2020高考数学总复习 第十一单元第六节随机数与几何概型

合集下载

高中数学总复习课件:随机数与几何概型

高中数学总复习课件:随机数与几何概型
随机数是在一定范围内产生的数,这 个范围可以是整数、实数等。随机数 具有不确定性,每次产生的数都是随 机的。在概率论中,随机数是用来表 示随机事件的数。
几何概型
几何概型是一种概率模型,它描述的 是在某个几何区域内随机选择一个点 或物体,该点或物体落入某个子区域 的可能性。几何概型的概率与该子区 域的面积或体积成正比。
统计分析等。
计算机科学
在计算机科学中,随机 数被用于模拟、加密、
游戏等领域。
物理学
在物理学中,随机数被 用于描述微观粒子的运 动、量子力学等领域。
02
几何概型
几何概型的定义
几何概型的定义
在一定的区域内随机地取一个点,如 果每个点被取到的可能性都相同,并 且区域内的点是无限可分的,则这样 的随机试验就称为几何概型。
互斥事件的概率计算
如果两个事件是互斥的,那么它们同时发生的概率等于它们各自发生的概率之 和。即,如果事件A和事件B是互斥的,那么$P(A cap B) = P(A) + P(B)$。
03
随机数与几何概型的结合
结合的定义
定义
随机数与几何概型结合是指将随机数理论应用于几何概型的 概率计算中,通过将几何形状的面积、体积等转化为随机数 ,从而简化概率计算的过程。
在一个边长为1的正方形内随机选择一个点 ,求该点到正方形中心点的距离等于边长 的概率。
习题3
答案
一个长度为2的线段上随机选择一个点,求 该点到线段两端点的距离都小于1的概率。
习题1的答案是0.25,习题2的答案是0.25 ,习题3的答案是0.5。
THANKS
感谢观看
任何事件的概率都是非负的。即 ,对于任何事件$A$,都有 $P(A) geq 0$。

2020高考文科数学(人教A版)总复习课件:第十一章 概率11.1

2020高考文科数学(人教A版)总复习课件:第十一章 概率11.1

排队人数 0
1
2
3
4
5 人及 5 人以上
概 率 0.1 0.16 0.3 0.3 0.1 0.04
求:(1)至多2人排队等候的概率是多少? (2)至少3人排队等候的概率是多少?
考点1
第十一章
考点2
考点3
11.1 随机事件的概率
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
学科素养·微专题
-20-
(3)求续保人本年度平均保费的估计值.
考点1
第十一章
考点2
考点3
11.1 随机事件的概率
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
学科素养·微专题
-14-
解 (1)事件 A 发生当且仅当一年内出险次数小于 2. 由所给数据知,一年内出险次数小于 2 的频率为602+0050=0.55, 故 P(A)的估计值为 0.55. (2)事件 B 发生当且仅当一年内出险次数大于 1 且小于 4.
频率 0.30 0.25 0.15 0.15 0.10 0.05
调查的200名续保人的平均保费为
0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a ×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
考点1
第十一章
关关键键能能力力··学学案案突突破破
学科素养·微专题
-18-

(1)甲品牌产品寿命小于
200
小时的频率为5+20
100
=
14,用频率估计
概率,可得甲品牌产品寿命小于 200 小时的概率为14.

【精品整理】2020年高考数学一轮复习考点与题型总结:第十一章 计数原理与概率、随机变量及其分布

【精品整理】2020年高考数学一轮复习考点与题型总结:第十一章 计数原理与概率、随机变量及其分布

第十一章计数原理与概率、随机变量及其分布第一节 分类加法计数原理与分步乘法计数原理两个计数原理完成一件事的策略完成这件事共有的方法分类加法计数原理有两类不同方案❶,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法N=m+n种不同的方法分步乘法计数原理需要两个步骤❷,做第1步有m种不同的方法,做第2步有n种不同的方法N=m×n种不同的方法(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a 2=4,满足条件的“凸数”有3×4=12(个),…,若a 2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240考点二 分步乘法计数原理[典例精析](1)已知集合M ={-3,-2,-1,0,1,2},P (a ,b )(a ,b ∈M )表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为( )A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析] (1)确定第二象限的点,可分两步完成:第一步确定a ,由于a <0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6考点三两个计数原理的综合应用[典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析:选B当x=2时,x≠y,点的个数为1×7=7.当x≠2时,∵P⊆Q,∴x=y.∴x 可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析:选C分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析:选A 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C 12=2(种).共有2×2×2×2×2=32(个)子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个等比数列.6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为( )A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.(2019·郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法. 3 4 12 D 34 A C B 98.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.第二节 排列与组合1.排列、组合的定义2.排列数、组合数的定义、公式、性质正确理解组合数的性质:从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的(1)C m n=C n-mn方法数.=C m n+1:从n+1个不同元素中取出m个元素可分以下两种情况:①不含特(2)C m n+C m-1n殊元素A有C m n种方法;②含特殊元素A有C m-1种方法.n考点一排列问题[典例精析]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[解题技法]求解排列应用问题的6种主要方法[题组训练]1.(2019·太原联考)高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是()A.1 800B.3 600C.4 320D.5 040解析:选B先排除舞蹈节目以外的5个节目,共A55种,再把2个舞蹈节目插在6个空位中,有A26种,所以共有A55A26=3 600(种).2.(2019·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得满足条件的四位数共有24+24=48(个),故选C.3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有()A.1 108种B.1 008种C.960种D.504种解析:选B将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).考点二组合问题[典例精析]某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同取法有多少种?(2)其中某一种假货不能在内,不同取法有多少种?(3)恰有2种假货在内,不同取法有多少种?(4)至少有2种假货在内,不同取法有多少种?(5)至多有2种假货在内,不同取法有多少种?[解](1)从余下的34种商品中,选取2种有C234=561(种)取法,所以某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种)取法.所以某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100(种)取法.所以恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).所以至少有2种假货在内的不同的取法有2 555种.(5)法一:(间接法)选取3种商品的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.法二:(直接法)共有选取方式C320+C220C115+C120C215=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.[解题技法]组合问题的2类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[题组训练]1.(2018·南宁二中、柳州高中第二次联考)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64解析:选D从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法.2.(2019·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C 15C 24=30种搜寻方案;若Grace 参与任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C 25种挑法,剩下3位小孩去搜寻远处,因此共有C 25=10种搜寻方案.综上,一共有30+10=40种搜寻方案.3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:从2位女生,4位男生中选3人,共有C 36种情况,没有女生参加的情况有C 34种,故共有C 36-C 34=20-4=16(种).答案:16考点三 分组、分配问题考法(一) 整体均分问题[例1] 国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.[解析] 先把6个毕业生平均分成3组,有C 26C 24C 22A 33=15(种)方法.再将3组毕业生分到3所学校,有A 33=6(种)方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90(种)分派方法. [答案] 90考法(二) 部分均分问题[例2] 有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.[解析] 先把4名学生分为2,1,1共3组,有C 24C 12C 11A 22=6(种)分法,再将3组对应3个学校,有A 33=6(种)情况,则共有6×6=36(种)不同的保送方案.[答案] 36考法(三) 不等分问题[例3] 若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] 将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] 360[题组训练]1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有______种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150 考点四 排列、组合的综合问题[典例精析](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300B.216C.180D.162(2)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)[解析] (1)分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 23·C 22·A 44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 12·C 23·(A 44-A 33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是C23A33C14=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是A33C13=18,故这种情况下符合要求的四位数共有72+18=90(个).当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为C23A33C14=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是C13C23A33C13=162,故这种情况下符合要求的四位数共有72+162=234(个).根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).[答案](1)C(2)324[解题技法]解决排列、组合综合问题的方法(1)仔细审题,判断是组合问题还是排列问题,要按元素的性质分类,按事件发生的过程进行分步.(2)以元素为主时,先满足特殊元素的要求,再考虑其他元素;以位置为主时,先满足特殊位置的要求,再考虑其他位置.(3)对于有附加条件的比较复杂的排列、组合问题,要周密分析,设计出合理的方案,一般先把复杂问题分解成若干个简单的基本问题,然后应用分类加法计数原理或分步乘法计数原理来解决,一般遵循先选后排的原则.[题组训练]1.(2019·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法.2.(2019·成都诊断)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答) 解析:根据题意,分2种情况讨论,若甲、乙之中只有一人参加,有C12·C46·A55=3 600(种);若甲、乙两人都参加,有C22·A36·A=241 440(种).则不同的安排种数为3 600+1 440=5 040.答案:5 040。

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。

11-6几 何 概 型

11-6几 何 概 型

北 师 大 版
[答案] C
第11章
第六节
高考数学总复习
[点评] 与体积有关的几何概型由公式 构成事件A的区域体积 P(A)= 可求之. 试验的全部结果构成的区域体积
北 师 大 版
第11章
第六节
高考数学总复习
在 1 升高产小麦种子中混入了一种带麦锈病的种子,从 中随机取出 10 mL ,则取出的种子中含有麦锈病的种子的概 率是多少? [分析] 本题主要考查与体积有关的几何概型问题.
第11章
第六节
高考数学总复习
3.(2011· 福建理,4)如图,矩形 ABCD 中,点 E 为边 CD 的中点.若在矩形 ABCD 内部随机取一个点 Q,则点 Q 取自 △ABE 内部的概率等于( 1 A. 4 1 C. 2 ) 1 B. 3 2 D. 3
北 师 大 版
[答案] C
第11章
第六节
高考数学总复习
北 师 大 版
第11章
第六节
高考数学总复习
7.某人欲从某车站乘车出差,已知该站发往各站的客
车均为每小时一班,求此人等车时间不多于10分钟的概 率.
[解析] 设 A={等车的时间不多于 10 分钟},事件 A 恰 好是到站等车的时刻位于[50,60] 这一段时间内,因此由几何 60-50 1 概型的概率公式得 P(A)= = ,即此人等车时间不多 60 6 1 于 10 分钟的概率为 . 6
高考数学总复习
北 师 大 版
第11章 计数原理与概率
高考数学总复习
第 六 节
几何概型
北 师 大 版
第11章
第六节
高考数学总复习
文科第三节
北 师 大 版
第11章

高考数学考纲

高考数学考纲

高考数学考纲
(一)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
(二)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(三)统计案例
(1)通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
(2)通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.。

高考数学人教版理科一轮总复习精品11.3-随机数及几何概型ppt课件

高考数学人教版理科一轮总复习精品11.3-随机数及几何概型ppt课件

P(A)=
构成事件������的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
.
3.用随机数估计事件发生的概率:利用计算机或计算器产生一些满足 一定条件的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以 替代我们进行大量的重复试验,从而估计得到事件的概率.
-4- 4
D.π4
关闭
A
答案
-5- 5
2.在长为 6 m 的木棒上任取一点 P,使点 P 到木棒两端点的距离都大于 2 m 的概率是( )
A.14
B.13
C.12
D.23
关闭
B
答案
-6- 6
3.已知正方体 ABCD-A1B1C1D1 内有一个内切球 O,则在正方体
ABCD-A1B1C1D1 内任取点 M,点 M 在球 O 内的概率是(
1
11.3 随机数与几何概型
-2- 2
1.了解随机数的意义,能运用模拟试验的方法估计概率. 2.了解几何概型的意义.
-3- 3
1.几何概型的概念
如果每个事件发生的概率只与构成该事件区域的 长度 ( 面积 或 体积 )成比例,则称这样的概率模型为几何概率模型,简称为 几何 概型 .
2.几何概型中,事件 A 的概率计算公式:
)
A.π4
B.π8
C.π6
D.1π2
关闭
设正方体棱长为 a,则正方体的体积为 a3,内切球的体积为43π × 故C M 在球 O 内的概率为16π���������3���3 = π6.
������ 2
3
= 16πa3关, 闭
解析 答案
-7- 7
4.有一杯 2 升的水,其中含一个细菌,用一个小杯从水中取 0.1 升水,则此小杯

2020高考数学基础考点提速训练 第6讲 古典概型与几何概型(教师讲义)

2020高考数学基础考点提速训练 第6讲 古典概型与几何概型(教师讲义)

第6讲 古典概型与几何概型1.(2019·全国Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“— —”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116 答案 A解析 由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=6×5×43×2×1=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A.2.(2019·黄冈调研)黄冈市的天气预报显示,大别山区在今后的三天中,每一天有强浓雾的概率为40%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生0~9之间整数值的随机数,并用0,1,2,3,4,5表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数: 779 537 113 730 588 506 027 394 357 231 683 569 479 812 842 273 925 191 978 520 则这三天中至少有两天有强浓雾的概率近似为( ) A.14 B.25 C.310 D.15 答案 C解析 由题意,知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了20组随机数, 在20组随机数中表示三天中至少有两天有强浓雾的有6组随机数:779,588,683,569,479,978, 故所求概率为620=310.3.(2019·九江模拟)河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.现从这十个数中随机抽取四个数,则能成为两组的概率是( )A.15B.110C.121D.1252 答案 C解析 现从这十个数中随机抽取4个数,基本事件总数n =C 410, 能成为两组的基本事件个数m =C 25,则能成为两组的概率是P =m n =C 25C 410=121.4.在长为10 cm 的线段AB 上任取一点C ,再作一个矩形,使其边长分别等于线段AC ,CB 的长,则该矩形面积小于16 cm 2的概率为( ) A.15 B.25 C.35 D.45 答案 B解析 设AC =x ,则BC =10-x ,由题意矩形面积S =x ·()10-x <16,所以x <2或x >8,又0<x <10,所以该矩形面积小于16的概率为410=25.5.(2019·青岛模拟)有一底面半径为1,高为2的圆柱,点O 为圆柱下底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.13 B.23 C.34 D.14 答案 B解析 设点P 到点O 的距离小于等于1的概率为P 1,由几何概型,则P 1=V 半球V 圆柱=12×4π3×13π×12×2=13,故点P 到点O 的距离大于1的概率P =1-13=23. 6.(2019·遵义模拟)如图,该茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整数),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为( )A.15B.25C.110D.310 答案 A解析 记其中被污损的数字为x .依题意,得甲的5 次综合测评的平均成绩为90,乙的5 次综合测评的平均成绩为15(442+x ),令15(442+x )≥90,由此解得x ≥8,由此乙的平均成绩不低于甲的平均成绩的概率为210=15.7.中国古代数学名著《九章算术》中记载:“圆周与其直径之比被定为3,圆中弓形面积为12a (a+c )(c 为弦长,a 为半径长与圆心到弦的距离之差).”据此计算,已知一个圆中弓形所对应的弦长c =6,a =1,质点M 随机投入此圆中,则质点M 落在该弓形内的概率为( ) A.730 B.175 C.7150 D.350 答案 C解析 由圆中弓形面积为12a (a +c )知弓形的面积S 1=12×1×(6+1)=72.设圆的半径为r ,则r 2=(r -1)2+32,解得r =5,所以圆的面积S 2=3r 2=75,所以质点M 落在弓形内的概率为P =S 1S 2=7275=7150. 8.(2019·汕头达濠华侨中学、东厦中学联考)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为( )A.11B.10C.9D.8 答案 C解析 设黑色部分的面积为S ,∵边长为4的正方形二维码, 在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,∴S 4×4=225400,解得S =9, 据此可估计黑色部分的面积为9.9.(2019·长沙长郡中学模拟)已知A (1,0),B (x ,y )(x ,y ∈R ),若|AB →|≤1,则2y -x ≥1的概率为( ) A.12+14π B.14+1π C.12-12π D.14-12π答案 D解析 ∵A (1,0),B (x ,y )(x ,y ∈R ),|AB →|≤1,∴()x -12+y 2≤1,表示以点(1,0)为圆心,1为半径的圆面(包括边界),∵2y -x≥1,∴y ≥x ,即⎩⎨⎧(x -1)2+y 2≤1,y ≥x .可行域为阴影部分(包括边界),如图所示.由几何概型概率计算公式,得到14π×12-12×12π×12=14-12π.10.如图,边长为a 的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A.9-3π18B.9-43π18C.9-3π27D.9-43π27答案 C解析 如图所示,六边形为边长为a 的正六边形,则OA =OB =AB =a ,设正六边形的中心为点O ,小圆的圆心为O ′,则O ′C ⊥AB ,∴OC =32a , ∴O ′C =36a ,OO ′=33a ,∴OD =12a , ∴S 阴影=12×⎣⎡⎦⎤12×36a ·12a -16π·⎝⎛⎭⎫36a 2=⎝⎛⎭⎫32-π6a 2,S 正六边形=332a 2,∴在正六边形内任取一点,该点恰好取自阴影部分的概率 P =S 阴影S 正六边形=32-π6332=9-3π27.11.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为( )A.532B.516C.1132D.1116 答案 B解析 由题意可知,填写的可能结果共有如下32种: 00000,00001,00010,00011,00100,00101,00110,00111, 01000,01001,01010,01011,01100,01101,01110,01111, 10000,10001,10010,10011,10100,10101,10110,10111, 11000,11001,11010,11011,11100,11101,11110,11111,其中满足题意的有10种:10101,10110,10111,11001,11010,11011,11100,11101,11110,11111, 由古典概型概率计算公式可得满足题意的概率值P =1032=516.12.(2019·河南名校联考)如图放置的边长为1的正方形P ABC 沿x 轴顺时针滚动一周,设顶点P 的运动轨迹与x 轴所围区域为M ,若在平面区域N =⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0≤x ≤4,0≤y ≤2内任意取一点Q ,则所取的点Q 恰好落在区域M 内部的概率为( )A.π16B.π8 C.π+18 D.π+28 答案 C解析 正方形P ABC 沿x 轴顺时针滚动一周,顶点P 的运动轨迹分三部分:前一部分的图象为四分之一圆周,后一部分的图象为四分之一圆周,且半径都是1,此时两部分扇形所占面积之和为12π,中间部分的轨迹为以2为半径的四分之一圆周,与x 围成的面积为14π×()22+1=π2+1,顶点P 的运动轨迹与x 轴所围区域M 的面积为π2+π2+1=π+1,平面区域N =⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪ ⎩⎨⎧⎭⎬⎫0≤x ≤4,0≤y ≤2的面积为4×2=8,所以在平面区域N =⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪ ⎩⎨⎧⎭⎬⎫0≤x ≤4,0≤y ≤2内任意取一点Q ,则所取的点Q 恰好落在区域M 内部的概率为π+18.13.(2019·资阳模拟)从数字1,2,3,4中,随机抽取3个数字(允许重复)组成一个三位数,则各位数字之和等于9的概率为________. 答案532解析 三位数共有4×4×4=64(个),各位数字之和等于9有这样几种情况,第一种:各个数字不同只有一种情况,即取2,3,4这三个数字,这样的三位数有A 33=6(个); 第二种:数字相同的情况,可以取1,4,4,这样的三位数有3个;可以取3,3,3这样的三位数有1个.所以各位数字之和等于9的概率是6+3+164=532.14.(2019·邢台模拟)小周公司的班车早上7点到达A 地,停留15分钟.小周在6:50至7:45之间到达A 地搭乘班车,且到达A 地的时刻是随机的,则他能赶上公司班车的概率为________. 答案511解析 依题意知,从6:50至7:45之间一共有55分钟,其中7:15之前能赶上班车,故能赶上班车的时间有25分钟,由几何概型的概率计算公式,得2555=511,即他能赶上公司班车的概率为511.15.(2019·开封模拟)赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(由以弦为边长得到的正方形组成).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF =2AF ,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是________.答案413解析 由题意,设DF =2AF =2a ,且a >0, ∵∠DFE =π3,∴∠AFC =π-π3=2π3,∴△DEF 的面积为S △DEF =12·2a ·2a ·sin π3=3a 2,△AFC 的面积为S △AFC =12·a ·3a ·sin 2π3=334a 2,∴在大等边三角形中随机取一点,此点取自小等边三角形的概率是P =3a 23×334a 2+3a 2=413.16.(2019·黄山八校联考)一个盒子中装有6张卡片,上面分别写着如下六个定义域为R 的函数:f 1(x )=x 3, f 2(x )=||x ,f 3(x )=sin x, f 4(x )=cos x ,f 5(x )=2x,f 6(x )=1-2x1+2x,从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是________. 答案 25解析 由题意知本题是一个等可能事件的概率,由函数的奇偶性可得函数f 1(x )=x 3, f 3(x )= sin x ,f 6(x )=1-2x1+2x为奇函数;函数f 2(x )=||x ,f 4(x )=cos x 为偶函数;f 5(x )=2x 为非奇非偶函数, 试验发生包含的事件是从6张卡片中抽取2张,共有C 26=15(种)结果, 事件A 为“任取两张卡片,将卡片上的函数相乘得到的函数是奇函数”,因为一个奇函数与一个偶函数相乘得到的函数是奇函数,所以共有C 13C 12=6(种)结果,所以P (A )=615=25.数学的核心素养引领复习一、数学抽象、直观想象素养1 数学抽象例1 (2019·全国Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73 C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,83 答案 B解析 当-1<x ≤0时,0<x +1≤1,则f (x )=12 f (x +1)=12(x +1)x ;当1<x ≤2时,0<x -1≤1,则f (x )=2f (x -1)=2(x -1)(x -2);当2<x ≤3时,0<x -2≤1,则f (x )=2f (x -1)=22f (x -2)=22(x -2)(x -3),…,由此可得f (x )=⎩⎪⎨⎪⎧…,12(x +1)x ,-1<x ≤0,x (x -1),0<x ≤1,2(x -1)(x -2),1<x ≤2,22(x -2)(x -3),2<x ≤3,由此作出函数f (x )的图象,如图所示.由图可知当2<x ≤3时,令22(x -2)·(x -3)=-89,整理,得(3x -7)(3x -8)=0,解得x =73或x =83,将这两个值标注在图中.要使对任意x ∈(-∞,m ]都有f (x )≥-89,必有m ≤73,即实数m 的取值范围是⎝⎛⎦⎤-∞,73,故选B.1.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.答案①②③解析看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误.素养2直观想象例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案B解析取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1,所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=22,PC=3,CD=5,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.二、逻辑推理、数学运算素养3逻辑推理例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B.3 C.2 3 D.4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13x . 设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示. 在Rt △ONF 中,|OF |=2,则|ON |= 3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.素养4 数学运算例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=12,∵α∈[0,π],∴α=π3,故选B.4.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0, b =log 20.3<log 21=0,∴ab <0. ∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.三、数学建模、数据分析素养5 数学建模例5 (2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝ ⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cmB.175 cmC.185 cmD.190 cm答案B解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618) ÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________. 答案 130 15解析 (1)顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.(2)设顾客一次购买的水果总价为m 元,由题意知,当0<m <120时,x =0,当m ≥120时,(m -x )×80%≥m ×70%,得x ≤m 8对任意m ≥120恒成立,又m8≥15,所以x 的最大值为15.素养6 数据分析例6 (2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解 (1)由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?解 (1)从统计的5年发电量中任取2年,基本事件为{7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5 亿千瓦时的基本事件为{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个.所以这2年发电量都高于7.5 亿千瓦时的概率为P =310.(2)因为x =1 500+1 400+1 900+1 600+2 1005=8 5005=1 700, y =7.4+7.0+9.2+7.9+10.05=41.55=8.3. 又直线y ^=0.004x +a ^过点(x ,y ), 所以8.3=0.004×1 700+a ^, 解得a ^=1.5, 所以y ^=0.004x +1.5.当x =1 800时,y ^=0.004×1 800+1.5=8.7>8.6, 所以预测该水电站2019年能完成发电任务.。

2020版高考数学一轮复习第十一章计数原理、概率、随机变量及分布列第6讲几何概型课件理新人教A版

2020版高考数学一轮复习第十一章计数原理、概率、随机变量及分布列第6讲几何概型课件理新人教A版
解析
考向二 与面积有关的几何概型 角度1 与平面图形面积有关的问题 例2 (2018·全国卷Ⅰ)右图来自古希腊数学家希波克拉底所研究的几何 图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边 BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ, 其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分 别记为p1,p2,p3,则( )
1
π1π
A.4 B.8 C.2 D.4
答案 B
解析 不妨设正形ABCD的边长为2,则正方形内切圆的半径为1, S正方形=4.
由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得 π
S黑=S白=12S圆=π2,所以由几何概型知所求概率P=SS正黑方形=24=π8.故选B.
答案
解析
3.(2019·衡水中学调研)已知正方体ABCD-A1B1C1D1内有一个内切球 O,则在正方体ABCD-A1B1C1D1内任取点M,点M在球O内的概率是( )
1.(2019·大连模拟)在长为6 m的木棒上任取一点P,使点P到木棒两端 点的距离都大于2 m的概率是( )
1112 A.4 B.3 C.2 D.3
答案 B
解析 将木棒三等分,当P位于中间一段时,到两端A,B的距离都大于 2 m,∴P=26=13.
答案
解析
2.(2017·全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极 图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对 称.在正方形内随机取一点,则此点取自黑色部分的概率是( )
答案
3 5
解析 本题可以看成向区间[0,5] 内均匀投点,设A={某乘客候车时间 不超过3分钟},则P(A)=区 区间 间[[20, ,55]]的 的长 长度 度=35.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一单元 第六节随机数与几何概型
一、选择题
1.在区间[0,3]上任意取一点,则此点坐标不大于2的概率是( ) A.13 B.12 C.23 D.79 【解析】 依题意,此点坐标不大于2的区间为[0,2],区间长度为2,而区间[0,3]的长
度为3,所以此点坐标不大于2的概率是23
. 【答案】 C
2.(精选考题·宁波质检)在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正
方形,这个正方形的面积介于36 cm 2与49 cm 2之间的概率为( )
A.110
B.15
C.310
D.25
【解析】 点P 的区域长度为10 cm ,所求事件构成的区域长度为6 cm 到7 cm ,其长度
为1 cm ,∴P =110
. 【答案】 A
3.
如图是一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )
A.2π
B.1π
C.12 D .1-2π
【解析】 扇形面积S =14×π×22=π,弓形面积S 1=π-12×22=π-2,∴P =π-2π
=1-2π
. 【答案】 D
4.
如图,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在锐角∠xOT 内的概率是( )
A.13
B.14
C.15
D.16
【解析】 OA 等可能地落在平面内,构成区域为(0°,360°),所求事件区域为(0°,
60°),∴P =60360=16
. 【答案】 D
5.在长方体ABCD-A1B1C1D1内任意取点,则该点落在四棱锥B1-ABCD内的概率是( )
A.
1
2
B.
1
3
C.
1
4
D.
1
5
【解析】不妨设长方体的长、宽、高分别为a
,b,c,则该点落在四棱锥B1-ABCD内的概率为
P=
VB1-ABCD
VABCD-A1B1C1D1

1
3
abc
abc

1
3
.
【答案】 B
6.平面上有一组平行线,且相邻平行线间的距离为3 cm,把一枚半径为1 cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )
A.
1
4
B.
1
3
C.
1
2
D.
2
3
【解析】如右图所示,任取一组平行线进行研究,由于圆心落在平行线间任一点是等可能的且有无数种情况,故本题为几何概型.因为圆的半径为1 cm,所以圆心所在的线段长度仅能为1 cm,所以P=
1
3
.
【答案】 B
7.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A.
π
4
B.1-
π
4
C.
π
8
D.1-
π
8
【解析】如图所示,点构成的区域为长方形ABCD,所求事件构成的区域为图中阴影部
分,∴P=
2-
π×12
2
2
=1-
π
4
.
【答案】 B
二、填空题
8.
右图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为________.
【解析】
S
10

138
300
,∴S=4.6.
【答案】 4.6
9.
在半径为1的圆上随机地取两点,连成一条弦,则其长超过圆内接等边三角形的边长的概率是________.
【解析】 设A
=“弦长超过圆内接等边三角形的边长”,取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一个点在劣弧
C D 上时,|BE |>|BC |,而劣弧C D 的弧长是圆的周长的13. ∴P =13
. 【答案】 13
10.从[1,10]中任取两个实数,两数之和大于10的概率是________.
【解析】 设两数为x ,y ,则(x ,y )满足的区域为{ 1≤x ≤10,1≤y ≤10,如图正方形ABCD ,∵x +y >10,
∴所求事件(x ,y )满足的区域为{ 1≤x ≤10,1≤y ≤10,x +y >10,
如图多边形BCDEF ,∴P =S BCDEF S ABCD =4981
.
【答案】
4981
三、解答题
11.假设小明家订了一份报纸,送报人可能在早上6:30至7:30之间把报纸送到小明家,小明的父亲离开家去工作的时间在早上7:00到8:00之间,问小明的父亲在离开家前能得到报纸的概率是多少?
【解析】 设事件A =“小明的父亲离开家前能得到报纸”,在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x ≤y ,而(x ,y )的所有可能结果是边长为1的正方形ABCD ,而能得到报纸的所有可能结果由图中阴影部分表示.
则S 阴=12-12×12×12=78
,S 正方形ABCD =1, ∴P =S 阴S 正方形ABCD =7
81=78
. 12.已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}.
(1)若a ,b ∈N ,求A ∩B ≠∅的概率;
(2)若a ,b ∈R ,求A ∩B ≠∅的概率;
【解析】 (1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共9组.
令函数f (x )=ax +b .2x -1,x ∈[-1,0],
则f ′(x )=a +b ln2·2x .
因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0,
即f (x )在[-1,0]上是单调递增函数.
f (x )在[-1,0]上的最小值为-a +b
2
-1. 要使A ∩B ≠∅,只需-a +b a
-1<0,即2a -b +2>0.
所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共7组.
所以A ∩B ≠∅的概率为79
. (2)
因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如图),面积为4.
由(1)可知,要使A ∩B =∅,
只需f (x )min =-a +b 2
-1≥0⇒2a -b +2≤0,所以满足A ∩B =∅的(a ,b )对应的区域是图中的阴影部分,所以S 阴影=12×1×12=14
. 所以A ∩B =∅的概率为P =1
44=116
.。

相关文档
最新文档