=4⇒BE为3、8.当B=3时,B+6+1=10,即E为0不是8,所以不行;当B=8时,B+6+1=15,即E为5不是3,所以不行.故:只有E=5,F=3一种符合条件.即答案是1053.【点评】此题首先应看到黄金三角,从而确定C,然后才便于推算出结果.11.将下面的乘法竖式补充完整,最后一行的乘积是2016.【分析】观察式子的特点,得知F一定为6,AB与C积的个位是2,AB与D积的个位是6.这是此题的着手点,然后再找条件,进行逐步检验得出符合条件的式子即可.【解答】解:将题目中的空格用字母表示,如上图.(1)F+0=6⇒F=6(2)B×D积的个位是6⇒BD进行组合的数应为1与6、2与3、2与8、4与4、4与9、6与6、7与8⇒B可为1、2、3、4、6、7、8.(3)B×C积的个位是2⇒BC进行组合的数应为1与2、2与6、3与4、4与8、6与7、8与9⇒B可为1、2、3、4、6、7、8、9.(4)B可选的数有:1、2、3、4、6、7、8共7种情况.(5)AB×D积是两位数,AB×C积是三位数⇒C>D①若B=1时,则只能D=6,C=2,所以D>C不行.②若B=2时,则D可为3、8,B可为1、6.因C>D,所以只能C=6,D=3⇒A2×63,A可取2﹣﹣9.即得:22×63=1386,32×63=2016,42×63=2646,52×63=3276,62×63=3906,72×63=4536,82×63=5166,92×63=5796.这些积只有32×63的积符合G0H6的形式,其它均不行,故只有A=3,32×63行.③若B=3时,则D=2,C=4⇒A3×42,A可取3﹣﹣9.经检验(过程同上)都不行.④若B=4时,则D为4、9,C为3、8⇒D=4,C=8⇒A4×84,A可取2﹣﹣9.经检验(过程同上)只有24×84的积符合G0H6的形式,其它均不行,故A=2,24×84行.⑤若B=6时,则D为1、6,C为2、7⇒D=1,C=2或D=1,C=7或D=6,C=7三种可能,即A6×71,A6×21,A6×76三种.经检验(过程同上)A6×71和A6×76中没有符合的,只有A6×21中96×21积符合G0H6的形式,其它均不行,故只有96×21行.⑥若B=7时,则D=8,C=6,所以D>C不行.⑦若B=8时,则D为2、7,C为4、9⇒D=2,C=4或D=2,C=9或D=7,C=9三种可能,即A8×42,A8×92,A8×97三种.经检验(过程同上)A8×92和A8×97中没有符合的,只有A8×42中的48×42积符合G0H6的形式,其它均不行,故只有48×42行.综上得:32×63=2016,24×84=2016,96×21=2016,48×42=2016故:最后一行的乘积是2016.【点评】此题突破口好找,但检验麻烦,一定要认真细心才行.12.如图是一个乘法数字谜,最后的乘积为56500【分析】将此题的空用不同字母分别代替,如图.根据图形结构可得这题的着手点是题目中的出现数字多的部分,所以应从K入手,然后一步一步地去推算出来所有字母代表的数字.【解答】解:用不同字母表示不同位置的空格,如上图.(1)∵2+0+2<10,∴2+9+K和的个位数是6⇒K=5,(2)∵2+9+5=16,∴J+1=5⇒J=4,(3)∵ABC×F=22GH,ABC×D=452,452的6倍>22GH>452的4倍,∴F>4D⇒D只能是1或者2,又∵C×D积的个位是2,⇒CD可能是(1×2)、(2×1)、(3×4)…,∴CD只要两种情况C=1,D=2或C=2,D=1,①C=1,D=2时:∵ABC×D=452⇒AB1×2=452⇒2和1﹣﹣9的任意一个数相乘个位都不肯能出现5.∴这种情况不行.②C=2,D=1时:ABC×D=452⇒AB2×1=452⇒A=4,B=5,ABC×E=90S⇒452×E=90S⇒4×E<10⇒E是1,2.若E=1时,452×1积不能出现90S形式,所以E不能是1,只能是2.若E=2时,452×2=904,符合90S的形式,所以E是2,S=4.ABC×F=22GH,F>4D,D=1⇒F是5、6、7、8、9.若F=5时,452×5=2260,符合22GH的形式⇒G=6,H=0.若F=6时,452×6=2712,2712>22GH的形式,所以F=6不行.∵6与452的积大于22GH,∴7、8、9与452的积就更大于22GH⇒F是7、8、9时也不行.综上所述得:A=4,B=5,C=2,D=1,E=2,F=5,G=6,H=0,S=4,J=4,K=5.(4)H+0+0=0,N为0的个位⇒N=0(5)G+S=6+4=10,M为10的个位⇒M=0(6)2+0+2+1=5,L为5的个位⇒L=5故:452×125的积是56500.【点评】此题着手点好找,就是过程太麻烦,要求能做到耐心与细心才行.13.图中的乘法竖式,最后结果为4485.【分析】用字母代表空白的位置,如图.观察图中的情况可从AB与C、D、5三个数的乘积的数位入手,逐步推算即可.【解答】解:(1)∵AB×5=E1F是个三位数⇒AB最小是20,又∵AB×C=2H,∴A=2,C=1.(2)AB×5=2B×5=E1F⇒E=1,B×5=1F⇒B=2,F=0或B=3,F=5,∵AB×D=22×D=G0S是个三位数⇒D为5、6、7、8、9.①若B=2,F=0时,22×5=110,22×6=132,22×7=154,22×8=176,22×9=198这些积中没一个符号G0S形式的,所以此情况不行.②若B=3,F=5时,23×5=115,23×6=138,23×7=161,23×8=184,23×9=207这些积只有207符号G0S的形式,D=9.总结得:B=3,F=5,D=9.(3)23×195=4485.故:最后结果为4485.【点评】此题的入手点是积的数位,像这类题只有入手点正确就可推出结果.14.如图,乘法竖式中已经填出了3和8,那么,乘积是1843.【分析】首先根据进位分析结果的首位是1,再根据乘积的尾数是3的共有2种情况,分析排除即可.【解答】解:依题意可知:结果中有1个进位那么前两位数字是18,乘积中最大数字就是两位数乘一位数的最大99×9=891结果是800多,不会有900多.故第一个结果首位是8,第二个结果中的首位数字就是9.尾数是3的共有1×3或者7×9,再根据第二个乘积是两位数,即97×19=1843故答案为:1843【点评】本题的关键是找到结果首位是1,相加得18的只能是9和8,再加上进位,乘积尾数是3的情况可以确定2种,枚举即可问题解决.15.在如图所示除法整式的每个方框中,填入适当的数字,使算式成立.那么算式中的被除数是53036.【分析】首先根据已知数字确定尾数分别是2,1,7.根据尾数判断除数和商的数字,最后根据除数和商的乘积加上余数就是被除数.【解答】解:依题意可知乘积的结果的个位数字分别是2,1,7.根据尾数是1的共有1×1,3×7,9×9.再根据尾数是7的乘积是1×7,3×9,两次都有数字3,那么优先考虑除数的尾数是3的情况.那么商分别是4079.再根据除数与7的积是两位数,那么首位数字只能是1,即13×4079+9=53036故答案为:53036【点评】本题的关键是找到乘积的尾数是2,1,7.在根据数字的尾数判断除数的十位,被除数=除数×商+余数或者倒推填写竖式解决问题.16.在如图的乘法整式中,每一个“□”和英文字母都代表一个数字;其中相同的字母代表相同的数字,不同的字母代表不同的数字,而“□”中可以填写在任意的数字,已知P=6,那么五位数HAPPY是90662.【分析】首先根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末尾分析即可.问题解决.【解答】解:依题意可知首先根据数字P=6,十位数字中没有进位,那么第一个结果中的四位数的十位是0.再根据乘数中的数字1和得数中的数字2判断第一个乘数的百位是2.再根据第一个结果中含有2个数字0,如果千位数字是1,那么需要乘数乘以5,经过检验不符合条件,那么四位数的千位数字或者为2.那么第二个乘数的个位数字就是6,7,8,9这四种可能性.根据尾数判断只有数字7符合.即286×7=2002.再根据结果中的百位数字P是6,得最后的三位数尾数是8,那么乘数中的百位数字就是3.故答案为:90662【点评】本题的关键是根据数字1进行推理出来乘数的结果是十位数字是0+6组合,再确定第一个乘数的首位数字2,再用枚举法找出第二个乘数的个位满足题意合适的数字,接下来末位分析即可.问题解决.17.如图,一道除法竖式中已经填出了“2016”和“0”,那么被除数是83720.【分析】根据题意可知被除数的个位是0,因被除数的十位与0与相减的差是2,所以被除数的十位上的数是2,再根据被除数的百位与6的差是1,可确定被除数的百位上的数是7,又根据除数与与商的十位数及商的个位数相乘的得数的末位数是0,可确定商的个位数或除数的个位数有一个是0或5,0不符合题意,只能是5,又除数与商的百位数相乘的结果的末尾数是6,所以只能是商的个位数是5,则除数的个位数只能是一个偶数,不能是2,如是2则与除数与5相乘的十位数上不可能是2,可以是4,不能是6,因如是6,则除数与5相乘的十位数上不可能是2,同理也不能是8,所以除数的个位数只能是4,且除数与商的个位数5相乘得数是一个三位数,所以除数的百位数只能是1,就是1几十4与5的乘积得到是几百二十,这样可确定除数的十位数是8,进而可确定除数与商的个位数相乘得数是920,再根据除数与商的十位数相乘是三位数,上面的四位数减这个三位数是92,可确定商的十位数也是5,进而再根据除数和商的百位数上的商的个位数是6,可确定商的百位数是4.据此解答.【解答】解:【点评】本题的重点是根据已知的条件,先确定商的个位数是5,进而推出除数是多少,再进一步解决问题.18.如图乘法算式中只有四个位置上的数已知,它们分别是2,0,1,6请你在空白位置填上数字,使得算式能够成立.那么乘积为2205.【分析】根据题意第一个因数是六十几,它与第二个因数相乘的十位相乘后得到的积与这个数与个位数相乘的积的和是二千几百零几,可确定第二个因数的十位数是3或4,再根据积的十位数是0,可确定第一个因数的个数与第二个因数的十位数相乘的末尾数是9,可确定第二个因数的十位数是3,因4不论和谁相乘的末尾数不能得到9,这样就可确定第一个因数的个位数是3,再根据第一个因数63与第二个因数相乘得几百一十几,可推出第二个因数的个位数是5.据此解答.【解答】解:答:乘积是2205.故答案为:2205.【点评】本题的重点是先确定第二个因数的十位数是多少,进而推理解答问题.19.如图算式中,不同的汉字代表不同的数字,那么,代表的四位数最大是1786.【分析】根据和是2016,要使代表的四位数最大,可确定“数”是1,因“探”不能为0,“学”最大是9,如是9,则“探”是1,不合题意,“学”是8,则“探”是2,“花”与“秘”的和的末尾应是1,且不能进位,不合题意,所以“学”是7,“秘”是3或2,要使“花”最大,则“探”应是2,所以“花”是9,则“秘”是2,不合题意,“花”是8“秘”是3,则“园”最大是6,“行”是0,据此解答.【解答】解:答:代表的四位数最大是1786.【点评】本题的重点是先确定中数是几,再把数从大到小进行推理,得出符合条件的数.20.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘数中较小的是152.【分析】根据题意可知第一个因数与第二个因数相乘的积是一百几十几,可确定第一个因数的个位数是1,第二个因数的个位数也是1,又第一个因数与第二个因数的百位数相乘得一个四位数,所以第二个因数的百位上的数是大于5的数,又因它与2的乘积是十几,再根据第一个因数与第二个因数的百位数相乘的倒数第二位数是6,可确定第二个因数的百位数是9或7,所以乘数较小的数是152.【解答】解:答:乘数较小的数是152.故答案为:152.【点评】本题的重点是先确定第一个因数的百位数是几,进而求出第二个因数百位上的数,从面解决问题.21.如图的乘法竖式中,相同的汉子代表相同的数字,不同的汉字代表不同的数字:乘法竖式正确填写后,“”所代表的四位数是1537.【分析】根据乘法口诀可确定“学”是1、5或6,“学”如是1,则“学”与“数”的乘积应是“数”不合题意,所以“学”是5,则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,进而可得出“园”是7,再积的最高位是5,可确定“花”是3.如“学”是6,则根据则根据“数学”与“学”的乘积是一个两位数,可确定数只能是1,则“园”是9,进而推出“花”是1或6,都不符合题意.【解答】解:答:”所代表的四位数是1537.故答案为:1537.【点评】本题的重点是先确定“学”是几,进而进行推理解答.22.如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是6156.【分析】首先判断根据数位相乘结果是一个四位数和一个三位数,那么两位数的乘数中的十位数字小于2只能是1,再根据个位数字是6,那么乘数的尾数是3,同时四位数的结果是1000多那么百位数字只能是5,再根据数字关系求解即可.【解答】解:依题意可知乘数中的三位数乘以2结果是一个四位数,那么百位数字是大于4的数字,再根据数字0得知结果是1000多是数字那么乘数中的百位数字是5.而且乘数的三位数的十位数字乘以2没有进位.同时这三位数乘以一个数还是结果是三位数推理出乘数中2前面的数字是1,即乘数的两位数是12.再根据结果中的尾数是6,那么三位数的乘数的个位是3.再根据数字1得0+1=1,那么这个三位乘数是513故答案为:6156【点评】本题的关键是找到结果数字中位数的关系,利用末位分析法和首位分析法再结合已知数字进行排除即可问题解决.23.如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是612.。

小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)

所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。

因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。

20181213小学奥数练习卷(知识点:约数个数与约数和定理)含答案解析

20181213小学奥数练习卷(知识点:约数个数与约数和定理)含答案解析

小学奥数练习卷(知识点:约数个数与约数和定理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432第Ⅱ卷(非选择题)二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有个约数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有个约数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为.9.恰好有12个不同因数的最小的自然数为.10.有10个不同因数的最小自然数为.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.12.60的不同约数(1除外)的个数是.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有个“中环数”.14.在所有正整数中,因数的和不超过30的共有个.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是.18.在1~600中,恰好有3个约数的数有个.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=.26.已知自然数N的个位数字是0,且有8个约数,则N最小是.27.一个合数至少有3个约数..(判断对错)28.把72的所有约数从小到大排列,第4个是.29.把360的所有约数从小到大排列,第4个数是4,那么倒数第4个数是.30.已知360=2×2×2×3×3×5,那么360的约数共有个.31.一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么,这个正整数是.32.已知300=2×2×3×5×5,则300一共有不同的约数.33.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有9个约数,那么A+B=.34.能被2345整除且恰有2345个约数的数有个.35.分母是3553的最简真分数的和是.36.若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)=.37.聰聰先求出自然數N的所有約數,再將這些約數兩兩求和,結果發現,最小的和是3,最大的和是2010,那麼這個自然數N是.38.自然数N有20个正约数,N的最小值为.39.一个自然数恰好有18个约数,那么它最多有个约数的个位是3.40.数22×33×55有个不同的约数.41.设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是.三.解答题(共9小题)42.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有多少个?43.A、B、C、D是一个等差数列,并且A有2个约数、B有3个约数、C有4个约数、D有5个约数.那么,这四个数和的最小值是.44.如果一个数的奇约数个数有2m个(m为自然数),则我们称这样的数为“中环数”,比如3的奇约数有1,3,一共2=21,所以3是一个“中环数”.再比如21的奇约数有1,3,7,21,4=22,所以21 也是一个中环数.我们希望能找到n个连续的中环数.求n的最大值.45.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.46.求100至160之间有8个约数的数.47.2008的约数有个.48.100以内共有8个约数的数共有多少个?它们各是多少?49.已知三位数240有d个不同的约数(因子),求d的值.50.求360所有约数的和.参考答案与试题解析一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432【分析】首先把20拆成几个数的乘积,利用求约数个数的方法,从最小的质因数2考虑,依次增大,找出问题的答案即可.【解答】解:20=20=2×10=4×5=2×2×5;四种情况下的最小自然数分别为:219、29×3、24×33、24×3×5,其中最小的是最后一个24×3×5=240.故选:B.【点评】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是24、30、40、42、54、56、66、70、78、88.【分析】恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数),由此可得结论.【解答】解:根据题意可得:2×3×5=30,2×3×7=42,2×3×11=66,2×3×13=78,2×5×7=70;3×23=24,5×23=40,7×23=56,11×23=88,2×33=54;27=128>100.所以,所求的数从小到大依次是:24、30、40、42、54、56、66、70、78、88共十个.故答案为:24、30、40、42、54、56、66、70、78、88.【点评】本题考查约数个数问题,考查学生分析解决问题的能力,确定恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数)是关键.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有30个约数.【分析】n有10个约数,而2n有20个约数,按约数和定理,得知n的分解式中不含有2,3n有15个约数,假设3n的分解式中不含有3,则3n的约数应该是(1+1)×10=20个,则n的分解式中含有一个3,6n分成2×3×n,再根据约数和定理,可以求得约数的个数.【解答】解:根据分析,n有10个约数,2n有20个约数,按约数和定理,又∵,∴n的质因数分解式中含有0个2;设n=3a m x,又∵,∴n的质因数分解式中含有一个3,根据约数和定理,得n的约数和为:(a+1)(x+1)=10,解得:a=1,x=4,此时n=3×m4;故6n=2×3×n=2×3×3×m4=2×32×m4,其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30,故答案是:30.【点评】本题考查了约数个数与约数和定理,本题突破点是:根据约数和定理确定分解式中2和3的个数,再算约数的个数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是2520.【分析】因为这个数中的因数中有10个连续的自然数,那么这个数最小是1、2、3、4、5、6、7、8、9、10的最小公倍数,然后再验证这个最小公倍数是不是有48个约数.如果验证不到,再求2、3、4、5、6、7、8、9、10、11的最小公倍数,就这样去尝试.【解答】解:因为10=2×5,9=3×3,8=4×2,所以这10个数的最小公倍数,也就是7、8、9、10的最小公倍数.7、8的最小公倍数是56,9、10的最小公倍数是90,56和90的最小公倍数是2520.将2520分解质因数得23×32×5×7,所以它的因数个数是(3+1)×(2+1)×(1+1)×(1+1)=48个故此题填2520.【点评】此题考查是求公倍数的方法,以及如何去求约数的个数,采用的是假设验证的解题策略.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有8个约数.【分析】最小的数为4,则约数最小的数为1,另外一个第二小的约数为4﹣1=3,即:3是N的一个约数,最大的约数是本身,第二大的约数和第二小的约数相乘结果即为本身,所以第二大的约数为:,再根据最大的两约数和为2684,可以求出N的值,用约数和定理求出约数的个数.【解答】解:根据分析,约数最小的数为1,最小的两个约数和为4,则第二小的约数为:4﹣1=3,约数是成对出现的,N=1×N=3×,即是第二大的约数,由于最大的两约数和为2684,则有:,解得:N=2013,分解质因数2013=3×11×61,根据约数和定理,得:2013的约数个数为:(1+1)×(1+1)×(1+1)×(1+1)=8个,故答案是:8.【点评】本题考查了约数和定理与因数倍数知识,突破点是:根据约数和第二大和第二小约数,再求出N,再算其约数的个数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有12个因数.【分析】首先判断文字中含有隐含的数字,奇偶位数和相等是11的倍数,在分析因数的个数,同时注意题中说的是3个质数.42需要分解成3个数字相乘有唯一情况.再枚举即可.【解答】解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.【点评】本题考查因数个数的求解同时考查质数与合数的理解和运用,题中隐含数字11就是本题的突破口,同时关键分析42分解成2×3×7的情况.实际就是特殊的情况,都是最小的质数.问题解决.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是6336.【分析】根据因数个数是42个同时需要有3个质数,42分解成3个数字相乘就有唯一情况.同时这四位数中奇数偶数位数和相等.满足11整除特性.接下来从最小的情况枚举尝试即可.【解答】解:根据奇数偶数位数和相等,所以一定是11的倍数,因数个数是3+39=42个.四位数含有3个质数,需要将42分解成3个数字相乘.42=2×3×7.所以可以写成a×b2×c6.那么看一下质数是最小的是什么情况.11×32×26=6336.当质数再打一点b=5时,c=2时,11×52×26=17600(不满足是四位数的条件).故答案为:6336.【点评】本题考查因数个数的求法,同时对质数的理解和运用,突破口是42需要分解成3个数字相乘有唯一情况.同时数字是11的倍数.最后发现实际都是特殊情况唯一确定.问题解决.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为121.【分析】先找出81的所有因数,再把81的所有因数相加即可.【解答】解:81的因数:1、3、9、27、81,81的所有因数之和为:1+3+9+27+81=121,故答案为:121.【点评】本题关键是找到81的所有因数.9.恰好有12个不同因数的最小的自然数为60.【分析】首先把12分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:12=1×12=2×6=3×4=2×2×3,有12个约数的自然数有:①2×2×…×2×2(11个2)=2048,②2×2×…×2(5个2)×3=96,③2×2×2×3×3=72,④2×2×3×5=60;从以上可以看出只有④的乘积最小;所以有12个约数的最小自然数是60.故答案为:60.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.10.有10个不同因数的最小自然数为48.【分析】首先把10分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:因为10=2×5=1×10,210=1024,24×3=48,所以一个自然数有10个不同的约数,则这个自然数最小:24×3=48;故答案为:48.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.12.60的不同约数(1除外)的个数是11.【分析】先将60分解质因数,60=2×2×3×5,再写成标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘,最后减去1,即得答案.【解答】60分解质因数60=2×2×3×5,再下称标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘.60的不同约数(1除外)的个数是(2+1)×(1+1)×(1+1)﹣1=11个.答:答案是11个.【点评】约数个数公式的推导要用乘法原理,当然此题也可以用列举法求解.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有6个“中环数”.【分析】由题意,对N的因数个数分类讨论,由此即可得出结论.【解答】解:由题意,N的因数个数是2,N就是2;N的因数个数是3,则N是完全平方数,由于末尾是3,不存在N满足题意;N的因数个数是4,由于末尾是4,则满足条件的数为14,34,74;N的因数个数是5,则N是完全平方数,由于末尾是5,不存在N满足题意;N的因数个数是6,则N是76满足题意;同理78满足题意,所以在2~84中,”中环数”是2,14,34,74,76,78,故答案为6.【点评】本题考查因数与倍数,考查新定义,解题的关键是对N的因数个数分类讨论.14.在所有正整数中,因数的和不超过30的共有19个.【分析】由于一个数的因数包括本身,则这个数一定不超过30,则依此可以一一检验得到符合题意的正整数的个数.【解答】解:根据分析,此正整数不超过30,故所有不超过30的质数均符合条件,有2、3、5、7、11、13、17、19、23、29共10个;其它非质数有:1、4、6、8、9、10、12、14、15共9个满足条件,故满足因数的和不超过30的正整数一共有:10+9=19个.故答案为:19.【点评】本题考查了约数的个数知识,突破点是:从质数开始排查,再检验其它非质数.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是24168.【分析】2014的倍数是五位数的数最小从10070开始,再根据的约数个数,来确定这个五位数的最小值.【解答】解:根据分析,2014的倍数是五位数的数:①最小是10070=5×2014,末尾三位是:70=2×5×7,约数个数为:(1+1)(1+1)(1+1)=8个;②12084=6×2014,末三位是:84=22×3×7,约数个数为:(2+1)(1+1)(1+1)=12个;③14098=7×2014,末三位是:98=2×72,约数个数为:(1+1)(2+1)=6个;④16112=8×2014,末三位是:112=24×7,约数个数为:(4+1)(1+1)=10个;⑤18126=9×2014,末三位是:126=2×32×7,约数个数为:(1+1)(2+1)(1+1)=12个;⑥20140=10×2014,末三位是:140=22×5×7,约数个数为:(2+1)(1+1)(1+1)=12个;⑦22154=11×2014,末三位是:154=2×7×11,约数个数为:(1+1)(1+1)(1+1)=8个;⑧24168=12×2014,末三位是:168=23×3×7,约数个数为:(3+1)(1+1)(1+1)=16个;显然符合题意的只有:24168.故答案是:24168.【点评】本题考查了约数个数与约数和定理,突破点是:根据约数和定理一一检验,得到符合题意的数.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是162.【分析】由于整数的因数都是成对出现,则这10个约数必然是1、、3、、、、、、、n,立即可以填出1、2、3、、、、、、、n,也就是说n必然含有质因数2和3,然后结合因数个数定理可求解.【解答】解:根据分析可知10个因数分别为1、2、3、、、、、、、n,根据因数个数定理10=1×(9+1)=(1+1)×(4+1),由于含质因数2和3,则n应为21×34或24×31,其中21×34=162更大.故答案为:162.【点评】解答本题关键是:能根据因数成对出现的特点结合因数个数和定理.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是385.【分析】先把35和77分解质因数,即35=5×7,77=7×11,则这个数至少数是:5×7×11,然后根据求一个数约数的个数的计算方法:所有相同质因数的个数加1连乘的积就是这个数约数的个数,即(1+1)×(1+1)×(1+1)=8个,正好符合要求,然后解答可得出答案.【解答】解:35=5×7,77=7×11,则这个数至少数是:5×7×11=385,共有(1+1)×(1+1)×(1+1)=8(个)因数,正好符合要求.答:这个数是385.故答案为:385.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.18.在1~600中,恰好有3个约数的数有9个.【分析】如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P为质数),然后确定在1~600中,完全平方数的个数即可.【解答】解:如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P 为质数),因为,242=576,252=625,所以,P是不大于24的质数,即2、3、5、7、11、13、17、19、23,共有9个;答:在1~600中,恰好有3个约数的数有9个.故答案为:9.【点评】本题考查了约数个数与约数和定理的灵活逆用;关键是明确:当一个数的因数的个数是奇数个数时,这个数是完全平方数.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为1.【分析】显然先分解质因数2013,可以求得其约数的个数为(1+1)×(1+1)×(1+1)=8,而8=2×2×2=2×4,故而可以确定a和b的分解质因数的形式,再一一检验找出差值最小的数.【解答】解:根据分析,分解质因数2013=3×11×61,有(1+1)×(1+1)×(1+1)=8个约数,而一个数有8个余数,那么这个数分解质因数一定可以写成m3×n或m×n×w (m、n、w为互不相同的质数),故约数个数为8的数有多个,现举例说明两数之差最小的几组:①104=23×13与105=3×5×7均有8个约数(这是最小的满足差是1的一组);②189=33×7与190=2×5×19均有8个约数;③23×37=296与297=33×11均有8个约数;④2013=3×11×61,2014=2×19×53均有8个约数.综上,a、b 两数之差(大减小)的最小值为1.故答案是:1.【点评】本题考查了约数个数与约数和定理,本题突破点是:先分解质因数,求出约数的个数,再算出a,b最小的差.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=1.【分析】由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,即可得出结论.【解答】解:由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,所以(﹣)÷=(6﹣4)÷2=1,故答案为1.【点评】本题考查因数与倍数,考查学生的计算能力,正确理解题意是关键.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是441.【分析】一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,利用其中3个约数A,B,C满足:①A+B+C=79;②A×A=B×C,进行验证即可得出结论.【解答】解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.【点评】本题考查约数个数和约数和定理,考查分类讨论的数学思想,解题的关键是一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是55.【分析】A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数),分类讨论,即可得出结论.【解答】解:A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数);若A=p4,那么可把A2的9 个约数写成如下的表格形式(幻方):学学手中必拿到了一行或一列或一条对角线;思思手中拿到的可能是(1、p、p7)(1、p2、p6)(1、p3、p5)(p、p2、p5)(p、p3、p4);只有后两组才能确定学学手中的牌,但后两组所确定的数需要1+p4+p8=625或1+p5+p7=625,可是这两种情况p均无解;故知A的质因数分解形式不能为p4,只能为pq;若A=pq,那么可把A2的9 个约数写成如下的表格形式思思手中拿到的可能是(1、p、pq2)(1、q、p2q)(1、p2、q2)(p、q、pq);经分析可知,只有当思思拿到(p、q、pq)时,才一定能确定学学手中的牌,此时学学手中的牌为(1、p2q、pq2),故1+p2q+pq2=625,解得A的两个质因数p、q为3和13,故思思手中的牌为(3、13、39),所求答案为3+13+39=55.故答案为55.【点评】本题考查约数和定理,考查幻方的运用,考查分类讨论的数学思想,正确运用约数个数定理是关键.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是2772.(回文数例如:1111、4334、3210123)【分析】最小的八个约数的和为43,约数首先为自然数,首先该有1和2(如果没2的话,就不会有偶约数,最小的8个奇数的和大于43),不该有5(有5的话首末位都为0)和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,就只有下面一种情形了:1+2+3+4+6+7+9+11=43,然后求出这8个数的最小公倍数即可;由此解答.【解答】解:由分析可知:约数首先为自然数,首先该有1和2,不该有5和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,则有:1+2+3+4+6+7+9+11=43,以上数的最小公倍数为:4×7×9×11=2772,正好满足要求;答:这个四位回文数是2772;故答案为:2772.【点评】明确回文数的含义:从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”;然后根据题意,进行推导,求出这8个约数,是解答此题的关键.24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是1221或2013.【分析】它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,然后通过列举,推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,3和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;由此即可得出结论.【解答】解:它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,可能是:7、7(不符),6、8(如果是这两个,那2也是,不符),5、9(如果是这两个,那3也是,不符),4、10(如果是这两个,那2也是,不符),3、11(符合),所以可以推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,33和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;所以它的约数有:1,3,11,33(3×11),37,111(3×37),407(11×37),1221(3×11×37)或1,3,11,33(3×11),61,183(3×61),671(11×61),2013(3×11×61)所以答案应该是1221或2013;故答案为:1221或2013.【点评】此题考查了约数个数和约数和定理,根据题意,进行推导,得出它的最小的3个约数是:1,3,11,是解答此题的关键.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=20.【分析】依次算出各部分约数的个数,然后相加即可.【解答】解:1×8的因数有4个2×7的因数有4个3×6的因数有6个4×5的因数有6个所以1□8+2□7+3□6+4□5=4+4+6+6=20故填20【点评】此题的关键是看懂A□B的意思,然后确定运算顺序.26.已知自然数N的个位数字是0,且有8个约数,则N最小是30.【分析】根据能被2、5整除的数的特征;自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少,而其它质因数最好都是2和3,并且2的个数不能超过2个;据此解答.【解答】解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.【点评】本题关键是根据能被2、5整除的数的特征确定自然数N的质因数;难点是根据约数和定理得出质因数5、3和2的个数.27.一个合数至少有3个约数.√.(判断对错)【分析】根据合数的意义,一个数,如果除了1和它本身还有别的因数,这样的数叫做合数.由此解答.【解答】解:根据合数的意义,一个合数至少有3个约数;所以这种说法是对的.。

小学数学奥数一笔画练习题目

小学数学奥数一笔画练习题目

小学数学奥数一笔画练习题目一、题目简介本练习题目旨在帮助小学数学奥数学生提升他们的一笔画技巧和数学思维能力。

通过解决一系列的数学绘图问题,学生将能够锻炼他们的观察力、逻辑推理和创造力。

二、题目一请你用一笔画出一个正方形。

三、题目二请你用一笔画出一个等边三角形。

四、题目三请你用一笔画出一个长方形。

五、题目四请你用一笔画出一个梯形。

六、题目五请你用一笔画出一个圆形。

七、题目六请你用一笔画出一个五边形。

八、题目七请你用一笔画出一个六边形。

九、题目八请你用一笔画出一个七边形。

十、题目九请你用一笔画出一个八边形。

十一、题目十请你用一笔画出一个九边形。

十二、题目十一请你用一笔画出一个十边形。

十三、题目十二请你用一笔画出一个星形。

十四、题目十三请你用一笔画出一个心形。

十五、题目十四请你用一笔画出一个你喜欢的动物形状。

十六、题目十五请你用一笔画出一个你喜欢的食物形状。

十七、题目十六请你用一笔画出一个你喜欢的水果形状。

十八、题目十七请你用一笔画出一个你喜欢的建筑物形状。

十九、题目十八请你用一笔画出一个你喜欢的交通工具形状。

二十、总结通过完成以上练习题目,学生们将能够提升他们的一笔画技巧和创造力。

同时,这些练习题目也有助于培养学生的观察力和逻辑推理能力。

希望大家能够认真完成练习,并在练习的过程中感受到数学的乐趣。

结束语数学奥数是一门极富挑战性和创造性的学科。

通过锻炼学生的一笔画技巧,不仅可以提升他们在奥数竞赛中的表现,还能够促进他们的思维发展和解决问题的能力。

希望这些练习题目能够帮助到大家,并激发他们对数学的兴趣和热爱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数练习卷(知识点:一笔画定理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共4小题)1.如图,某展览馆,甲场有2×2个展室,乙场有2×3个展室,丙场有2×4个展室,丁场有2×5个展室,各场内相邻展室之间都有门相通.从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是()A.甲场B.乙场和丁场C.丙场D.都不能2.如图是小马新家的平面图.新家有6个房间,房间之间有门相通.小马想从某个房间出发,不重复地穿过所有的门走到F房间.那么,他出发的房间是()房间.A.A B.B C.C D.D3.十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是()A.欧拉B.高斯C.牛顿4.近年来智能手机兴起,手机应用的图标也是纷繁多样,下面的几个图标中,能不重复地一笔画完的图标有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(共23小题)5.如图最少笔可以画完.6.请你一笔画出下面的图形(从起点到终点,将依序过点的字母依次填在横线上,写出一种即可):(起点)→→→→→→→→→→→→(终点).7.一辆洒水车给一个社区街道洒水,地图如图.你能否设计一条洒水路线,使洒水车不重复地走遍所有街道,再回到出发点?你的答案为:(填“能”或者“不能”).8.一辆洒水车给如图线段表示街道洒水,不重复、不遗漏地走遍这些街道.请用图中字母标出一种成功的走法:.→→…→.9.如图图形(填“能”或“不能”)一笔不重复得画出.如不能,请在图上添一条线,使它成为一笔画图形(如果能,则不必再填线)10.如图是可以一笔画出的,一共有种不同的一笔画法(起点、终点或顺序只要有一种不同,就算不同的画法).11.瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,成为后来解析几何的基础..(判断对错)12.如图的图形(填“可以”或者“不可以”)用一笔画出.如果可以,应从点开始画(若第一个空格填“不可以”,则第二个空格不填;若第二个空格有多个点满足要求,需要将所有的点都写出来).13.如图,你最少需要笔才能画出这个图形.14.如图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度行进.如果允许选择最短路径的话,能先走遍所有的街道(填“甲”或“乙”)15.如图为一个花园,线段表示花园中供行人行走的小路.园林工人要为花园里的花草浇水.如果要不重复地走遍毎条小路,应该以为入口,以为出口.16.如图一笔画是不可能的,最少添上条连线就可以一笔画成了.17.如图的图形中能不重复地一笔画出的有个.18.如图,四个三边长度分别为3厘米、4厘米、5厘米的直角三角形拼成一个大方形.从中去掉一些线段,使得改动后的图形可以一笔画出,那么去掉的线段长度之和最小是厘米.19.有16个点排成的4×4方阵,如图.请不间断地一笔画出6条直线经过每个点,且最后回到起点.20.某花园一套豪宅的房间(包括卫生间,厨房)的平面图如图所示.每相邻两房间都有门相通,问:从某个房间出发,不重复地走完每个房间.(注:在括号里填“能”或“不能”.)21.如图的图形,要求画出的线段不能重复画,那么这个图形最少笔才能画出.22.在3×5的棋盘上,一个棋子每次可以沿水平或竖直方向移动一小格,但不可以沿任何斜对角线移动.从某些特定的格子开始,要求棋子经过全部的小正方格恰好一次,但不须回到原来出发的小方格上.在这15个小方格中,则有个小方格可以作为这个棋子的起点.23.从P点出发,一笔画出如图,不许走重复路线,一共有种不同的画法.24.在一个连通图中判断一笔画时,大于个奇数点的图形不能一笔画出.25.判断下面连通图,能一笔画的有.(填写代号)26.从图中的点出发到点结束,可以让你用笔在纸上连续不断且不重复地一笔画出图.27.图能一笔画出来吗?若能,请写出画的先后顺序;若不能,请说明理由.三.解答题(共23小题)28.如图能否一笔画成,若不能,你能用什么方法把它改成一笔画?29.某花园的小径如右图所示.一个人能不能从图中第1个点的位置出发,不重复地走过所有小径?如果能,请标出所经过各点的顺序(如:1→2→3→ (1)如果不能,请标出至少必须重复的小径(如1→2,2→3,8→9或11→12等等).30.如图,有一些写有数字的圆圈,请你用线段将水平或竖直方向的相邻圆圈连接起来,使得该图形成为一个连通的图形,要求水平或竖直方向的相邻两个圆圈之间最多只能连2条线段,而且每个圆圈里面的数字表示的是与该圆圈相连接的线段的条数.31.“九点连线”是一道著名的数学题,你能用一笔画4条连续的直线段,把图中所有的9个点都连起来吗?请你在下图画出来.32.用4条直线,一笔画将这12个点连在一起.33.下面是一张地图,从A点到B点,走遍每一条路,不能重复走,应该怎么走?(从A点到B点的线用编号表示)34.在由25个边长为1的正方形组成的5×5的方格网中有3个方格内已经标有3个数3、4、5(如图1所示).请你用一条封闭的折线沿水平或竖直方向把其余22个方格的中心连接起来,要求这条折线在标有数字的方格的所有邻格(邻格指至少有一个公共边界点的两个方格)内发生拐弯的次数恰好与该数相等.问:这条封闭的折线有多少个拐弯处?(示例图2中折线有10个拐弯处)35.如图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?36.请你将下面的图形改成能一笔画成的图形:37.图中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?38.在六面体的顶点B和E处各有一只蚂蚁(见图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?39.如图能否一笔画成,若不能,你能用什么方法把它改成一笔画?40.下面哪个图形能一笔画出?在下面的□里画“√”41.你能不能笔尖不离开纸面地画出四条直线,使得他们通过下图中的九个点,不重不漏.42.下图是一个游乐场的平面图,要使游客走遍每一条路且不重复,问出入口应该设在哪里?43.游动物园.1.小明去猴山有条路.2.设计一条能参观所有景点的线路,线路不重复且能回到起点.用彩笔在图上画出来.44.能否沿此图上的线画出一条线,使得每个节点都恰好经过一次.45.在下面各图形中,加一条或几条线段后,一笔画出每个图形.46.下图是某少年宫的平面图,共有五个大厅,相邻两厅之间都有门相通(D 与E 两厅除外),并且有一个入口和一个出口.问游人能否从入口入,一次不重复地穿过所有的门?如果可以,请指明穿行路线;如果不能,请你想一想,关闭哪扇门后就可以办到?47.如图,两条河流的交汇处有两个小岛,有7座桥连接这两个岛及河岸,一个散步者能不能一次走遍这7座桥,而且每座桥恰好经过1次?48.图中哪些图形可以一笔画出,哪些不能?不能一笔画出的图形最少需要画几笔?49.如图是一座博物馆的示意图,游客从入口进入博物馆,是否能找到一条参观路线,每扇门恰好经过一次?50.在图中,哪些图形可以一笔画出?参考答案与试题解析一.选择题(共4小题)1.如图,某展览馆,甲场有2×2个展室,乙场有2×3个展室,丙场有2×4个展室,丁场有2×5个展室,各场内相邻展室之间都有门相通.从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是()A.甲场B.乙场和丁场C.丙场D.都不能【分析】如图所示,甲丙情况类似,乙丁情况类似,由图可得结论.【解答】解:如图所示,甲丙情况类似,乙丁情况类似,由图可得从左上角“→”处进场,既不重复又不遗漏地走遍每个展室,然后从右下角的“0”处出场,能走成的是乙场和丁场,故选:B.【点评】本题考查一笔画定理,考查数形结合的数学思想,正确画出图形是关键.2.如图是小马新家的平面图.新家有6个房间,房间之间有门相通.小马想从某个房间出发,不重复地穿过所有的门走到F房间.那么,他出发的房间是()房间.A.A B.B C.C D.D【分析】首先把图片转换成点线图,同时找到奇点个数,如果有0个或者是2个奇点是可以完成一笔画的,2个奇点一个做为起点另一个作为终点即可.【解答】解:依题意可知:把图进行转换成点线图为:奇点个数是2个分别是A,F两个,那么一个是终点,另一个就是起点一笔画问题,奇数点出发奇数点回.所以出发的是A.故选:A.【点评】本题考查对一笔画的理解和运用,关键问题是找到对应的奇点个数.问题解决.3.十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是()A.欧拉B.高斯C.牛顿【分析】根据数学知识可知:18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,这一困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是欧拉;由此解答即可.【解答】解:十八世纪俄国的哥尼斯堡城,一直困扰人们的七色桥引起了一个著名的数学家的注意,经过他的猜想,研究证明,得出了一笔画的几何规律.这位数学家是欧拉;故选:A.【点评】本题属于基础性的数学常识,对于一些数学家和其主要研究成果要知道.4.近年来智能手机兴起,手机应用的图标也是纷繁多样,下面的几个图标中,能不重复地一笔画完的图标有()A.1个B.2个C.3个D.4个【分析】一个图形要能一笔画完成必须符合两个条件:即图形是封闭联通的和图形中的奇点(与奇数条边相连的点)个数为0或2;据此解答即可.【解答】解:图一有6个奇点,不能一笔画;图二没有奇点,能一笔画;图三有2个奇点,能一笔画;图四有4个奇点,不能一笔画;综上所述,能不重复地一笔画完的图标有2个;故选:B.【点评】本题考查的是笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.二.填空题(共23小题)5.如图最少5笔可以画完.【分析】先数出图形中奇点的个数,共有10个,然后根据“奇点数÷2=笔画数”解答即可.【解答】解:图中共有10个奇点,那么需要的笔画数是:10÷2=5(笔);答:最少5笔可以画完.故答案为:5.【点评】笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n.6.请你一笔画出下面的图形(从起点到终点,将依序过点的字母依次填在横线上,写出一种即可):(起点)E→A→B→E→F→G→E→D→G→C→F→B→(终点).【分析】首先找到题中的奇点是B和E.只有两个奇点可以完成一笔画.一个是起点一个是终点即可.【解答】解:依题意可知:E和B是奇点.故答案为:E→A→B→E→F→G→E→D→G→C→F→B→(终点).(不唯一)【点评】本题考查对一笔画的理解和运用,关键找到题中的奇点,问题解决.7.一辆洒水车给一个社区街道洒水,地图如图.你能否设计一条洒水路线,使洒水车不重复地走遍所有街道,再回到出发点?你的答案为:不能(填“能”或者“不能”).【分析】由题意,奇点为商场与服装城,其余均为偶点,两个奇点必然一个为起点、一个为终点才能一次不重复的走遍,可得结论.【解答】解:由题意,奇点为商场与服装城,其余均为偶点,两个奇点必然一个为起点、一个为终点才能一次不重复的走遍,所以不能再回到出发点.故答案为:不能.【点评】本题只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点终点.8.一辆洒水车给如图线段表示街道洒水,不重复、不遗漏地走遍这些街道.请用图中字母标出一种成功的走法:→→→→→→→..→→…→.【分析】在这题中奇数点是E和A,其他点都是偶数点,从奇数点出发到另一个奇数点结束.【解答】解:→→→→→→→.【点评】走法不唯一,也可以从E点出发到A点结束.9.如图图形不能(填“能”或“不能”)一笔不重复得画出.如不能,请在图上添一条线,使它成为一笔画图形(如果能,则不必再填线)【分析】有 2 个奇点或0 个奇点的图形才能一笔画成.该图中有 4 个奇点,所以不能一笔画成.【解答】解:有 2 个奇点或0 个奇点的图形才能一笔画成.该图中有4 个奇点,所以不能一笔画成.添线如上图红色部分(方法不唯一).故答案为不能【点评】本题考查一笔画问题,考查学生分析解决问题的能力,解题的关键是利用有 2 个奇点或0 个奇点的图形才能一笔画成.10.如图是可以一笔画出的,一共有12种不同的一笔画法(起点、终点或顺序只要有一种不同,就算不同的画法).【分析】首先分奇点数为2分别是A,B可以完成一笔画,同时A,B一个是起点一个是终点.考虑其中的一个再乘2即可.【解答】解:依题意可知:首先分析奇点数为2分别是A,B.那么先考虑从A﹣B过程.如果是A﹣C﹣B后面就是2种;如果是A﹣D﹣B后面还是有2种;如果是A﹣B后面有2种;所以从A﹣B共6种.那么从B﹣A也是6种共12种.故答案为:12【点评】本题考查对一笔画的理解和运用,关键问题是找到起点和终点同时枚举法直接易懂.问题解决.11.瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,成为后来解析几何的基础.×.(判断对错)【分析】瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,由此引导了图论和拓扑学的发展;而不是解析几何的基础,由此求解.【解答】解:瑞士数学家欧拉为解决“七桥问题”,提出了“一笔画问题”,由此引导了图论和拓扑学的发展;解析几何是在笛卡尔发表的《几何学》的基础上发展而来的;原题说法错误.故答案为:×.【点评】熟知一些数学常识是解决本题的关键.12.如图的图形可以(填“可以”或者“不可以”)用一笔画出.如果可以,应从N或M点开始画(若第一个空格填“不可以”,则第二个空格不填;若第二个空格有多个点满足要求,需要将所有的点都写出来).【分析】这幅图上有两个奇点N和M,所以能一笔画,可以从一个奇点开始到另一个奇点结束.【解答】解:如图的图形可以用一笔画出,应从N或M点开始画.故答案为:可以,N或M.【点评】本题考查的是笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.13.如图,你最少需要2笔才能画出这个图形.【分析】笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n.据此解答即可.【解答】解:图中共有4个奇点,那么需要的笔画数是:4÷2=2(笔);答:最少需要2笔才能画出这个图形.故答案为:2.【点评】本题属于一笔画的规律,关键是正确找到奇点的个数.14.如图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度行进.如果允许选择最短路径的话,甲能先走遍所有的街道(填“甲”或“乙”)【分析】由题意,A,D的节点的个数为奇数,其余点的节点的个数为偶数,所以甲能先走遍所有的街道.【解答】解:由题意,A,D的节点的个数为奇数,其余点的节点的个数为偶数,所以甲能先走遍所有的街道,A为起点,D为终点.故答案为甲.【点评】一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点.15.如图为一个花园,线段表示花园中供行人行走的小路.园林工人要为花园里的花草浇水.如果要不重复地走遍毎条小路,应该以A或G为入口,以G 或A为出口.【分析】图中有2个奇点(A和G),6个偶点,有2个奇点,偶数个偶点,可以一笔完成;根据一笔画定理:奇数进,奇数出即可求解.【解答】解:根据一笔画定理以奇点为入口,奇点为出口所以:A点为入口,G 点为出口或者G点为入口,A点为出口.故答案为:A,G或G,A.【点评】凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点终点.16.如图一笔画是不可能的,最少添上2条连线就可以一笔画成了.【分析】只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.原图中有6个奇点,把这6个奇点中的4个分成2组,分别加上一条线段变成偶点,就可以一笔画成了.【解答】解:如图,加上2条线段,变成只有2个奇点,就可以一笔画成:故答案为:2.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.17.如图的图形中能不重复地一笔画出的有3个.【分析】根据一笔画的特性,图中都是连通图,与奇数(单数)条边相连的点叫做奇点,与偶数(双数)条边相连的点叫做偶点,凡是由偶点组成的连通图,一定可以一笔画成,凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.【解答】解:第1、3个图,全是偶点,能一笔画出;第2个图,1个奇点;第4个图,2个奇点,能一笔画出;第5个图,4个奇点,所以能不重复地一笔画出的有3个.故答案为3.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图猜能一笔画成,难度适中.18.如图,四个三边长度分别为3厘米、4厘米、5厘米的直角三角形拼成一个大方形.从中去掉一些线段,使得改动后的图形可以一笔画出,那么去掉的线段长度之和最小是7厘米.【分析】首先分析能完成一笔画需要有2个奇点或者没有奇点.图中8个奇点变成2个即可.【解答】解:依题意可知:图中有8个奇点,需要去掉三条边剩余2个奇点,无论去掉两条长度为3的和长度为1的,还是去掉长度为5的和两条长度为1的总和都是7.故答案为:7【点评】本题考查对一笔画的理解和运用,关键是枚举最短的即可,问题解决.19.有16个点排成的4×4方阵,如图.请不间断地一笔画出6条直线经过每个点,且最后回到起点.【分析】要能一笔完成,需要都是偶点,或者只有两个奇点,只使用横竖无论怎么样都不能够完成,因此使用斜线构造.【解答】解:如下图:【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.20.某花园一套豪宅的房间(包括卫生间,厨房)的平面图如图所示.每相邻两房间都有门相通,问:不能从某个房间出发,不重复地走完每个房间.(注:在括号里填“能”或“不能”.)【分析】能够一笔画成的图形,首先必须要相连,结果不相连就一定不能一笔画成.能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画;先把房间抽象成一个点,然后连线,看一下是否符合一笔画定理即可求解.【解答】解:把每个房间都看成一个点,则这个图形就是:这样图中一共有5个奇点,不能一笔画,也就是不能从某个房间出发,不重复地走完每个房间.故答案为:不能.【点评】本题考查一笔画的特点:是连通图,由偶点组成的,或只有两个奇点的连通图才能一笔画成.21.如图的图形,要求画出的线段不能重复画,那么这个图形最少5笔才能画出.【分析】数出一共有多少个奇点,奇点数除以2就是需要画的笔数.【解答】解:一共有10个奇点,需要的笔画数是:10÷2=5(笔);答:这个图形最少笔才能画出.故答案为:5.【点评】对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.公式如下:奇点数÷2=笔画数.22.在3×5的棋盘上,一个棋子每次可以沿水平或竖直方向移动一小格,但不可以沿任何斜对角线移动.从某些特定的格子开始,要求棋子经过全部的小正方格恰好一次,但不须回到原来出发的小方格上.在这15个小方格中,则有8个小方格可以作为这个棋子的起点.【分析】把3×5的图中的格子标号如下:找出每次可以沿水平或竖直方向移动一小格,不重复的走完全程的路线,进而求解.【解答】解:(1)从四个顶点所在的格子中的任意一个出发,都可以,如从A 格出发:同理从E、K、O都可以作为起点,一共有4个起点;(2)C作为起点,如下图:同理M也可以作为起点,一共有2个起点;(3)I格出发,可以不重复走完全程:同理从G出发也可以走完全程不重复,有2个起点.4+2+2=8(个);答:有8个小方格可以作为这个棋子的起点.故答案为:8.【点评】本题根据限制条件,找出所有的路线,进而求解.23.从P点出发,一笔画出如图,不许走重复路线,一共有512种不同的画法.【分析】先从其中的一部分进行研究,直接从外圆画有两种画法(左右),直接从内圆有两种画法(左右),直接画内三角接内圆(左右)有两种画法,那么一共有2×2×2=8种方法,三角形的三个角的部分各有8种方法,再根据乘法原理即可求出全部的不同的画法.【解答】解:2×2×2=8(种)8×8×8=512(种)答:一共有512种不同的画法.故答案为:512.【点评】解决本题先找出每一部分不同的画法,再进一步利用乘法原理求解.24.在一个连通图中判断一笔画时,大于2个奇数点的图形不能一笔画出.【分析】一笔画的规律是:(1)凡是由偶点组成的连通图,一定可以一笔画成.画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图.(2)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成.画时必须把一个奇点为起点,另一个奇点为终点.(3)其他情况的图都不能一笔画出.【解答】解:根据分析可得:在一个连通图中判断一笔画时,大于2个奇数点的图形不能一笔画出.故答案为:2.【点评】本题考查的是一笔画问题,能否一笔画成,关键在于判别奇点、偶点的个数:只有偶点,可以一笔画,并且可以以任意一点作为起点;只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点;奇点超过两个,则不能一笔画.对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答.25.判断下面连通图,能一笔画的有a、b、d.(填写代号)【分析】按照一笔画定理,每个部图形只能含有两个奇点活0个奇数点,据此数出各图的奇数点判断即.【解答】解:根据分析可得,图a:奇数点有2个,所以能一笔画,图b:奇数点有2个,所以能一笔画,。

相关文档
最新文档