高中数学经典高考难题集锦(解析版)(9)
高中数学经典高考难题集锦(解析版)
![高中数学经典高考难题集锦(解析版)](https://img.taocdn.com/s3/m/e4df677749d7c1c708a1284ac850ad02de80079c.png)
2021年10月18日姚杰的高中数学组卷一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.2.〔2021•江苏模拟〕直线l:y=k〔x+2〕与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.〔Ⅰ〕试将S表示成的函数S〔k〕,并求出它的定义域;〔Ⅱ〕求S的最大值,并求取得最大值时k的值.3.〔2021•越秀区校级模拟〕圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.6.〔2021•东城区一模〕如图,定圆C:x2+〔y﹣3〕2=4,定直线m:x+3y+6=0,过A〔﹣1,0〕的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.〔Ⅰ〕当l与m垂直时,求证:l过圆心C;〔Ⅱ〕当时,求直线l的方程;〔Ⅲ〕设t=,试问t是否为定值,假设为定值,请求出t的值;假设不为定值,请说明理由.7.〔2021•天河区校级模拟〕圆C:〔x+4〕2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,定点P的坐标为〔﹣3,0〕.〔1〕假设点D〔0,3〕,求∠APB的正切值;〔2〕当点D在y轴上运动时,求∠APB的最大值;〔3〕在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.〔2007•海南〕在平面直角坐标系xOy中,圆x2+y2﹣12x+32=0的圆心为Q,过点P〔0,2〕且斜率为k的直线与圆Q相交于不同的两点A,B.〔Ⅰ〕求k的取值范围;〔Ⅱ〕是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.考点:直线和圆的方程的应用.专题:计算题;压轴题.分析:〔1〕由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;〔2〕由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.解答:解:〔1〕证明:点〔t>0〕,因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.所以点E是直角坐标系原点,即E〔0,0〕.于是圆C的方程是.那么.由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,于是多边形EACB为Rt△AEB,其面积.所以多边形EACB的面积是定值,这个定值是4.〔2〕假设|EM|=|EN|,那么E在MN的垂直平分线上,即EC是MN的垂直平分线,,k MN=﹣2.所以由k EC•k MN=﹣1,得t=2,所以圆C的方程是〔x﹣2〕2+〔y﹣1〕2=5.点评:〔1〕重点考查了利用方程的思想用以变量t写出圆的方程,判断出圆心O在AB上,故四边形为直角三角形,还考查了三角形的面积公式;〔2〕重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数.2.〔2021•江苏模拟〕直线l :y=k 〔x+2〕与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S . 〔Ⅰ〕试将S 表示成的函数S 〔k 〕,并求出它的定义域; 〔Ⅱ〕求S 的最大值,并求取得最大值时k 的值.考点:直线与圆的位置关系;二次函数的性质. 专题:计算题;压轴题. 分析: 〔Ⅰ〕先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.〔Ⅱ〕换元后把函数S 的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变. 解答:解:〔Ⅰ〕直线l 方程, 原点O 到l 的距离为〔3分〕弦长〔5分〕•ABO 面积•∵|AB|>0,∴﹣1<K <1〔K ≠0〕,• ∴〔﹣1<k <1且K ≠0〕〔8分〕, 〔Ⅱ〕 令 ,∴.∴当t=时,时,S max =2〔12分〕点评: 此题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变. 3.〔2021•越秀区校级模拟〕圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x ﹣2y=0的距离为.求该圆的方程.考点:直线与圆的位置关系.专题:综合题;压轴题.分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x 轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.解答:解:设圆P的圆心为P〔a,b〕,半径为r,那么点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P〔a,b〕到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:〔x+1〕2+〔y+1〕2=2,或〔x﹣1〕2+〔y﹣1〕2=2.点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:〔Ⅰ〕设抛物线方程为x2=2py,把点〔2,1〕代入运算求得p的值,即可求得抛物线的标准方程.〔Ⅱ〕由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得,求得点O到直线的距离,从而求得,由此函数在〔0,4〕单调递增,故有,从而得出结论.解答:解:〔Ⅰ〕设抛物线方程为x2=2py,由得:22=2p,所以p=2,所以抛物线的标准方程为x2=4y.〔Ⅱ〕不存在.因为直线与圆相切,所以.把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.由△=16k2+16t=16〔t2+2t〕+16t>0,得t>0或t<﹣3.设M〔x1,y1〕,N〔x2,y2〕,那么x1+x2=4k且x1•x2=﹣4t,∴.∵∠MON为钝角,∴,解得0<t<4,∵,点O到直线的距离为,∴,易证在〔0,4〕单调递增,∴,故不存在直线,当∠MON为钝角时,S△MON=48成立.点评:此题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.专题:计算题;压轴题;转化思想.分析:〔1〕由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;〔2〕把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比拟大小得到直线与圆的位置关系,即可得到交点的个数;〔3〕分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.解答:解:〔1〕由题意可知〔x,y〕=〔13,5〕,即,解得,所以A〔2,﹣3〕;设矩阵M的逆矩阵为,那么•=,即,且,解得a=﹣1,b=3,c=﹣1,d=2所以矩阵M的逆矩阵为;〔2〕把圆的参数方程化为普通方程得〔x+1〕2+〔y﹣2〕2=4,圆心〔﹣1,2〕,半径r=2那么圆心到直线的距离d==<2=r,得到直线与圆的位置关系是相交,所以直线与圆的公共点有两个;〔3〕当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2〕;当0≤x <时,原不等式变为:1﹣2x <x+1,解得x >0,所以原不等式的解集为〔0,〕;当x <0时,原不等式变为:1﹣2x <﹣x+1,解得x >0,所以原不等式无解. 综上,原不等式的解集为[0,2〕. 点评: 此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.6.〔2021•东城区一模〕如图,定圆C :x 2+〔y ﹣3〕2=4,定直线m :x+3y+6=0,过A 〔﹣1,0〕的一条动直线l 与直线相交于N ,与圆C 相交于P ,Q 两点,M 是PQ 中点. 〔Ⅰ〕当l 与m 垂直时,求证:l 过圆心C ; 〔Ⅱ〕当时,求直线l 的方程; 〔Ⅲ〕设t=,试问t 是否为定值,假设为定值,请求出t 的值;假设不为定值,请说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程. 专题:压轴题. 分析: 〔Ⅰ〕根据,容易写出直线l 的方程为y=3〔x+1〕.将圆心C 〔0,3〕代入方程易知l 过圆心C .〔Ⅱ〕过A 〔﹣1,0〕的一条动直线l .应当分为斜率存在和不存在两种情况;当直线l 与x 轴垂直时,进行验证.当直线与x 轴不垂直时,设直线l 的方程为y=k 〔x+1〕,由于弦长,利用垂径定理,那么圆心C 到弦的距离|CM|=1.从而解得斜率K 来得出直线l 的方程为.〔Ⅲ〕同样,当l 与x 轴垂直时,要对设t=,进行验证.当l 的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得到一个二次方程.充分利用“两根之和〞和“两根之积〞去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.解解:〔Ⅰ〕由,故k l=3,答:所以直线l的方程为y=3〔x+1〕.将圆心C〔0,3〕代入方程易知l过圆心C.〔3分〕〔Ⅱ〕当直线l与x轴垂直时,易知x=﹣1符合题意;〔4分〕当直线与x轴不垂直时,设直线l的方程为y=k〔x+1〕,由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.〔8分〕〔Ⅲ〕当l与x轴垂直时,易得M〔﹣1,3〕,,又A〔﹣1,0〕那么,,故.即t=﹣5.〔10分〕当l的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得〔1+k2〕x2+〔2k2﹣6k〕x+k2﹣6k+5=0.那么,,即,=.又由得,那么.故t=.综上,t的值为定值,且t=﹣5.〔14分〕另解一:连接CA,延长交m于点R,由〔Ⅰ〕知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|•|AN|=|AC|•|AR|.由,得|AM|•|AN|=5.故〔14分〕另解二:连接CA 并延长交直线m 于点B ,连接CM ,CN ,由〔Ⅰ〕知AC ⊥m ,又CM ⊥l , 所以四点M ,C ,N ,B 都在以CN 为直径的圆上, 由相交弦定理得.〔14分〕点评: 〔1〕用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.〔2〕解决直线与圆相交弦相关计算时一般采用垂径定理求解.〔3〕涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和〞和“两根之积〞整体求解.这种方法通常叫做“设而不求〞. 7.〔2021•天河区校级模拟〕圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,定点P 的坐标为〔﹣3,0〕. 〔1〕假设点D 〔0,3〕,求∠APB 的正切值;〔2〕当点D 在y 轴上运动时,求∠APB 的最大值;〔3〕在x 轴上是否存在定点Q ,当圆D 在y 轴上运动时,∠AQB 是定值?如果存在,求出Q 点坐标;如果不存在,说明理由.考点:直线和圆的方程的应用. 专题:计算题;证明题;压轴题. 分析: 〔1〕由中圆C :〔x+4〕2+y 2=4,点D 〔0,3〕,我们易求出CD 的长,进而求出圆D 的半径,求出A ,B 两点坐标后,可由tan ∠APB=k BP 得到结果.〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,我们可以求出对应的圆D 的方程和A ,B 两点的坐标,进而求出∠APB 正切的表达式〔含参数r 〕,求出其最值后,即可根据正切函数的单调性,求出∠APB 的最大值; 〔3〕假设存在点Q 〔b ,0〕,根据∠AQB 是定值,我们构造关于b 的方程,假设方程有解,那么存在这样的点,假设方程无实根,那么不存在这样的点. 解答: 解:〔1〕∵|CD|=5, ∴圆D 的半径r=5﹣2=3,此时A 、B 坐标分别为A 〔0,0〕、B 〔0,6〕∴tan ∠APB=k BP =2〔3分〕 〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,那么〔r+2〕2=16+a 2,A 、B 的坐标分别为〔0,a ﹣r 〕,〔0,a+r 〕∴,∴==∵|r+2|2≥16, ∴r ≥2,∴8r ﹣6≥10, ∴∴.〔8分〕〔3〕假设存在点Q 〔b ,0〕,由,,得∵a 2=〔r+2〕2﹣16, ∴欲使∠AQB 的大小与r 无关,那么当且仅当b 2=12,即,此时有,即得∠AQB=60°为定值,故存在或,使∠AQB 为定值60°.〔13分〕 点评: 此题考查的知识点是直线和圆的方程的应用,其中根据中圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,确定圆D 的方程,进而求出A ,B 的方程是解答此题的关键.8.〔2007•海南〕在平面直角坐标系xOy 中,圆x 2+y 2﹣12x+32=0的圆心为Q ,过点P 〔0,2〕且斜率为k 的直线与圆Q 相交于不同的两点A ,B . 〔Ⅰ〕求k 的取值范围; 〔Ⅱ〕是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.考点: 直线和圆的方程的应用;向量的共线定理. 专题: 计算题;压轴题. 分析:〔Ⅰ〕先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,〔Ⅱ〕A 〔x 1,y 1〕,B 〔x 2,y 2〕,根据〔1〕中的方程和韦达定理可求得x 1+x 2的表达式,根据直线方程可求得y 1+y 2的表达式,进而根据以与共线可推知〔x 1+x 2〕=﹣3〔y 1+y 2〕,进而求得k ,根据〔1〕k 的范围可知,k 不符合题意. 解答: 解:〔Ⅰ〕圆的方程可写成〔x ﹣6〕2+y 2=4,所以圆心为Q 〔6,0〕,过P 〔0,2〕且斜率为k 的直线方程为y=kx+2.代入圆方程得x 2+〔kx+2〕2﹣12x+32=0, 整理得〔1+k 2〕x 2+4〔k ﹣3〕x+36=0. ①直线与圆交于两个不同的点A ,B 等价于△=[4〔k ﹣3〕2]﹣4×36〔1+k 2〕=42〔﹣8k 2﹣6k 〕>0, 解得,即k 的取值范围为.〔Ⅱ〕设A 〔x 1,y 1〕,B 〔x 2,y 2〕,那么,由方程①,②又y 1+y 2=k 〔x 1+x 2〕+4. ③ 而.所以与共线等价于〔x 1+x 2〕=﹣3〔y 1+y 2〕,将②③代入上式,解得.由〔Ⅰ〕知,故没有符合题意的常数k .点评:此题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.9.如图,圆心为O ,半径为1的圆与直线l 相切于点A ,一动点P 自切点A 沿直线l 向右移动时,取弧AC 的长为,直线PC 与直线AO 交于点M .又知当AP=时,点P 的速度为v ,求这时点M 的速度.考点:直线与圆的位置关系. 专题:压轴题. 分析: 设AP 的长为x ,AM 的长为y ,用x 表示y ,并用复合函数求导法那么对时间t 进行求导.解答:解:如图,作CD ⊥AM ,并设AP=x ,AM=y ,∠COA=θ, 由题意弧AC 的长为,半径OC=1,可知θ=,考虑θ∈〔0,π〕.∵△APM ∽△DCM ,∴.∵DM=y ﹣〔1﹣cos 〕,DC=sin ,∴∴.上式两边对时间t 进行求导,那么y ′t =y ′x •x ′t .∴y ′t =当时,x ′t =v ,代入上式得点M 的速度.点评: 此题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;同时也考查了逻辑思维能力和计算能力.10.过原点O 作圆x 2+y 2﹣2x ﹣4y+4=0的任意割线交圆于P 1,P 2两点,求P 1P 2的中点P 的轨迹.考点: 直线与圆的位置关系;轨迹方程. 专题: 计算题;压轴题;数形结合. 分析: 设割线OP 1P 2的直线方程为y=kx 与圆的方程联立得〔1+k 2〕x 2﹣2〔1+2k 〕x+4=0,再由韦达定理得:,因为P 是P 1P 2的中点,所以,再由P点在直线y=kx上,得到,代入上式得整理即可.要注意范围.解答:解:设割线OP1P2的直线方程为y=kx代入圆的方程,得:x2+k2x2﹣2x﹣4kx+4=0即〔1+k2〕x2﹣2〔1+2k〕x+4=0设两根为x1,x2即直线与圆的两交点的横坐标;由韦达定理得:又设P点的坐标是〔x,y〕P是P1P2的中点,所以又P点在直线y=kx上,∴,代入上式得两端乘以,得即x2+y2=x+2y〔0<x<〕这是一个一点为中心,以为半径的圆弧,所求轨迹是这个圆在所给圆内的一段弧.点评:此题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.考点卡片1.二次函数的性质【知识点的认识】其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.【解题方法点拨】以y=ax2+bx+c为例:①开口、对称轴、最值与x轴交点个数,当a>0〔<0〕时,图象开口向上〔向下〕;对称轴x=﹣;最值为:f〔﹣〕;判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.假设△≥0,且x1、x2为方程y=ax2+bx+c的两根,那么有x1+x2=﹣,x1•x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为〔0,〕,准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a〔x+b〕2+c向右平移一个单位时,函数变成y=a〔x﹣1+b〕2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f〔﹣〕=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1•x2=﹣;另外,方程可以写成〔y+〕=2〔x+〕2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理【概念】共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=〔1,2〕,向量=〔2,4〕,那么=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=〔x1,y1〕与向量=〔x2,y2〕平行时,有x1•y2﹣x2•y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,那么λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k〔〕∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.根据向量共线的充要条件,假设向量与共线,就能得到含λ的等式,解出λ即可.【考点分析】向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.3.平面向量数量积的运算【平面向量数量积的运算】平面向量数量积运算的一般定理为①〔±〕2=2±2•+2.②〔﹣〕〔+〕=2﹣2.③•〔•〕≠〔•〕•,从这里可以看出它的运算法那么和数的运算法那么有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法那么类比推导向量的数量积的运算法那么:①“mn=nm〞类比得到“〞②“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;③“t≠0,mt=nt⇒m=n〞类比得到“⇒〞;④“|m•n|=|m|•|n|〞类比得到“||=||•||〞;⑤“〔m•n〕t=m〔n•t〕〞类比得到“〔〕•=〞;⑥“〞类比得到.以上的式子中,类比得到的结论正确的选项是①②.解:∵向量的数量积满足交换律,∴“mn=nm〞类比得到“〞,即①正确;∵向量的数量积满足分配律,∴“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞,即②正确;∵向量的数量积不满足消元律,∴“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞,即③错误;∵||≠||•||,∴“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;即④错误;∵向量的数量积不满足结合律,∴“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞,即⑤错误;∵向量的数量积不满足消元律,∴〞不能类比得到,即⑥错误.故答案为:①②.向量的数量积满足交换律,由“mn=nm〞类比得到“〞;向量的数量积满足分配律,故“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;向量的数量积不满足消元律,故“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞;||≠||•||,故“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;向量的数量积不满足结合律,故“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞;向量的数量积不满足消元律,故〞不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比拟多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对〔x,y〕表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标〔x,y〕中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C〔看做适合某种条件的点的集合或轨迹〕上的点与一个二元方程f〔x,y〕=0的实数解建立了如下的关系:〔1〕曲线上点的坐标都是这个方程的解;〔2〕以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤〔直接法〕〔1〕建系设点:建立适当的直角坐标系,用〔x,y〕表示曲线上任一点M的坐标;〔2〕列式:写出适合条件p的点M的集合{M|p〔M〕};〔3〕代入:用坐标表示出条件p〔M〕,列出方程f〔x,y〕=0;〔4〕化简:化方程f〔x,y〕=0为最简形式;〔5〕证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】〔1〕直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式〔如两点间的距离公式、点到直线的距离公式、夹角公式等〕进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.〔2〕定义法:假设动点轨迹的条件符合某一根本轨迹的定义〔如椭圆、双曲线、抛物线、圆等〕,可用定义直接探求.关键是条件的转化,即转化为某一根本轨迹的定义条件.〔3〕相关点法:用所求动点P的坐标〔x,y〕表示动点M的坐标〔x0,y0〕,即得到x0=f 〔x,y〕,y0=g〔x,y〕,再将x0,y0代入M满足的条件F〔x0,y0〕=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.〔4〕待定系数法〔5〕参数法〔6〕交轨法.6.直线与圆的位置关系【知识点的认识】1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕的位置关系的判断方法:〔1〕几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r〔2〕代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:〔1〕圆的标准方程:〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕,其中圆心C〔a,b〕,半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心〔a,b〕是圆的定位条件,半径r是圆的定形条件.〔2〕圆的一般方程:x2+y2+Dx+Ey+F=0〔D2+E2﹣4F>0〕其中圆心〔﹣,﹣〕,半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:〔1〕y2=2px,焦点在x轴上,焦点坐标为F〔,0〕,〔p可为正负〕〔2〕x2=2py,焦点在y轴上,焦点坐标为F〔0,〕,〔p可为正负〕四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px〔p>0〕,焦点在x轴上x2=2py〔p>0〕,焦点在y轴上图形顶点〔0,0〕〔0,0〕对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点〔,0〕〔0,〕焦距无无离心率e=1 e=1准线x=﹣y=﹣9.二阶矩阵【知识点的知识】1、矩阵由m×n个数a ij〔i=1,2,…,m;j=1,2,…,n〕排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的〔i,j〕元.以数a ij为〔i,j〕元的矩阵可简记作〔a ij〕或〔a ij〕m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号〔在数表外加上双竖线〕是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或〔aij〕表示〔其中i,j分别为元素aij所在的行和列〕.2.矩阵的乘法行矩阵[a11 a12]与列矩阵的乘法规那么为,二阶矩阵与列矩阵的乘法规那么为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c〔c>0〕和|ax+b|≥c〔c>0〕型不等式的解法:〔1〕|ax+b|≤c⇔﹣c≤ax+b≤c;〔2〕|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;〔3〕|x﹣a|+|x﹣b|≥c〔c>0〕和|x﹣a|+|x﹣b|≤c〔c>0〕型不等式的解法:方法一:利用绝对值不等式的几何意义求解,表达了数形结合的思想.方法二:利用“零点分段法〞求解,表达了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,表达了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的根本方法:〔1〕利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;〔2〕当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;〔3〕利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式〔组〕进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m 〔m为正常数〕,利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A〔a〕,B〔b〕两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=〞成立的条件是ab≥0,左侧“=〞成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=〞成立的条件是ab≤0,左侧“=〞成立的条件是ab≥0且|a|≥|b|.。
10道高中函数难题(详解版)
![10道高中函数难题(详解版)](https://img.taocdn.com/s3/m/d376366e4afe04a1b071deb8.png)
由 ,则 ,
,当且仅当 时,等式成立.
① 时, , ,
② , , ,
综上: 当且仅当 时等式成立.
【点睛】
本题考查了新定义问题,考查了数学阅读能力,考查了分类讨论问题,考查了数学运算能力.
8.(1) (2)3.
【解析】
【分析】
将绝对值函数写成分段函数形式,分别求出各段的最小值,最小的即为函数的最小值。
【解析】
【分析】
根据函数的奇偶性,以及特殊值即可判断.
【详解】
因为
又定义域关于原点对称,故该函数为奇函数,排除B和D.
又 ,故排除C.
故选:A.
【点睛】
本题考查函数图像的选择,通常结合函数的性质,以及特殊值进行判断即可.
6.(Ⅰ)8;(Ⅱ)(i) ;(ii)详见解析.
【解析】
【分析】
(Ⅰ)对 求导, 可得 , 单调递增,得到 最小值,从而得到 的值.
,
如图所示:
【点睛】
本题考查绝对值函数的图像的画法,绝对值函数需先将绝对值去掉,再分段画出图像.属于基础题.
10.325
【解析】
【分析】
利用 可得 ,再利用等差数列求和公式,即可求出结果.
【详解】
因为 ,
所以
,
……
故答案为:
【点睛】
本题主要考查求抽象函数的函数值,关键是利用已知将 变形转化,属于中档题.
10道高中函数难题突破(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若存在正实数y,使得 ,则实数x的最大值为( )
A. B. C.1D.4
高中数学经典高考难题集锦(解析版)
![高中数学经典高考难题集锦(解析版)](https://img.taocdn.com/s3/m/54fcc47a84254b35effd3498.png)
考点 :直 线与圆的位置关系;二阶矩阵;绝对值不等式的解法.
专题 :计 算题;压轴题;转化思想.
分析: ( 1)由矩阵的线性变换列出关于 x 和 y 的一元二次方程组,求出方程组的解集即可
得到点 A 的坐标;可设出矩阵 M 的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵
M
的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到
或
,于是 r2=2b2=2,
所求圆的方程是:
(
x+1
)
2
+
(
y+1
)
2=2,或(
x﹣
1)
2+(
y﹣
1)
2
=2
.
点评: 本 小题主要考查轨迹的思想, 考查综合运用知识建立曲线方程的能力, 是一道中档题.
4.( 2013?柯城区校级三模) 已知抛物线的顶点在坐标原点, 焦点在 y 轴上, 且过点 ( 2,1).
专题 :压 轴题;圆锥曲线的定义、性质与方程. 分析: ( Ⅰ) 设抛物线方程为 x 2=2py ,把点( 2, 1)代入运算求得
线的标准方程.
p 的值,即可求得抛物
6 / 22
( Ⅱ) 由直线与圆相切可得
.把直线方程代入抛物线方程
并整理,由 △ >0 求得 t 的范围.利用根与系数的关系及
,求得
M的
逆矩阵;
( 2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的
距离公式求出圆心到直线的距离 d 与半径 r 比较大小得到直线与圆的位置关系,即可
得到交点的个数;
( 3)分三种情况 x 大于等于 ,x 大于等于 0 小于 和 x 小于 0,分别化简绝对值后,
高中数学经典高考难题集锦
![高中数学经典高考难题集锦](https://img.taocdn.com/s3/m/11af9f79cdbff121dd36a32d7375a417866fc137.png)
《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
高中数学经典高考难题集锦解析版
![高中数学经典高考难题集锦解析版](https://img.taocdn.com/s3/m/b2ecf09c76a20029bd642db9.png)
2015年10月18日姚杰的高中数学组卷一.填空题(共17小题)1.(2014?永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.2.(2013?江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.3.(2013?湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.4.(2012?湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是.5.(2012?河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.6.(2012?上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.7.(2012?上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=.8.(2011?浙江)若数列中的最大项是第k项,则k=.9.(2010?天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.10.(2013?湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q 的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.11.(2010?湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.12.(2010?辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.13.(2008?北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T()=2,T()=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.14.(2008?天津)已知数列{a n}中,,则=.15.(2006?天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=.16.(2005?上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=(n∈N),当|f(a n)﹣2005|取得最小值时,n=.17.(2006?湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.二.解答题(共13小题)18.(2008?安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.19.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.20.(2014?濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(2014秋?渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.22.(2010?荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.23.(2010?安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.24.(2010?湖南)给出下面的数表序列:其中表n(n=1,2,3…)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)25.(2010?湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.26.(2009?广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{}前n项和为T n,问满足T n>的最小正整数n是多少?27.(2009?江西)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n.(1)求S n;(2)b n=,求数列{b n}的前n项和T n.28.(2009?重庆)已知,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设c n=b n b n+1,S n为数列{c n}的前n项和,求证:S n≥17n;(Ⅲ)求证:.29.(2008?四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.30.(2007?福建)等差数列{a n}的前n项和为S n,,.(1)求数列{a n}的通项a n与前n项和为S n;(2)设(n∈N+),求证:数列{b n}中任意不同的三项都不可能成为等比数列.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.填空题(共17小题)1.(2014?永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.考点:等差数列的性质.专题:压轴题.分析:由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.解答:解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1?(a1+8d),∴a1=d,∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.2.(2013?江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.考点:等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n项和.专题:等差数列与等比数列.分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.3.(2013?湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:压轴题;等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.4.(2012?湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1 ∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.5.(2012?河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题;压轴题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列6.(2012?上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点:数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.7.(2012?上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=1006.考点:数列与不等式的综合;等差数列的性质.专题:综合题;压轴题.分析:设,,由,根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,由此能求出结果.解答:解:设,,∵,∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,当且仅当a n=a2012﹣n时,b n取到最大值,此时n=1006,所以k=1006.故答案为:1006.点评:本题考查数列与不等式的综合应用,具体涉及到等差数列的通项公式、基本不等式的性质等基本知识,解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(2011?浙江)若数列中的最大项是第k项,则k=4.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.解答:解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.点评:本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.9.(2010?天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.考点:等比数列的前n项和;等比数列的性质.专题:等差数列与等比数列.分析:首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0解答:解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.点评:本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.本题的实质是求T n取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.10.(2013?湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q 的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.点评:正确理解“特征数列”的定义是解题的关键.11.(2010?湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.考点:数列的应用.专题:计算题;压轴题;新定义.分析:根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.解答:解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.12.(2010?辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n 所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点评:本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.13.(2008?北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T()=2,T()=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).考点:数列的应用.专题:压轴题;规律型.分析:由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.解答:解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).点评:本题考查数列的性质和应用,解题时要注意创新题的灵活运用.14.(2008?天津)已知数列{a n}中,,则=.考点:数列的求和;极限及其运算.专题:计算题;压轴题.分析:首先由求an可以猜想到用错位相加法把中间项消去,即可得到a n 的表达式,再求极限即可.解答:解:因为所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为点评:此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.15.(2006?天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=1.考点:数列的极限.专题:综合题;压轴题.分析:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),则能推导出S n=,由此能导出.解答:解:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量=,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn=,则=1.点评:本题考查数列的极限和运算,解题时要注意三角函数的灵活运用.16.(2005?上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=(n∈N),当|f(a n)﹣2005|取得最小值时,n=110.考点:数列的函数特性;等差数列的通项公式.专题:压轴题.分析:要使|f(a n)﹣2005|取得最小值,可令|f(a n)﹣2005|=0,即+=2005,对n值进行粗略估算可得答案.解答:解:|f(a n)﹣2005|=|f(0.n)﹣2005|=|+﹣2005|,(1)要使(1)式取得最小值,可令(1)式等于0,即|+﹣2005|=0,+=2005,又210=1024,211=2048,则当n=100时,210=1024,log210≈3,(1)式约等于978,当n=110时,211≈2048,log211≈3,(1)式约等于40,当n<100或n>110式(1)式的值会变大,所以n=110,故答案为:110.点评:本题考查数列的函数特性、指数函数对数函数的性质,考查学生灵活运用知识解决问题的能力.17.(2006?湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.数列的求和;极限及其运算.考点:专计算题;压轴题;探究型.题:分析:通过观察可得=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣.进而可得.解答:解:第一个空通过观察可得. ==(1+﹣1)+()+(+﹣)+(+﹣)+…+(+﹣)+(+﹣)=(1+++…+)+(++++…+)﹣2(++…+)=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕 =1﹣+﹣ =+﹣所以=.答案:.点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答. 二.解答题(共13小题) 18.(2008?安徽)设数列{a n }满足a 1=a ,a n+1=ca n +1﹣c ,n ∈N*,其中a ,c 为实数,且c≠0 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设N*,求数列{b n }的前n 项和S n ;(Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c≤1.考点:数列的求和;数列的函数特性. 专题:压轴题. 分析: (Ⅰ)需要观察题设条件进行恒等变形,构造a n ﹣1=c (a n ﹣1﹣1)利用迭代法计算出数列的通项公式; (Ⅱ)由(Ⅰ)的结论求出数列的通项,观察知应用错位相减法求和;(Ⅲ)由(Ⅰ)的结论知a n =(a ﹣1)c n ﹣1+1.接合题设条件得出,.然后再用反证法通过讨论得出c 的范围.解答: 解:(Ⅰ)由题设得:n ≥2时,a n ﹣1=c (a n ﹣1﹣1)=c 2(a n ﹣2﹣1)=…=c n ﹣1(a 1﹣1)=(a ﹣1)c n ﹣1.所以a n =(a ﹣1)c n ﹣1+1.当n=1时,a 1=a 也满足上式.故所求的数列{a n }的通项公式为:a n =(a ﹣1)c n ﹣1+1. (Ⅱ)由(Ⅰ)得:.,∴.∴所以∴.(Ⅲ)证明:由(Ⅰ)知a n =(a ﹣1)c n ﹣1+1.若0<(a ﹣1)c n ﹣1+1<1,则0<(1﹣a )c n ﹣1<1. 因为0<a 1=a <1,∴.由于c n ﹣1>0对于任意n ∈N +成立,知c >0. 下面用反证法证明c ≤1.假设c >1.由函数f (x )=c x 的图象知,当n →+∞时,c n ﹣1→+∞,所以不能对任意n ∈N +恒成立,导致矛盾.∴c ≤1.因此0<c ≤1点评:本题主要考查数列的概念、数列通项公式的求法以及不等式的证明等;考查运算能力,综合运送知识分析问题和解决问题的能力.第三问中特值法与反证法想接合,对做题方向与方法选取要求较高.是一个技能性较强的题.19.(2011?广东)设b >0,数列{a n}满足a 1=b ,a n =(n≥2)(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,2a n ≤b n+1+1.考点: 数列递推式;数列与不等式的综合. 专题: 等差数列与等比数列.分析: (1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.解答:解:(1)∵(n ≥2),∴(n ≥2),当b=1时,(n ≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n ﹣1)×1=n ,即a n =1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.20.(2014?濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.等差数列的通项公式;等比数列的通项公式;数列的求和.考点:专等差数列与等比数列.题:分析: (Ⅰ)设{a n }的公差为d ,{b n }的公比为q ,根据等比数列和等差数列的通项公式,联立方程求得d 和q ,进而可得{a n }、{b n }的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n 项和S n .解答:解:(Ⅰ)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且解得d=2,q=2.所以a n =1+(n ﹣1)d=2n ﹣1,b n =q n ﹣1=2n ﹣1.(Ⅱ),,①S n =,②①﹣②得S n =1+2(++…+)﹣,则===.点评:本题主要考查等差数列的通项公式和用错位相减法求和. 21.(2014秋?渝中区校级月考)已知数列{a n }中,a 1=1,a n+1=c ﹣.(Ⅰ)设c=,b n =,求数列{b n }的通项公式;(Ⅱ)求使不等式a n <a n+1<3成立的c 的取值范围.考点: 数列递推式;数学归纳法. 专题: 综合题;压轴题. 分析:(1)令c=代入到a n+1=c ﹣中整理并令b n =进行替换,得到关系式b n+1=4b n +2,进而可得到{}是首项为﹣,公比为4的等比数列,先得到{}的通项公式,即可得到数列{b n }的通项公式.(2)先求出n=1,2时的c的范围,然后用数学归纳法分3步进行证明当c>2时a n<a n+1,然后当c>2时,令α=,根据由可发现c>时不能满足条件,进而可确定c的范围.解答:解:(1),,即b n+1=4b n+2,a1=1,故所以{}是首项为﹣,公比为4的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1得c>2.用数学归纳法证明:当c>2时a n<a n+1.(ⅰ)当n=1时,a2=c﹣>a1,命题成立;(ii)设当n=k时,a k<a k+1,则当n=k+1时,故由(i)(ii)知当c>2时,a n<a n+1当c>2时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c的取值范围是(2,].点评:本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.22.(2010?荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.考点:等比数列的前n项和;对数的运算性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)设{a n}的公比为q,当q=1时根据S n?S n+2﹣S n+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得S n?S n+2﹣S n+12<0,进而推断S n?S n+2,<S n+12.根据对数函数的单调性求得lg(S n?S n+2)<lgS n+12,原式得证.(2)要使.成立,则有进而分两种情况讨论当q=1时根据(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2求得﹣a12<0不符合题意;当q≠1时求得(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2=﹣a1q n[a1﹣c(1﹣q)],进而推知a1﹣c(1﹣q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论.解答:(1)证明:设{a n}的公比为q,由题设a1>0,q>0.(i)当q=1时,S n=na1,从而S n?S n+2﹣S n+12=na1?(n+2)a1﹣(n+1)2a12=﹣a12<0(ⅱ)当q≠1时,,从而S n?S n+2﹣S n+12==﹣a12q n<0.由(i)和(ii)得S n?S n+2,<S n+12.根据对数函数的单调性,知lg(S n?S n+2)<lgS n+12,即.(2)解:不存在.要使.成立,则有分两种情况讨论:(i)当q=1时,(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2=(na1﹣c)[(n+2)a1﹣c]﹣[(n+1)a1﹣c]2=﹣a12<0.可知,不满足条件①,即不存在常数c>0,使结论成立.(ii)当q≠1时,若条件①成立,因为(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2==﹣a1q n[a1﹣c(1﹣q)],且a1q n≠0,故只能有a1﹣c(1﹣q)=0,即此时,因为c>0,a1>0,所以0<q<1.但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立.综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.点评:本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.23.(2010?安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.考点:数列的求和;等比关系的确定.专题:压轴题.分析:(1)求直线倾斜角的正弦,设C n的圆心为(λn,0),得λn=2r n,同理得λn+1=2r n+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{r n}中r n+1与r n的关系,证明{r n}为等比数列;(2)利用(1)的结论求{r n}的通项公式,代入数列,然后用错位相减法求和.解答:解:(1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=,设C n 的圆心为(λn ,0),则由题意得知,得λn =2r n ;同理λn+1=2r n+1,从而λn+1=λn +r n +r n+1=2r n+1,将λn =2r n 代入, 解得r n+1=3r n故|r n |为公比q=3的等比数列.(Ⅱ)由于r 1=1,q=3,故r n =3n ﹣1,从而,记,则有S n =1+2?3﹣1+3?3﹣2+…+n?31﹣n ①﹣②,得 =,∴点评: 本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象概括能力以及推理论证能力.对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n 与a n+1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n 项和S n 乘以公比,然后错位相减解决.24.(2010?湖南)给出下面的数表序列:其中表n (n=1,2,3…)有n 行,第1行的n 个数是1,3,5,…2n ﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I )写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n≥3)(不要求证明);(II )每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n }求和:(n ∈N +)考点:数列的求和;等比数列的性质. 专题:综合题;压轴题. 分析: (1)根据表1,表2,表3的规律可写出表4,然后求出各行的平均数,可确定等比数列的首项和公比,进而推广到n .(2)先求出表n 的首项的平均数,进而可确定它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列,进而得到表中最后一行的数b n =n?2n ﹣1,再化简通项,最后根据裂项法求和. 解答: 解:(I )表4为 135748121220 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列. (II )表n 的第1行是1,3,5,…,2n ﹣1,其平均数是=n由(I )知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中数的平均数是n?2k ﹣1),于是,表中最后一行的唯一一个数为b n =n?2n ﹣1. 因此====(k=1,2,…,n )故++…+=(﹣)+(﹣)+…+[﹣]=﹣=4﹣.点评: 本题主要考查数列求和和等比数列的性质.数列求和是高考的必考点,一般有公式法、裂项法、错位相减法等,都要熟练掌握.25.(2010?湖北)已知数列{a n }满足:,a n a n+1<0(n≥1),数列{b n }满足:b n =a n+12﹣a n 2(n≥1). (Ⅰ)求数列{a n },{b n }的通项公式(Ⅱ)证明:数列{b n }中的任意三项不可能成等差数列.考点: 数列递推式;数列的概念及简单表示法;等差数列的性质. 专题: 计算题;应用题;压轴题. 分析:(1)对化简整理得,令c n =1﹣a n 2,进而可推断数列{c n }是首项为,公比为的等比数列,根据等比数列通项公式求得c n ,则a 2n 可得,进而根据a n a n+1<0求得a n .(2)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }为等比数列,于是有b r >b s >b t ,则只有可能有2b s =b r +b t 成立,代入通项公式,化简整理后发现等式左。
高考数学压轴专题2020-2021备战高考《不等式》难题汇编及答案解析
![高考数学压轴专题2020-2021备战高考《不等式》难题汇编及答案解析](https://img.taocdn.com/s3/m/6109f6895fbfc77da369b130.png)
新数学《不等式》专题解析一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[;B .(,-∞C .)+∞D .(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.3.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D 【解析】 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0)∴目标函数z =5x +y 的最小值为z =5 故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()()0000252536236433y y y y =++-≥+⋅=++ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.5.已知函数())2log f x x =,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】0,x x x x ≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=, 所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.6.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B .,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .3⎛⎫+∞ ⎪ ⎪⎝⎭D .,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.7.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.8.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.若33log(2)1loga b ab+=+42a b+的最小值为()A.6 B.83C.163D.173【答案】C【解析】【分析】由3log (2)1a b +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为3log (2)1a b +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>,所以12118211642(42)()(8)(83333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163.故选:C. 【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.10.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( ) A .222 B .322-C .221D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以22222 22222233333a b n m n ma b a b m n m n+=--≤-⋅=-++,当且仅当233n mm n=时取等号.所以222a ba b a b+++的最大值是2223-.故选:A【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.若变量x,y满足2,{239,0,x yx yx+≤-≤≥则x2+y2的最大值是A.4 B.9 C.10 D.12【答案】C【解析】试题分析:画出可行域如图所示,点A(3,-1)到原点距离最大,所以22max()10x y+=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.过抛物线24x y=的焦点F作倾斜角为锐角的直线l,与抛物线相交于A,B两点,M为线段AB的中点,O为坐标原点,则直线OM的斜率的取值范围是()A.22⎫+∞⎪⎪⎣⎭B.[)1,+∞C.)2,⎡+∞⎣D.[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.14.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫- ⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭ 所以03C π-=,即3C π=,又a b =, 所以ABC ∆是等边三角形,故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.15.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =;因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.16.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C 相切于点2,2,(2,2-,(2,2,2,2-, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.20.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( )A .[5,)+∞B .[2,)+∞C .[1,)+∞D .[0,)+∞ 【答案】A【解析】【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫ ⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤,故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.。
高三数学试卷难题汇总
![高三数学试卷难题汇总](https://img.taocdn.com/s3/m/3256b3826e1aff00bed5b9f3f90f76c661374ccc.png)
一、函数与导数1. 已知函数$f(x)=x^3-3x^2+4$,求函数的极值点。
2. 设函数$f(x)=\ln(x^2+1)$,求函数的导数$f'(x)$。
3. 已知函数$f(x)=\frac{x}{x^2+1}$,求函数的导数$f'(x)$。
4. 设函数$f(x)=x^3-3x^2+2$,求函数的单调区间。
5. 已知函数$f(x)=x^3-3x^2+4$,求函数的图像。
二、立体几何1. 已知一个正方体的边长为a,求其对角线的长度。
2. 已知一个长方体的长、宽、高分别为a、b、c,求其体积。
3. 已知一个圆锥的底面半径为r,高为h,求其体积。
4. 已知一个球体的半径为R,求其表面积。
5. 已知一个长方体的长、宽、高分别为a、b、c,求其表面积。
三、概率与统计1. 已知某班级有50名学生,其中有30名男生,20名女生,求班级中男生和女生人数的概率。
2. 已知某次考试的成绩服从正态分布,平均分为70分,标准差为10分,求考试成绩在60分至80分之间的概率。
3. 已知某次考试的成绩服从二项分布,试验次数为10次,每次成功的概率为0.3,求考试至少成功6次的概率。
4. 已知某班级有50名学生,其中有30名男生,20名女生,求班级中男生和女生人数的期望。
5. 已知某次考试的成绩服从正态分布,平均分为70分,标准差为10分,求考试成绩的方差。
四、解析几何1. 已知直线方程为$x+y=2$,求该直线与坐标轴的交点。
2. 已知圆的方程为$(x-2)^2+(y-3)^2=16$,求圆心坐标和半径。
3. 已知两条直线的方程分别为$x+y=1$和$x-y=2$,求两条直线的交点。
4. 已知椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{9}=1$,求椭圆的长轴和短轴。
5. 已知双曲线的方程为$x^2-4y^2=1$,求双曲线的渐近线方程。
五、复数1. 已知复数$z=3+4i$,求$|z|$。
高考数学压轴题精编精解100题(解答)
![高考数学压轴题精编精解100题(解答)](https://img.taocdn.com/s3/m/2ffe99d5763231126fdb1108.png)
以往高考数学压轴题汇总详细解答1.解:(I )()()1,1211,23ax x g x a x x -≤≤⎧=⎨--<≤⎩(1)当0a <时,函数()g x 是[]1,3增函数,此时,()()max 323g x g a ==-,()()min 11g x g a ==-,所以()12h a a =-;(2)当1a >时,函数()g x 是[]1,3减函数,此时,()()min 323g x g a ==-,()()max 11g x g a ==-,所以()21h a a =-;————4分(3)当01a ≤≤时,若[]1,2x ∈,则()1g x ax =-,有()()()21g g x g ≤≤; 若[]2,3x ∈,则()()11g x a x =--,有()()()23g g x g ≤≤; 因此,()()min 212g x g a ==-,————6分 而()()()()3123112g g a a a -=---=-, 故当102a ≤≤时,()()max 323g x g a ==-,有()1h a a =-;当112a <≤时,()()max 11g x g a ==-,有()h a a =;————8分 综上所述:()12,011,021,1221,1a a a a h a a a a a -<⎧⎪⎪-≤≤⎪=⎨⎪<≤⎪⎪->⎩。
————10分(II )画出()y h x =的图象,如右图。
————12分数形结合,可得()min 1122h x h ⎛⎫==⎪⎝⎭。
————14分2.解: (Ⅰ)先用数学归纳法证明01n a <<,*n N ∈. (1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011x f x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01n a <<对于一切正整数都成立.————4分 又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n a a +<<<————6分(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x ++-, 0<x<1, 由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0. 因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +<————10分 (Ⅲ) 因为 1111,(1)22n n b b n b +=≥+,所以0n b >,1n n b b +12n +≥ ,所以1211211!2n n n n n n b b b b b n b b b ---=⋅⋅≥⋅ ————① , ————12分 由(Ⅱ)21,2n n a a +<知:12n n n a a a +<, 所以1n a a =31212121222n n n a a a a a aa a a --⋅< ,因为1a =, n≥2, 10 1.n n a a +<<< 所以 n a 1121222n a a a a -<⋅<112n n a -<2122n a ⋅=12n ————② . ————14分由①② 两式可知: !n n b a n >⋅.————16分3.(Ⅰ)在21212122()()2()cos 24sin f x x f x x f x x a x ++-=+中,分别令120x x x =⎧⎨=⎩;1244x x x ππ⎧=+⎪⎪⎨⎪=⎪⎩;1244x x xππ⎧=⎪⎪⎨⎪=+⎪⎩得22()()2cos 24sin , (+)()2 2(+)()2cos 2)4sin 224f x f x x a x f x f x a f x f x x a x ππππ⎧⎪+-=+⎪⎪+=⎨⎪⎪+-+⎪⎩,=(+(+)①②③由①+②-③,得1cos 2()1cos 242()22cos 22cos(2)44222x x f x a x x a a ππ-+-=+-++[]-[] =22(cos 2sin 2)2(cos 2sin 2)a x x a x x ++-+∴())sin(2)4f xa a x π=+-+(Ⅱ)当0,4x π∈[]时,sin(2)4x π+∈2. (1)∵()f x ≤2,当a <1时,12[)]2a a =+-≤()f x ≤)aa -≤2.即1(1a ≤2 ≤a ≤1.(2)∵()f x ≤2,当a ≥1时,- 2≤a a )≤()f x ≤1.即1≤a ≤4+.故满足条件a 的取值范围[,4+.4.(1)3.223,1.2222==⇒=-====e a a b a a c e b b 椭圆的方程为1422=+x y (2分) (2)设AB 的方程为3+=kx y由41,4320132)4(1432212212222+-=+-=+=-++⇒⎪⎩⎪⎨⎧=++=k x x k k x x kx x k x y kx y (4分)由已知43)(43)41()3)(3(410212122121221221++++=+++=+=x x k x x k kx kx x x ay y b x x±=++-⋅++-+=k k k k k k 解得,4343243)41(44222 2 (7分)(3)当A 为顶点时,B 必为顶点.S △AOB =1 (8分)当A ,B 不为顶点时,设AB 的方程为y=kx+b42042)4(1422122222+-=+=-+++⇒⎪⎩⎪⎨⎧=++=k kb x x b kbx x k x y bkx y 得到442221+-=k b x x :04))((0421212121代入整理得=+++⇔==b kx b kx x x y y x x 4222=+k b (11分)41644|||4)(||21||||212222122121++-=-+=--=k b k b x x x x b x x b S 1||242==b k 所以三角形的面积为定值.(12分)5(1)12(101)10(101)99n n n n a =-⋅+⋅- ……………………………… (2分 ) 1(101)(102)9n n=-⋅+101101()(1)33n n --=⋅+…………………………………(4分) 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数 ∴ n a = A (A+1) , 得证 ……( 6分)(2) 21121010999n n n a =+-………………………………………………… (8分)2422112(101010)(101010)999n n n S n =++⋅⋅⋅⋅⋅⋅++++⋅⋅⋅⋅⋅⋅- 2211(101110198210)891n n n ++=+⋅--……………………………………………(12分) 6、解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF .3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3; 当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k. 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得 依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x .4520)54525()5(22200+-=-+=-=∴k k k k k x k y 又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F 12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k R F ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|7、解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.个:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++ 因此,直线l 上不存在点C ,使得△ABC 是正三角形.(ii )解法一:设C (-1,y )使△ABC 成钝角三角形, .32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又,,392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角. 9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当,.CBA 3310y 为钝角时∠-<22222y y 3428y 3y 349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角.932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点. 3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y 1x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--=A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或8、解:(1)令a=b=0,则f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1(2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴ )x (f 1)x (f =-由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0∴ 0)x (f 1)x (f >-=又x=0时,f(0)=1>0 ∴ 对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)x x (f )x (f )x (f )x (f )x (f 121212>-=-⋅= ∴ f(x 2)>f(x 1) ∴ f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x) 又1=f(0),f(x)在R 上递增 ∴ 由f(3x-x 2)>f(0)得:x-x 2>0 ∴ 0<x<3 9、解:(1)由题意知021)1(=++=c b f ,∴b c 21--=记1)12()12()()(22--++=++++=++=b x b x c b x b x b x x f x g 则075)3(>-=-b g 051)2(<-=-b g 7551<<⇒b01)0(<--=b g 即)75,51(∈b01)1(>+=b g(2)令u=)(x f 。
高中高三数学试卷复杂难题
![高中高三数学试卷复杂难题](https://img.taocdn.com/s3/m/c8c7aeb3e109581b6bd97f19227916888486b98b.png)
一、选择题(每题10分,共40分)1. 已知函数f(x) = x^3 - 3x + 2,若存在实数a,使得f(a) = 0,则f'(a)的值为()A. 0B. 1C. -1D. 22. 设向量a = (1, 2),向量b = (3, -4),向量c = (x, y),若向量a、b、c共面,则x + y的值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 25,则数列{an}的公差d为()A. 1B. 2C. 3D. 44. 若等比数列{bn}的首项b1 = 2,公比q = 3,则数列{bn^2}的前n项和Tn为()A. 5^n - 1B. 4^n - 1C. 6^n - 1D. 7^n - 15. 已知双曲线x^2/9 - y^2/16 = 1的渐近线方程为y = ±(4/3)x,则该双曲线的离心率为()A. 5/3B. 3/5C. 4/3D. 3/4二、填空题(每题10分,共40分)6. 已知函数f(x) = x^2 - 4x + 4,若f(x)在区间[1, 3]上的最大值为M,最小值为m,则M + m = _______。
7. 设复数z = a + bi(a,b∈R),若|z - 1| = |z + 1|,则a = _______。
8. 已知等差数列{an}的前n项和为Sn,且S5 = 35,S10 = 100,则数列{an}的首项a1 = _______。
9. 设等比数列{bn}的首项b1 = 1,公比q = -2,则数列{bn^3}的前n项和Tn = _______。
10. 若函数f(x) = ax^2 + bx + c在x = 1处取得极值,则a + b + c =_______。
三、解答题(共60分)11. (20分)已知函数f(x) = x^3 - 3x + 2,求:(1)函数f(x)的单调区间;(2)函数f(x)的极值;(3)函数f(x)的拐点。
高数难题试题库及答案
![高数难题试题库及答案](https://img.taocdn.com/s3/m/ea7f47a2710abb68a98271fe910ef12d2af9a98d.png)
高数难题试题库及答案1. 极限计算题目:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,原式等于 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 导数求解题目:求函数 \(f(x) = x^3 - 3x^2 + 2\) 的导数。
答案:\(f'(x) = 3x^2 - 6x\)。
3. 不定积分题目:计算不定积分 \(\int (2x + 3) \, dx\)。
答案:\(\int (2x + 3) \, dx = x^2 + 3x + C\)。
4. 定积分计算题目:计算定积分 \(\int_{0}^{1} x^2 \, dx\)。
答案:\(\int_{0}^{1} x^2 \, dx = \frac{1}{3}x^3 \Big|_0^1= \frac{1}{3}\)。
5. 级数求和题目:求级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) 的和。
答案:通过裂项法,\(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1\)。
6. 微分方程求解题目:解微分方程 \(y'' - 2y' + y = 0\)。
答案:该方程的特征方程为 \(t^2 - 2t + 1 = 0\),解得 \(t =1\),因此通解为 \(y = C_1e^x + C_2xe^x\)。
7. 多元函数偏导数题目:求函数 \(z = x^2y + y^2\) 在点 \((1, 2)\) 处的偏导数。
答案:\(\frac{\partial z}{\partial x} = 2xy\),\(\frac{\partial z}{\partial y} = 2x + y\)。
在点 \((1, 2)\) 处,\(\frac{\partial z}{\partial x} = 4\),\(\frac{\partialz}{\partial y} = 4\)。
高考数学复习考点知识与题型专题讲解9---导数-极值、最值问题(解析版)
![高考数学复习考点知识与题型专题讲解9---导数-极值、最值问题(解析版)](https://img.taocdn.com/s3/m/41ce10290508763230121265.png)
1 / 33高考数学复习考点知识与题型专题讲解专题9导数-极值、最值问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 3.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点.注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定.1.已知函数32()6f x x x ax =-+的图象经过点()2,2A . (1)设t R ∈,讨论()f x 在(),t +∞上的单调性;(2)若()f x 在[],1m m +上的最大值为()f m ,求m 的取值范围. 【试题来源】2021年高考数学二轮复习热点题型精选精练【答案】(1)分类讨论,答案见解析;(2)⎡⎢⎣⎦.【分析】(1)求出函数解析式,求导数,对t 分类讨论即可求解;(2)根据(1)只需满足()()131m f m f m ≤<⎧⎨≥+⎩即可求解.【解析】(1)因为()22162f a =-=,所以9a =,32()69f x x x x =-+,()()()2'()343331f x x x x x =-+=--,当1x <或3x >时,'()0g x >,当13x <<时,)'(0g x <,所以:①当1t <时,()f x 在(),1t 和()3,+∞上递增,在()1,3上递减;3 / 33②当13t ≤<时,()f x 在(),3t 上递减,在()3,+∞上递增; ③当3t ≥时,()f x 在(),t +∞上递增;(2)因为()f x 在[],1m m +上的最大值为()f m ,所以由(1)可得()()131m f m f m ≤<⎧⎨≥+⎩,解得1m ≤≤故m的取值范围为⎡⎢⎣⎦.2.已知函数()x xf x e e -=+,其中e 是自然对数的底数.(1)设存在[)01,x ∈+∞,使得()()30003f x a x x <-+成立,求正实数a 的取值集合A ;(2)若a A ∈,比较1a e -与1e a -的大小,并证明你的结论.【试题来源】湖南师范大学附属中学2021届高三下学期月考(六)【答案】(1)1,2e e ∞-⎛⎫++ ⎪⎝⎭;(2)答案见解析. 【分析】(1)令函数()()313xx g x e a x x e=+--+,求出函数的导函数,即可得到函数的单调性及最小值,当且仅当最小值()10g <,即可得到参数的取值范围;(2)构造函数()()1ln 1h x x e x =---,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解析】(1)令函数()()313xx g x e a x x e=+--+, 则()()2131x x g x e a x e +'=--.当1x 时,210,10x xe x e->-, 又0,a >故()0g x '>,所以()g x 是[)1,+∞上的单调增函数,因此()g x 在[)1,+∞的最小值是()112.g e e a -=+- 由于存在[)01,,x ∞∈+使()0030030x x e e a x x -+--+<成立,当且仅当最小值()10.g <故120,e e a -+-<即1,2e e a -+>则1,.2e e A ∞-⎛⎫+=+ ⎪⎝⎭(2)令函数()()1ln 1,h x x e x =---则()11e h x x-=-'. 令()0,h x '=得1x e =-,当()0,1x e ∈-时(),0,h x '<故()h x 是()0,1e -上的单调减函数. 当()1,x e ∞∈-+时(),0,h x '>故()h x 是()1,e -+∞上的单调增函数 所以()h x 在()0,∞+上的最小值是()1h e -.注意到()()10h h e ==, 所以当()()1,10,1x e e ∈-⊆-时()()(),110.h e h x h -<<= 当()()1,1,x e e e ∞∈-⊆-+时()(),0h x h e <=, 所以()0h x <对任意的()1,x e ∈成立.①当()1,1,2e e a e e -⎛⎫+∈⊆⎪⎝⎭时(),0,h a <即()11ln ,a e a -<-从而11;a e e a --< ②当a e =时11,a e e a --=;③当()(),1,a e e ∞∞∈+⊆-+时()(),0,h a h e >=即()11ln a e a ->-,故11a e e a -->.综上所述,当1,2e e a e -⎛⎫+∈⎪⎝⎭时11,;a e e a --<当a e =时11,a e e a --=;当(),a e ∈+∞时,11a e e a -->.【名师点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 3.已知函数21()ln 21()-=--+∈a f x x ax a R x. (1)当104a <时,讨论函数()f x 的单调性;(2)设函数2121()()2a g x x f x x-=++,当||1a >时,若函数()g x 的极大值点为1x ,证明:2111ln 1->-x x ax .5 / 33【试题来源】2021届高三数学二轮复习 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)先求出2(1)(221)()x ax a f x x-+-'=-,再对a 分类讨论得到函数()f x 的单调性; (2)通过分析得到21112x a x +=,所以2311111111122x lnx ax x x x lnx -=--+,101x <<,令311()22h x x x xlnx =--+,01x <<,再利用导数证明()1h x >-即得证.【解析】(1)()f x 的定义域为(0,)+∞,2221212(21)(1)(221)()2a ax x a x ax a f x a x x x x -----+-'=-+=-=-, ①当0a =时,21()x f x x -'=, 当(0,1)x ∈时,()0f x '<,函数()f x 单调递减, 当(1,)x ∈+∞时,()0f x '>,函数()f x 单调递增, ②当104a <<时,由()0f x '=,解得11x =,2112x a=-, 此时11102a->>, ∴当(0,1)x ∈,1[12a-,)+∞时,()0f x ',函数()f x 单调递减, 当[1x ∈,11)2a-,()0f x '>,函数()f x 单调递增, 综上所述,当0a =时,()f x 在(0,1)上单调递减,在[1,)+∞上单调递增, 当104a <<时,()f x 在(0,1),1[12a -,)+∞时,单调递减,在[1∈,11)2a -,单调递增.(2)221211()()2122a g x x f x x ax lnx x -=++=-++, 2121()2x ax g x x a x x-+∴'=-+=,当||1a >时,即1a >或1a <-时,令()0g x '=,则2210x ax -+=的两个根为1x ,2x , 函数()g x 的极大值点为1x ,120x x , 又121=x x ,122x x a +=,1a ∴>,101x <<,由1()0g x '=,可得211210x ax -+=,则21112x a x +=,3231111111111111222x x x lnx ax x lnx x x x lnx +∴-=-=--+,101x <<,令311()22h x x x xlnx =--+,01x <<,231()22x h x lnx ∴'=-++, 2113()3x h x x x x-∴''=-+=,(0,1)x ∈,当03x <<时,()0h x ''>,当13x <<时,()0h x ''<,()h x ∴'在上单调递增,在,1)上单调递减,3()()03h x h ∴''=-,()h x ∴在(0,1)上单调递减, ()h x h ∴>(1)1=-,故21111x lnx ax ->-.【名师点睛】在解决有关导数应用的试题时,有些题目利用“一次求导”就可以解决,但是有些问题“一次求导”,不能求出原函数(一般导函数是超越函数)的单调性,还不能解决问题,需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. “再构造,再求导”是破解函数综合问题的有效工具,为高中数学教学提供了数学建模的新思路和“用数学”的新意识和新途径.利用二次求导解题时,要注意“导下去,看正负;倒回来,看图象”,“导下去,看正负”指一直对函数求导,直到你能确定导数的正负,确定前面函数的单调区间为止,才停止求导;“倒回来,看图象”指的是根据导数求出对应函数的单调性,再求出端点函数值、拐点值等,画出原函数的图象,逐步分析得到最初的函数的单调性. 4.已知函数()2x x f x e e =-,()2ln 2ag x x x x x =-- (1)求()f x 的极值;(2)若()1,x ∈+∞时,()f x 与()g x 的单调性相同,求a 的取值范围.【试题来源】2021年高考数学二轮优化提升高考数学复习考点知识与题型专题讲解7 / 33专题训练(新高考地区专用)【答案】(1)极小值()11f e=,无极大值;(2)0a ≤.【分析】(1)根据函数的极值的概念可求得结果;(2)由(1)知,()f x 在()1,+∞单调递增,所以()g x 在()1,+∞单调递增,利用导数转化为ln xa x≤在()1,+∞恒成立,构造函数()ln xp x x=,()1,x ∈+∞,利用导数求出()p x 的值域即可得解. 【解析】(1)()f x 的定义域为R ,()1x x f x e-'=,当(),1x ∈-∞时,()0f x '<;当()1,x ∈+∞时,()0f x '>, 所以()f x 在(),1-∞单调递减,在()1,+∞单调递增.所以()f x 有极小值()11f e=,无极大值.(2)由(1)知,()f x 在()1,+∞单调递增.则()g x 在()1,+∞单调递增,即()1ln 1ln 0g x x ax x ax '=+--=-≥在()1,+∞恒成立,即ln x a x ≤在()1,+∞恒成立,令()ln x p x x =,()1,x ∈+∞;()21ln xp x x -'=, 所以当()1,x e ∈时,()0p x '>;当(),x e ∈+∞时,()0p x '<,所以()p x 在()1,e 单调递增,在(),e +∞单调递减,又()1,x ∈+∞时,()0p x >,所以()10,p x e ⎛⎤∈ ⎥⎝⎦,所以0a ≤.【名师点睛】将函数在指定区间上的单调性转化为导函数的不等式恒成立是解题关键.5.已知函数()()2,ln f x ax g x x ==(1)当1a =时,求()()f x g x -的最小值; (2)若曲线()y f x =与yg x 有两条公切线,求a 的取值范围.【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)11ln 222+;(2)12a e >.【分析】(1)由导数得出函数()F x 的单调性,进而得出最值;(2)由题意得出当()()f x g x >时,曲线()y f x =与y g x 有两条公切线,构造函数()2ln xh x x =,利用导数得出其最大值,从而得出a 的取值范围.【解析】(1)当1a =时,令()()()2ln F x f x g x x x =-=-()()212120x F x x x x x -'=-=>,令()0F x '=且0x >可得x =()02F x x '>⇒>,()002F x x '<⇒<<即函数()F x 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增min11ln 2ln 22221122F F =--⎛⎫⎛⎫==+ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)由函数()f x 和()g x 的图象可知: 当()()f x g x >时,曲线()y f x =与y g x 有两条公切线即2ln ax x >在0,上恒成立,即2ln xa x >在0,上恒成立设()2ln x h x x =,()312ln xh x x -'=令()312ln 0,x h x x x-=='=()()000x h x h x x >⇒<<<⇒'>'即函数()h x 在(上单调递增,在)+∞上单调递减即max 12h he ==,因此,12a e >【名师点睛】解决本题的关键在于利用导数得出函数的单调性,进而得出最值.6.已知函数()()2sin 10f x x x =->,()5sin 3g x x x =-+. (1)求()f x 在[]0,π上的最小值; (2)证明:()()g x f x >.【试题来源】湘豫名校联考2020-2021学年高三(3月)9 / 33【答案】(12+;(2)证明见解析. 【分析】(1)求导函数()'f x ,由()'f x 确定单调性,得极小值也即为最小值. (2)不等式()()g x f x >化为3sin 40x x -+.引入函数()3sin 4x x x ϕ=-+()ϕx 的最小值即可证明.【解析】(1)()2cos f x x ',令()0f x '=,得cos x =,故在区间[]0,π上,()f x '的唯一零点是π6x =, 当π0,6x ⎡⎫∈⎪⎢⎣⎭时,()0f x '<,()f x 单调递减, 当π,π6x ⎛⎤∈ ⎥⎝⎦时,()0f x '>,()f x 单调递增,故在区间[]0,π上,()f x的最小值为π26f ⎛⎫=+ ⎪⎝⎭. (2)要证:当0x >时,5sin 32sin 1x x x -+-, 即证:当0x >3sin 40x x -+. 令()3sin 4x x x ϕ=-+所以()π3cos 3x x x x ϕ⎛⎫'=+=- ⎪⎝⎭,所以π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ,336x ⎛⎫-∈-- ⎪⎝⎭,所以π1sin 32x ⎛⎫⎛⎫-∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()0x ϕ'<, 所以π,π6x ⎛⎤∈ ⎥⎝⎦时,ππ2π,363x ⎛⎤-∈- ⎥⎝⎦,所以π1sin ,132x ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以()0x ϕ'>,所以()x ϕ在π0,6⎛⎫ ⎪⎝⎭上单调递减,在π,π6⎛⎤⎥⎝⎦上单调递增,所以()π33410622x ϕϕ⎛⎫≥=--+= ⎪⎝⎭, 所以(]0,πx ∈时,()0x ϕ>,而()π,x ∈+∞时,()π4406x x ϕ⎛⎫=-++---> ⎪⎝⎭,综上,0x >时,()0x ϕ>,即()()g x f x >.【名师点睛】本题考查用导数求函数的最值,证明不等式.解题方法是不等式变形后,引入新函数,利用导数求得新函数的最值,从而得证不等式成立.7.已知函数12()()sin f x x m x =--,其中14m <-.(1)当1m =-时,求曲线()y f x =在(0,(0))f 处的切线方程;(2)求证:()f x 在区间0,2π⎛⎫⎪⎝⎭上有唯一极小值点.【试题来源】1号卷A10联盟2021届高三开年考 【答案】(1)220x y +-=;(2)证明见解析.【分析】(1)利用导数的几何意义可求切线方程.(2)令()()cos g x f x x '==-,可证()g x '在0,2π⎛⎫⎪⎝⎭上单调递增,结合零点存在定理可得()g x '在0,2π⎛⎫⎪⎝⎭上存在唯一零点,结合其()g x '在该零点附近的符号可证()'f x 的单调性,结合零点存在定理可证()f x 在区间0,2π⎛⎫⎪⎝⎭上有唯一极小值点. 【解析】(1)当1m =-时,12()(1)sin f x x x =+-,则()cos f x x '=-, 所以1(0)2f '=-,又(0)1f =,所以所求切线方程为112y x -=-,即220x y +-=.(2)由题意得,()cos f x x '=-.令()cos g x x =-,则321()sin 4()g x x x m '=-+-,因为3214()y x m =--和sin y x =均在0,2π⎛⎫⎪⎝⎭上单调递增, 所以()'g x 在0,2π⎛⎫⎪⎝⎭上单调递增,11 / 33 又3214)0)(0(g m --'=<,32110242g m ππ⎛⎫'=-> ⎪⎝⎭⎛⎫- ⎪⎝⎭, 所以存在唯一实数00,2t π⎛⎫∈ ⎪⎝⎭,使得()00g t '=, 则当()00,x t ∈时,()0g x '<,函数()g x 单调递减; 当0,2x t π⎛⎫∈ ⎪⎝⎭时,()0g x '>,函数()g x 单调递增. 又14m <-,则14m ->12>,即1>,2>,所以(0)10g =-<,1032g π⎛⎫=-< ⎪⎝⎭,02g π⎛⎫=> ⎪⎝⎭, 所以存在唯一实数0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()00cos 0g x x =-=, 所以当()00,x x ∈时,()()0f x g x '=<,函数()f x 单调递减; 当0,2x x π⎛⎫∈ ⎪⎝⎭时,()()0f x g x '=>,函数()f x 单调递增, 所以()f x 在区间0,2π⎛⎫ ⎪⎝⎭上有唯一极小值点0x . 【名师点睛】导数背景下的函数零点个数问题,应该根据单调性和零点存在定理来说明,注意需选择特殊点的函数值,使得其函数值的符号符合预期的性质,选择特殊点的依据有2个方面:(1)与极值点有明确的大小关系;(2)特殊点的函数值较易计算.8.已知函数()()()ln x f x e x m x m x =-+++,2m ≤.(1)若直线:1l y x =+是函数()f x 的切线,求m 的值;(2)判断函数()f x 的单调性,并证明.【试题来源】广东省揭阳市2021届高三下学期教学质量测试【答案】(1)1m =;(2)单调递增函数,证明见解析.【分析】(1)设切点的坐标为(),n t ,求出()f x ',根据直线l 与函数()f x 的图象相切可得出关于t 、m 、n 的方程组,解出这三个未知数的值即可;(2)利用导数证得()()1ln 2ln x e x x x m ≥+≥+≥+,从而可得出()0f x '≥,即可得出结论.【解析】(1)函数()f x 的定义域为(),m -+∞.对函数()f x 求导可得()()ln x f x e x m -'=+.设直线l 关于函数()f x 的切点为(),n t ,则有()()()1ln ln 1n n t n t e m n m n n e m n ⎧=+⎪=-+++⎨⎪-+=⎩,解方程组可得1m =,0n =,1t =;(2)由第(1)问可得()()ln x f x e x m -'=+,令()()1x g x e x =-+,则()1x g x e '=-.可知当(),0x ∈-∞时,()0g x '<;当()0,x ∈+∞时,()0g x '>.即()g x 在(),0-∞上单调递减,在()0,∞+上单调递增,于是有()()()100x g x e x g =-+≥=,即有1x e x ≥+恒成立.构造函数()()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++'. 可知当()2,1x ∈--时,()0h x '<;当()1,x ∈-+∞时,()0h x '>.即()h x 在()2,1--上单调递减,在()1,-+∞上单调递增,于是有()()()()1ln 210h x x x h =+-+≥-=,即有()ln 21x x +≤+恒成立.当2m ≤时,()()ln ln 21x m x x +≤+≤+成立.综上可得()1ln x e x x m ≥+≥+,即有()0f x '≥恒成立,故函数()f x 为单调递增函数.【名师点睛】本题考查切线的定义,利用待定系数法求参数,利用放缩法证明函数的单调性.该题的本质构造了两个函数x y e =、()ln 2y x =+的公切线1y x =+,并分别与其进行对比,以得到比较的目的.13 / 339.设函数()1()x x a a f x e -=+>. (1)求证:()f x 有极值点;(2)设()f x 的极值点为0x ,若对任意正整数a 都有()0,x m n ∈,其中,m n Z ∈,求n m -的最小值.【试题来源】江苏省盐城市、南京市2021届高三下学期第一次模拟考试【答案】(1)证明见解析;(2)2.【解析】(1)由题意得()ln x x f x a a e -'=-,所以()()2ln 0x x f x a a e -''=+>,所以函数()f x '单调递增,由()0f x '=,得()()ln 1,1ln x x ae a ae a==. 因为1a >,所以1ln 0a >,所以1log ln ae x a =. 当1log ln ae x a>时,()()0,f x f x '>单调递增; 当1log ln ae x a<时,()()0,f x f x '<单调递减. 因此,当1log ln ae x a=时函数()f x 有极值. (2)由(1)知,函数()f x 的极值点0x (即函数()f x '的零点)唯一, 因为ln (1)a f e a'-=-.令()ln a g a a =,则()21ln 0a a g a '-==,得a e =. 当a e >时,()()0,g a g a '<单调递减;当0a e <<时,()()0,g a g a '>单调递增,所以()()1g a g e e ≤=,所以()ln 10a f ae '-=-<. 而()0ln 1f a '=-,当2a =时,()00f '<,当3a ≥时,()00f '>.又()1ln 1a e f a '=-.因为a 为正整数且2a ≥时,所以ln 2ln 121a a e≥>>. 当2a ≥时,()10f '>.即对任意正整数1a >,都有()10f '-<,()10f '>,所以()01,1x ∈-恒成立,且存在2a =,使()00,1x ∈,也存在3a =,使()01,0x ∈-.所以n m -的最小值为2.【名师点睛】本题考查导数的应用,解题的关键是利用导数结合零点存在性定理得出()10f '-<,()10f '>,得出,m n 的可能值.10.已知函数()x f x e ax =-,其中a R ∈.(1)讨论函数()f x 在[0,1]上的单调性;(2)若函数()()ln(1)cos g x f x x x =++-,则是否存在实数a ,使得函数()g x 在0x =处取得极小值?若存在,求出a 值;若不存在,说明理由.【试题来源】广东省广州市天河区2021届高考二模【答案】(1)答案见详解;(2)存在2a =,使得()g x 在0x =处取得极小值【分析】(1)求出导函数,讨论1a ≤、1a e <<或a e ≥,结合函数的单调性与导数之间的关系进行求解即可.(2)求出()1sin 1x g x e a x x '=-+++,根据极值的定义可得()020g a '=-=,得出2a =,再证明充分性,利用导数证明当0,2x π⎛⎫∈ ⎪⎝⎭时,函数()g x 单调递增;再构造函数令()212x x m x x e -⎛⎫=++ ⎪⎝⎭,证明当1,04x ⎛⎫∈- ⎪⎝⎭时,函数()g x 单调递减.【解析】(1)由()x f x e ax =-,则()x f x e a '=-,因为[0,1]x ∈,则[]1,x e e ∈,当1a ≤时,()0x f x e a '=-≥,函数在[0,1]上单调递增;当1a e <<时,令()0x f x e a '=-≥,解得ln ≥x a ,令()0x f x e a '=-<,解得ln x a <,即函数在[]ln ,1a 上单调递增,在[)0,ln a 上单调递减;当a e ≥时,()0x f x e a '=-≤,函数在[0,1]上单调递减;(2)()()()ln(1)cos cos ln 1x g x f x x x e ax x x =++-=--++,15 / 33()1sin 1x g x e a x x '=-+++, 显然0x =是函数()g x 的极小值点的必要条件为()020g a '=-=,即2a =,此时()1sin 21x g x e x x '=++-+,显然当0,2x π⎛⎫∈ ⎪⎝⎭时, ()11sin 21sin 2sin 011x g x e x x x x x x '=++->+++->>++, 当1,04x ⎛⎫∈- ⎪⎝⎭时,()()22311131122x x x x x ⎛⎫+-+=++> ⎪⎝⎭, 故213112x x x <-++,令()212x x m x x e -⎛⎫=++ ⎪⎝⎭, 则()202x x m x e -'=-≤,故()m x 是减函数, 故当0x <时,()()01m x m >=,即212xx e x <++, 令()1sin 2h x x x =-,则()1cos 2h x x '=-, 当10x -<<时,()1cos102h x '>->,故()h x 在()1,0-上单调递增, 故当10x -<<时,()()00h x h <=,即1sin 2x x <, 故当1,04x ⎛⎫∈- ⎪⎝⎭时,()1sin 21x g x e x x '=++-+ 2223112202222x x x x x x x ⎛⎫⎛⎫≤+++-+-+=+< ⎪ ⎪⎝⎭⎝⎭, 因此,当2a =时,0x =是()g x 的极小值点,即充分性也成立,综上,存在2a =,使得()g x 在0x =处取得极小值.【名师点睛】本题主要考查了利用导数研究函数的极值,解题的关键是结合函数的单调性、极值和导数之间的关系进行构造函数,考查了逻辑推理能力以及运算求解能力,考查了化归与转化思想,综合性比较强.11.已知数列()*11nn a n n ⎛⎫=+∈ ⎪⎝⎭N . (1)证明:n a e <(*n ∈N ,e 是自然对数的底数);(2)若不等式()*11,0n a e n a n +⎛⎫+≤∈> ⎪⎝⎭N 成立,求实数a 的最大值.【试题来源】山东省淄博市2021届高三一模考试【答案】(1)证明见解析;(2)最大值为11ln 2-. 【分析】(1)将所要证明的不等式转化为证明()()()ln 101f x x x x =+-<≤在区间(]0,1上小于零,利用导数研究()f x 在区间(]0,1上的单调性和最值,由此证得结论成立.(2)将不等式()*11,0n a e n a n +⎛⎫+≤∈> ⎪⎝⎭N 成立,转化为()()()ln 1011x g x x x ax =+-<≤+在区间(]0,1上()0g x ≤恒成立,利用导数研究()g x 的单调性,结合对a 进行分类讨论,求得a 的取值范围,由此求得a 的最大值.【解析】(1)要证()*11n e n n ⎛⎫+<∈ ⎪⎝⎭N 成立,两边取对数:只需证明11ln 1n n⎛⎫+< ⎪⎝⎭成立, 令1x n=,01x <≤,构造函数()()()ln 101f x x x x =+-<≤, 即只需证明函数()f x 在区间(]0,1上小于零,由于()1x f x x =-+', 在区间(]0,1上,()0f x '<,函数()f x 单调递减,且()00f =,所以在区间(]0,1上函数()0f x < 所以不等式()*11n e n n ⎛⎫+<∈ ⎪⎝⎭N 成立; (2)对于不等式()11n a e n n +*⎛⎫+≤∈ ⎪⎝⎭N ,两边取对数: 只需不等式11ln 1n n a ⎛⎫+≤ ⎪+⎝⎭成立, 令1x n=,01x <≤,构造函数()()()ln 1011x g x x x ax =+-<≤+,17 / 33 不等式()11n a e n n +*⎛⎫+≤∈ ⎪⎝⎭N 成立,等价于在区间(]0,1上()0g x ≤恒成立, 其中,()222(21)(1)(1)a x a x g x x ax +-=++',由分子22(21)0a x a x +-=,得其两个实数根为10x =,2212a x a -=; 当12a ≥时,20x ≤,在区间(]0,1上,()0g x '>,函数()g x 单调递増, 由于()()00g x g >=1212a <<时,()20,1x ∈,在区间()20,x 上()0g x '<,在区间()2,1x 上()0g x '>;函数()g x 在区间()20,x 上单调递减,在区间()2,1x 上单调递增;且()00g =,只需()11ln 201g a =-≤+, 得11ln 2a ≤-1211ln 2a <≤-时不等式成立, 当021a <≤时,21x ≥,在区间(]0,1上,()0g x '<,函数()g x 单调递减,且()()00g x g <=,不等式恒成立,综上,不等式(),011n a a e n n +*⎛⎫+≤∈ ⎪⎝⎭>N 成立,实数a 的最大值为11ln 2-. 【名师点睛】可将不等式恒成立问题,转化为函数最值来求解,要注意导数的工具性作用.12.已知函数221()2()2x ax f x x x a e =+-∈R ( 2.71828e =…是自然对数的底数). (1)若()f x 在(0.2)x ∈内有两个极值点,求实数a 的取值范围;(2)1a =时,计论关于x 的方程211()2|ln |()2x f x x x b x b xe⎡⎤-++=∈⎢⎥⎣⎦R 的根的个数. 【试题来源】山西省晋中市2021届高三下学期二模【答案】(1)22e e a <<;(2)答案见解析.【分析】(1)若()f x 在(0,2)x ∈内有两个极值点,则()0f x '=在(0,2)x ∈内有两个不相等的变号根,等价于0x e ax -=在(0,2)x ∈上有两个不相等的变号根.令()x g x e ax =-,分类讨论()g x 有两个变号根时a 的范围;(2)化简原式可得2()|ln |,(0,)x x h x x b x e=--∈+∞,分别讨论(1,)x ∈+∞和(0,1)x ∈时()h x 的单调性,可得()h x 的最小值,分类讨论最小值与0的关系,结合()h x 的单调性可以得到零点个数.【解析】(1)由题意可求得()()22(2)()2x x x a x x x e ax f x x e e '---=+-=,因为()f x 在(0,2)x ∈内有两个极值点,所以()0f x '=在(0,2)x ∈内有两个不相等的变号根,即0x e ax -=在(0,2)x ∈上有两个不相等的变号根.设()x g x e ax =-,则()x g x e a '=-,①当0a 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件.②当0a >时,令()0x g x e a '=-=得ln x a =,当ln 2a ,即2a e 时,(0,2),()0x x g x e a '∈=-<,所以()g x 在(0,2)上单调递减,不符合条件;当ln 0a ,即01a <时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件;当0ln 2a <<,即21a e <<时,()g x 在(0,ln )a 上单调递减,(ln ,2)a 上单调递增,若要0x e ax -=在(0,2)x ∈上有两个不相等的变号根,则(0)0,(2)0,(ln )0,0ln 2,g g g a a >⎧⎪>⎪⎨<⎪⎪<<⎩,解得22e e a <<. 综上所述,22e e a <<.19 / 33(2)设2211()|ln |()2|ln |,(0,)2x x x h x x f x x x b x b x xee ⎡⎤=--+-=--∈+∞⎢⎥⎣⎦, 令2x x y e =,则212x x y e '-=,所以2x x y e =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. (ⅰ)当(1,)x ∈+∞时,ln 0x >,则2()ln x x h x x b e =--,所以22()21x x e h x e x x '-⎛⎫=+- ⎪⎝⎭. 因为2210,0xe x x->>,所以()0h x '>,因此()h x 在(1,)+∞上单调递增. (ⅱ)当(0,1)x ∈时,ln 0x <,则2()ln x x h x x b e =---,所以22()21x x e h x e x x '-⎛⎫=-+- ⎪⎝⎭. 因为()22221,,1,01,1,x x xe e e e x x ∈><<∴>即21,xe x -<-,又211,x -<所以22()210x x e h x e x x '-⎛⎫=-+-< ⎪⎝⎭,因此()h x 在(0,1)上单调递减. 综合(ⅰ)(ⅱ)可知,当(0,)x ∈+∞时,2()(1)h x h e b -=--,当2(1)0h e b -=-->,即2b e -<-时,()h x 没有零点,故关于x 的方程根的个数为0,当2(1)0h e b -=--=,即2b e -=-时,()h x 只有一个零点,故关于x 的方程根的个数为1,当2(1)0h e b -=--<,即2b e ->-时,①当(1,)x ∈+∞时,221()ln ln ln 1x x h x x b x b x b e e ⎛⎫=-->-+>-- ⎪⎝⎭,要使()0h x >,可令ln 10x b -->,即()1,b x e +∈+∞; ②当(0,1)x ∈时,121()ln ln ln 12x x h x x b x e b x b e -⎛⎫=-----+>--- ⎪⎝⎭,要使()0h x >, 可令ln 10x b --->,即()10,b x e --∈,所以当2b e ->-时,()h x 有两个零点,故关于x 的方程根的个数为2,综上所述:当2b e -=-时,关于x 的方程根的个数为0,当2b e -=-时,关于x 的方程根的个数为1,当2b e ->-时,关于x 的方程根的个数为2.13.已知函数()()210,2x f x e ax x a =->∈R . (1)当1a =时,比较()f x 与 1x +的大小; (2)若()f x 有两个不同的极值点12 , x x ,证明:1122ln (1)x a x x x <-. 【试题来源】四川省大数据精准教学联盟2021届高三第二次统一监测【答案】(1)()()10f x x x >+>;(2)证明见解析.【分析】(1)令()()()21102xx g x f x x e x x =--=--->,再利用导数法判断()g x 与0的关系.(2)根据()f x 有两个不同的极值点1 x ,2 x ,转化为1 x ,2 x 为方程x e a x=的两个不同实根有11ln x a lnx =+,22ln x a lnx =+,则11212212||||x lnlnx lnx x x x x x =-=-=-,进而将问题转化为()21121x x a x x -<-,即证明12111a x x -<-,再由(1)得到2112x x e x >++,即2112e x x x >++,然后作出函数()xe h x x=,()112x x x ϕ=++及y a =的图象,利用数形结合法求解.【解析】(1)当1a =时,()()2102x f x e x x =->, 令()()()21102xx g x f x x e x x =--=--->,则()1x g x e x '=--. 令()1x u x e x =--,则()1x u x e '=-,可知()1x u x e '=-为()0,∞+上的增函数, 则()()00u x u ''>=,则()u x 为()0,∞+上的增函数,所以()()00u x u >=,即()0g x '>,所以()g x 为()0,∞+上的增函数,所以()()00g x g >=,所以不等式212x x e x ->+在()0,∞+上成立,21 / 33所以()()10f x x x >+>.(2)()xf x e x α'=-,因为()f x 有两个不同的极值点1 x ,2 x ,所以1 x ,2 x 为方程()0f x '=两不等根,即1 x ,2 x 为方程xea x=的两个不同实根,令()xe h x x =,()()21x e x h x x-'=,令()0h x '>,得1x >;令()0h x '<,得1x <, 则()h x 在()1,+∞上递增,在()0,1上递减, 所以当1x =时,()h x 取得最小值为()1h e =,所以a e >,不妨设1201x x <<<,且11x e ax =,22xe ax =,则11ln x a lnx =+,22ln x a lnx =+,则11212212||||x ln lnx lnx x x x x x =-=-=-, 故只需证明()21121x x a x x -<-,即证明12111a x x -<-. 由(1)知2112xx e x >++,所以22111212x x ex x x x++>=++, 令()112x x x ϕ=++()0x >,则()2222x x x ϕ-'=可得()x ϕ在(上递减,)+∞上递增,函数()xe h x x=,()112x x x ϕ=++及y a =的图象如图所示,令()3434,x x x x <为方程()x a ϕ=两不等根,即()22120x a x +-+=的两个实根,则34342(1),2,x x a x x +=--⎧⎨=⎩由图可知,31240x x x x <<<<, 即421311110x x x x <<<<,所以43123434341111x x x x x x x x --<-==1a =<=-,所以()21121x x a x x -<-,故原不等式()11221x lna x x x <-得证. 【名师点睛】利用导数证明不等式常构造函数φ(x ),将不等式转化为φ(x )>0(或<0)的形式,然后研究φ(x )的单调性、最值,判定φ(x )与0的关系,从而证明不等式.14.已知函数()()21ln 0f x x ax x a a=-+>. (1)当1a e=时,求函数()f x 在x e =处的切线方程;(2)若()f x 在(000x x x =<<处取得极值,且()00f x >,求a 的取值范围. 【试题来源】2021年高考数学二轮复习热点题型精选精练【答案】(1)12y e x e e ⎛⎫=+-+ ⎪⎝⎭;(2)⎫⎪⎪⎝⎭. 【分析】(1)求出()f e 、()f e ',利用点斜式可得出所求切线的方程;(2)求出()222a x x a f x ax -++'=,求得0x =,由()00f x >可得出(3200002ln 3ln 100x x x x -+-><<,构造函数()322ln 3ln 1h x x x x =-+-,其中0x <<利用导数分析函数()h x 在(上单调递增,由()00hx >可得出01x <进而可解得正实数a 的取值范围.【解析】(1)当1a e =时,()2ln x f x x ex e=-+,则()12x f x e x e '=-+, 所以()21f e e e =-+,()12f e e e'=+-,所以切线方程为()211212y e x e e e e x e e e ⎛⎫⎛⎫=+--+-+=+-+ ⎪ ⎪⎝⎭⎝⎭;23 / 33(2)()221122a x x af x ax x a ax-++'=-+=,设()222g x a x x a =-++,则3180a ∆=+>.因为0x >,由()0g x >,可得2104x a <<,此时()0f x '>; 由()0g x <,可得x >()0f x '<. 所以,函数()f x的单调递增区间为⎛ ⎝⎭,单调递减区间为⎫+∞⎪⎪⎝⎭.所以,0x =,则()()0f x f x =极大值且有220020a x x a -++=,可得20021x ax a =+,02114x a +=<a >所以()()0020000002ln 11ln ln 0222x a x x x f x x ax x a a a+-=-+=+-=>,且()()222000000ln 21ln 10f x x ax ax x ax =-+-=+->,所以,21ln ax x >-, 因为0x <012ln 0x ->,即002001ln 12ln x x a x x -<<-,即002001ln 12ln x x x x -<-,整理得(3200002ln 3ln 100x x x x -+-><<,设()322ln 3ln 1h x x x x =-+-,其中0x <<则()324ln 334ln 33x x x h x x x x x-+'=-+=, 0x <<1ln 2x<,所以34ln 0x ->,即当0x <<()0h x '>. 所以,函数()h x 在(上单调递增,()10h =,由()()001h x h >=,可得01x << 即2114a<<1a <<.因此,实数a的取值范围是⎫⎪⎪⎝⎭. 【名师点睛】利用导数求函数极值的步骤如下: (1)求函数()f x 的定义域; (2)求导;(3)解方程()00f x '=,当()00f x '=; (4)列表,分析函数的单调性,求极值:①如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值; ②如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值. 15.已知函数()()2sin 10f x x x =->,())))112sin g x e x x =⋅++.(1)求()f x 在[]0,π上的最小值; (2)证明:()()f x g x >.【试题来源】湘豫名校联考2020-2021学年高三(3月) 【答案】(12+;(2)证明见解析. 【分析】(1)先对函数求导,求出函数的单调区间,从而可求出函数的最小值; (2)要证()()f x g x >,只要证()11x x +>,构造函数()()1h x x x =-+,对函数求导得'()3sin 4h x x x =-+,此时导数等于零,方程无法求解,所以再构造函数()3sin 4x x x ϕ-+数求此函数的单调区间和最值,可得0x >时,()0x ϕ>,从而有()0h x '>,所以得到()h x 是0,上的增函数,进而可得()()01h x h >【解析】(1)()2cos f x x ',令0fx,得cos x =,25 / 33故在区间[]0,π上,fx 的唯一零点是π6x =, 当π0,6x ⎡⎫∈⎪⎢⎣⎭时,0fx,()f x 单调递减, 当π,π6x ⎛⎤∈ ⎥⎝⎦时,0fx,()f x 单调递增,故在区间[]0,π上,()f x的最小值为π26f ⎛⎫=+ ⎪⎝⎭. (2)要证:当0x >))2sin 112sin x x x ->++,即证:当0x >时,()()11h x x x =-+>.()())11h x x x x '=+3sin 4x x =-+,令()3sin 4x x x ϕ=-+所以()π3cos 3x x x x ϕ⎛⎫'=+=- ⎪⎝⎭,所以π0,6x ⎛⎫∈ ⎪⎝⎭时,πππ,336x ⎛⎫-∈-- ⎪⎝⎭,所以π1sin 32x ⎛⎫⎛⎫-∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()0ϕ'<x , 所以π,π6x ⎛⎤∈ ⎥⎝⎦时,ππ2π,363x ⎛⎤-∈- ⎥⎝⎦,所以π1sin ,132x ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以()0ϕ'>x , 所以()ϕx 在π0,6⎛⎫ ⎪⎝⎭上单调递减,在π,π6⎛⎤⎥⎝⎦上单调递增,所以()π33410622x ϕϕ⎛⎫≥=--+= ⎪⎝⎭, 所以(]0,πx ∈时,()0x ϕ>,而()π,x ∈+∞时,()π4406x x ϕ⎛⎫=-++---> ⎪⎝⎭,综上,0x >时,()0x ϕ>,即()0h x '>, 即()h x 是0,上的增函数,所以()()01h x h >.【名师点睛】此题考查导数的应用,利用导数求函数的最值,利用导数证明不等式,解题的关键是把()()f x g x >转化为()11x x +>,构造函数()()1h x x x =-+,对函数求导得'()3sin 4h x x x =-+,此时导数等于零,方程无法求解,所以再构造函数()3sin 4x x x ϕ-+数求此函数的单调区间和最值,进而可判断()0h x '>,所以得到()h x 是0,上的增函数,进而可得()()01h x h >,考查数学转化思想和计算能力,属于较难题16.已知0a >,函数()2xe f x x a=+.(1)讨论函数()f x 的单调性;(2)已知函数()f x 存在极值点1x 、2x ,求证:()()1212e af x f x a--<⋅.【试题来源】江苏省无锡市天一中学2021届高三下学期二模考前热身模拟 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求得()()()2222x e x x a f x xa -+'=+,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)由题意得出122x x +=,12x x a =,2112x a x +=,2222x a x +=,将所证不等式转化为证明121212121222x x x x e e e x x x x --<⋅,即()()11211111210x x x e x e x ------<,令()110,1t x =-∈,构造函数()()()211t t F t t e t e t -=+---,证明出()0F t <对任意的()0,1t ∈恒成立即可. 【解析】(1)当0a >时,函数()2xef x x a=+的定义域为R ,且()()()2222x e x x a f x xa -+'=+.对于方程220x x a -+=,44a ∆=-.①当0∆>时,即()0,1a ∈时,令()0f x '=,11x =21x = 由()0f x '<可得11x <<27 / 33由()0f x '>可得1x <或1x >所以函数()f x在(,1-∞上单调递增,在(1上单调递减,在()1++∞上单调递增;②当0∆≤时,即[)1,a ∈+∞时,()()()22220x e x x a f x xa -+'=≥+,所以函数()f x 在R 上单调递增.(2)由(1)可得01a <<,且1x 、2x 是220x x a -+=的两根. 由根与系数关系可得122x x +=,12x x a =.设1201x x <<<,则()f x 在1x x =处取到极大值,在2x x =处取到极小值, 所以()()12f x f x >.因为2112x a x +=,2222x a x +=,所以命题等价于证明121212121222x x x x e e e x x x x --<⋅, 整理得121121121x x x e x e x x ---<-,即()()11211111210x x x e x e x ------<.令()110,1t x =-∈,构造函数()()()211t t F t t e t e t -=+---,()0,1t ∈, 则()()2t tF t t e e -'=--,()0,1t ∈,令()2t tg t e e -=--,易知()g t 在()0,1上单调递增.因为()020g =-<,()10g >,所以存在()00,1t ∈,使()00g t =,当()00,t t ∈时,()0F t '<,()F t 单调递减;当()0,1t t ∈时,()0F t '>,()F t 单调递增, 所以()()(){}max 0,10F t F F <=,所以()()11211111210x x x e x e x ------<成立,所以()()1212e a f x f x a--<⋅.【名师点睛】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论; (3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.17.已知函数()1xf x e ax =--(1)讨论函数()()f xg x x=在其定义域内的单调性; (2)若()0f x ≥对任意的x ∈R 恒成立,设()()xh x e f x =,证明:()h x 在R 上存在唯一的极大值点t ,且()3.16h t <【试题来源】浙江省金华市武义第三中学2021届高三下学期2月月考 【答案】(1)在(),0-∞上单调递增,在()0,∞+上单调递增;(2)证明见解析. 【分析】(1)先对函数()g x 求导,得()()211x x e g x x '-+=,令()()11xx x e ϕ=-+,则()x x xe ϕ'=,得到()x ϕ在(),0-∞上单调递减,在()0,∞+上单调递增,结合其定义域,得到()()00ϕϕ>=x ,进而求得()g x 的单调区间; (2)根据()0f x ≥对任意的x ∈R恒成立,可确定1a =,()()()()1,22x x x x h x e e x h x e e x '=--=--,利用导数研究函数的图象的走向,研究得其极值点以及极值的范围,证得结果.【解析】(1)由题意()1x e ax g x x --=,定义域为()()()()211,00,,x x e g x x ∞∞'-+-⋃+=令()()11x x x e ϕ=-+,则()xx xe ϕ'=当0x <时,()0;x ϕ'<当0x >时,()0x ϕ'>()x ϕ∴在(),0-∞上单调递减,在()0,∞+上单调递增 ()()00,x ϕϕ∴>=即()g x '在(),0-∞和()0,∞+上均大于零 ()g x ∴在(),0-∞上单调递增,在()0,∞+上单调递增29 / 33(2)易知()x f x e a '=-,由()10xf x e ax =--≥对任意的x ∈R 恒成立,即1x ax e ≤-恒成立,当0x =时显然成立,当0x >时,1x e a x -≤恒成立,当0x <时,1x e a x -≥恒成立,令1()x e u x x -=,则22(1)(1)1'()x x x e x e x e u x x x⋅---+==, ()(1)1x v x x e =-+,'()x v x e =,可知'()0v x >,()v x 在R 上单调递增,且(0)110v =-+=,所以当0x <时,'()0u x <,当0x >时,'()0u x >,所以1()x e u x x -=在(,0)-∞上单调减,在(0,)+∞上单调增,且001lim lim 11x xx x e e x→→-==,所以1a =,此时()()()()1,22x x x xh x e e x h x e e x '=--=--,令()22,x x e x τ=--则()21xx e τ='-,当ln2x <-时,()0;x τ'<当ln2x >-时,()0x τ'>,()x τ∴在(),ln2∞--上单调递减,在()ln2,∞-+上单调递增,又()()3322223212200,20,0224e ee τττ⎛⎫=-=>-=-=-< ⎪⎝⎭, ∴存在唯一实数32,,2t ⎛⎫∈-- ⎪⎝⎭使得()220t t e t τ=--=,()h x ∴在(),t -∞上递增,(),0t 上递减,()0,∞+上递增, ()h x ∴在R 上唯一的极大值点,即为.t()()222231122416ttt t t t h t e e t t ++--⎛⎫∴=--=--=<⎪⎝⎭. 【名师点睛】该题考查的是有关利用导数研究函数的问题,解题思路如下:(1)对函数求导,之后对其导数再求导,结合导数的符号确定函数的单调性,从而确。
高考数学压轴专题最新备战高考《不等式》难题汇编及答案解析
![高考数学压轴专题最新备战高考《不等式》难题汇编及答案解析](https://img.taocdn.com/s3/m/e251ed667c1cfad6185fa74f.png)
【最新】高中数学《不等式》专题解析一、选择题1.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( ) A .14πB .12πC .πD .32π 【答案】A 【解析】 【分析】画出约束条件的可行域,然后求解可行域的面积. 【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图:可行域是扇形,14个圆,面积为:211144ππ⨯⨯=.故选:A .【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.2.若,x y 满足约束条件360,60,1,x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则z x y =-的最小值为( )A .4B .0C .2-D .4-【解析】 【分析】画出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,目标函数z x y =-,可化为直线y x z =-当直线y x z =-经过A 时,z 取得最小值, 又由3601x y y -+=⎧⎨=⎩,解得(3,1)A -,所以目标函数的最小值为min 314z =--=-. 故选:D .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨) 3 2 12 B(吨)128A .12万元B .16万元C .17万元D .18万元【答案】D 【解析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果. 【详解】设每天甲、乙产品的产量分别为x 吨、y 吨由已知可得3212,28,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y =+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P 处取得最大值,由28,3212,x y x y +=⎧⎨+=⎩得()2,3P ,则max 324318z =⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.4.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由200x y x y +-=⎧⎨-=⎩得(1,1)A , 由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小,所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A.22B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y⎛⎫+== ⎪ ⎪⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.7.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C .指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.已知函数24,0()(2)1,0x x f x x x x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A 3B .51)C .45D .4【答案】D 【解析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x>,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟„,则x y y +的取值范围是( )A .12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】 作出不等式121x y x +⎧⎨-⎩剟„表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-„,问题得解.将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3. 且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-„, 故203x y y +<„. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C.【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.13.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2B .52C .94D .4 【答案】C【解析】【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,,所以有()4E X np ==, ()()1D X q np p ==-(,所以44p q +=,即14q p +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号. 故选C .【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.14.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .12k > B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D【解析】【分析】 联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】 解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021k k k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<. 故选:D .【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.15.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.16.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数, 2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3C .232D .2【答案】D【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】 解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.19.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.20.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.。
高考数学压轴专题新备战高考《不等式》难题汇编附答案解析
![高考数学压轴专题新备战高考《不等式》难题汇编附答案解析](https://img.taocdn.com/s3/m/5c1d985789eb172ded63b7cd.png)
【高中数学】高考数学《不等式》解析一、选择题1.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A B C D .32【答案】B 【解析】 【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B-=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.2.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.3.已知二次函数2()f x ax bx c=++的导数为'()f x,'(0)0f>,对于任意实数都有()0f x≥,则(1)'(0)ff的最小值为( )A.2 B.52C.3 D.32【答案】A【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b +∴=+≥≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为4.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()11111151519322323232322n m m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()()0000252536236433y y y y =++-≥+⋅=++ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知x ,y 满足约束条件1,22,326,x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z +≥恒成立,则实数z 的最大值为( ) AB .25C .12D .2【答案】C 【解析】 【分析】画出约束条件所表示的平面区域,根据22xy +的几何意义,结合平面区域求得原点到直线10x y +-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z +≥恒成立,只需()22minz x y≥+,因为22xy +表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y +-=的距离的平方最小,其中最小值距离为2d ==,则212d =,即12z ≤所以数z 的最大值12. 故选:C .【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y+的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.7.若,x y满足4,20,24,x yx yx y+≤⎧⎪-≥⎨⎪+≥⎩则4yx-的最大值为()A.72-B.52-C.32-D.1-【答案】D【解析】【分析】画出平面区域,结合目标函数的几何意义,求解即可.【详解】该不等式组表示的平面区域,如下图所示4yx-表示该平面区域中的点(),x y与(0,4)A确定直线的斜率由斜率的性质得出,当区域内的点为线段AB上任意一点时,取得最大值.不妨取84(,)33B时,4yx-取最大值443183-=-故选:D【点睛】本题主要考查了求分式型目标函数的最值,属于中档题.8.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +>D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.11.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C .D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年10月18日姚杰的高中数学组卷一.选择题(共15小题)1.(2012•绵阳模拟)已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=﹣x2+2x,设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N+)且{a n}的前n 项和为S n,则=()A.3 B.C.2 D.2.(2010•安徽)设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2Y B.Y(Y﹣X)=Z(Z﹣X)C.Y2=XZ D.Y(Y﹣X)=X(Z﹣X)@3.(2005•广东)已知数列{x n}满足x2=,x n=(x n﹣1+x n﹣2),n=3,4,….若=2,则x1=()A.B.3 C.4 D.54.(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.1005.(2007•陕西)给出如下三个命题:①设a,b∈R,且ab≠0,若>1,则<1;②四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;③若f(x)=log i x,则f(|x|)是偶函数.\其中正确命题的序号是()A.①②B.②③C.①③D.①②③6.(2006•北京)设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于()A.B.C.D.7.(2005•江西)将1,2,…,9这9个数平均分成三组,则每组的三个数都可以成等差数列的概率为()A.B.C.D.8.(2005•黑龙江)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则():A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a59.(2004•湖南)农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元10.(2002•北京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项 B.12项 C.11项 D.10项11.(2000•北京)设已知等差数列{a n}满足a1+a2+…+a101=0,则有()/A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=5112.(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.6313.(2013•上海)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则M n=()A.0 B.C.2 D.214.(2005•上海)用n个不同的实数a1,a2,…,a n可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵,对第i行a i1,a i2,…,a in,记b i=﹣a i1+2a i2﹣3a i3++(﹣1)n na in,i=1,2,3,…,n!,例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=﹣12+2×12﹣3×12=﹣24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于();A.﹣3600 B.1800 C.﹣1080 D.﹣72015.(2001•北京)根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量S n(万件)近似地满足关系式S n=(21n﹣n2﹣5)(n=1,2,…,12),按此预测,在本年度内,需求量超过万件的月份是()A.5、6月B.6、7月C.7、8月D.8、9月二.填空题(共15小题)16.(2009•江苏)设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1(n=1,2,…),若数列{b n}有连续四项在集合{﹣53,﹣23,19,37,82}中,则6q=.17.(2008•四川)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.…18.(2011•福建)商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于.19.(2011•江苏)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.20.(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=;a2014=.21.(2009•宁夏)等差数列{a n}的前n项和为S n,已知2a m﹣a m2=0,s2m﹣1=38,则m=.。
22.(2008•四川)设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=.23.(2007•海南)已知{a n}是等差数列,a4+a6=6,其前5项和S5=10,则其公差d=.24.(2006•广东)在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)=;f(n)=(答案用n表示).25.(2005•广东)设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点个数,则f(4)=,当n >4时f(n)=(用n表示)26.(2004•上海)若干个能惟一确定一个数列的量称为该数列的“基本量”.设{a n}是公比为q的无穷等比数列,下列{a n}的四组量中,一定能成为该数列“基本量”的是第组.(写出所有符合要求的组号)|①S1与S2;②a2与S3;③a1与a n;④q与a n.(其中n为大于1的整数,S n为{a n}的前n 项和.)27.(2002•上海)若数列{a n}中,a1=3,且a n+1=a n2(n∈N*),则数列的通项a n=.28.(2011•上海)已知点O(0,0)、Q0(0,1)和点R0(3,1),记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足(|OQ1|﹣2)(|OR1|﹣2)<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,得到P1,P2,…,P n,…,则=.29.(2009•湖北)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为.30.(2004•北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为,这个数列的前n项和S n的计算公式为.*2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共15小题)1.(2012•绵阳模拟)已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=﹣x2+2x,设f(x)在[2n﹣2,2n)上的最大值为a n(n∈N+)且{a n}的前n 项和为S n ,则=()A.3 B .C.2 D .考点:数列的求和;数列的极限.计算题;压轴题.|专题:分析:由题意可知,函数f(x)按照2单位向右平移,只是改变函数的最大值,求出a1,公比,推出a n,然后求出S n,即可求出极限.解答:解:因为f(x)=3f(x+2),所以f(x+2)=f(x),就是函数向右平移2个单位,最大值变为原来的,a1=f(1)=1,q=,所以a n =,S n =,==故选D点评:本题是中档题,考查函数与数列以及数列的极限的交汇题目,注意函数的图象的平移,改变的是函数的最大值,就是数列的公比,考查计算能力,发现问题解决问题的能力.,2.(2010•安徽)设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是()A.X+Z=2Y B.Y(Y﹣X)=Z(Z﹣X)C.Y2=XZ D.Y(Y﹣X)=X(Z﹣X)考点:等比数列.专题:压轴题.分析:取一个具体的等比数列验证即可.解答:!解:取等比数列1,2,4,令n=1得X=1,Y=3,Z=7代入验算,只有选项D满足.故选D点评:对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.3.(2005•广东)已知数列{x n}满足x2=,x n =(x n﹣1+x n﹣2),n=3,4,….若=2,则x1=()A .B.3 C.4 D.5考点:数列的求和;数列的函数特性.专题:·压轴题.分析:要求极限,先求通项,而条件只是一个递推关系且复杂,故宜采用归纳法猜测通项.并注意无穷递缩等比数列的极限解答:解:∵令n=3,得,令n=4,得,∴,…,,于是x n=x1+(x2﹣x1)+…+(x n﹣x n﹣1)=∴,x1=3.故选B求出前几项后,从什么角度求通项呢,一般是看差和商,采用叠加或累乘法.%点评:4.(2012•上海)设a n =sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25 B.50 C.75 D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:~由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:#本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.5.(2007•陕西)给出如下三个命题:①设a,b∈R,且ab≠0,若>1,则<1;②四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;③若f(x)=log i x,则f(|x|)是偶函数.其中正确命题的序号是()A.①②B.②③C.①③D.①②③考点:等比数列;不等关系与不等式.压轴题.*专题:分析:要明确等比数列和偶函数的定义,明白什么是“充要条件”.解答:解:①,所以<1成立;②ad=bc不一定使a、b、c、d依次成等比数列,如取a=d=﹣1,b=c=1;③由偶函数定义可得.故选C.点评:'做这类题要细心,读清题干,对基本概念要掌握牢固.6.(2006•北京)设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于()A .B .C .D .考点:等比数列的前n项和.专题:压轴题.分析:首先根据题意分析出f(n)是首项为2,公比为8的等比数列的前n+4项和,然后由等比数列前n项和公式求之即可.解:由题意知,f(n)是首项为2,公比为8的等比数列的前n+4项和,*解答:所以f(n)==.故选D.点评:本题考查等比数列的定义及前n项和公式.7.(2005•江西)将1,2,…,9这9个数平均分成三组,则每组的三个数都可以成等差数列的概率为( )A .B .C .D .考点:— 等差关系的确定;等可能事件的概率.专题:计算题;压轴题. 分析:先把9个数分成3组,根据排列组合的性质可求得所有的组的数,然后把三个数成等差数列的组,分别枚举出来,可知共有5组,然后利用概率的性质求得答案.解答:解:9个数分成三组,共有组,其中每组的三个数均成等差数列,有{(1,2,3),(4,5,6),(7,8,9)}、{(1,2,3),(4,6,8),(5,7,9)}、{(1,3,5),(2,4,6),(7,8,9)}、{(1,4,7),(2,5,8),(3,6,9)}、{(1,5,9),(2,3,4),(6,7,8)},共5组.∴所求概率为.故选A点评: )本题主要考查了等差关系的确定和概率的性质.对于数量比较小的问题中,可以用枚举的方法解决问题直接.8.(2005•黑龙江)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d≠0,则( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5考点:等差数列的性质. 专题:压轴题;分析法. 分析: 先根据等差中项的性质可排除C ;然后可令a n =n 一个具体的数列进而可验证D 、A 不对,得到答案./ 解答: 解:∵1+8=4+5∴a 1+a 8=a 4+a 5∴排除C ;若令a n =n ,则a 1a 8=1•8<20=4•5=a 4a 5∴排除D ,A .故选B点评:本题主要考查等差数列的性质.属基础题.9.(2004•湖南)农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元),预计该地区自2004年起的5年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元.根据以上数据,2008年该地区农民人均收入介于( )A .4200元~4400元B .4400元~4600元C .4600元~4800元D .4800元~5000元` 考点:数列的应用.专题:应用题;压轴题. 分析:根据题意算出2004年农民收入;算出2005年农民收入;根据数列的特点总结出规律得到2008年的农民收入,估算出范围即可.解答:解:由题知:2004年农民收入=1800×(1+6%)+(1350+160);2005年农民收入=1800×(1+6%)2+(1350+2×160);…所以2008年农民收入=1800×(1+6%)5+(1350+5×160)≈4559-故选B点评:考查学生利用数列解决数学问题的能力,以及会根据条件归纳总结出一般性规律的能力.10.(2002•北京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项 B.12项 C.11项 D.10项考点:等差数列的性质.专题:计算题;压轴题.先根据题意求出a1+a n的值,再把这个值代入求和公式,进而求出数列的项数n.(分析:解答:解:依题意a1+a2+a3=34,a n+a n﹣1+a n﹣2=146∴a1+a2+a3+a n+a n﹣1+a n﹣2=34+146=180又∵a1+a n=a2+a n﹣1=a3+a n﹣2∴a1+a n ==60∴S n ===390∴n=13故选A"点评:本题主要考查了等差数列中的求和公式的应用.注意对Sn ═和Sn=a1•n+这两个公式的灵活运用.11.(2000•北京)设已知等差数列{a n}满足a1+a2+…+a101=0,则有()A.a1+a101>0 B.a2+a102<0 C.a3+a99=0 D.a51=51考点:等差数列的性质.专题:计算题;压轴题.分析:)根据特殊数列a n=0可直接得到a3+a99=0,进而看得到答案.解答:解:取满足题意的特殊数列a n=0,即可得到a3+a99=0选C.点评:本题主要考查等差数列的性质.做选择题时要合理选择最恰当的方法可节省做题时间.12.(2013•上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素c ij=a i•a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.63考点:,数列的函数特性.专题:压轴题.分析:由于该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,…,7;j=1,2,…,12),要使a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i•a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值.!故选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn(i,m=1,2,...,7;j,n=1,2, (12)是解题的关键.13.(2013•上海)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则M n=()A.0 B.C.2 D.2考点:数列的极限;椭圆的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.【分析:先由椭圆得到这个椭圆的参数方程为:(θ为参数),再由三角函数知识求x+y的最大值,从而求出极限的值.解答:解:把椭圆得,椭圆的参数方程为:(θ为参数),∴x+y=2cosθ+sinθ,∴(x+y)max==.∴M n==2.故选D.点评:|本题考查数列的极限,椭圆的参数方程和最大值的求法,解题时要认真审题,注意三角函数知识的灵活运用.14.(2005•上海)用n个不同的实数a1,a2,…,a n可得到n!个不同的排列,每个排列为一行写成一个n!行的数阵,对第i行a i1,a i2,…,a in,记b i=﹣a i1+2a i2﹣3a i3++(﹣1)n na in,i=1,2,3,…,n!,例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,b1+b2+…+b6=﹣12+2×12﹣3×12=﹣24,那么,在用1,2,3,4,5形成的数阵中,b1+b2+…+b120等于()A.﹣3600 B.1800 C.﹣1080 D.﹣720考点:数列的求和;高阶矩阵.专题:计算题;压轴题.分析:(先根据题意算出数阵的行数5!和每一列数字之和5!÷5×(1+2+3+4+5),再根据b1+b2+…+b120=360×(﹣1+2﹣3+4﹣5)求得答案.解答:解:由题意可知数阵中行数5!=120,在用1,2,3,4,5形成的数阵中,每一列各数字之和都是5!÷5×(1+2+3+4+5)=360,∴b1+b2+…+b120=360×(﹣1+2﹣3+4﹣5)=360×(﹣3)=﹣1080.故选C点评:本题主要考查了数列的求和问题.本题给学生创设了一个很好的发现、研究型学习的平台.《15.(2001•北京)根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量S n(万件)近似地满足关系式S n=(21n﹣n2﹣5)(n=1,2,…,12),按此预测,在本年度内,需求量超过万件的月份是()A.5、6月B.6、7月C.7、8月D.8、9月考点:数列的应用.专题:应用题;压轴题.分析:本题考查了数列的前n项和知识和二次不等式的求解问题.既可以直接求解二次不等式得到n的范围,再根据n∈Z找到满足题意的n;即可得到答案.解答:解:由S n解出a n=(﹣n2+15n﹣9),、再解不等式(﹣n2+15n﹣9)>,得6<n<9.答案:C点评:本题考查了数列前n项和的知识,二次不等式的知识.解答时要充分体会二次不等式在解答中的作用以及验证法在解答选择题时的妙用.二.填空题(共15小题)16.(2009•江苏)设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1(n=1,2,…),若数列{b n}有连续四项在集合{﹣53,﹣23,19,37,82}中,则6q=﹣9.考点:^等比数列的性质;数列的应用.专题:等差数列与等比数列.分析:根据B n=A n+1可知A n=B n﹣1,依据{Bn}有连续四项在{﹣53,﹣23,19,37,82}中,则可推知则{A n}有连续四项在{﹣54,﹣24,18,36,81}中,按绝对值的顺序排列上述数值,相邻相邻两项相除发现﹣24,36,﹣54,81是{A n}中连续的四项,求得q,进而求得6q.解答:解:{Bn}有连续四项在{﹣53,﹣23,19,37,82}中B n=A n+1 A n=B n﹣1则{A n}有连续四项在{﹣54,﹣24,18,36,81}中{A n}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项:等比数列各项的绝对值递增或递减,按绝对值的顺序排列上述数值18,﹣24,36,﹣54,81相邻两项相除=﹣=﹣=﹣=﹣很明显,﹣24,36,﹣54,81是{A n}中连续的四项q=﹣或q=﹣(|q|>1,∴此种情况应舍)∴q=﹣.∴6q=﹣9故答案为:﹣9点评:本题主要考查了等比数列的性质.属基础题.17.(2008•四川)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:,压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,、故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;18.(2011•福建)商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c﹣a)是(b﹣c)和(b﹣a)的等比中项,据此可得,最佳乐观系数x的值等于.考点:数列的应用.专题:《计算题;压轴题.分析:根据题设条件,由(c﹣a)是(b﹣c)和(b﹣a)的等比中项,知[x(b﹣a)]2=(b ﹣a)2﹣x(b﹣a)2,由此能求出最佳乐观系数x的值.解答:解:∵c﹣a=x(b﹣a),b﹣c=(b﹣a)﹣x(b﹣a),(c﹣a)是(b﹣c)和(b﹣a)的等比中项,∴[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,∴x2+x﹣1=0,解得,∵0<x<1,"∴.故答案为:.点评:本题考查等比数列的性质和应用,解题时要注意等比中项的计算.19.(2011•江苏)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.考点:等差数列与等比数列的综合.专题:%等差数列与等比数列.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7;a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,|∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即基本量法.20.(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014=0.数列的概念及简单表示法.$考点:专题:压轴题.分析:由a4n=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,第2009项的﹣32009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.解答:解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,}1007=252×4﹣1,∴a2014=0,故答案为:1,0.点评:培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.21.(2009•宁夏)等差数列{a n}的前n项和为S n,已知2a m﹣a m2=0,s2m﹣1=38,则m=10.考点:等差数列的前n项和.计算题;压轴题./专题:分析:根据题意先解出a m,再利用等差数列的前n项和与特殊项之间的关系S2m﹣1=(2m﹣1)a m,建立方程,求解即可.解答:解:∵2a m﹣a m2=0,解得a m=2或a m=0,∵S2m﹣1=38≠0,∴a m=2;∵S2m﹣1=×(2m﹣1)=a m×(2m﹣1)=2×(2m﹣1)=38,'解得m=10.故答案为10.点评:本题主要考查了等差数列前n项和公式与等差数列性质的综合应用,熟练掌握公式是解题的关键.22.(2008•四川)设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=.考点:数列递推式.专题:》计算题;压轴题.分析:根据数列的递推式,依次写出n=1,2,3…n的数列相邻两项的关系,进而各式相加即可求得答案. 解答: 解:∵a 1=2,a n+1=a n +n+1 ∴a n =a n ﹣1+(n ﹣1)+1,a n ﹣1=a n ﹣2+(n ﹣2)+1,a n ﹣2=a n ﹣3+(n ﹣3)+1,…,a 3=a 2+2+1,a 2=a 1+1+1,a 1=2=1+1将以上各式相加得:a n =[(n ﹣1)+(n ﹣2)+(n ﹣3)+…+2+1]+n+1 =故答案为;点评: [此题重点考查由数列的递推公式求数列的通项公式.重视递推公式的特征与解法的选择;抓住a n+1=a n +n+1中a n+1,a n 系数相同是找到方法的突破口;此题可用累和法,迭代法等;23.(2007•海南)已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d=.考点: 等差数列的性质. 专题: 计算题;压轴题. 分析:先根据a 4+a 6=2a 5=求得a 5的值,再根据,进而求得a 1,进而根据求得d .、解答:解:a 4+a 6=2a 5=6 ∴a 5=3,∴故答案为点评: 本题主要考查了等差数列中的等差中项的性质和通项公式的运用. 24.(2006•广东)在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按下图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)= 10 ;f (n )=n (n+1)(n+2) (答案用n 表示).[考点:数列的求和.专题:压轴题;规律型.分析:由题意知第一堆乒乓球只有1层,个数为1,第二堆乒乓球有两层,个数分别为1,1+2,第三堆乒乓球有三层,个数分别为1,1+2,1+2+3,第四堆乒乓球有四层,个数分别为1,1+2,1+2+3,1+2+3+4,因此可以推知第n堆乒乓球有n层,个数分别为1,1+2,1+2+3,…,1+2+3+…+n,据此解答.解答:解:由题意知,f(1)=1,f(2)=1+1+2,f(3)=1+1+2+1+2+3,…,f(n)=1+1+2+1+2+3+…+1+2+3+…+n,分析可得:f(n)﹣f(n﹣1)=1+2+3+…+n==+;!f(n)=[f(n)﹣f(n﹣1)]+[f(n﹣1)﹣f(n﹣2)]+[f(n﹣2)﹣f(n﹣3)]+…+f(2)﹣f(1)+f(1)==n(n+1)(2n+1)+n(n+1)=n(n+1)(n+2).故答案为:10;n(n+1)(n+2).点评:本题主要考查数列求和在实际中的应用,解决问题的关键是先由f(1)、f(2)、f(3)的值通过归纳推理得到f(n)的表达式,在求和时注意累加法的运用.25.(2005•广东)设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点个数,则f(4)=5,当n>4时f(n)=(用n表示)考点:等差数列的前n项和;数列的应用.压轴题;规律型.¥专题:分析:要想求出f(4)的值,我们画图分析即可得到答案,但要求出n>4时f(n)的值,我们要逐一给出f(3),f(4),…,f(n﹣1),f(n)然后分析项与项之间的关系,然后利用数列求和的办法进行求解.解答:解:如图,4条直线有5个交点,故f(4)=5,由f(3)=2,f(4)=f(3)+3…~f(n﹣1)=f(n﹣2)+n﹣2f(n)=f(n﹣1)+n﹣1累加可得f(n)=2+3+…+(n﹣2)+(n﹣1)==故答案为5,点评:本题考查的知识点是归纳推理与数列求和,根据f(3),f(4),…,f(n﹣1),f(n)然后分析项与项之间的关系,找出项与项之间的变化趋势是解决问题的关键.(26.(2004•上海)若干个能惟一确定一个数列的量称为该数列的“基本量”.设{a n}是公比为q的无穷等比数列,下列{a n}的四组量中,一定能成为该数列“基本量”的是第①④组.(写出所有符合要求的组号)①S1与S2;②a2与S3;③a1与a n;④q与a n.(其中n为大于1的整数,S n为{a n}的前n 项和.)考点:等比数列.专题:计算题;压轴题.分析:由根据等差数列性质可知,利用S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“基本量”;由a2与S3,设其公比为q,首项为a1,可得把a1和S3代入整理得a2q2+(a2﹣S3q)+a2=0…q不能确定,不一定是数列的基本量;由a1与a n,可得a n=a1q n﹣1,当n为奇数时,q可能有两个值,故不一定能确定数列;根据等比数列通项公式,数列{a n} 能够确定,是数列{a n} 的一个基本量.解答:解:(1)由S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“基本量”,故①对;(2)由a2与S3,设其公比为q,首项为a1,可得a2=a1q,a1=,S3=a1+a1q+a1q2,∴S3=+a2+a2q,∴a2q2+(a2﹣S3q)+a2=0;满足条件的q可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列的基本量,②不对;(3)由a1与a n,可得a n=a1q n﹣1,当n为奇数时,q可能有两个值,故不一定能确定数列,所以也不一定是数列的一个基本量.(4)由q与a n由a n=a1q n﹣1,故数列{a n} 能够确定,是数列{a n} 的一个基本量;#故答案为:①④.点评:本题主要考查等比数列的性质.考查了学生分析问题和解决问题的能力.27.(2002•上海)若数列{a n}中,a1=3,且a n+1=a n2(n∈N*),则数列的通项a n=32n﹣1.考点:数列递推式.专题:计算题;压轴题.由递推公式a n+1=a n2多次运用迭代可求出数列a n=a n﹣12=a n﹣24=…=a12n﹣1:分析:解答:解:因为a1=3多次运用迭代,可得a n=a n﹣12=a n﹣24=…=a12n﹣1=32n﹣1,故答案为:点评:本题主要考查利用迭代法求数列的通项公式,迭代中要注意规律,灵活运用公式,熟练变形是解题的关键28.(2011•上海)已知点O(0,0)、Q0(0,1)和点R0(3,1),记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足(|OQ1|﹣2)(|OR1|﹣2)<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,得到P1,P2,…,P n,…,则=.考点:数列与解析几何的综合;数列的极限.专题:综合题;压轴题.分析:由题意(|OQ1|﹣2)(|OR1|﹣2)<0,(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,则Q1、R1;Q2、R2,…中必有一点在()的左侧,一点在右侧,根据题意推出P1,P2,…,P n,…,的极限为:(),然后求出.解答:解:由题意(|OQ1|﹣2)(|OR1|﹣2)<0,所以第一次只能取P1R0一条,(|OQ2|﹣2)(|OR2|﹣2)<0.依次下去,则Q1、R1;Q2、R2,…中必有一点在()的左侧,一点在右侧,由于P1,P2,…,P n,…,是中点,根据题意推出P1,P2,…,P n,…,的极限为:(),所以=|Q0P1|=,故答案为:.点评:本题是基础题,考查数列的极限,数列与解析几何的综合,极限的思想的应用,注意分析题意,P n的规律是本题解答的关键,考查逻辑推理能力.29.(2009•湖北)已知数列{a n}满足:a1=m(m为正整数),a n+1=若a6=1,则m所有可能的取值为4,5,32.考点:数列递推式.专题:压轴题.分析:由题设知a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.解答:解:∵数列{a n}满足:a1=m(m为正整数),a n+1=,a6=1,∴a5=2,a4=4,有①②两种情况:①a3=1,a2=2,a1=4,即m=4;②a3=8,a2=16,有③④两种情况:③a1=5,即m=5;④a1=32,即m=32.故答案为:4,5,32.点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.30.(2004•北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5,那么a18的值为3,这个数列的前n项和S n的计算公式为当n为偶数时,;当n为奇数时,.考点:数列的求和;数列的应用.专题:压轴题;创新题型.分析:由题意可知,a n+a n+1=5,且a1=2,所以,a2=3,a3=2,a4=3,进而找出这个数列的奇数项为2,偶数项为3,所以a18的数值为3.由于该数列为2,3,2,3,2,3…所以求和时要看最后一项是2还是3,就需对n分奇数还是偶数进行讨论,解答:解:由题意知,a n+a n+1=5,且a1=2,所以,a1+a2=5,得a2=3,a3=2,a4=3,…a17=2,a18=3,当n为偶数时s n=(2+3)+(2+3)+(2+3)+…+(2+3)=5×=当n为奇数时s n=(2+3)+(2+3)+…(2+3)+2=5×+2=故答案为:3;当n为偶数时S n=,当n为奇数时S n=点评:本题由新定义考查数列的求和,在求和时一定注意对n分奇数和偶数讨论。