轿车传动轴的设计与校核
轴的设计及校核
![轴的设计及校核](https://img.taocdn.com/s3/m/56faf423c381e53a580216fc700abb68a982adbb.png)
2021/10/10
SEU-QRM
25
(2)轴上的某轴段需磨削时,应留有砂轮的越程槽;需切 制螺纹时,应留有退刀槽。
(3)为了去掉毛刺,便于装配,轴端应制出45º倒角。
(4)当采用过盈配合连接时, 配合轴段的零件装入端, 常加工成导向锥面。若 还附加键连接,则键槽 的长度应延长到锥面处, 便于轮毂上键槽与键对 中。
l 对要求不高的轴或较长的轴,毛坯直径小于150mm时,可用轧制圆 钢材;
l 受力大,生产批量大的重要轴的毛坯可由锻造提供;
l 对直径特大而件数很少的轴可用焊件毛坯;
l 生产批量大、外形复杂、尺寸较大的轴,可用铸造毛坯。
2021/10/10
SEU-QRM
10
Failure Forms and Design Requirements of Shafts
18
轴向定位和固定——
③
可用圆螺母与轴肩、 1 轴环等的组合实现零 件在轴上的双向定位 2 和固定。
圆螺母定位装拆方便, 通常用细牙螺纹来增 强防松能力和减小对 轴的强度消弱及应力 集中。
2021/10/10
SEU-QRM
圆螺母
19
轴向定位和固定——
④
圆锥面
将轴与零件的配合面加工成圆锥面,可以实现轴向定位。 圆锥面的锥度小时,所需轴向力小,但不易拆卸,通常 取锥度1:30~1:8。
2021/10/10
紧定套
SEU-QRM
20
轴向定位和固定——
⑤
轴端挡板
当零件位于轴端时,可用轴端挡板与轴肩、轴套、圆锥 面等的组合,使零件双向固定。挡板用螺钉紧固在轴端 并压紧被定位零件的端面。该方法简单可靠、装拆方便, 但需在轴端加工螺纹孔。
基于ANSYS的汽车传动轴有限元分析与优化设计
![基于ANSYS的汽车传动轴有限元分析与优化设计](https://img.taocdn.com/s3/m/a7f251d4ad51f01dc281f1a7.png)
摘要ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。
目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。
.本设计是基于ANSYS 软件来汽车传动轴行分析。
与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。
设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。
对零件的设计和优化有很大的参考作用。
正是因为上述优点,我在本设计中运用UG 来建立三维模型。
再将此模型导入ANSYS 软件来对其进行分析。
关键词:传动轴,三维建模,ANSYS,动静态分析A b st r ac tANSYS (f i n i t e e l e m e n t) package i s a m u l t i-p ur po s e f i n i t e e l e m e n t method for computer des i gn program that can be used to s o l ve the structure, fluid, e l ec tr i c i ty,e l ec tr o m ag n et i cf i e l ds and co lli s i on problems. So it can be applied to the followingi ndus tr i es: aerospace, au tom o t i v e,bi o m ed i ca l,b r i dge s,c on s tr uc t i on,e l ec tr o ni cs,h ea vy machinery, mi cro-el e ct r o m echa ni ca l systems, sports equipment and so on.Tr an s mi ss i on s h a f t i s the most common a r egu l a r part, the part structure i s s i m p l e, convenient o pera t i on, high pr ec i s i on, low pr i c es, it has been w i d e l y used. At pr ese n t, many have made the appro pr i at e Tr an s mi ss i on s h a f t i mpr o v e m e n t s,it has been gr ea t l y enhanced app li c a bi li ty.The des i gn i s based on ANSYS s o f t ware to Tr an s m i ss i on s ha f t by the line of s p i nd l e. Compared with the tr adi t i on a l c a l cu l at i on,computer-based f i n i t e e l e m e n t an a l y s i s method can be f a s t er and more accurate r es u l t s.Set the correct m o de l,dividing the right grid, and set a reasonable s o l ut i on process, an a ly t i ca l m o de l can ac curat e l y access t h e various parts of the stress and de f o r m at i on r es u l t s. On the part of the des i gn a ndop t i mi za t i on has great r ef ere n c e.It i s because of these advantages, the use of this des i gn in my UG to crea t et h r ee-di m e ns i on a l model Tr a ns m i ss i on s h a f t. Then this model was i n tr o duce d by t h e ANSYS s o f t wa r e to i t s line of a n a ly s i s.Key Words: Tr an smiss i on s h af t,t h r ee-d i me n si on al mo d e li ng,ANSYS,d y n am i c and s t a t i c a n al y s i s目录摘要.............................................................................................................................. - 1 -Abs tr ac t ............................................................................................................................. -2 -目录.............................................................................................................................. - 2 -第1 章绪论..................................................................................................................... - 4 -1.1 选题的目的和意义............................................................................................. - 4 -- 2 -1.2 选题的研究现状及发展趋势.............................................................................. - 4 -1.3 传动轴知识........................................................................................................ - 5 -1.4 传动轴的结构特点............................................................................................. - 5 -1.5 传动轴重要部件................................................................................................. - 6 -1.6 传动轴常用类型................................................................................................ - 7 -第2 章本课题任务和研究方法...................................................................................... - 8 -2.1 课题任务............................................................................................................ - 8 -2.2 分析方法............................................................................................................. - 8 -3.3 本课题的研究方法............................................................................................. - 9 -3.4 有限元方法介绍................................................................................................ - 9 -3.4.1 概述.................................................................................................................. - 9 -3.4.2 基本思想......................................................................................................... - 9 -3.4.3 特点................................................................................................................ -10 -3.5 ANSYS 软件简介............................................................................................. -11 -第4 章确定汽车传动轴研究对象和UG 建模............................................................. -12 -4.1 确定汽车传动轴研究对象概述........................................................................ -12 -4.2 汽车传动轴(变速箱第二轴)的3D 建模设计............................................. -14 -4.2.1 进入UG 的操作界面............................................................................ -14 -第5 章汽车传动轴的有限元分析................................................................................ -21 -5.1 有限元分析的基本步骤............................................................................ -21 -5.2 有限元分析过程与步骤........................................................................... -22 -5.2.1 转换模型格式........................................................................................ -22 -第六章总结和传动轴的优化设计分析........................................................................ -41 -结论................................................................................................................................ -41 -参考文献........................................................................................................................ -42 -致谢.............................................................................................................................. -43 -第1 章绪论1.1 选题的目的和意义随着计算机技术的日益普及和FEA 技术的蓬勃发展,人们已经广泛采用计算机有限元仿真分析来作为传动轴强度校核的方法。
传动轴的设计及校核
![传动轴的设计及校核](https://img.taocdn.com/s3/m/c14009c7227916888586d77d.png)
第一章轻型货车原始数据及设计要求发动机的输出扭矩:最大扭矩285.0N·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡7.31,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克设计要求:第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。
主要用于在工作过程中相对位置不节组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化。
万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。
一般万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。
重型载货汽车根据驱动形式的不同选择不同型式的传动轴。
一般来讲4×2驱动形式的汽车仅有一根主传动轴。
6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。
6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。
在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。
传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。
一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。
因此,一组传动轴是配套出厂的,在使用中就应特别注意。
图 2-1 万向传动装置的工作原理及功用图 2-2 变速器与驱动桥之间的万向传动装置基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等第三章轻型货车万向传动轴结构分析及选型由于货车轴距不算太长,且载重量2.5吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。
轴的设计、计算、校核
![轴的设计、计算、校核](https://img.taocdn.com/s3/m/90745d53580216fc710afd5a.png)
一般的转轴,强度计算到此为止。对于重要的转轴还应按疲劳强度进行精确校核。此外,对于瞬时过载很大 或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
>10~18
>18~30
>30~50
>50~80
0.8
1.0
1.2 1.6
2.0
>80~120> 2.5
120~180 3.0
轴的材料
Q235
[] A0
12~20 160~135
表 3 轴常用几种材料的[ ]和 A0 值
1Cr18Ni9Ti
35
45
40Cr,35SiMn,2Cr13,20CrMnTi
12~25
20~30
30~40
40~52
148~125
135~118 118~107
107~98
-可编辑修改-
。
表 4 抗弯抗扭截面模量计算公式
-可编辑修改-
。
-可编辑修改-
。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等 打造全网一站式需求
欢迎您的下载,资料仅供参考
毛坯直径 材料牌号 热处理
(mm)
Q235A
热轧或 锻后空
冷
≤100 >100~250
表 1 轴的常用材料及其主要力学性能
硬度 (HBS)
弯曲疲 剪切疲 许用弯曲 抗拉强度极 屈服强度
劳极限 劳极限 应力[σ 限σb 极限σs
σ-1 τ-1 -1]
传动轴(半轴)跳动校核报告
![传动轴(半轴)跳动校核报告](https://img.taocdn.com/s3/m/1db800c6250c844769eae009581b6bd97f19bca2.png)
传动轴(半轴)跳动校核报告Professional⽬录1 概述 (1)2 校核⽬的 (1)3 B35-1车型前传动轴(驱动半轴)运动校核 (1)3.1左传动轴跳动⾓度校核 (1)3.2 右传动轴跳动⾓度校核(2WD) (5)3.3右传动轴跳动⾓度校核(4WD) (9)3.4 前传动轴(驱动半轴)跳动过程中与周边件最⼩间隙校核 (13)4 B35-1车型后传动轴(驱动半轴)运动校核 (15)4.1 后驱动半轴跳动上极限校核 (16)4.2 后驱动半轴跳动下极限校核 (17)5 B35-1车型中间传动轴运动校核 (17)6 结论 (18)参考⽂献 (21)传动轴跳动校核报告1概述在车辆⾏驶过程中,传动轴在跳动极限和转向极限范围,要求传动轴⾓度关系和伸缩量在允许范围内,以及传动轴在极限状态时与周边零部件具有允许的最⼩间隙,以保证汽车⾏驶的安全性。
下⾯按照有关标准的规定和要求,对B35-1车型进⾏传动轴跳动校核。
2校核⽬的2.1传动轴跳动的上下极限位置及最⼤夹⾓是否符合设计要求。
2.2传动轴在车辆⾏驶过程中,与周围部件是否⼲涉及最⼩间隙是否满⾜技术要求。
3B35-1车型前传动轴(驱动半轴)运动校核3.1左传动轴跳动⾓度校核B35-1车型左传动轴校核主要是分析前驱动半轴在左转跳动上极限、右转跳动上极限、左转跳动下极限、右转跳动下极限四个状态下,驱动半轴⾓度关系应在允许范围内,以及在极限状态校核驱动半轴与周边零部件具有允许的最⼩间隙情况。
根据⼚家提供图纸的技术要求,固定节最⼤允许⾓度46°,移动节最⼤允许⾓度为23°,移动节滑移量范围为:-23.0mm~25.9mm。
通过对左传动轴各状态数模的分析测量,得到以下数据。
表1 左传动轴校核参数图1左传动轴移动节的滑移线图由此可见,移动节最⼤滑移量为-5.5mm⼩于-23mm,移动节最⼤夹⾓为16.8°⼩于23°,所以左传动轴的移动节满⾜⼯作要求。
传动轴设计及校核作业指导书
![传动轴设计及校核作业指导书](https://img.taocdn.com/s3/m/086cc96c0b1c59eef8c7b455.png)
传动轴设计及校核作业指导书编制:日期:审核:日期:批准:日期:发布日期:年 月 日 实施日期:年 月 日前言为使本中心传动轴设计及校核规范化,参考国内外汽车设计的技术规范,结合公司标准和已开发车型的经验,编制本作业指导书。
意在对本公司设计人员在设计过程中起到指导操作的作用,提高设计的效率和成效。
本作业指导书将在本中心所有车型开发设计中贯彻,并在实践中进一步提高完善。
本标准于2011年XX月XX日起实施。
本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院提出。
本标准由上海同捷科技股份有限公司第五研发中心底盘总布置分院负责归口管理。
本标准主要起草人:张士华一、传动系概述 (3)1.1传动系功能 (3)1.2传动系布置形式 (3)1.3传动系的构成 (7)1.4传动轴的主要结构形式 (8)1.5驱动半轴的紧固方式 (12)二、传动轴的设计流程 (15)2.1传动轴的主要设计流程 (15)2.2传动轴的设计过程及要求 (17)三.传动轴的校核过程 (22)3.1设计校核输入 (22)3.2传动轴校核 (24)3.3结论及分析 (25)3.4传动轴跳动校核 (26)3.5技术文件的编制 (26)3.6传动轴图纸确认 (26)四.试制装车及生产中经常出现的问题 (28)五.参考文献 (28)一、传动系概述1.1 传动系功能A、保证汽车在各种行驶条件下所必需的牵引力与车速,使它们之间能协调变化并有足够的变化范围。
B、使汽车具有良好的动力性和燃油经济性。
C、保证汽车能倒车及左右车轮能适应差速要求。
D、使动力传递能根据需要而顺利接合与分离1.2 传动系的布置形式• 前置后驱动• 前置前驱动• 后置后驱动• 四轮驱动• 中置发动机后轮驱动部分高级轿车也采用前置后驱布置 前置后驱整体桥前置前驱,应用最多前置前驱,应用最多前轮驱动的优点:1、前轮驱动在制造和安装方面都比后轮驱动成本要低很多。
它没有通过驾驶舱下面的驱动轴,也不用制造后桥壳,变速器和差速器被装配在一个壳体中,这样所需的零部件就更少。
传动轴的设计及校核
![传动轴的设计及校核](https://img.taocdn.com/s3/m/e62a6aaf2af90242a895e5a2.png)
第一章轻型货车原始数据及设计要求发动机的输出扭矩:最大扭矩·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克设计要求:第二章万向传动轴的结构特点及基本要求万向传动轴一般是由万向节、传动轴和中间支承组成。
主要用于在工作过程中相对位置不节组成。
伸缩套能自动调节变速器与驱动桥之间距离的变化。
万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。
一般万向节由十字轴、十字轴承和凸缘叉等组成。
传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。
重型载货汽车根据驱动形式的不同选择不同型式的传动轴。
一般来讲4×2驱动形式的汽车仅有一根主传动轴。
6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。
6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。
在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。
传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。
一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。
因此,一组传动轴是配套出厂的,在使用中就应特别注意。
图 2-1 万向传动装置的工作原理及功用图 2-2 变速器与驱动桥之间的万向传动装置基本要求:1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。
4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等第三章轻型货车万向传动轴结构分析及选型由于货车轴距不算太长,且载重量吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。
轿车传动轴的设计与校核
![轿车传动轴的设计与校核](https://img.taocdn.com/s3/m/d1705f61cdbff121dd36a32d7375a417876fc14d.png)
轿车传动轴的设计与校核汽车传动轴(Drive shaft)是汽车发动机与后轴之间的连接杆件,它的设计与校核对于汽车的性能和安全至关重要。
下面将详细介绍轿车传动轴的设计和校核,并阐述其重要性。
一、轿车传动轴的设计1.传动轴材料选择:传动轴需要承受发动机输出的扭矩和转速,因此需要选择具有高强度和耐疲劳性能的材料。
常用的材料包括碳素钢和合金钢。
2.传动轴的长度和直径:传动轴的长度和直径直接影响其刚度和承载能力。
根据发动机和后桥的布置,需要根据一定的分析和计算确定传动轴的合适长度和直径。
3.传动轴连接形式:传动轴通常是由两个或多个连接件组成的。
连接件通常采用螺纹连接、键式连接或插销连接等形式。
设计时需要考虑连接的强度和可靠性。
4.传动轴的平衡:传动轴在高速运转时会产生振动和失衡力。
为了提高行驶的平稳性和减少振动,传动轴需要进行动平衡。
二、轿车传动轴的校核1.扭矩校核:传动轴需要承受发动机输出的扭矩,并将其传递到后轴。
校核时需要考虑发动机的最大输出扭矩,计算传动轴受力情况并选择合适的材料和尺寸。
2.转速校核:传动轴的转速会影响其受力情况和疲劳寿命。
校核时需要根据发动机的最大转速和后桥的传动比,计算传动轴的转速,并选择合适的材料和尺寸。
3.弯曲校核:传动轴在运行过程中会受到弯曲力的作用。
校核时需要根据传动轴的长度、支撑方式和承载情况,计算传动轴的弯曲应力,并选择合适的材料和尺寸。
4.疲劳寿命校核:传动轴在长时间的运行过程中需要承受来自发动机的扭矩和转速的交替作用,容易产生疲劳破坏。
校核时需要根据传动轴的应力、材料的疲劳强度和工作寿命要求,进行疲劳强度校核。
三、轿车传动轴设计与校核的重要性1.提高传动效率:良好的传动轴设计可以减少能量的损耗,提高传动效率,使汽车在行驶过程中更加经济高效。
2.保证安全性:传动轴承载着发动机输出的扭矩和转速,如果传动轴设计不合理或存在缺陷,可能导致传动轴断裂或失效,严重影响行车安全。
传动轴布置及校核方法
![传动轴布置及校核方法](https://img.taocdn.com/s3/m/a040ec42bfd5b9f3f90f76c66137ee06eff94ecd.png)
传动轴布置及校核方法传动轴是一种用来传递动力和扭矩的装置,广泛应用于各种机械设备中。
在设计传动轴时,需要考虑其布置和校核方法,以确保传动轴的稳定性和安全性。
传动轴的布置方法主要包括以下几个方面:1.位置布置:传动轴的位置布置要考虑到传动装置的种类和布置要求。
通常情况下,传动轴的布置应尽量接近传动元件,如齿轮、链条等,以减小传动误差和部件的松动。
2.路由布置:传动轴的路由布置要尽量保持平直和直线,以减小传动误差和振动。
在实践中,可以通过选择合适的支撑方式、减小布置长度和合理选择径向和轴向间隙等方法来实现。
3.防护布置:传动轴在运行时会产生一定的旋转惯量和振动力,因此需要做好防护措施,以确保人员和设备的安全。
常见的防护方式有安装防护罩、设置安全限位装置等。
校核方法是确定传动轴尺寸和材料的过程,主要包括以下几个步骤:1.力学校核:首先需要根据传动轴所承受的载荷和扭矩进行力学校核。
力学校核可以通过应力分析、变形分析等方法进行。
校核应包括静态强度校核和疲劳强度校核。
2.刚度校核:传动轴在运行时会产生挠度和变形,因此需要根据运行要求和变形限制进行刚度校核。
刚度校核主要通过计算轴的刚度、挠度和变形等参数来确定。
3.动态校核:在一些高速传动轴的设计中,需要考虑其动力学性能。
动态校核主要是通过计算传动轴的固有频率和振动特性来判断传动轴的可靠性。
在动态校核中,通常要考虑传动轴的转动惯量、振动模态等。
4.材料选择:根据传动轴的校核结果,可以确定传动轴的尺寸和材料。
常用的传动轴材料有碳钢、合金钢、不锈钢等,根据不同的工作环境和要求,可以选择合适的材料。
总之,传动轴的布置和校核方法是确保传动轴稳定性和安全性的重要环节。
通过合理的布置和校核,可以保证传动轴在运行过程中的可靠性和长寿命。
在实际应用中,还需要结合具体情况进行分析和计算,并参考相关标准和规范来进行设计。
传动轴布置及校核方法
![传动轴布置及校核方法](https://img.taocdn.com/s3/m/103e3ea60875f46527d3240c844769eae009a3a7.png)
传动轴布置及校核方法传动轴是机械传动系统中常用的一种零件,主要用于将发动机的动力传递给机械设备。
它是由两个或多个轮毂和中间的轴段组成。
传动轴的布置和校核是确保传动系统正常运转的重要环节。
本文将介绍传动轴布置的基本原则和校核方法。
1.直线布置:传动轴的布置尽量直线,轴段尽量缩短。
直线布置能减小传动轴的弯曲和振动,提高传动效率和传动精度。
同时,采用直线布置还能节省空间,简化传动系统结构。
2.曲线布置:若传动轴无法直线布置(例如传动装置之间相隔较远),可以采用曲线布置。
曲线布置需要考虑轴段的弯曲和转角对传动轴的影响,避免过大的转角和弯曲造成传动轴的过分弯曲和疲劳。
传动轴的校核方法主要包括静力学校核和疲劳校核。
1.静力学校核:静力学校核是指通过计算、分析传动轴在工作负载下的受力情况,来判断传动轴是否具有足够的强度。
静力学校核时需要考虑传动轴的受力情况、材料强度、线性和非线性变形等因素。
常用的静力学校核方法包括弹性力学计算、有限元分析等。
2.疲劳校核:疲劳校核是指通过计算、分析传动轴在长时间循环工作下的疲劳寿命,来判断传动轴是否具有足够的疲劳强度。
疲劳校核时需要考虑传动轴的应力集中情况、材料的疲劳性能、循环载荷和工作条件等因素。
常用的疲劳校核方法包括应力异常修正法、极限剩余应力法、伤害积累理论法等。
在传动轴的校核过程中,需要根据具体的传动方式、传动功率、传动比等因素来选择适当的校核方法和工具。
同时,还需要根据传动轴的实际情况和工作条件,合理选择材料、尺寸和制造工艺,以确保传动轴具有足够的强度、刚度和疲劳寿命。
总之,传动轴布置和校核是机械传动系统设计中重要的环节。
通过合理布置和科学校核,可以保证传动系统的正常运行和稳定工作。
汽车转向传动轴运动布置校核规范
![汽车转向传动轴运动布置校核规范](https://img.taocdn.com/s3/m/398c2580ddccda38366baf8a.png)
汽车转向传动轴运动布置校核规范1范围本标准规定了汽车转向传动轴运动布正校核的术语和定义、设计输入、分析方法和转向传动轴间隙校核。
本标准适应于本公司开发的M1、N类车型・2规范性引用文件卜列文件对于本文杵的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件° 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件,Q/CC JT108—20C8袈车二维数枚装配间睨设计Q/CC SJ199—2012汽车用双卜字轴万向节转向传动轴力矩波动校核规范Q/CC SY082—2013 整车保安防灾评价3术语和定义卜列东语和定义M用于本标潴“3.1运动副kinematic pair两构件直接接触并傕产生相对运动的(点、线、面)活动联接处.注,两个构件卜.叁与接触而构成运劫的点,线、而等元卷也称为运动削元域.DMU 仿真模型DW simulation nuxld通过调用多神运动副或者通过白动转换机械装配约束条件而产生的运动刑,对任何规模的电子样机进行运动机构定义.注,通过诏动十涉险&和核挟量小间隙来进行机构运动分析・同时,川生松动笨竹的轼旗,扫掠体和包结体以指导未来的设计.转向系统steering system通过对左后转向车轮不同勃角之同的合理匹配来弟证汽车能沿设想的轨迹运动的机构装置。
注,它由转向为织机第J、转向摘和转向传动机彻组成.4设计除入转向传动粕及相关设计数字模型,包括方向盘、转向管柱总成、转向传动轴总成(以上数卞模型要求整车坐标系下CATIAV5R17版本的可编辑格式)Q5分析方法5.1转向传动轴运防校核零部件分解运动校核前需将会与运动的齐零部件分解为,方向盘:转向吩柱壳体及转向管柱内轴:范向传动轴上卜宇节、轧向传动轴匕轧向传动轴下及轧向转动轴下卜字节、转向器输入轴;另外.在数字模型中还要建止一个校拟车身的辅助固定砰态部件,如图1所示.图1转向系统示宸图52转向传动轴运动模型建立5.2.1在CATTA界面中点击开始~泣字模型~运动学(DNfUKineinHLicM )进入运动分析模块,建立DMG仿口模型,如图2所示.图2进入运动分析模块5. 2.2史立product 文件,将分解的相关purl 调入,点市创注运动刷命令后点击新机构,确定创建机 制I F 如图3所示.图3建立机制5 2 3点击转动用图标尾狂正车型转向管柱内轴与转词售柱外壳之间的几何纯«动约束,此转动 需要约束札响传动轴线及与朝线垂直的平面「加田4所示。
轴的设计计算校核
![轴的设计计算校核](https://img.taocdn.com/s3/m/48677b53fd4ffe4733687e21af45b307e871f908.png)
轴的设计计算校核一、轴的设计原则轴是机械传动系统中承载和传递力矩的元件,其设计应遵循以下原则:1.强度足够:轴的设计应保证其强度足够,能够承受传递的力矩和应力,并且在工作条件下不会发生破坏。
2.刚度适当:轴的设计应考虑到其在传动过程中的变形情况,尽量使其刚度足够以减小传动误差和能量损耗。
3.成本合理:轴的设计应综合考虑材料成本和制造成本等方面因素,力求设计出成本合理的轴。
二、轴的计算方法轴的计算方法主要有静态强度计算和动态强度计算两种。
1.静态强度计算静态强度计算主要是根据轴所承受的力矩和力的大小,计算轴的最大应力和挠度等参数,判断轴材料的强度是否满足要求。
常用的计算方法有平衡方法、应力法和变形法等。
平衡方法:根据轴所受力的平衡条件,考虑轴上的切线外力和切线内力,计算轴的弯矩和剪力等参数。
应力法:根据轴在受力过程中的应力分布情况,利用杨氏模量和弹性系数等参数,计算轴的最大应力。
变形法:根据轴在受力过程中的挠度和变形情况,利用弯矩和挠度的关系,计算轴的最大挠度。
2.动态强度计算动态强度计算主要是考虑轴在转动过程中的惯性力和振动情况,计算轴的扭转应力和动载荷等参数,判断轴的强度和稳定性。
常用的计算方法有惯性力法、扭转应力法和动力学方法等。
惯性力法:根据轴的质量和转动惯量等参数,计算轴的惯性力和振动情况,进而计算轴的扭转应力。
扭转应力法:根据轴在受到扭转力矩作用下的应力分布情况,利用杨氏模量和切比雪夫公式等,计算轴的扭转应力。
动力学方法:根据轴的转速和转动惯量等参数,计算轴在转动过程中的相对加速度和相对转速等,进而计算轴的动载荷和强度。
三、轴的校核步骤轴的校核是为了确保其设计和计算的准确性,一般按照以下步骤进行:1.确定轴承载力:根据传动系统的参数,确定轴所受的最大力矩和力大小。
2.确定材料:根据轴的使用条件和载荷情况,选取适当的轴材料。
3.进行静态强度计算:根据选定的材料和设计参数,进行静态强度计算,判断轴的强度是否满足要求。
传动轴布置及校核方法
![传动轴布置及校核方法](https://img.taocdn.com/s3/m/dd3ebd52783e0912a2162a48.png)
用初选的传动轴长度进行校核,将移动节中心坐标及工作角度和固定 节中心点坐标分别测量出来,将这些点输入厂家提供的梯形图进行比较。 如果不满足要求,需与以上各状态一起进行传动轴长度的调整或发动机姿 态的调整。
(三)其他工况校核
1、Braking at 0.9g.(0.9g的减速度制动) 2、Right turn at 0.9g.(0.9g的加速度向右转弯) 3、Left turn at 0.9g(0.9g的加速度向左转弯) 4、Driving away in first gear.(一档起步) 5、Driving away in rear gear.(倒档起步) 6、Rear crash at 25g. (only for USA market)(25g加速度后碰) 7、Jolt upwards at 3.5g(3.5g加速度向上晃动) 8、Jolt downwards at 4.5g.(4.5g加速度向下晃动)
传动轴布置方法
传动轴布置步骤:
传动轴的布置与动力总成的布置紧密相关,实际上属于同时布置;
一 初步确定传动轴位置
先初步确定动力总成位置
动力总成布置
传动轴布置
考虑因素:
左右:与左右纵梁静、动态间隙
上下:静、动态间隙、行人保护、台阶保护、离地间隙
前后:静、动态间隙、碰撞安全、温度场
通过移动旋转动力总成来满足上述要求;
传动轴布置及校核方法
——公用技术院
共二十页
传动轴基本介绍
传动轴连接差速器与轮胎以传递动力,现多用万向传动轴,即包括两个十字轴万 向节与一根可伸缩的传动轴。万向传动轴应能适应所联两轴夹角及相对位置在一定范 围内的不断变化并且能可靠、稳定、高效地传递动力,保证所联两轴能等速旋转。
轴的设计及校核
![轴的设计及校核](https://img.taocdn.com/s3/m/250d3e1e0912a2161479298c.png)
轴环
b
R
h
C1
r
d
SEU-QRM
r
d
17
D
D
h
轴向定位和固定——
②
轴套(套筒)
轴套适用于轴上两个相距较近零件之间的定位,其两个 端面为定位面,应有较高的平行度和垂直度。为使轴上 零件定位可靠,应使轴段长度比零件毂长短2~3mm。 1 2 3 4
SEU-QRM
18
轴向定位和固定—— 可用圆螺母与轴肩、 轴环等的组合实现零 件在轴上的双向定位 和固定。 圆螺母定位装拆方便, 通常用细牙螺纹来增 强防松能力和减小对 轴的强度消弱及应力 集中。 1 2
锁紧挡圈用紧定螺钉固定在轴上,装拆方便,但不能承 受大的轴向力。
SEU-QRM
23
2. 零件在轴上的周向定位和固定—— 定位方式的选择——考虑传递转矩的大小和性质、零 件对中精度的高低、加工难易等因素。
常用周向定位方法——键、 花键、成形、销、过盈配合 等,通称轴毂连接。紧定螺 钉也可作周向定位,但仅用 于转矩不大的场合。
Input Output Output T1 +T2 T1 T2
×
×
×
×
T2
×
×
T1 T2
T1 +T2
SEU-QRM
T1 Torque diagram
T1 +T2
Torque diagram
30
3. 改善轴的表面品质以提高其疲劳强度—— 轴的表面粗糙度对疲劳强度有很大的影响。疲劳裂纹 常常发生在表面最粗糙的地方。 为提高轴的疲劳强度,可采用表面强化处理,如碾压、 喷丸、氮化、渗碳、淬火等方法,可显著提高轴的承 载能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潍坊科技学院学士学位论文毕业设计轿车传动轴的设计与校核2012年5月摘要传动轴是组成机器零件的主要零件之,一切做回转运动的传动零件(例如:齿轮,蜗轮等)都必须安装在传动轴上才能进行运动及动力的传动,传动轴常用于变速箱与驱动桥之间的连接。
这种轴一般较长,且转速高,只能承受扭矩而不承受弯矩。
应该使传动轴具有足够的刚度和高临界转速,在强度计算中,由于所取的安全系数较大,从而使轴的尺寸过大,本文讨论的传动轴工艺设计方法,并根据现行规范增添了些表面处理的方式比如表面发兰。
提出一种三点接触沟道截面形式的球笼式等速万向节,其钟形壳外沟道的沟道截面形式为圆弧沟道,星形套内沟道的沟道截面形式为椭圆沟道或双心弧沟道。
对其内、外沟道结构进行设计,并利用 H e r t z 接触理论进行接触应力的计算。
结果表明,三点接触沟道能减小内、外沟道接触应力,改善其内部接触状况。
关键词:球笼式等速万向节;三点接触沟道;接触应力;计算ABSTRACTDrive shaft is composed of the main parts of the machine parts, all do rotary movement of the transmission parts (such as: gear, worm gear, etc.) must be installed on the shaft to movement and power transmission, driving shaft is often used in the connection between the transmission and drive axle. The shaft is longer than the general, and high speed, can withstand the torque under bending moment. Should make the shaft has enough stiffness and high critical speed, the strength calculation, due to take the safety coefficient is larger, so that the size of the shaft is too big, this article discusses the transmission process design method, and according to the current specification adds some surface treatment way, such as hair surface.Put forward a three-point contact channel cross section form of ball cage patterned constant speed universal joint, the bell-shaped shell outside the channel cross section form of the channel is a circular arc channel, stars form within the set of channel of the channel or dual channel cross section form of ellipse arc channel. Was carried out on the inside and outside channel structure design, and using the theory of t H e r z contact for the calculation of contact stress. Results show that three contact channel can reduce the contact stress, the internal and external channel to improve the internal contact condition.Key words:Birfield ball-joint; 3 contact channel; Contact stress; Calculation目录引言........................................................ 错误!未定义书签。
第一章传动轴................................................. 错误!未定义书签。
第二章球笼等速万向节的设计 (4)2.1 建立约束条件 (4)2.2 万向传动的计算载荷 (5)2.3 星形套和钟形壳的结构设计 (6)2.4 万向节受力分析 (12)2.5 沟道设计 (16)2.6其它参数的设计........................................... 错误!未定义书签。
7 2.7 接触应力计算. (17)2.8万向节寿命计算 (19)第三章花键轴设计 (19)第四章零件的工艺分析 (21)4.1零件表面加工方法的选择 (21)4.2孔加工方案 (21)4.3加工方案的选择 (22)4.4确定毛坯 (22)4.5工艺规程设计 (23)结论 (28)参考文献 (29)致谢 (30)引言:球笼式等速万向节是目前应用最为广泛的等速万向节,作为前置前驱动轿车的关键部件,等速万向节的性能和寿命与接触应力密切相关,万向节疲劳破坏的特征是常在沟道表面造成剥落和点蚀。
球笼式等速万向节接触应力与其沟道截面形式有着很大的关系,因此,沟道设计和制造的能力直接影响万向节的工作能力和使用寿命…。
目前,球笼式等速万向节内部沟道截面形式主要为圆弧形、椭圆形和双心弧形,且其内、外沟道都采用相同的截面形式。
但内沟道的接触应力要比外沟道的接触应力大得多,且内沟道的接触疲劳、点蚀破坏程度高于外沟道。
而在相同的尺寸大小、经受相同转矩及转速的前提下,椭圆形与双心弧形内沟道的接触应力要比圆弧形的小,而圆弧形外沟道的接触应力要比椭圆形与双心弧形的小。
在此前提下,提出了一种三点接触沟道截面形式的球笼式等速万向节,以期改善其内部接触情况。
一.传动轴球笼式等速万向节(亦称球笼式万向联轴器),是一类容许两相交轴间有较大角位移的联轴器,它是目前应用最为广泛的等速万向节。
球笼式等速万向节主要由钟形壳、星形套、钢球和保持架(亦称球笼)构成。
钟形壳的内径球面与保持架的外径球面组成一个转动定心球面副;保持架的内径球面与星形套的外径球面也组成一个转动定心球面副。
两个球面副的球心重合于两轴轴线的交点。
钢球一般为六个,相应地,保持架有六个周向腰鼓形槽,以在其轴向方向夹持六个钢球。
在钟形壳的内径球面上,周向等分地开有六个环面内槽;在星形套的外径表面上,也周向等分地开有六个窝面外槽。
它们分别与六个钢球共轭接触,以传递运动和扭矩。
钟形壳一般通过螺栓与驱动轴(或被驱动轴)连接;星形套通过花键与被驱动轴(或驱动轴)相连接。
环面的轴线偏离两轴轴线的交点(球面副的球心),钟形壳、星形套环面的轴线偏心量应相等。
环面的素线是一段圆弧。
环面的母线是不完整的半椭圆曲线。
因为在传递扭矩过程中,钢球既和钟形壳相接触又同时和星形套接触,同一个钢球的角速度ω相等,因此ω钟 =ω球 =ω星,就是说固定端具有同步等速性。
这种等速万向节无论转动方向如何,六个钢球全都传递转矩,它可在两轴之间的夹角达35°~37°的情况下工作。
图 1-7 球笼式等速万向节1.钟形壳2.星形套3.钢球4.保持架二、球笼式万向节设计 2.1 建立约束条件2.1.1传动轴应有足够高的临界转速临界转速:当传动轴的工作转速接近于其弯曲固有频率,即出现共振现象,所以通常将其弯曲固有频率对应的轴的速度称为临界转速。
若固有频率为f (Hz ) 则: k n =2πf rad/s=60 f r/minJ -抗弯惯性矩m kf π21=ρπLd D m ⋅-=)422(代入f 式,代入k n =60 f 整理后得2228102.1Ld D n k +⨯=设计传动轴时通常取0.2~2.1max=n n kn max -传动轴最高转速 max 222228353.152102.1n d D Ld D n k ⋅≤+=+⨯=δ …………②δ—临界安全系数 2.1.2传动轴应有足够的扭转强度设传动轴传递的最大转矩为Ts ,则截面上最大剪切应力[]τπτ≤-=⋅=)(16244max d D T D DI T s P s …………………………③ I p -极惯矩 32)(44d D I P -=π35384LEJ k =)(6444d D D J -=π[]τ——许用应力,;2.1.3 传动轴应满足空心轴扭转失稳条件要求按最大扭转应力验算:2/3max )(292.0Dd D E -≤τ……………………………………④E —传动轴材料的弹性模量,25/101.2mm N E ⨯= 2.1.4 传动轴应满足制造工艺条件要求2.3≥-d D …………………………………………⑤ 2.1.5 传动轴外径尺寸不能过大可设 100≤D …………………………………………⑥ 根据以上的各条约束条件以及①式,可建立以下数学优化模型: []TTx x x d D S X 321,,,=⎥⎦⎤⎢⎣⎡=,)4)(min 22d D x f S -==(πmax 222228353.152102.1n d D L d D n k ⋅≤+=+⨯=δ[]τπτ≤-=⋅=)(16244max d D T D DI T s P s 2/3max )(292.0Dd D E -≤τ 2.3≥-d D100≤D 、2.2万向传动的计算载荷万向传动轴因布置位置不同,计算载荷是不同的。
计算载荷的计算方法主要有三种, 见下表表4—1各式中,Temax 为发动机最大转矩;n 为计算驱动桥数,取法见表4—2;i1为变速器一挡传动比;η为发动机到万向传动轴之间的传动效率;k 为液力变矩器变矩系数,k=[(ko—1)/2]十1,ko 为最大变矩系数;G2为满载状态下一个驱动桥上的静载荷(N);m2′为汽车最大加速度时的后轴负荷转移系数,轿车:m2′=1.2~1.4,φ为轮胎与路面间的附着系数,对于安装一般轮胎的公路用汽车,在良好的混凝土或沥青路面上,φ可取0.85,对于安装防侧滑轮胎的轿车,φ可取1.25,rr为车轮滚动半径(m);i。