小学四年级奥数题练习解析-学而思入学必备
小学四年级下册奥数题练习及答案解析
一、填空。
(共20分,每小题2分)1.被除数是3320,商是150,余数是20,除数是()。
2.3998是4个连续自然数的和,其中最小的数是()。
3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。
这个两位数是()4.填一个最小的自然数,使225×525×()积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有()种取法。
7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B 的和等于2个D,A是最小的自然数。
这个邮政编码是()。
8.两个数之和是444,大数除以小数商11,且没有余数,大数是()9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
()×()×()=()×()×()10.正方体有6个面,每个面上分别写有1个数字,它们是1、2、3、4、5、6,而且每个相对面上两个数的和是7(1和6,2和5,3和4)。
下图是正方体六个面的展开图,请填出空格内的数。
二、判断。
(对的在括号内画“√”,错的画“×”,共10分,每小题2分)11.大于0.9997而小于0.9999的小数只有0.9998。
()12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。
这时纸的长是6厘米。
()13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。
箱子中一共有3顶帽子。
()14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。
()15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。
三、选择。
学而思入学必备题型奥数题答案及解析
小学四年级奥数题及解析第1题:计算:123456789101120082009201020112012_____L--++--++--+++--+=A:0B:4C:8B:2012答案:A 解题思路:本题考查学生的观察能力以及对加法交换律的灵活应用:在式子的尾端加上2013再减去2013,让整个算式更有规律性。
解题思路:1-2-3+4+5-6-7+8+9-10-11+…+2008+2009-2010-2011+2012+2013-2013=1+(4-2)+(5-3)+(8-6)+(9-7)+…+(2012-2010)+(2013-2011)-2013=(2013-1)÷2×2+1-2013=0⨯第2题:下面是一个乘法算式,问当乘积最大时,所填的四个数字的和是______。
5A:27B:24C:20D:22答案:B 解题思路:我们从题中知道两位数乘以5等于两位数,积最大时就是用最小的三位数100-5=95;因此可知道积是95,那么一个乘数就是19,因此1+9+9+5=24。
第3题:算式2357111317⨯⨯⨯⨯⨯⨯最后得到的乘积中,所有数位上的数字和是______。
A:12B:24C:15D:18答案:A 解题思路:2×3×5×7×11×13×17=(7×13×11)×(3×17)×(2×5)=1001×51×10=510510 结果是12第4题:如图所示的表中有55个数,那么它们的和加上______才等于2011。
A:30B:96C:330D:196答案:D 解题思路:第一列:1+2+3+4+5=15第二列: 7+8+9+10+11=(6+1)+(6+2)+(6+3)+(6+4)+(6+5)=6×5×1+15第三列:13+14+15+16+17=(12+1)+(12+2)+(12+3)+(12+4)+(12+5)=12×5+15=6×5×2+15第四列:19+20+21+22+23=(18+1)+(18+2)+(18+3)+(18+4)+(18+5)=18×5+15=6×5×3+15第五列:25+26+27+28+29=(24+1)+(24+2)+(24+3)+(24+4)+(24+5)=24×5+15=6×5×4+15……第十列:55+56+57+58+59=(54+1)+(54+2)+(54+3)+(54+4)+(54+5)=54×5+15=6×5×9+15第十一列:61+62+63+64+65=(60+1)+(60+2)+(60+3)+(60+4)+(60+5)=60×5+15=6×5×10+15 看出规律了吗?55个数和如下:15×11+6×5×(1+2+3+4+5+6+7+8+9+10)=165+30×55=18152011-1815=196第5题:用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是______。
小学四年级奥数题及答案解析(三篇)
小学四年级奥数题及答案解析(三篇)1、计算:1234+2341+3412+41231234+2341+3412+4123=(1000+200+30+4)+(2000+300+40+1)+(3000+400+10+2)+(4000+100+20+3)=(1000+2000+3000+4000)+(200+300+400+100)+(30+40+10+20)+(4+1+2+3)=10000+1000+100+10=111102、计算:123+234+345-456+567-678+789-890123+234+345-456+567-678+789-890=123+234+345+(567-456)+(789-678)-890=123+234+345+111+111-890=234+(123+567)-890=234+690-890=34+890-890=34【篇二】小学四年级奥数题及答案解析在一起抢劫案中,法官对涉案的四名犯罪嫌疑人赵达人,钱多多、孙上相、李拐铁四人实行了审问。
赵说:“罪犯在他们三个当中”钱说:“是孙干的。
”孙说:“在赵和李中间有一个人是罪犯。
”李说:“钱说的是事实。
”经多次查证,四人之中有两人说了假话,另外两个人说了真话,你能协助找出真正的罪犯吗?答案与解析:(假设法)已知四句话中只有两句是真话,且不能一下子看出真假,那么我们能够假定某句话是真的来实行推理,并以此作为本题的突破口。
假设赵说的是真话,根据两个人说了真话,则钱、孙、李三人中还有一个说了真话。
如果是钱说了真话,那么李说的也一定是真话,这样就变为三个人说了真话,这与题目给的。
条件不符。
所以钱说的不是真话,从而得到李说的也不是真话,孙说的是真话,于是在这种情况下,赵和孙说了真话,所以李是罪犯。
如果赵说的是假话,那么钱、孙、李都不是罪犯,这时只有赵是罪犯。
但是这样就得到了赵、钱、李三个人都说了假话,这也与题意不符。
所以这情况不可能出现。
小学四年级奥数试题附答案
小学四年级奥数试题附答案小学四年级奥数试题附答案在日常学习和工作生活中,我们都经常看到试题的身影,通过试题可以检测参试者所掌握的知识和技能。
你所见过的试题是什么样的呢?下面是小编为大家整理的.小学四年级奥数试题附答案,仅供参考,大家一起来看看吧。
1.某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位.该校有宿舍_____间,学生_____人.2.用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克.3.用一根绳子测量井的深度,如果线绳两折时,多5米,;如果绳子3折时,差4米,绳子长_____米,井深_____米.4.小玲买5千克苹果,可多余1元8角钱;如果买6千克,还差1元2角.每千克苹果价钱是_____元,小玲带的钱是_____元.5.某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人.参加劳动的有_____人.6.挖一条水渠,如果每人挖24米,则超过总长120米,如果每人挖30米,则超过总长300米.挖渠共有_____人,渠长_____米.7.一根绳子,如果剪5段,则差2米;如果剪3段,则余下8米.绳子长_____米.8.箱子里有若干只袜子,如果每次取7只,则剩下6只,如果每次取9只,则差8只.箱子里_____只袜子.9.工人铺一条路基,若每天铺260米,铺完全路长就得延长8天;若每天铺300米,铺完全路长仍要延长4天,这条路长_____米.10.一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴没有分到,如果每只猴子分8个,则刚好分完.有_____个桃子.解答题:11.幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数差30个.问幼儿园有桃、梨多少个?12.课外活动跳绳比赛,其中2组各借绳4根,其余的组借5根,这样分配最后余下12根;如果每组借6根,这样恰好借完.问有绳多少根?13.小明用一元买了5支铅笔和8块橡皮,余下的钱,如果买一支铅笔就不足2分;如果买一块橡皮就多出1分.每支铅笔多少分?每块橡皮多少分?14.小玲从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校.如果每分钟走50米,则要迟到3分钟,小玲的家到学校有多远?答案:1.59人.解:(14+4)÷(7-5)=9(间);9×5+14=59(人).2.500公亩;2800千克.解:(300+200)÷(6-5)=500(公亩);500×5+300=2800(千克).3.54米,22米.解:(5×2+4×3)÷(3-2)=22(米);(22-4)×3=54(米).4.16.8元.解:(1.8+1.2)÷(6-5)=3(元);3×5+1.8=16.8(元).5.50人.解:10÷(12-10)=5(组),5×10=50(人).6.30人;600米.解:(300-120)÷(30-24)=30(人);30×30-300=600(米).7.23米.解:(8+2)÷(5-3)×5-2=23(米).8.55只.解:(6+8)÷(9-7)×9-8=55(只).9.7800米.解:260×8-300×4=880(米);880÷(300-260)=22(天);260×(22+8)=7800(米).10.80个.解:(10×2)÷(10-8)=10(只),10×8=80(个).11.90个;180个.解:因为梨数是桃数2倍,如果每人分梨5×2=10(个),最后余下15×2=30(个).因为14个比5个的2倍多14-5×2=4(个),分到最后差30个.所以30+30=60(个)为总差,每次多分4个为分差,幼儿园有60÷4=15(人).桃数有5×15+15=90(个),梨有90×2=180(个).12.10组;60根.解:[12-(5-4)×2]÷(6-5)=10(组);6×10=60(根).13.6分.解:如果小明多2分钱的话,正好可以买6支铅笔和8块橡皮.从总的钱数中减去铅笔比橡皮贵的钱,剩下的钱正好是14块橡皮的价钱,可用除法先求出每块橡皮的价钱,进而求出每支笔的价钱.铅笔:6+2+1=9(分)橡皮:[100+2-(2+1)×(5+1)]÷14=6(分).14.1200米.解:(80×6+50×3)÷(80-50)=21(分),(21-6)×80=1200(米).。
小学四年级奥数题及答案【五篇】
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《⼩学四年级奥数题及答案【五篇】》相关资料,希望帮助到您。
1.⼩学四年级奥数题及答案 1、学校提⾼班的同学去划船,他们算了⼀下,如果增加⼀条船。
正好每条船坐6⼈;如果减少⼀条船,正好每条船坐9⼈。
问这个班共有多少同学? 先增加⼀条船,正好每条船坐6⼈,然后去掉两条船,就会余下12名同学,改为每船正好坐9⼈,即每条船增加3⼈正好把余下的12名同学全部安排上去,所以现在还有: 12÷3=4(条)船,⽽全班同学的⼈数为9×4=36(⼈)。
2、马⼩哈做⼀道整数减法题时,把减数个位上的1看成7,把减数⼗位上的7看成1,结果得出差是111。
问正确答案应是⼏? 答案与解析: 解析:马⼩虎错把减数个位上1看成7,使差减少7-1=6,⽽把⼗位上的7看成1,使差增加70-10=60。
因此这道题归结为某数减6,加60得111,求某数是⼏的问题。
解:111-(70-10)+(7-1)=57答:正确的答案是57。
2.⼩学四年级奥数题及答案 1、⼩明从家到学校有两条⼀样长的路,⼀条是平路,另⼀条是⼀半上坡路、⼀半下坡路。
⼩明上学⾛两条路所⽤的时间⼀样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍? 上下坡答案: 设路程为180,则上坡和下坡均是90。
设⾛平路的速度是2,则下坡速度是3。
⾛下坡⽤时间90/3=30,⾛平路⼀共⽤时间180/2=90,所以⾛上坡时间是90-30=60⾛与上坡同样距离的平路时⽤时间90/2=45因为速度与时间成反⽐,所以上坡速度是下坡速度的45/60=0.75倍。
⼩学四年级奥数题及答案解析篇五 2、⼤强和⼩强共有100个苹果,⼤强的苹果⽐⼩强的两倍还多4个,⼤强有多少个苹果,⼩强有多少个苹果? 答案与解析: 把⼤强的苹果去掉4个后,⼤强的苹果数就是⼩强的两倍,这时候的苹果总数相当于⼩强苹果数的三倍。
(完整)小学四年级奥数题100道带答案有解题过程
(完整)小学四年级奥数题100道带答案有解题过程姓名:__________ 班级:__________ 学号:__________1.甲、乙两人同时从相距36千米的A、B两地相向而行,4小时后相遇。
已知甲每小时行5千米,乙每小时行多少千米?解:先根据“速度和=路程÷相遇时间”,求出甲、乙的速度和为36÷4=9(千米/小时)。
再用速度和减去甲的速度,即9-5=4(千米/小时),所以乙每小时行4千米。
2.有一堆苹果,平均分给5个小朋友余2个,平均分给7个小朋友也余2个,这堆苹果最少有多少个?解:先求出5和7的最小公倍数,5×7=35。
再加上余数2,35+2=37(个),所以这堆苹果最少有37个。
3.一个长方形的周长是24厘米,长是宽的2倍,求这个长方形的面积。
解:设宽为x厘米,则长为2x厘米。
根据“长方形周长=(长+宽)×2”,可列出方程:(x+2x)×2=24,3x×2=24,6x=24,x=4。
那么长为2×4=8(厘米),面积=长×宽=8×4=32(平方厘米)。
4.在一个除法算式中,被除数、除数、商和余数的和是100,已知商是8,余数是3,求被除数和除数各是多少?解:设除数为x,则被除数为8x+3。
根据题意可列出方程:(8x+3)+x+8+3=100,9x+14=100,9x=86,x=9.56(此处若考虑除数应为整数,则需要检查题目数据是否有误,但按照题目要求继续计算)。
被除数为8×9.56+3=79.48(同样,此处数据也因除数非整数而带有小数)。
5.小明有一些邮票,他送给小红12张后,还比小红多8张,原来小明比小红多多少张邮票?解:小明送给小红12张后还多8张,那么原来多的数量是12×2+8=32(张)。
6.有一个等差数列:3,8,13,18,…,这个数列的第20项是多少?解:先求公差为8-3=5。
学而思 奥数 四年级 相遇与追及问题详解
第十一讲相遇与追及1.乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.【解析】A,B两地的距离就是甲乙两辆汽车的路程和,都当5小时算,乙车多算了1小时:(48+50)×5-50×1=98×5—50=490—50=440(千米)2.甲地和乙地相距40千米,平平和兵兵由甲地骑车去乙地,平平每小时行14千米,兵兵每小时行17千米,当平平走了6千米后,兵兵才出发,当兵兵追上平平时,距乙地还有多少千米?【解析】平平先走的6千米就是路程差,先算出追及时间,用总路程去掉兵兵走的路就是距离乙地的路程:6÷(17—14) 40—2×17=6÷3 =40—34=2(小时) =6(千米)3.甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?【解析】去掉甲先走两小时的路程,剩下的路程甲乙两人的时间相同:(366—37×2)÷(36+37)=292÷73=4(小时)4.在一条笔直的公路上,可可和凡凡从相距100米的地方同时出发,相向跑步,以后方向都不变,可可每秒跑6米,凡凡每秒跑4米。
出发多少秒时,他们相距200米?【解析】两人原来只相距100米,相向而行,最后相距200米,说明两人一定是相遇过后又错开了:(100+200)÷(6+4)=300÷10=30(秒)5.在一条笔直的公路上,可可和凡凡从相距500米的地方同时出发,相向跑步,以后方向都不变,可可每秒跑6米,凡凡每秒跑4米。
出发多少秒时,他们相距200米?【解析】根据题目意思我们发现可能有两种情况:还未相遇:相遇后错开:(500—200)÷(6+4)(500+200)÷(6+4)=300÷10 =700÷10=30(秒) =70(秒)6.小新和正南二人同时从学校和家出发,相向而行,小新骑车每分钟行100米,5分钟后小新已超过中点50米,这时二人还相距30米,正南每分钟行多少米?【解析】两人的路程差为:50×2+30=130(米所以速度差为:130÷5=26(米/分钟)正南的速度为:100—26=74(米/分钟)7.A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时行50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?【解析】整个过程中燕子飞行的路程只要用速度乘时间就可以了,燕子风行的时间与两车相遇所需要的时间相同:480÷(35+45)=480÷80=6(小时)那么小燕子飞行的路程为:50×6=300(千米)8.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【解析】甲在第一次相遇时走的路程为18千米,第一次相遇两人共走一个AB,第二次相遇两人共走三个AB,所以甲共走的路程为第一次相遇走的路程的3倍,甲走的总路程去掉多余的的部分剩下的就是AB的距离:18×3—13=41(千米)9.两枚导弹相距41620千米,处于同一路线上彼此相向而行。
四年级奥数精典题及答案
四年级奥数精典题及答案四年级奥数题目往往注重培养学生的逻辑思维能力、数学兴趣以及解决实际问题的能力。
以下是一些适合四年级学生的奥数题目以及相应的答案:题目1:数字填空在数字序列 2, 4, 6, 8, __ 中,下一个数字应该是多少?答案1: 10这个序列是等差数列,公差为2。
所以下一个数字是8+2=10。
题目2:逻辑推理小明、小红和小刚是三个好朋友,他们分别住在不同的楼层。
小明住在二楼,小红住在比小明高一层的楼层,小刚住在最高层。
如果小红住在三楼,那么小刚住在几楼?答案2:小刚住在四楼。
根据题目描述,小明住在二楼,小红住在三楼,所以小刚只能住在四楼,这是最高层。
题目3:图形计数在一个3x3的网格中,有多少种方式可以画出一条从左上角到右下角的路径,只能向下或向右移动?答案3:有8种方式。
这是一个经典的组合问题,可以通过组合数来解决。
从左上角到右下角,需要向下移动2步,向右移动2步,总共4步。
选择2步向下的组合方式有C(4,2)种,即4!/(2!2!)=6种。
再加上2步向右的组合方式,总共是6*2=12种,但因为每次选择向下或向右都是独立的,所以需要除以2,得到最终答案8种。
题目4:年龄问题小华今年10岁,他的哥哥比他大5岁。
5年后,小华和他的哥哥的年龄之和是多少?答案4: 40岁。
小华的哥哥现在是10+5=15岁。
5年后,小华将是10+5=15岁,他的哥哥将是15+5=20岁。
他们的年龄之和将是15+20=35岁。
题目5:速度与时间一辆汽车以每小时60公里的速度行驶,如果它需要行驶120公里,需要多少时间?答案5: 2小时。
根据速度等于距离除以时间的公式,时间=距离/速度。
所以时间=120公里/60公里/小时=2小时。
这些题目涵盖了基本的数学概念和逻辑推理,适合四年级学生进行练习和思考。
通过解决这些问题,学生可以提高他们的数学技能和解决问题的能力。
小学四年级奥数试题及答案
小学四年级奥数试题及答案小学四年级奥数试题及答案-真题一、按规律填数。
1)64,48,40,36,34,322)8,15,10,13,12,11,93)1、4、5、8、9、11、13、15、174)2、4、5、10、11、13、145)5,9,13,17,21,25,29二、等差数列1.在等差数列3,12,21,30,39,48,…中,912是第几个数?答案:912=3+9x101,所以912是第101项。
2.求1至100内所有不能被5或9整除的整数和。
答案:1至100中5的倍数有20个,9的倍数有11个,其中既是5的倍数又是9的倍数的只有45.所以不能被5或9整除的整数有100-20-11+1=70个,它们的和为70x71÷2=2485.3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?答案:210÷7=30,所以这7个数的平均数是30.又因为这7个数的差都是5,所以第4个数是30,第1个数是20,第6个数是40.4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和。
答案:第5组中的第一个数是9,所以这一组的数是81、83、85、87、89、91、93、95、97,它们的和是9x2+4x9x5=342.5.将自然数如下排列。
1 2 6 7 15 16…3 5 8 14 17…4 9 13 18…10 12…11…在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?答案:每一行的第一个数都是平方数,所以第44行的第一个数是1936,第45行的第一个数是2025.1993在这两个数之间,所以它在第45行。
四年级数学有趣经典的奥数题及答案解析
四年级数学有趣经典的奥数题及答案解析在四年级学习数学的过程中,经典的奥数题对于培养学生对数学的兴趣和思维能力起到了至关重要的作用。
本文将为大家介绍一些有趣的经典奥数题,并给出相应的答案解析,希望能够帮助大家更好地理解和掌握其中隐藏的数学知识。
1. 等差数列求和题目:1 + 2 + 3 + ... + 100 = ?解析:这是一个等差数列求和的问题。
根据等差数列求和公式,我们可以得到求和结果为:S = (首项 + 末项) * 项数 / 2。
根据题目中的条件,首项为1,末项为100,项数为100。
代入公式得到:S = (1 + 100) * 100 / 2 = 5050。
因此,1 + 2 + 3 + ... + 100 = 5050。
2. 数字排列组合题目:用数字1、2、3、4组成没有重复数字的三位数共有多少个?解析:对于这个问题,我们可以采用穷举法来解决。
首先确定百位数,根据题意,百位数可以是1、2、3、4中的一个数字,即有4种选择。
然后确定十位数,由于百位数已经确定,所以十位数只能是剩下的3个数字中的一个,即有3种选择。
最后,个位数由于前两位数已经确定,所以只剩下1个数字可选。
因此,总共的排列组合方式为4 *3 * 1 = 12种。
所以,用数字1、2、3、4组成没有重复数字的三位数共有12个。
3. 分数约分题目:将分数8/24化简为最简形式。
解析:要将一个分数化简为最简形式,需要找到其最大公约数,并将分子和分母都除以最大公约数。
首先,求解8和24的最大公约数。
可以发现8和24都可以被2整除,因此最大公约数为2。
然后,将分子8和分母24都除以2得到4/12。
再次求解4和12的最大公约数,可以发现4和12都可以被4整除,因此最大公约数为4。
最后,将4/12化简为1/3。
所以,分数8/24化简为最简形式为1/3。
4. 阶乘计算题目:计算4的阶乘。
解析:阶乘是指从1乘到给定的正整数的连续乘积。
4的阶乘表示为4!,计算方法为4! = 4 * 3 * 2 * 1 = 24。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
小学四年级奥数题及答案五篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学四年级奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩学四年级奥数题及答案 1、找规律,在括号内填⼊适当的数。
3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前⾯的奇数项的2倍;⼜8=6+2,18=16+2,即从第三项起,奇数项⽐它前⾯的偶数项多2。
所以应填:36,38。
2、找规律,在括号内填⼊适当的数。
1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。
3、找规律,在括号内填⼊适当的数。
1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每⼀项⽐前⼀项多2;偶数项构成数列4,8,12,…,每⼀项⽐前⼀项多4,所以应填:16。
4、找规律,在括号内填⼊适当的数。
0,1,3,8,21,55,(),()。
答案:144,377。
5、A、B、C、D四⼈在⼀场⽐赛中得了前4名。
已知D的名次不是,但它⽐B、C都⾼,⽽C的名次也不⽐B⾼。
问:他们各是第⼏名? 答案:D名次不是,但⽐B、C⾼,所以它是第2名,A是第1名。
C的名次不⽐B⾼,所以B是第3名,C是第4名。
2.⼩学四年级奥数题及答案 1、甲、⼄、丙三⼈年龄之和是94岁,且甲的2倍⽐丙多5岁,⼄2倍⽐丙多19岁,问:甲、⼄、丙三⼈各多⼤? 如果每个⼈的年龄都扩⼤到2倍,那么三⼈年龄的和是94×2=188。
如果甲再减少5岁,⼄再减少19岁,那么三⼈的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的⼀半,即丙的年龄是甲的两倍。
同样,这时丙的年龄也是⼄两倍。
所以这时甲、⼄的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。
小学四年级奥数题及答案[五篇]
小学四年级奥数题及答案[五篇]1.小学四年级奥数题及答案篇一1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?解析:把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于(45+46+49+52)÷3=64。
用总数减去最大的三数之和,就是这四个数中的最小数,即64-52=12。
2、电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。
每辆电车每停开1分钟的经济损失是11元。
现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?答案与解析:由题可知,要使经济损失最小,3名工人的工作时间尽量均等,缤纷接每个人要先维修时间短的,故有:12+17+8+18+23+30+14=122122÷3=40余2①12+30=42②17+23=40③8+14+18=40这7辆车最少共停开的时间为:(12+12+30)+(17+17+23)+(8+8+8+14+14+18)=181(分钟)最小损失为11×181=1991(元)2.小学四年级奥数题及答案篇二1、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。
求这块平行四边形地原来的面积?解析:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。
根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。
再用原来的底乘以原来的高就是要求的面积。
解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米。
2、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
分析:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。
小学四年级30道高难度奥数题及分析
小学四年级30道高难度奥数题及分析1、巧用计算器如果你只能按计算器上1与0两个数字键,请试试看你是否能用不同的方式得出其他的数字。
例如,要想得到120,你可以按下,第一种方式需要按键9次,其他两种方式只需7次,因此后两种是比较有效率的方式。
请用最有效率的方式,在计算器上得出下列数字:(1)77 (2)979 (3)1432(4)1958 (5)2046 (6)159832、巧妙分酒一个人晚上出去打了10斤酒,回家的路上碰到了一个朋友,恰巧这个朋友也是去打酒的。
不过,酒家已经没有多余的酒了,且此时天色已晚,别的酒家也都已经打烊了,朋友看起来十分着急。
于是,这个人便决定将自己的酒分给他一半,可是朋友手中只有一个7斤和3斤的酒桶,两人又都没有带称,如何才能将酒平均分开呢?3、买书小红和小丽一块到新华书店去买书,两个人都想买《综合习题》这本书,但钱都不够,小红缺少4.9元,小丽缺少0.1元,用两个人合起来的钱买一本,但是钱仍然不够,那么,这本书的价格是多少呢?4、马匹喝水。
老王要养马,他有这样一池水:如果养马30匹,8天可以把水喝光;如果养马25匹,12天把水喝光。
老王要养马23匹,那么几天后他要为马找水喝?5、灵活解题弟弟让姐姐帮他解答一道数学题,一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。
姐姐看了以后,心里很是着急,觉得自己摸不到头绪,你能帮姐姐得到这首题的答案吗?6、买卖衣服小丽花90元买了件衣服,她脑子一转,把这件衣服120元卖了出去,她觉得这样挺划算的,于是又用100元买进另外一件衣服,原以为会150元卖出,结果卖亏了,90元卖出。
问:你觉得小丽是赔了还是赚了?赔了多少还是赚了多少?7、过桥星期天,洛洛全家人出去游玩,由于玩的太高兴了,忘记了时间,他们慌慌张张来到一条小河边,河上有座桥,一次只允许两个人通过。
如果他们一个一个过桥的话,洛洛需要15秒,妹妹要20秒,爸爸要8秒,妈妈要10秒,奶奶要23秒。
小学四年级经典奥数题集及答案解析
小学四年级经典奥数题集及答案解析奥数学习好的学生,一般都作了一本或者几本题库练习类的书。
下面小编给大家分享了几道比较经典的奥数题,一起来看看吧!狐狸卖了多少元:在一个雾霾天,狐狸,兔子和狗熊去卖口罩。
狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个……。
兔子说:“我卖的价格是狐狸的一半。
”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?答案与解析:答案:120元解析:假设狗熊卖了X元,由题意知,狐狸就是4X,兔子就是2X。
那么4X+2X+X=210,X=30,狐狸卖了4*30=120元。
何时平均储蓄超过5元:今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?答案与解析:(5-4.2)×5÷(6-5)=4(个)6+4=10(月)答:从10月起小明的平均储蓄超过5元。
相邻两把椅子之间相距多少米:在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等。
相邻两把椅子之间相距多少米?答案与解析:25÷(12÷2-1)=25÷(6-1)=25÷5=5(米)答:相邻两把椅子之间相距5米。
乙跑到几层:甲、乙两人比赛爬楼梯,甲跑到5楼时,乙恰好跑到3楼.照这样计算,甲跑到17楼时,乙跑到几层?答案与解析:甲乙的速度之比:(5-1):(3-1)=2:1,乙跑的层数:(17-1)÷2+1=9(层),答:当甲到17楼时,乙到9层。
快车几秒可越过慢车:快车长182米,每秒行20米,慢车长1034米,每秒行18米,两车同向并行,当两车车头齐时,快车几秒可越过慢车?答案与解析:182÷(20-18)=182÷2=91(秒)答:快车91秒可越过慢车。
每小时行多少千米:A、B两地相距40千米,甲乙两人同时分别从A、B两地出发,相向而行,8小时后相遇。
四年级奥数题第27讲 较复杂的和差倍问题
第27讲较复杂的和差倍问题一、专题简析:前面我们学习了和倍、差倍、和差三种应用题,有的题目需要通过转化而成为和倍、差倍、和差问题,这类问题叫做复杂的和差倍问题。
解答较复杂的和差倍问题,需要我们从整体上把握住问题的本质,将题目进行合理的转化,从而将较复杂的问题转化为一般和倍、差倍、和差应用题来解决。
二、精讲精练:例1:两箱茶叶共重96千克,如果从甲箱取出12千克放入乙箱,那么乙箱的千克数是甲箱的3倍。
两箱原来各有茶叶多少千克?练习一1、书架的上、下两层共有书180本,如果从上层取下15本放入下层,那么下层的本数正好是上层的2倍。
两层原来各有书多少本?2、甲、乙两人共储蓄2000元,甲取出160元,乙又存入240元,这时甲储蓄的钱数比乙的2倍少20元。
甲、乙两人原来各储蓄多少元?例2:甲、乙、丙三个同学做数学题,已知甲比乙多做5道,丙做的是甲的2倍,比乙多做20道。
他们一共做了多少道数学题?练习二1、某厂一季度创产值比三季度多2万元,二季度的产值是一季度产值的2倍,比三季度产值多42万元。
三个季度共创产值多少万元?2、甲、乙、丙三个人合做一批零件,甲比乙多做12个,丙做的比甲的2倍少20个,比乙做的多38个。
这批零件共有多少个?例3:某工厂一、二、三车间共有工人280人,第一车间比第二车间多10人,第二车间比第三车间多15人。
三个车间各有工人多少人?练习三1、一个三层书架共放书168本,上层比中层多12本,下层比中层少6本。
三层各放书多少本?2、一个三层柜台共放皮鞋120双,第一层比第二层多放4双,第二层比第三层多7双,三层各多皮鞋多少双?例4:两个数相除,商是4,被除数、除数、商的和是124。
被除数和除数各是多少?练习四1、在一个除法算式中,被除数、除数、商的和是123。
已知商是3,被除数和除数各是多少?2、两个数相除,商是5,余数是7,被除数、除数、商、余数的和是187,求被除数。
例5:甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍。
【经典】小学四年级奥数题及答案(可直接打印) 一图文百度文库
【经典】小学四年级奥数题及答案(可直接打印) 一图文百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.是三位数,若a是奇数,且是3的倍数,则最小是.3.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.4.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.5.如果今天是星期五,那么从今天算起,57天后的第一天是星期.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.在□中填上适当的数,使竖式成立.8.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.9.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.10.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.11.两数相除,商是12,余数是3,被除数最小是.12.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.13.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.14.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.15.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.3.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.4.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.5.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:根据题干分析可得:8.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.9.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.10.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.11.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.12.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.13.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.14.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.15.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.。
小学四年级奥数题练习及答案解析-学而思入学必备
小学四年级奥数题练习及答案解析-学而思入学必备四年级奥数题:统筹规划(一)1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟。
如何安排才能尽早喝上茶?答案:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升。
问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?答案:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)。
3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?答案:先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)4、甲、乙、丙、___四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟。
怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间?答案:应按丙,乙,甲,丁顺序用水。
丙等待时间为,用水时间1分钟,总计1分钟;乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟;甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数题:统筹规划(一)【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
四年级奥数题:统筹规划问题(二)【试题】4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
【分析】:所花的总时间是指这四人各自所用时间与等待时间的总和,由于各自用水时间是固定的,所以只能想办法减少等待的时间,即应该安排用水时间少的人先用。
解:应按丙,乙,甲,丁顺序用水。
丙等待时间为0,用水时间1分钟,总计1分钟乙等待时间为丙用水时间1分钟,乙用水时间2分钟,总计3分钟甲等待时间为丙和乙用水时间3分钟,甲用水时间3分钟,总计6分钟丁等待时间为丙、乙和甲用水时间共6分钟,丁用水时间10分钟,总计16分钟,总时间为1+3+6+16=26分钟。
四年级奥数题:统筹规划问题(三)【试题】5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。
现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。
最短时间是多少分钟呢?【分析】:大家都很容易想到,让甲、乙搭配,丙、丁搭配应该比较节省时间。
而他们只有一个手电筒,每次又只能过两个人,所以每次过桥后,还得有一个人返回送手电筒。
为了节省时间,肯定是尽可能让速度快的人承担往返送手电筒的任务。
那么就应该让甲和乙先过桥,用时2分钟,再由甲返回送手电筒,需要1分钟,然后丙、丁搭配过桥,用时10分钟。
接下来乙返回,送手电筒,用时2分钟,再和甲一起过桥,又用时2分钟。
所以花费的总时间为:2+1+10+2+2=17分钟。
解:2+1+10+2+2=17分钟【试题】6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
【分析】:要使过河时间最少,应抓住以下两点:(1)同时过河的两头牛过河时间差要尽可能小(2)过河后应骑用时最少的牛回来。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
四年级奥数题:速算与巧算(一)【试题】计算9+99+999+9999+99999【解析】在涉及所有数字都是9的计算中,常使用凑整法。
例如将999化成1000—1去计算。
这是小学数学中常用的一种技巧。
9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105四年级奥数题:速算与巧算(二)【试题】计算199999+19999+1999+199+19【解析】此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。
不过这里是加1凑整。
(如199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225四年级奥数题:速算与巧算(三)【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)【分析】:题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。
但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。
解:解法一、分组法(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)=1+1+1+…+1+1+1(500个1)=500解法二、等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500四年级奥数题:速算与巧算(四)【试题】计算9999×2222+3333×3334【分析】此题如果直接乘,数字较大,容易出错。
如果将9999变为3333×3,规律就出现了。
9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000。
四年级奥数题:速算与巧算(五)【试题】56×3+56×27+56×96-56×57+56【分析】:乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。
同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。
56×3+56×27+56×96-56×57+56=56×(32+27+96-57+1)=56×99=56×(100-1)=56×100-56×1=5600-56=5544四年级奥数题:速算与巧算(六)【试题】计算98766×98768-98765×98769【分析】:将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。
解:98766×98768-98765×98769=(98765+1)×98768-98765×(98768+1)=98765×98768+98768-(98765×98768+98765)=98765×98768+98768-98765×98768-98765=98768-98765=3四年级奥数题:年龄问题【试题】:1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
问李老师和王刚各多少岁?3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。
小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。
”问大象妈妈有多少岁了?5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。
问大、小熊猫各几岁?6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。
求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。
已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?【答案】:1、一年前。
2、刘红10岁,李老师28岁。
(10+8-8)÷(2-1)=10(岁)。
3、妹妹7岁。
姐姐14岁。
[27-(3×2)]÷(2+1)=7(岁)。
4、小象10岁,妈妈19岁。
(28-1)÷3+1=10(岁)。
5、大熊猫15岁,小熊猫5岁。
(28-4×2)÷(3+1)=5(岁)。
6、父亲50岁,儿子20岁。
(15+10)÷(7-2)+15=20(岁)7、王涛12岁,妈妈34岁。
爸爸36岁,奶奶58岁,爷爷60岁。
提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。
(200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。
四年级奥数题:牛吃草问题解析解决牛吃草问题的多种算法历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。
在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。
主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。