第五章复杂电极反应与反应机理研究 - 厦门大学电极过程动力学课件
第五章电荷转移步骤动力学与电化学极化PPT课件
![第五章电荷转移步骤动力学与电化学极化PPT课件](https://img.taocdn.com/s3/m/10c405705fbfc77da269b1e7.png)
5.1 电化学极化概述 5.2 电化学步骤的基本动力学方程 5.3 电化学步骤的基本动力学参数 5.4 稳态电化学极化动力学方程 5.5 电化学极化与浓差极化的比较
1
5.1 电化学极化概述
液相传质过程发生于“电极/溶液”表面附近 的液层中,即扩散层中。
电化学步骤(电荷转移步骤)则发生于“电极 /溶液”界面上。
但必须注意: (1)上述关系只使用于简单的电极反应; (2)注意浓度的单位换算,浓度单位一般用 “mol / cm3”。当生成不溶的独立相时,其浓度取 110-3 mol/cm3
35
5.4 稳态电化学极化动力学方程
当一定大小的电流流过电极时,电极电位偏离其 平衡电极电位。当达到稳态时,即电极过程各个步 骤的进行速度不再随时间而改变,电极电位与外电
22
电化学平衡
当电极体系处在平衡态时,电极上没有净反应发
生,阳极反应速率( ia0 )与阴极反应速率( ic0 )
相等。
zacRexp(W10
RnTF平)zccoexp(W20
nF平)
RT
写成对数形式并整理后得:
平(W10nF W20
2.3RTlgzc)2.3RTlgco nF za nF cR
平 0' 2.n3RFTlgccR o
ia0 = ic0= i0
交换电流密 度
19
对于阳极反应 = - 平=a
所以有: a2 .3 n RF lT g i02 .3 n RF lT g ia2 .3 n RF lT g iia 0
对于阴极反应 = - 平=-c
所以有: c 2 .3 n RlF T g i0 2 .3 n RlF T g ic 2 .3 n RlF T g iic 0
电极过程动力学 ppt课件
![电极过程动力学 ppt课件](https://img.taocdn.com/s3/m/98350e0fc850ad02de8041dc.png)
§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);
循环伏安法_厦大《实验电化学》课件
![循环伏安法_厦大《实验电化学》课件](https://img.taocdn.com/s3/m/344b6ec4aa00b52acfc7ca8d.png)
循环伏安法 (Cyclic voltammetry)
内容
相关概念简介 线性扫描伏安法简介 循环伏安法简介(用CHI获得循环伏安图的一个具体例子) 分类(电极反应类型 ,循环伏安图的不同特征,所涉及的参数) 一些注意事项
相关概念简介
研究对象:离子导体和电子导体的界面
电化学实验装置示意图
CE WE RE
O 和电极之间发生电荷转移
(faradaic)
R 从电极表面脱附(或发生化学反应)
(non-faradaic)
R 从电极表面向溶液本体传递(生成新相) (mass transport)
电极过程:电极反应、传质过程、相关化学反应
相关概念简介
O ne
扩散层
O* 溶液本体
电极 R
R*
双
电
层
~107 V/cm
重复以上过程,测量2,4,6,8,10mM K3Fe(CN)6 + 0.5 M H2SO4溶 液中的CV数据
可测量一个未知浓度溶液的CV数据
K3Fe(CN)6 溶液循环伏安曲线的测定以及实验数据的分析
测量氧化还原峰电位Epc、Epa 及峰电流Ipc、Ipa; Ep与扫描速度无关等数据,→ 可逆 Ep = Epa – Epc= 0.058/n 计算n 以氧化还原峰电流Ipc、Ipa 分别与扫速的平方根ν1/2 作图, 以ip = (2.69 x 105)n3/2 A D1/2 C V1/2 公式由斜率计算扩散系数( Ip ∝ v1/2) 作不同浓度的峰电流数据作标准曲线(相同扫描速度),可计算未知浓度溶液的 浓度
随后化学反应
E O+ e
R
可逆
CR
S
不可逆
根据电量估算, Cu的覆盖度θCu 约为2/3 在ECSTM的研究中,在UPD的第二阶段, 观察到(√3×√3)有序结构。此结构对应 的覆盖度仅为1/3 最初,由于不够重视CV图中峰电量的数据,文献中将这一结构 错误地指认为Cu原子形成的结构。
电 化 学 - 厦门大学化学化工学院
![电 化 学 - 厦门大学化学化工学院](https://img.taocdn.com/s3/m/298828fa81c758f5f61f6768.png)
相界面存在过剩电荷
(c)
自然界普遍存在水
电化学势 Electrochemical Potential
恒温恒压下荷电粒子i从相转移到相
G =
i
i
+
i
zie0
( -
)
平衡时: i + zie0 = i + zie0
i i
两相间建立平衡电势
氧
化
还
原
正极、电势高 负极、电势低
负极、电势低 阴离子 Anion
正极、电势高 阳离子 Cation
电化学研究重点 溶液电化学 (电解质溶液) 平衡态电化学 电极过程
物理化学 热力学
动力学
结构化学 量子化学 统计力学
界(表)面电化学 固态电化学 光电化学 生物电化学
电化学基础研究
平衡态电化学
应用电化学领域
PbSO4+2H++2e
Red
Ox
正极反应
PbO2+H2SO4+2H++2e
PbSO4+2H2O
电池总反应
Pb+PbO2+2H2SO4
(对外反应) 放电 充电 (吸收电能) 2PbSO4+2H2O
电化学装置(Electrochemical Device)
电化学装置需要满足:
至少包括一对分区进行 ( 成对存在 ) 的电极
反应。在电解质溶液中,不同电荷的离子 作不同方向的定向迁移。在外线路中,电 H2O H+
SO4=
e
Pb2+ PbSO4
+2e
Pb
电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)
![电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)](https://img.taocdn.com/s3/m/630dd88cdd88d0d233d46afa.png)
W1 W2’-W1’ W2-W1
nF W
2
W2’
还原态
氧化态
nF
nF
nF
x
改变电极电位对电极反应活化能的影响的示意图
W2’ – W1’ = W2- W1 + nF
这样, W2’ – W2 = W1’- W1 + nF
阴极反应活化 能增值
阳极反应活化 能增值
再变化为:(W2’ – W2)- (W1’- W1)= nF
当电极反应处于标准平衡状态时,即 = 平
ia nFk c exp(
0 a R 0 c o
nF
RT RT
0 平 ) nFK a cR
ic nFk c exp(
nF
0 平 ) nFK c co
上两式中:
K a k exp(
0 a
nF
RT
0 平 ) 0 平 )
K c kc0 exp(
a b lg I
从上式可以看出,不仅与电流密度I有关,还 与a、b有关。而a、b则与电极材料性质、表面结 构、电极的真实表面积、溶液的组成及温度有关。
5.1.2 影响电化学极化的主要因素
(1)电流密度。
(2)电极材料,不同的电极材料a值不同,反应能力完全 不同。需要寻找具有高催化活性的材料。 (3)电极的真实表面积,表面积越大电极的反应能力越大, 可减小电极的极化。如采用多孔电极。
若改写成指数形式,则有:
阳极反应
ia i exp(
0
nF
RT
a )
阴极反应
ic i exp(
0
nF
RT
c )
知道了、和i0,根据上面的电化学步骤的基本动 力学方程,就可以计算任一电位下的绝对电流密 度 ia 、 ic 。
电化学理论与方法 第五章 电极过程概述
![电化学理论与方法 第五章 电极过程概述](https://img.taocdn.com/s3/m/2d2de78ad4d8d15abe234e3c.png)
整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR
令
(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。
理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。
6. 第五章_阴极过程
![6. 第五章_阴极过程](https://img.taocdn.com/s3/m/372f48a06bec0975f465e2a6.png)
通常稳定存在且浓度较高的是配位数较高的金属络离子 未络合的“自由”金属水合离子和具有不同配位数的各 种金属络离子都在溶液中以不同的浓度同时存在,存在一系 列的“络合-离解平衡”
电化学原理 第五章
络合作用对金属离子阴极还原热力学影响
固体金属电极表面的不均匀性以及在电化学反应过程中电 极表面状态的变化,导致固体金属电极上的电化学测试结果重 现性不太好(难以得到满意的定量结果)。
使用较理想的电极材料(单晶) 尽可能使电极材料的表面状态保持一致
5.2 金属离子阴极还原特征
水溶液中金属离子阴极还原的可能性
电化学原理 第五章
周期表中愈靠左边的金属离子,电沉积金属的可能性愈小; 愈靠右边金属离子,电沉积金属愈容易实现
0.5mol/L H2SO4 1.0mol/L NiSO4 1.0mol/L FeSO4 1.0mol/L CuSO4 1.0mol/L ZnSO4 1×10-3mol/L Zn(NO3)+1.0mol/L K NO3 0.1mol/L H2SO4 1×10-3mol/L N(CH3)4OH+1.0mol/L NaOH 1×10-3mol/L Pb(NO3)2+1.0mol/L K NO3 1×10-3mol/L Hg2(NO3)2+2.0mol/L HClO4
金属离子Mn+(用M表示)与络合剂Xp-(用X表示)在溶液中形成 的主要金属络离子品种为MXμ (n-μ p)-(用MXμ 表示)时的总反应式:
MXμ + ne → M +μ X
电化学原理 第五章
金属络离子放电还原机理(CE机理) 在电极上直接放电还原的低配位数的金属络离子品种为
第五章 电化学步骤动力学
![第五章 电化学步骤动力学](https://img.taocdn.com/s3/m/dfa3de35680203d8cf2f2405.png)
它只在一定的电 流范围内适用
a blgi
a,b的物理意义不明确,不 能说明电位的变化是怎样影 响电极反应速度的。
❖ 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。
❖ 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
❖ 此时,电化学步骤动力学方程不能进行简化,必须用整个公式来描叙, 即:
ik
i阴
i阳
i0
[exp(
nF
RT
)
exp(
nF
RT
)]
iA
i阴
i阳
i0[exp(
nF
RT
)
exp( nF
RT
)]
5.4、电化学的基本动力学参数
1.传递系数:--α、β ❖描述电极电位对活化能影响程度的动力学参数,叫对称系数,或传递系数。
❖ 用电流密度来表示反应速度,即:
i阴
V阴 s
nF
nFZ阴Co'
exp( W阴 RT
)
i阳
nF
V阳 s
nFZ阳CR'
exp( W阳 ) RT
❖ 因扩散步骤很快,则
Co' Co
CR' CR
i阴
nFZ阴Co
exp(
W阴 RT
)
nFK阴Co
i阳
nFZ阳CR
exp(
W阳 RT
)
nFK阳CR
5.1巴特勒-伏尔摩方程
a
2.303RT
nF
lg i0
2.303RT
nF
lg
ia
(5-10)
电化学原理第五章
![电化学原理第五章](https://img.taocdn.com/s3/m/f315b74525c52cc58bd6be91.png)
当电极上有电流通过时,三种传质方式可能同时存在, 但在一定区域,一定条件下,只有一至二种传质方式起主要 作用。 电极反应消耗大量粒子,要靠传质过程补充,若电解液 含较多电解质,则可忽略电迁移传质作用,向电极表面传输 反应粒子主要由扩散和对流串联而成。通常对流传质的速度 原大于扩散传质的速度,故液相传质过程速度主要由扩散传 质过程控制,它可代表整个液相传质过程动力学的特征,本 章讨论扩散传质动散。 反应初期,反应粒子浓度变化不太大,浓度梯度较小,扩散较 慢,扩散发生范围主要在离电极较近区域,随反应进行,扩 散过来的反应粒子的数量远小于电极反应的消耗量,梯度较 大,扩散范围也增大,反应粒子的浓度随时间和电极表面距 离变化而不断变化。
17:59:38
扩散层中各点的反应粒子浓度是时间和距离的函数,即 Ci=f(x,t) 反应浓度随x和t不断变化的扩散过程,是一种不稳定的扩散 传质过程。这个阶段内的扩散称非稳态扩散或暂态扩散,反 应粒子是x与t的函数。
17:59:38
二、液相传质三种方式的相对比较 (1)传质推动力不同 电迁移:电场力,存在电位梯度 对流传质: 自然对流:或温度差存在,实质是不同部分溶液存在重 力差。 强制对流:是搅拌外力,机械、空气搅拌等。 扩散传质: 推动力是存在浓度差。 (2)从传输的物质粒子的情况看 电迁移只能传输带电粒子,扩散和对流既可传输离子,也可传输 分子,甚至粒子。 电迁移和扩散过程粒子间溶质与溶剂存在相对运动,对流传质过 程中,溶液一部分相对于另一部分作相对运动,在运动的溶液内 部,溶质与溶剂分子一起运动,二者间无明显相对运动。 (3)从传质作用区域考虑 把电极表面和附近的液层大划分为双电层区,扩散层区和对流区 。
J Ag DAg dCAg dx DAg
电化学动力学
![电化学动力学](https://img.taocdn.com/s3/m/0b855a136edb6f1aff001fbd.png)
三、电极电势对电子转移步骤 活化能的影响
• 电子转移步骤(电化学反应步骤)系指反应物在电极/ 溶液界面得到电子或失去电子,从而还原或氧化成新 物质的过程。这一步骤包含了化学反应和电荷传递两 个内容,是整个电极过程的核心步骤。 • 在电子转移步骤中,两相界面间的双电层结构起着一 种特殊作用。 • 电极过程的其它步骤如物质的输送或均相化学转变虽 然也在电极/溶液界面附近,但都发生在远离双电层的 地方。 • 而电化学反应步骤则完全发生在双电层内部。因此, 在双电层中电势的分布及反应质点的状态肯定要显著 地影响电化学步骤的反应过程和速度。
• 如果[O]*= [R]*,此时电 势为ϕ θ‘(称之为形式电 势), 可得到
r s k = k = k0
k0 称之为标准速度常数。
标准速度常数k0
r k0 = k0 exp − αnFϕ θ / RT = s θ k 0 exp βnFϕ / RT
[ [
]
]
• 将上式代入下式可得到速度常数表达式,
I c = I 0 exp(− αnFη / RT )
巴特勒-伏尔默方程式 巴特勒 伏尔默方程式
• 如上所述,动力学控制下的电极反应电 流如式(4-16)所示。
四、电极电势对电化学反应速 度的影响
• 根据化学反应动力学,将活化能∆G++表达式(4-10a,b) 代入方程式(4-9), 可得到还原和氧化反应的速度常数表 达式,
r r ++ kϕ = A exp − ∆Gϕ ,0 / RT exp[− αnFϕ / RT ] s s ++ kϕ = A exp − ∆Gϕ , 0 / RT exp[βnFϕ / RT ]
阿里尼乌斯表达式
第五章电极过程扩散动力学
![第五章电极过程扩散动力学](https://img.taocdn.com/s3/m/aa16db185727a5e9856a6187.png)
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区
电极过程动力学
![电极过程动力学](https://img.taocdn.com/s3/m/2ad583edba0d4a7302763a50.png)
Grahame 开创了用滴汞电极研究 “电极/溶液” 界面的系统工作。
4.
20世纪50年代是电化学学科的重要成熟期
经典电化学方法蓬勃发展和电化学队伍迅速扩大
各种快速暂态方法,旋转圆盘电极系统,研究许多电化学
测量方法在这一阶段建立。这些方法在当代电化学实验室 中仍然是基本测试手段。
§1.1 电极过程动力学的发展
§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。 电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。 从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
§1.1 电极过程动力学的发展
电化学是在科学研究和生产实践中发展起来的,反过 来它又促进了生产力的发展。在化工、冶金、化学电 源、金属腐蚀和保护、电化学加工和电化学分析等工 业部门占有及其重要的地位。 近30年来,它在高新技术领域,如新能源、新材料、 微电子技术、生物化学等等方面也扮演重要角色。与 此同时,由于电化学理论与方法的发展,在与其他学 科边缘地域形成了融盐电化学、半导体电化学、催化 电化学、腐蚀电化学、金属电化学、生物电化学等新 兴学科。电化学应用已远远超出了化学领域,在国民 经济许多部门发挥了巨大作用。
第六章 交流阻抗方法
§6.1 电解池的等效阻抗 §6.2 表面浓度波动和电极反应完全可逆 时的电解阻抗 §6.3 电化学步骤和表面转化步骤对电解 阻抗的影响 §6.4 电极交流阻抗的复数阻抗图 §6.5 交流阻抗的测量方法 §6.6 电化学阻抗谱数据处理的若干问题
电极过程动力学
![电极过程动力学](https://img.taocdn.com/s3/m/0a6c5dbaa1116c175f0e7cd184254b35eefd1abf.png)
电极过程动力学电极过程动力学是电化学中的一个重要分支,它着重研究电极电荷转移过程和相关的动力学机制。
电极过程动力学的研究对象包括电化学反应速率、电极化学反应的机理以及电化学反应的动态过程等。
本文将从电极反应速率、电位调控机理以及实际应用方面对电极过程动力学进行详细的介绍和分析。
一、电极反应速率1. 项里反应速率常数项里反应速率常数是衡量电极反应速率的重要参数。
它表示单位时间内反应物和产物之间的数量变化率。
在计算过程中,可以根据电荷转移过程中的动力学机制来确定项里反应速率常数。
通常情况下,项里反应速率常数与反应物和产物之间的活化能和电荷转移系数有关。
一般来说,项里反应速率常数越大,反应速率越快。
2. 泊松分布模型泊松分布模型是一种根据电子传输动力学研究电极反应速率的经典方法。
泊松分布模型假设电子从电极表面进入液相中的分布满足泊松分布。
据此,可以利用该模型计算出电极反应速率以及与之相关的电极化学反应机理。
然而,实际情况中,由于电极表面可能存在着非均匀性和多孔性等特征,泊松分布模型过于理想化,难以准确预测电极反应速率。
3. 热力学因素对电极反应速率的影响热力学因素对电极反应速率有着重要的影响。
根据热力学定律,电位差和电极之间的电势差会影响电子传输和离子转移速率。
当电极电位愈高,电位差就愈大,因此,电子和离子的传输速率就变得更快。
此外,反应物和产物之间的物理和化学吸附现象也会影响电极反应速率。
这些因素的影响程度需要结合具体的条件和反应机理来进行考虑。
二、电位调控机理1. 电位和电场电位是电子在电场作用下所具有的势能差。
由于电场力是由电荷带来的,因此,电位和电场强度是密切相关的。
在电极过程动力学中,电位的变化会影响电子传输过程,进而影响电极化学反应的速率和机理。
2. 离子选择电位离子选择电位可以影响电极的电化学反应机理和速率。
当电极表面存在多种离子时,离子选择电位会决定电极表面上离子种类的比例。
因此,在研究电极过程动力学时,需要对离子选择电位进行分析和控制。
光电化学课件-电化学研究方法第二讲-电极过程动力学的唯像处理
![光电化学课件-电化学研究方法第二讲-电极过程动力学的唯像处理](https://img.taocdn.com/s3/m/a0196e53f524ccbff12184f2.png)
j(电流密度)
j(电流密度)
电极电势
原电池中的极化曲线
电解制备和纯化金属如铝 NaCl
H2O
electrolysis
NaOH
1 2
Cl2
除了电压型的传感器(pH计, ISE)外, 大部分电化学装置在 工作时, 往往是偏离平衡的条件的
如何评价(偏离平衡条件下工作)电化学装置的性能
指导设计、优化的电化学装置?
以一定电流密度电解水时电解池中的电压分布
2H 2e H2
处理复杂电极过程问题的基本思路
简化的电极反应过程
电子转移面
把握总过程中占主导地 位的过程,或者创造条件
使所研究的基本过程在
电极
电荷转移
Os
传质过程 电极过程中占主导地位 Ob 电极过程动力学研究
ne
注重电荷传递过程
控制实验条件,可使
Rs 传质过程 Rb 电荷传递过程成为速
OHP面
控步骤.
• 传荷过程 k0 - 电荷传递速率 k0 》m 传质过程为速控步骤
浓差、电化学、电阻极化及混合作用下的极化曲线
j 浓差
jl
=电化学+ 浓差
电化学
电阻
=电化学+ 浓差+ 电阻
0
首先必须深刻地从理论上了解构成电极过程的各个基本 过程,了解它们影响这些过程的各影响因素以及每个过程 本身的主要矛盾,以及它们之间的相互联系
化学反应动力学(全套课件582P)
![化学反应动力学(全套课件582P)](https://img.taocdn.com/s3/m/974532550a4e767f5acfa1c7aa00b52acfc79c1a.png)
或 r 1 d[Ri ]
i dt
对于气相反应,也可用压力表示反应速率:
rP
1 a
dPA dt
1 b
dPB dt
1 c
dPC dt
1 d
dPD dt
或:
rP
1
i
dPRi dt
对于理想气体: Pi ci RT
化学反应动力学
课程属性: 学科基础课 学时/学分:60/3
教 材:
《 Chemical Kinetics and Dynamics 》 J. I. Steinfeld, et al, 1999 ( Prentice Hall )
参考书 :
1《化学反应动力学原理》(上、下册) 赵学庄编 (高等教育出版社)
k = 2×104
k = 1×10-2
§1-2 反应速率的定义
( Definition of the Rate of a Chemical Reaction ) 若一个反应的化学计量式如下:
(1) a A + b B c C + d D 或写为: (2) 0 = iRi
式(2) 中,
Ri:反应物和产物。 i: 化学计量系数, 它对于反应物为负,
1 给定乙醛的初始浓度, 测定不同反应时间 的反应速率及乙醛浓度,从而确定反应的 反应级数。
则反应速率 与[CH3CHO]的平方成正比, 即称其时间级数为二级的。
2 以乙醛的不同初始浓度进行实验, 测 定不同初始浓度下的反应速率,从 而确定反应级数。
则反应速率与乙醛的初始浓度的一 次方成正比,即称其浓度级数为一 级的。
电极过程动力学‘’
![电极过程动力学‘’](https://img.taocdn.com/s3/m/3c5749885f0e7cd1842536e0.png)
◆“电极/溶液”界面上的电场强度。这方面的因素可称之为影响电 极反应速度的“电场因素”,它是通过影响反应的活化能来起作用的。 ■“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电 势表示,随着电极电势的改变,不仅可以连续改变电极反应的速度,而 且可以改变电极反应的方向。以后还将看到,即使保持电极电势不变, 改变界面层中的电势分布也会对电极反应速度有一定的影响。因而研究 “电极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面 层中的电势分布情况,对于研究电极过程动力学显得特别重要,也是本 章主要讨论的内容。
电极过程的主要特征及其研究方法
■ 只要有电流通过“电极/溶液”界面,电极表面上就会发生电极反应, 同时在电极表面附近的薄层液体中发生与电极反应直接有关的传质过 程(有时还发生化学变化)。习惯上把这些过程合并起来处理,统称 为电极过程。 ■ 电极过程是一种复杂过程,按其反应类型,它是一个异相氧化还原 过程,又因这种过程发生在“电极/溶液”的荷电界面上,所以与化学 反应相比,有如下三个特征:
研究“电极/溶液”界面结构的实验方法
研究“电极/溶液”界面构造的经典方法是:一方面 实验测量界面两侧的剩余电荷q和界面电势 ,并找出 q~关系;另一方面提出一定的界面构造模型,并计算其 物理参数。如果通过实验测得的界面参数与按理论模型推 算的结果较好地吻合,就可以认为所假设的界面构造模型 在一定程度上反映了界面的真实图象。
电毛细曲线
■ 对于汞—溶液体系,其界面张力取决于这 一界面所处的状态,其中包括表面的荷电状态。 构成汞表面剩余电荷的同性带电粒子彼此排斥, 力图使界面扩大,致使界面张力降低。 ■ 若在理想极化条件下将“汞/溶液”界面极 化至不同电势,同时测定相应的界面张力。则 由其关系可以推测界面剩余电荷密度及由此引 起的界面构造的变化。表征-关系的曲线称 为“电毛细曲线”。 ■ 对于液态金属通常采用毛细管静电计法测 定电毛细曲线。毛细管静电计的基本结构见左 图
《物理化学》第五章-电化学 ppt课件
![《物理化学》第五章-电化学 ppt课件](https://img.taocdn.com/s3/m/b13d39186294dd88d1d26be7.png)
0.05
0.830 0.823 0.815 0.823 0.818 0.574 0.529 0.340 0.304 0.556 0.230 0.202
第五章 电化学
(Charper 5 Electrochemistry)
电化学:研究电子导体/离子导体(电解质溶液)和离子 导体/离子导体的界面结构、界面现象及其变化过程与 机理的科学。
应用:1、生命现象最基本的过程是电荷运动。生 物电的起因可归结为细胞膜内外两侧的电势差。
a: 细胞的代谢作用可以借用电化学中的燃料电池的 氧化和还原过程来模拟;
根据离子的无限稀释摩尔电导率 m.、m.,可以计
算弱电解质的
m
,也可以用强电解质的
m
计算弱
电解质的
m
。
m (HA )C m (H ) m (A)c m (H ) m (A)c m (C)l m (C)l m (N)a m (N)a
m (H)C lm (Na) A m (cNa ) Cl
(1)在电极上发生化学反应的物质的量与通入 的电量成正比;
(2)通入相同的电量时,在各个电极上发生反 应的物质的量相同。
n = Q/zF 或 Q = nzF
Q = nzF
Q — 通入的电量 n — 参加反应的物质的量 z — 电极反应式中的电子计量系数 F — 法拉第常数(1 mol元电荷所具有的电量) F = e×L = 1.6022×10-19 C ×6.0221×1023 mol-1
课堂练习
1、在一定温度和较小的浓度情况下,增大强电解质溶液的浓
度,则溶液的电导率κ与摩尔电导率 m的变化为( B)
A、κ增大,
增大
m
B、κ增大, 减m 少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)E+C2(Arr): R + e- R•-
[E]
2R•- R-R2-
[C2 (Arr)]
(2)E+C2(Ars): R + e- R•-
[E]
R•2-+ R R-R•- C2[Ars]
(3)E+E+C2(Ads): R + e- R•-
[E]
R•-+ e- R2-
[E]
R2- + R R-R2- [C2 (Ads)]
按它们的先后顺序,组成不同类型电极反应机理。
C. P. Andrieux, Pure &Appl. Chem., 1994, 66(12), 2445
电极反应机理的表示方法和相关术语
例如:CECE机理
碱性溶液中Zn2+在Hg电沉积的总反应为 Zn(OH)42-+2e- Zn (Hg) +4OH-
实际的反应机理是
Fe CN3- +e Fe CN4-
6
6
Tl+ +eHg TlHg
2H+ +2e H2
Sn4+ +2e Sn2+
Ag+ +e Ag
本章内容
5.1 电极反应机理的表示方法和相关术语 5.2 电极反应多电子转移步骤过程(双电子和多电子) 5.3 电极反应与化学反应耦合 (1)前置转化步骤;(2)平行和随后转化步骤 (3)涉及表面吸附态的表面转化步骤 5.4 电极反应机理的研究(电催化反应)
mo kc 总电流由动力学控制 mo kc 总电流由传质过程决定
各种电化学技术对电活性物质在电极表面发生单 电子转移反应中被转化为产物时所得到的电流电 位响应
电极反应的典型途径
电化学极化 化学极化
浓差极化
异相反应 均相反应
电极表面薄层内
对流 扩散 电迁移
电极反应机理的复杂性
总电极反应
O ne kf R kb
程式; n vi i 1
2。如果一个总反应含有S个基元步骤,I个中间物 种,则S I+1。
电极反应机理的表示方法和相关术语
例如:
在酸性溶液中氢析出反应 2H++2e-H2 (1)Volmer-Tafel机理:
2H3O++M + e- M-H + H2O (Volmer反应) v=2
M-H + M-H 2M + H2
(3)用下标“ad”表示吸附反应,“ds”表示脱附反应。
(4)各基元步骤之间用“+”连接。
Andieux C.P. Pure Appl. Chem., 1994, 66:2445
电极反应机理的表示方法和相关术语
例如:二聚反应过程常用DIM表示。
二聚反应2R + 2e- R-R2- 可能有3种不同的机理:
在相同的反应条件下,反应体系的势能面上正、逆向反应能 量最低的反应途径是相同的,因此正、逆向反应应具有相同的 过渡态。
电荷转移反应中,对于涉及多个电子和质子参与的过程,如 芳烃电还原为二氢化合物、氢醌和醌的氧化还原转变、醛或酮 还原为醇等,其总的反应式可表示为
A+2H++ 2 e- AH2 理论上,2H+和2e-参加的反应有6种可能的反应途径,其中间 物有A•-、A2-、 AH•、 AH•-、AH-、AH+和AH22+等7种。
(Tafel反应) v=1
(2)Volmer-Heyrovsky机理:
2H3O++M + e- M-H + H2O (Volmer反应) v=1 M-H + H3O++e- H2 + H2O + M (Heyrovsky反应)
v=1
电极反应机理的表示方法和相关术语
(3)微观可逆性原理 (principle of microscopic reversibility):
(2)可对化学步骤的反应级数、键的断裂或形成、参与反应 的基团性质等进行表示。反应级数用阿拉伯数字表示,即用“1” 表示1级反应、用“1”表示假1级反应、用“2”表示2级反应。用 “A”表示键的生成或缔合反应,用“D” 表示键的断裂或解离反 应。下标“N”、“E”、“H”、“r” “s”和“d”等分别用于表示“亲 核”、“亲电”、“质子”、“自由基”、“底物”和“通过双还原或双 氧化的2电子过程生成中间物”等反应类型。
电极反应机理的表示方法和相关术语
(2)化学计量数(stochiometric number):指总 反应完成一次时,各基元步骤必须进行的次数。
化学计量数被用于判别被假设的反应机理的合理 性。一个正确的反应机理至少必须满足以下条件: 1。各基元步骤的反应方程式乘以各自的化学计量数 v后相加起来并消去中间物的项,必须等于总反应方
5.1电极反应机理的表示方法和相关术语
(1)电极反应机理:指组成总电极反应的各个分 步骤的先后顺序及各自速率的相对大小。
总电极反应的分步骤可区分为电化学步骤(即 电子转移步骤)和化学步骤,化学步骤可能发生在 溶液相中,或者发生在电极表面上。传质过程例外。
习惯: E 电子转移步骤(单一电子转移步骤) C 化学反应步骤(包括吸附态变化)
电极过程动力学
第五章 复杂电极反应与反应机理研究
授课教师:毛秉伟,吴德印 授课时间:2008年9-12月
电极反应的典型途径
第二章
双电层
Os
Ob
第三章 1e
电化学步骤的 动力学
Mass transfer
Rs
Rb
第四章
质量传递和暂态 过程
总电流是由于传荷(动力学)和传质两部分的贡献
1 1 1 1 1 jc nFkcCo nFmoCob jk jL,c
即电极反应先经历化学反应步骤,然后发生电子转移步 骤,因此称为CECE机理。
Electrochim Acta, 1987, 32, 1321;
电极反应机理的表示方法和相关术语
1994年IUPAC建议采用表示电极过程的符号:
(1)用“E”表示电子转移步骤,用“C”表示化学步骤,用“T” 表示与化学反应偶合的溶液中的电子转移(氧化还原)反应。
电极反应机理的表示方法和相关术语
方格路线图
反应
e
物态
H+
பைடு நூலகம்
产物态
Quinone反应 C. Costentin, Chem. Rev. 2008, 108, 2145
电极反应机理的表示方法和相关术语
(4) 决速电子转移步骤 (Rate determining step: RDS)
在电化学中广为接受的观点:一个真实的电子基元反应总 是只涉及一个电子转移的反应。如果一个总反应涉及n个 电子的变化,则必须引入n个电子转移反应。