高考数学几何概型及随机模拟
2024学年湖北省武汉市常青第一中学高三高考全真模拟数学试题试卷
2024学年湖北省武汉市常青第一中学高三高考全真模拟数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .62.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种. A .360 B .240C .150D .1203.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( ) A .z 的虚部为i - B .2z =C .z 的共轭复数为1i --D .2z 为纯虚数4.函数cos ()cos x xf x x x+=-在[2,2]ππ-的图象大致为A .B .C .D .5.在复平面内,复数2iiz -=(i 为虚数单位)对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()AB =RA .{}01x x <≤B .{}01x x <<C .{}12x x ≤<D .{}02x x <<7.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为 A .48B .72C .90D .968.一个陶瓷圆盘的半径为10cm ,中间有一个边长为4cm 的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率π的值为(精确到0.001)( ) A .3.132B .3.137C .3.142D .3.1479.已知命题300:2,80p x x ∃>->,那么p ⌝为( ) A .3002,80x x ∃>-≤ B .32,80x x ∀>-≤ C .3002,80x x ∃≤-≤ D .32,80x x ∀≤-≤10.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .012.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2B .3C .4D .5二、填空题:本题共4小题,每小题5分,共20分。
高考数学 考点一遍过 专题52 几何概型 理-人教版高三全册数学试题
专题52 几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.一、几何概型1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件发生的可能性相等.3.几何概型的概率计算公式() P AA构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型.二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.这个方法的基本步骤是:(1)用计算器或计算机产生某个X围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值.考向一与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件A包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等.注意:在寻找事件A发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件A的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A.12B.13C.23D.35【答案】A故所求概率为201402=,选A . 典例2 在区间[]0,2上随机抽取一个数x ,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为 A .34B .23 C .13D .14【答案】A【解析】区间[]0,2的长度为2, 由1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭可得302x ≤≤, 所以所求事件的概率为P =33224-=.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .13B .23 C .14D .342.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二 与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率. 必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.典例3 在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】A则所求概率P=1-SS=1-,故选A.典例4 如图,已知A(a,0)(a>0),B是函数f(x)=2x2图象上的一点,C(0,2),若在矩形OABC内任取一点P,则点P落在阴影部分的概率为________.【答案】3.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为 A 33B .3C .33.34.已知1Ω是集合()22{,|1}x y x y +≤所表示的区域,2Ω是集合(){,|1}x y x y +≤所表示的区域,向区域1Ω内随机地投一个点,则该点落在区域2Ω内的概率为________.考向三 与体积有关的几何概型的求法用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,确定出基本事件构成的区域的体积,求体积比即可.一般当所给随机事件是用三个连续变量进行描述或当概率问题涉及体积时,可以考虑用此方法求解.典例5一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器六个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全,即始终保持与正方体玻璃容器六个表面的距离均大于10,飞行才是安全的.假设蜜蜂在正方体玻璃容器内飞行到任意位置的可能性相等,那么蜜蜂飞行安全的概率是A.512B.23C.127D.425【答案】C5.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食落在圆锥外面”的概率是A.π14B.π12C.π4D.π112-考向四随机模拟的应用利用随机模拟试验可以近似计算不规则图形A的面积,解题的依据是根据随机模拟估计概率()AP A=随机取的点落在中的随机取点频数的总次数,然后根据()随机取点构的成事全部件的区结果构成的区域面积域面积AP A=列等式求解.典例6 《周髀算经》中给出了勾股定理的绝妙证明,如图是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积分别称朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷3000颗图钉,则落在黄色图形内的图钉数约为(3≈1.732)A.134 B.268C.402 D.536【答案】C6.如图,在一不规则区域内,有一边长为1 m 的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为 375,以此试验数据为依据可以估计出该不规则图形的面积为A .83 m 2 B .2 m 2C .38m 2 D .3 m 21.在[]0,π内任取一个实数x ,则1sin 2x ≤的概率为 A .2 3B .1 2C .13D .1 42.若任取[]0,1、x y ∈,则点(),P x y 满足y x >的概率为A .23B .13 C .12D .343.在区间[]0,4上随机地选择一个数,p 则方程2380x px p -+-=有两个正根的概率为A .13B .23 C .12D .144.在直角坐标系中,任取n 个满足x 2+y 2≤1的点(x ,y ),其中满足|x|+|y|≤1的点有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4m n B .4nmC .2m n D .2nm5.某校航模小组在一个棱长为6米的正方体房间内试飞一种新型模型飞机,为保证模型飞机安全,模型飞机在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为 A .127B .116C .38D .8276.如图,在矩形ABCD 中,AB =3,BC =1,以A 为圆心、1为半径作圆弧DE ,点E 在线段AB 上,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是A .1 4B .13C .25D .357.已知函数()2,01(e 1,1e x x f x x x⎧≤<⎪=⎨≤≤⎪⎩为自然对数的底数)的图象与直线e 、x x =轴围成的区域为E ,直线e 1、x y ==与x 轴、y 轴围成的区域为F ,在区域F 内任取一点,则该点落在区域E 内的概率为A .43e B .23e C .23D .2e8.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .3π 10B .3π 20C .3π110-D .3π120- 9.有一根长为1米的细绳,将细绳随机剪断,则两截的长度都大于18米的概率为__________. 10.一个正方体的外接球的表面积为48π,从这个正方体内任取一点,则该点取自正方体的内切球内的概率为__________.11.甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一天内随机到达,若两船同时到达则有一艘必须等待,试求这两艘轮船中有一艘在停靠泊位时必须等待的概率.12.某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.13.已知函数()22(,f x ax bx a a b =-+∈R ).(1)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2,3中任取一个元素,求方程()0f x =有实根的概率;(2)若b 从区间[]0,2中任取一个数,a 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.1.(2017新课标全国Ⅰ理科)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π42.(2016新课标全国Ⅰ理科)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .343.(2017某某)记函数2()6f x x x =+-的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .4.(2016某某理科)在[1,1]上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9xy 相交”发生的概率为 .1.【答案】 C2.【答案】C【解析】设AC =x ,则BC =10-x ,0<x <10,由题意πx 2+π(10-x )2<58π,得x 2-10x +21<0,得3<x <7, 故所求的概率为.3.【答案】C4.【答案】2π【解析】易知1Ω的面积1πS =,2 Ω的面积22S =, 根据几何概型可得所求事件的概率为P=2.π5.【答案】D【解析】由题意可知,正方体的体积V =8,圆锥的体积V 1=212ππ1233⨯⨯⨯=,所以“鱼食落在圆锥外面”的概率是P=1π112V V V -=-. 6.【答案】A变式拓展【解析】由几何概型的概率计算公式及题意可近似得到正方形不规则图形S S =3751000,所以该不规则图形的面积大约为1000375=83(m 2).1.【答案】C【解析】若1sin 2x ≤,则在[]0,π内π5π0π66或x x ≤≤≤≤, 所以所求概率为π216π03P ⨯==-.选C .2.【答案】C【解析】根据几何概型的概率计算公式可知P =11112112⨯⨯=⨯.故选C .3.【答案】A【解析】因为方程2380x px p -+-=有两个正根,所以()243800,380p p p p ∆⎧=--≥⎪>⎨⎪->⎩所以8p ≥或 84,3p <≤ 又因为[]0,4,p ∈所以所求概率为841343P -==. 4.【答案】D5.【答案】D【解析】依题意得,模型飞机“安全飞行”的概率为(626-)3=827,故选D.6.【答案】B【解析】连接AC,交圆弧DE于点M.在Rt△ABC中,AB3BC=1,所以tan∠BAC=3BCAB=即∠BAC=π6.要使直线AP与线段BC有公共点,则点P必须在圆弧EM上,于是所求概率为P=π16π32=.故选B.7.【答案】A【解析】由题意,区域F的面积为e;区域E的面积S=1e2011d dx x xx+⎰⎰=31e0114|ln|33x x+=,所以在区域F内任取一点,则该点落在区域E内的概率为43e.8.【答案】D【解析】由题意,直角三角形内切圆的半径r=8151732+-=,所以现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率P =18159π3π211208152⨯⨯-=-⨯⨯. 9.【答案】3410.【答案】【解析】因为一个正方体的外接球的表面积为48π,所以这个正方体的棱长为4,而棱长为4的正方体的体积为43,该正方体的内切球的半径为2,体积为×23,所以所求概率P =.11.【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则0≤x <24,0≤y <24.若有一艘在停靠泊位时必须等待,则|y-x|<6,如图中阴影部分所示,所以所求概率为1-=1-=.12.【解析】(1)用,x y 分别表示小陈、小李到班的时间,则][10,3010,30,x y ⎡⎤∈∈⎣⎦,所有可能结果对应坐标平面内一个正方形区域ABCD ,如图所示.(2)小陈比小李至少晚到5分钟,即5x y -≥,对应区域为△BEF ,则所求概率为1151592202032△BEF ABCDS P S ⨯⨯===⨯.“b a ≥或0a =”.于是此时,a b 的取值情况为()()()()()()()()()()0,0,0,1,0,2,0,3,1,2,1,3,2,3,1,1,2,2,3,3,即A 包含的基本事件数为10.故 “方程()0f x =有实根”的概率为()105168P A ==. (2)从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,a 则试验的全部结果构成区域(){,|03,02}a b a b ≤≤≤≤, 这是一个长方形区域,其面积为236⨯=,设“方程()0f x =没有实根”为事件B ,则事件B 所构成的区域为(){,|03,02,}a b a b a b ≤≤≤≤>,其面积为162242-⨯⨯=.由几何概型的概率计算公式可得“方程()0f x =没有实根”的概率为()4263P B ==.1.【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 2.【答案】B【解析】由题意,这是一个几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B . 【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等. 3.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.【名师点睛】(1)当试验的结果构成的区域为长度、面积或体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:①无限性,②等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.直通高考4.【答案】34【解析】直线y =kx 与圆22(5)9x y相交,需要满足圆心到直线的距离小于半径,即3d =<,解得3344k -<<,而[1,1]k ,所以所求概率P =33224=.。
高三数学复习几何概型专题
几何概型专题复习考点解读:1、了解几何概型的概念及基本特点2、熟练掌握几何概型中的概率计算公式3、会进行简单的几何概率运算4、会将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决实际问题重点:了解几何概型的概念,会解决与长度,面积、体积相关的几何概型的概率问题 难点:1、古典概型与几何概型的区分2、怎样把随机事件的总体和随机事件A 都转化与之对应的区域的测度一、知识回顾:几何概型的概念:对于一个随机实验,我们将每个基本事件理解为从某个特定的几何区域D 内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域的某个指定区域d 中的点,这里的区域可以是线段、平面图形、立体图形、角等,用这样的方法处理随机实验称为——几何概型二、古典概型与几何概型的区别:相同点:两者基本事件发生都是等可能的不同点:古典概率要求基本事件有有限多个,古典概率要求基本事件有无限三、几何概型的概率公式:面积、体积、角度)的区域的测度(长度、试验的全部结果所构成面积、体积、角度)的区域的测度(长度、构成事件A A)(=P 四、题型分析题型一、与长度有关的几何概型例1、假设车站每隔10分钟发一班车,乘客随机到达车站,问乘客到达站台等车时间不超过3分钟的概率变式:已知地铁列车10分钟发一班车,在车站停留1分钟,问乘客到达站台等车时间不超过3分钟的概率训练1、已知[]()()()272151437,1223+--+--=∈x m m x m x x f m 则函数在实数R 上是增函数的概率。
2、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边长正方形,所作正方形的面积介于362cm 与812cm 之间的概率题型二、与面积有关的几何概型例2、甲乙两人约定6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时才离开,求两人能会面的概率。
训练1、在一个圆上任取三点A、B、C,求能够成锐角三角形的概率题型三、与体积有关的几何概型例3、在长方体ABCD-A1B1C1D1内任意取一点,求该点落在四棱锥B1-ABCD的概率。
(1)了解均匀随机数的概念;(2)掌握利用计算机产生均匀随
(1)了解均匀随机数的概念; (2)掌握利用计算机产生均匀随机数的方法; (3)会利用均匀随机数解决具体的有关几何概 型概率的问题。
新知识:1、[0,1]上均匀随机数的产生
利用计算器或计算机中的RAND函数可以产生 [0,1]之间的均匀随机数。
试验的结果是区间[0,1]内的任何一个实数, 而且都是等可能出现的。 2、[a,b]上均匀随机数的产生
(1)利用计算器或计算机产生[0,1]上的均匀 随机数X1=RAND; (2)利用伸缩和平移变换:X=a+X1*(b—a) 计算X的值,则X为[a,b]上的均匀随机数.
试验的结果X是区间[a,b]内的任何一个实数, 而且都是等可能人可能在早 上6:30—7:30之间把报纸送到你家,你父亲 离开家去工作的时间在早上7:00—8:00之间, 问你父亲在离开家前能得到报纸(称为事件A) 的概率是多少?
2.利用几何概型的概率公式,结合随机模拟试验, 可以解决求概率、面积、参数值等一系列问题, 体现了数学知识的应用价值.
3.用随机模拟试验不规则图形的面积的基本 思想是,构造一个包含这个图形的规则图形 作为参照,通过计算机产生某区间内的均匀 随机数,再利用两个图形的面积之比近似等 于分别落在这两个图形区域内的均匀随机点 的个数之比来解决.
602 302
P(A)
2 602
87.5%.
例2、在下图的正方形中随机撒一把豆子, 如何用随机模拟的方法估计圆周率的值.
S圆 S正
落在圆中的豆子数 落在正方形中的豆子数
4 落在圆中的豆子数 落在正方形中的豆子数
例3、利用随机模拟方法计算由y=1和
y=x2 所围成的图形的面积. y
高考数学专练题 随机事件、古典概型与几何概型(试题部分)
专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。
高二数学几何概型试题
高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。
当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。
所以。
【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。
5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。
在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。
2022年新高考数学总复习:几何概型
2022年新高考数学总复习:几何概型知识点一几何概型的定义如果每个事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,则称这样的概率模型为几何概率模型,简称几何概型.知识点二几何概型的特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.知识点三几何概型的概率公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.知识点四随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.归纳拓展几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×)(6)从区间[1,10]内任取一个数,取到1的概率是P =19.(×)题组二走进教材2.(P 140T1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(A)[解析]∵P (A )=38,P (B )=14,P (C )=13,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).故选A .3.(P 146B 组T4)≤x ≤2,≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(D)A .π4B .π-22C .π6D .4-π4[解析]如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D的面积为4,而阴影部分(不包括AC ︵)表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D .题组三走向高考4.(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是(B)A .14B .π8C .12D .π4[解析]不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B .5.(2019·全国)在Rt △ABC 中,AB =BC ,在BC 边上随机取点P ,则∠BAP <30°的概率为(B)A .12B .33C .33D .32[解析]在Rt △ABC 中,AB =BC ,Rt △ABC 为等腰直角三角形,令AB =BC =1,则AC =2;在BC 边上随机取点P ,当∠BAP =30°时,BP =tan 30°=33,在BC 边上随机取点P ,则∠BAP <30°的概率为:P =BP BC =33,故选B .考点突破·互动探究考点一与长度有关的几何概型——自主练透例1(1)(2021·山西运城模拟)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15-8:30),一名职工在7:50到8:30之间到单位且到达单位的时刻是随机的,则他能正常刷卡上班的概率是(D)A .23B .58C .13D .38(2)(2021·福建龙岩质检)在区间-π2,π2上随机取一个实数x ,使cos x ≥12的概率为(B )A .34B .23C .12D .13(3)(2020·山东省青岛市模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为(C)A .15B .14C .13D .12[解析](1)一名职工在7:50到8:30之间到单位,刷卡时间长度为40分钟,但有效刷卡时间是8:15-8:30共15分钟,由测度比为长度比可得,该职工能正常刷卡上班的概率P =1540=38.故选D .(2)由y =cos x 在区间-π2,0上单调递增,在,π2上单调递减,则不等式cos x ≥12在区间-π2,π2上的解为-π3≤x ≤π3,故cos x ≥12的概率为2π3π=23.(3)直线l 与C 相交⇒|2k |1+k 2<1⇒-33<k <33.∴所求概率P =33-(-33)3-(-3)=13.故选C .[引申]本例(3)中“圆上到直线l 的距离为12的点有4个”发生的概率为__515__.[解析]圆上到直线l 的距离为12的点有4个⇔圆心到直线l 的距离小于12⇔|2k |1+k 2<12⇔-1515<k <1515,∴所求概率P =1515-3-(-3)=515.名师点拨与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.〔变式训练1〕(1)(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__59__.(2)(2021·河南豫北名校联盟精英对抗赛)已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为(D)A .13B .14C .15D .12[解析](1)D ={x |6+x -x 2≥0}=[-2,3],∴所求概率P =3-(-2)5-(-4)=59.(2)由f (x )=1,x ∈[0,π]得x ∈0,π2,∴所求概率P =π2π=12,故选D .考点二与面积有关的几何概型——师生共研角度1与平面图形有关的问题例2(1)(2021·河南商丘、周口、驻马店联考)如图,AC ,BD 上分别是大圆O的两条相互垂直的直径,4个小圆的直径分别为OA ,OB ,OC ,OD ,若向大圆内部随机投掷一点,则该点落在阴影部分的概率为(D)A .π4B .π8C .1πD .2π(2)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为(C )A .34+12πB .12+1πC .14-12πD .12-1π[解析](1)不妨设大圆的半径为2,则大圆的面积为4π,小圆的半径为1,如图,设图中阴影部分面积为S ,由图形的对称性知,S 阴影=8S .又S =12π×12×12-12×2=1,则所求概率为84π=2π,故选D .(2)∵|z |=(x -1)2+y 2≤1,∴(x -1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P =π4-12π=14-12π.[引申]本例(1)中图形改成下图,则此点取自图中阴影部分的概率为__π-22π__.[解析]不妨设大圆的半径为2,则小圆的半径为1,∴所求概率P 14×4π=π-22π.角度2与线性规划交汇的问题例3-y +1≥0,+y -3≤0,≥0的平面点集中随机取一点M (x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是(B )A .14B .34C .13D .23[解析]-y +1≥0+y -3≤0,≥0表示的平面区域为△ABC 且A (1,2),B (-1,0),C (3,0),显然直线l :y =2x 过A 且与x 轴交于O ,∴所求概率P =S △AOC S △ABC =|OC ||BC |=34.选B .名师点拨解决与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔变式训练2〕(1)(2021·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(B)A .8B .9C .10D .12(2)(2021·四川模拟)以正三角形的顶点为圆心,其边长为半径作圆弧,由这三段圆弧组成的曲边三角形被称为勒洛三角形,它是具有类似于圆的“等宽性”曲线,由德国机械工程专家、数学家勒洛首先发现.如图,D ,E ,F 为正三角形ABC 各边中点,作出正三角形DEF 的勒洛三角形DEF (阴影部分),若在△ABC 中随机取一点,则该点取自于该勒洛三角形部分的概率为(C)A .π-32B .23π-39C .3π-36D .3π-26[解析](1)根据面积之比与点数之比相等的关系,得黑色部分的面积S =4×4×225400=9,故选B .(2)设△ABC 的边长为2,则正△DEF 边长为1,以D 为圆心的扇形面积是π×126=π6,△DEF 的面积是12×1×1×32=34,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即图中勒洛三角形面积为3×π6-34+34=π-32,△ABC 面积为3,所求概率P =π-323=3π-36.故选C .考点三,与体积有关的几何概型——师生共研例4(1)(2021·山西省模拟)以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P ,则P 落在该几何体内的概率为(C )A .18B .56C .16D .78(2)(2020·江西抚州临川一中期末)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC 的概率为(D)A .13B .49C .827D .1927[解析](1)如图以正方体各面中心为顶点的几何体是由两同底正四棱锥拼成,不妨设正方体棱长为2,则GH =2,∴所求概率P =V E -GHIJ -FV 正方体=2×(13×2×2×1)2×2×2=16,故选C .(2)作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC ,∴V P -ABC ≤13V S -ABC 的概率P =1-827=1927.故选D .名师点拨求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题常转化为其对立事件的概率问题求解.〔变式训练3〕一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(C)A .4π81B .81-4π81C .127D .827[解析]由已知条件可知,蜜蜂只能在以正方体的中心为中心棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.[引申]若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为__1-4π81__.[解析]所求概率P =33-43π33=1-4π81.考点四,与角度有关的几何概型——师生共研例5(1)(2021·南岗区校级模拟)已知正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则AM <2的概率为(D)A .32B .12C .33D .23(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD <AC 的概率为__34__.[解析](1)正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP与正方形ABCD 的边交于点M ,如图所示:己知AD =AB =BC =CD =3,DM =1,所以AM =(3)2+12=2.所以∠DAM =π6.根据阴影的对称性,故P (AM <2)=π6+π6π2=23,故选D .(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CD ,与线段AB 交于点D ,AD <AC }.则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.590=34.名师点拨与角度有关的几何概型的求解方法(1)若试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的区域角度试验的全部结果所构成区域的角度.(2)解决此类问题时注意事件的全部结果构成的区域及所求事件的所有结果构成的区域,然后再利用公式计算.〔变式训练4〕(1)(2021·山西太原一模)如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB内任作射线AP ,则射线AP 与线段BC 有公共点的概率为__13__.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM交BC 于点M ,则BM <1的概率为__25__.[解析](1)当点P 在BC 上时,AP 与BC 有公共点,此时AP 扫过△ABC ,所以所求事件的概率P =3090=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°,在Rt △ABD 中,AD =3,∠B =60°,所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=3075=25.名师讲坛·素养提升转化与化归思想在几何概型中的应用例6(1)(2021·贵州遵义模拟)在区间[0,2]上任取两个数,则这两个数之和大于3的概率是(A)A .18B .14C .78D .34(2)(2021·济宁模拟)甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到则等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率为(A )A .38B .34C .35D .45[解析](1)设函数为x ,y ,≤x≤2,≤y≤2由图可知x+y>3的概率P=124=18.故选A.(2)以6点作为计算时间的起点,设甲到的时间为x,乙到的时间为y,则基本事件空间是Ω={(x,y)|0≤x≤1,0≤y≤1},事件对应的平面区域的面积S=1,设满足条件的事件对应的平面区域是A,则A={(x,y)|0≤x≤1,0≤y≤1,y-x≤12,且y≥x},其对应的区域如图中阴影部分所示,则C(0,1),则事件A对应的平面区域的面积是1-12×12×12-12×1×1=38,根据几何概型的概率计算公式得P=381=38.名师点拨]生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.〔变式训练5〕(2020·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是__78__.[解析]以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)=1×1-12×12×121×1=78.。
高考数学技巧:几何概型问题—5类重要题型
高考数学技巧:几何概型问题—5类重要题型解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A的概率计算公式:.其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.1 几何概型的两个特征:(1)试验结果有无限多;(2)每个结果的出现是等可能的.事件A可以理解为区域的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关.2 解决几何概型的求概率问题关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.3 用几何概型解简单试验问题的方法(1)适当选择观察角度,把问题转化为几何概型求解.(2)把基本事件转化为与之对应的总体区域D(3)把随机事件A转化为与之对应的子区域d(4)利用几何概型概率公式计算.4 均匀随机数在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand()函数可以产生0~1之间的均匀随机数.a~b之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x=.rand(..),然后利用伸缩和平移变换x=. rand(..)*(b-a)+a,就可以产生[a,b]上的均匀随机数,试验的结果是产生a~b之间的任何一个实数,每一个实数都是等可能的.5 均匀随机数的应用(1)用随机模拟法估计几何概率;(2)用随机模拟法计算不规则图形的面积.下面举几个常见的几何概型问题.一.与长度有关的几何概型例1.如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的概率是多少?.思路点拨.从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型.解.记.E:“A与C,B与D之间的距离都不小于10米”,把AB三等分,由于中间长度为30×=10米,∴方法技巧.我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.二.与面积有关的几何概型例2.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122.cm,靶心直径为12 2. cm 运动员在70.m外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?思路点拨.此为几何概型,只与面积有关.解.记“射中黄心”为事件B,由于中靶点随机地落在面积为的大圆内,而当中靶点落在面积为的黄心时,事件B发生,于是事件B发生的概率为即:“射中黄心”的概率是0 01方法技巧.事件的发生是“击中靶心”即“黄心”的面积;总面积为最大环的圆面积.三.与体积有关的几何概型例3 在区间[0,l]上任取三个实数x y z,事件A={(x,y,z)|.x2+y2+z2<1,.x≥0,y≥0,z≥0}..(1)构造出随机事件A对应的几何图形;..(2)利用该图形求事件A的概率思路点拨:.在空间直角坐标系下,要明确x2+y2+z2<1表示的几何图形是以原点为球心,半径r=1的球的内部.事件A对应的几何图形所在位置是随机的,所以事件A的概率只与事件A对应的几何图形的体积有关,这符合几何概型的条件.解:(1)A={(x,y,z)|.x2+y2+z2<1,.x≥0,y≥0,z≥0}表示空间直角坐标系中以原点为球心,半径r=1的球的内部部分中x≥0,y≥0,z≥0的部分,如图所示..(2)由于x,y,z属于区间[0,1],当x=y=z=1时,为正方体的一个顶点,事件A为球在正方体内的部分......∴方法技巧:本例是利用几何图形的体积比来求解的几何概型,关键要明白点P(x,y,z)的集合所表示的图形.从本例可以看出求试验为几何概型的概率,关键是求得事件所占区域和整个区域的几何度量,然后代入公式即可解,另外要适当选择观察角度四.求会面问题中的概率例4.两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.思路点拨.两人不论谁先到都要等迟到者40分钟,即小时.设两人分别于x时和y时到达约见地点,要使两人在约定的时间范围内相见,当且仅当-.xx-yx,因此转化成面积问题,利用几何概型求解.解.设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-.xx-yx两人到达约见地点所有时刻(x,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为方法技巧.会面的问题利用数形结合转化成面积问题的几何概型.难点是把两个时间分别用x,y两个坐标表示,构成平面内的点(x,y),从而把时间是一段长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题.五.均匀随机数的应用例5.利用随机模拟方法计算图中阴影部分(由曲线y=.2x与x轴、x=±1围成的部分)面积..思路点拨.不规则图形的面积可用随机模拟法计算.解.(1)利用计算机产生两组[0,1]上的随机数,a1=rand(..),b1=rand(...)....(2)进行平移和伸缩变换,a=(a1-0 5)*2,b=b1*2,得到一组[0,2]上的均匀随机数....(3)统计试验总次数N和落在阴影内的点数N1...(4)计算频率,则即为落在阴影部分的概率的近似值....(5)利用几何概型公式得出点落在阴影部分的概率...(6)因为.=.,所以S=即为阴影部分的面积方法技巧.根据几何概型计算公式,概率等于面积之比,如果概率用频率近似在不规则图形外套上一个规则图形,则不规则图形的面积近似等于规则图形面积乘以频率.而频率可以通过随机模拟的方法得到,从而求得不规则图形面积的近似值.。
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
3.3.1几何概型46页
09.01.2020
王山喜文档-3.3.1几何概型
22
练习
练习:课本:P142 A组 1, 2,3
1.一张方桌的图案如图所示.将一颗豆子
随机地扔到桌面上,假设豆子不落在线上,
求下列事件的概率:
(1)豆子落在红色区域;4
9
(2)豆子落在黄色区域;
1
3
(3)豆子落在绿色区域;
2
(4)豆子落在红色或绿色区域9 ;2
思考3、投射点落入矩形框内 的概率如何求解呢?
09.01.2020
王山喜文档-3.3.1几何概型
4
引例
为什么要学习几何概型?
假设你家订了一份报纸,送报人可能在早上 6:30—7:30之间把报纸送到你家,你父亲离 开家去工作的时间在早上7:00—8:00之间, 问你父亲在离开家前能得到报纸(称为事件 A)的概率是多少? 能否用古典概型的公式来求解? 事件A包含的基本事件有多少?
(4)代入公式 PA m 求概率
n
09.01.2020
王山喜文档-3.3.1几何概型
3
问题导课:向一个圆面内随机地投射一个点, 如果该点落在圆内任意一点都是等可能的,你 认为这是古典概型吗?为什么?
有限性
等可能性
思考1、不可能事件的概率一 定为零吗?
思考2、概率为零的事件一 定是不可能事件吗?
09.01.2020
王山喜文档-3.3.1几何概型
5
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的.
借助于古典概率的定义,设想仍用 “事件的概率”等于“部分”比“全体” 的方法,来规定事件的概率. 不过现在的 “部分”和“全体”所包含的样本点是无 限的. 用什么数学方法才能构造出这样的 数学模型?
随机模拟
随机模拟随机模拟又称为Monte Carlo 方法,是一种采用统计抽样理论近似地求解数学问题或物理问题的方法。
它既可以用来研究概率问题,也可以用来研究非概率问题。
基本想法: 首先建立与描述该问题有相似性的概率模型。
利用这种相似性把概率模型的某些特征(如随机事件的概率或随机变量的平均值等)与数学分析问题的解答(如积分值,微分方程的解等)联系起来,然后对模型进行随机模拟统计抽样,再利用所得的结果求出这些特征的统计估计值作为原来的分析问题的近似解。
基本理论依据:大数定律。
一 引入随机模拟方法用于近似数值计算领域已有近百年的历史。
可追溯到历史上著名的蒲丰(Buffon )投针问题。
(1) 蒲丰(Buffon )投针问题平面上,画有等距离的平行线,平行线之间的距离为a ,(a>0),向平面上任意投一枚长为l (a l <)的针,试求针与平行线之间相交的概率。
又以φ表示针与此直线的夹角。
则:πφ≤≤≤≤02/0a x令A :“针与平行线相交”,显然有“针与平行线相交”⇔“φsin 2lx ≤”。
则由几何概型有al d lS SA P a A ππϕϕπ2sin 2)(20=⋅==⎰Ω(*)若在(*)中以Nn 替代(估计))(A P ,⇒an lN2=π。
历史上有几位科学家做过此实验。
下表列出了其中的一部分实验结果: 人名 年份 N n 针长πWolf 1850 5000 2532 0.8 3.1596 Smith 1855 3204 1218 0.6 3.1514 Laggerini 1901 3408 1808 0.83 3.1415929 (2) 用Monte Carlo 方法计算面积考虑积分dx x f I ⎰=1)(,设],1,0[∈x 1)(0≤≤x f 。
这时积分I 等于由曲线)(x f y =,ox 轴和oy 轴以及x =1所围成的区域G 的面积。
现在向单位正方形区域(010,1≤≤≤≤y x )中,随机地投掷一点,即它的两个坐标),(y x d i i ..~]1,0[U 。
3.3几何概型
2 2
1的点
4m . n
23/46
例3:利用随机模拟方法计算 右图中阴影部分(由 y 1 2 和 y x 所围成的部分)的 面积.
做题步骤如下: (1)利用计算机产生两组0~1区间的均匀随机数:
当a≥0,b≥0时,方程f(x)=0有两个不相等实根的
条件为a>b. 当a>b时,a,b取值的情况有(1,0),(2,0),(2,1), (3,0),(3,1),(3,2),即A包含的基本事件数为6, ∴方程f(x)=0有两个不相等实根的概率 6 1 P( A) . 12 2
34/46
(2)∵a从区间[0,2]中任取一个数,
b从区间[0,3]中任取一个数,则试
验的全部结果构成区域 Ω={(a,b)| 0≤a≤2,0≤b≤3},这是一个矩形 区域,其面积 S Ω 2 3 6. 设“方程f(x)=0没有实根”为事件B,则事件B所构成 的区域为M={(a,b)|0≤a≤2,0≤b≤3,a<b},即图中 1 阴影部分的梯形,其面积 S M 6 2 2 4. 2 由几何概型的概率计算公式可得方程f(x)=0没有实根 的概率 P( B) S M 4 2 . SΩ 6 3
1 即“等待的时间不超过10分钟”的概率为 6
6/46
60 50 1 P( A) 60 6
例2.取一个边长为2a的正方形及其内切圆,随机 向正方形内丢一粒豆子,求豆子落入圆内的概率.
2a
解: 记“豆子落在圆内”为 事件A,
圆的面积 π a2 π P(A) 2 正方形面积 4a 4 π 答:豆子落入圆内的概率为 . 4
高三数学几何概型试题答案及解析
高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。
高考理科第一轮复习课件(10.6模拟方法、概率的应用)
【思路点拨】(1)本题与长度有关,利用几何概型求概率.
(2)过点C在∠ACB内作射线CD与角度有关,利用几何概型的概
率公式求解.
【规范解答】(1)选C.设其中一段AC长为x cm,则另一段长为 (12-x)cm,其中0<x<12,由题意x(12-x)<32得,0<x<4或
8 2 8<x<12,则可选取的长度为4+4=8(cm),故概率为 = . 12 3
无关,即P(点M落在G1)= G1的面积 ,则称这种模型为几何概型.
G的面积
空间中 直线上 (2)几何概型中的G也可以是_______或_______的有限区域,
体积之比 长度之比 相应的概率是_________或_________.
判断下面结论是否正确(请在括号中打“√”或“×”).
(1)随机模拟方法是以事件发生的频率估计概率.(
3
答案:2
3
4.在平面直角坐标系xOy中,设F是横坐标与纵坐标的绝对值均 不大于2的点构成的区域,E是到原点的距离不大于1的点构成 的区域,向F中随机投一点,则所投的点落在E中的概率是____. 【解析】如图,区域F表示边长为4的 正方形ABCD的内部(含边界),区域E
12 表示单位圆及其内部,因此 P= = . 4 4 16 答案: 16
)
(2)相同环境下两次随机模拟得到的概率的估计值是相等
的.(
)
(3)几何概型中,每一个基本事件就是从某个特定的几何区域 内随机地取一点,该区域中的每一点被取到的机会相等.( )
(4)在几何概型定义中的区域可以是线段、平面图形、立体图 形.( )
(5)在区间[-1,1]内任取一个数,求取到的数是正数的概 率,该问题中的概率模型为几何概型.( )
高中数学第三章概率3.3几何概型3.3.2均匀随机数的产生
3.3.2 均匀随机数的产生[课时作业][A组学业水平达标]1.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则( ) A.m>n B.m<nC.m=n D.m是n的近似值解析:用随机模拟方法求得几何概型的概率是实际概率的近似值.答案:D2.设x是[0,1]内的一个均匀随机数,经过变换y=2x+3,则x=12对应变换成的均匀随机数是( )A.0 B.2C.4 D.5解析:当x=12时,y=2×12+3=4.答案:C3.已知函数f(x)=log2x,x∈⎣⎢⎡⎦⎥⎤12,2,在区间⎣⎢⎡⎦⎥⎤12,2上任取一点x0,则使f(x0)≥0的概率为( )A.1 B.12C.23D.34解析:由log2x0≥0,得x0≥1,又x0∈⎣⎢⎡⎦⎥⎤12,2,所以1≤x0≤2,所以P=2-12-12=132=23,故选C.答案:C4.如图,曲线OB的方程为y2=x(0≤x≤1),为估计阴影部分的面积,采用随机模拟方法产生x∈(0,1),y∈(0,1)的200个点(x,y),经统计,落在阴影部分的点共134个,则估计阴影部分的面积是( )A .0.47B .0.57C .0.67D .0.77解析:根据题意,落在阴影部分的点的概率是134200=0.67,矩形的面积为1,阴影部分的面积为S ,所以S =0.67. 答案:C5.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )解析:将[0,1]内的随机数转化为[a ,b ]内的随机数,需进行的变换为答案:C6.若x 可以在-4≤x ≤2的条件下任意取值,则x 是负数的概率是________.解析:记事件A 为“x 是负数”,则A 的长度为0-(-4)=4,整个事件长度为2-(-4)=6,则P (A )=46=23.答案:237.假设你在如图所示的图形上随机撒一粒黄豆,则它落在阴影部分(等腰三角形)的概率是__________.解析:设圆的半径为R ,则圆的面积为πR 2,等腰三角形的面积为12×2R ×R=R 2,∴所求概率为P =R 2πR 2=1π. 答案:1π8.利用随机模拟法近似计算图中阴影部分(曲线y =log 3x 与x =3及x 轴围成的图形)的面积.解析:设事件A :“随机向正方形内投点,所投的点落在阴影部分”. (1)利用计算器或计算机产生两组 [0,1]上的均匀随机数,x 1=RAND ,y 1=RAND. (2)经伸缩变换x =3x 1,y =3y 1,得一组[0,3],一组[0, 3]上的均匀随机数. (3)统计试验总次数N 和落在阴影部分的点的个数为N 1.(4)设阴影部分的面积为S ,正方形的面积为9,由几何概率公式得P (A )=S 9,所以N 1N ≈S9.所以S ≈9N 1N即为阴影部分面积的近似值.9.利用随机模拟的方法近似计算边长为2的正方形内切圆面积,并估计π的近似值. 解析: (1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND.(2)经过平移和伸缩变换,a =(a 1-0.5)*2,b =(b 1-0.5)*2,得到两组[-1,1]上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数N 1(满足a 2+b 2≤1的点(a ,b )数). (4)计算频率N 1N,即为点落在圆内的概率的近似值. (5)设圆面积为S ,则由几何概型概率公式得P =S4.∴S 4≈N 1N ,即S ≈4N 1N, 即为正方形内切圆面积的近似值. 又S 圆=πr 2=π,∴π=S ≈4N 1N,即为π的近似值.[B 组 应考能力提升]1.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23 D .无法计算解析:∵S 阴影S 正方形=23,∴S 阴影=23S 正方形=83. 答案:B2.如图,在直角坐标系内,射线OC 落在120°角的终边上,任作一条射线OA (OA 在平面直角坐标系内的分布是等可能的),那么射线OA 落在∠xOC 内的概率为( ) A.12 B.23 C.13D.34解析:射线OA 落在∠xOC 内的概率只与∠xOC 的大小有关,故所求概率为120360=13.答案:C3.用计算器生成两个[0,1]上的均匀随机数,问这两个随机数的差小于0.5的概率为________.解析:设x ,y 为计算器生成的[0,1]上的两个均匀随机数,则0≤x ≤1,0≤y ≤1,所有的可能(x ,y )构成边长为1的正方形,如图,设事件A ={两随机数的差小于0.5},则当|x -y |<0.5时事件A 发生,条件(x ,y )构成图中的阴影部分. ∴P (A )=S 阴影S 正方形=1-2×12×1221=34. 答案:344.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数400颗,以此实验数据为依据可以估计出该不规则图形的面积为________m 2.(用分数作答).解析:∵向区域内随机地撒1 000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为400颗,记“黄豆落在正方形区域内”为事件A ,∴P (A )=4001 000=1S 不规则图形,∴S 不规则图形=52 m 2.答案:525.甲、乙两辆班车都要停在同一停车位,它们可能在一天中的任意时刻到达.如果这两辆班车的停车时间都是一个小时,求有一辆班车停车时必须等待一段时间的概率.解析:记事件A ={有一辆班车停泊时必须等待一段时间}.(1)用计算器或计算机产生两组[0,1]区间上的均匀随机数,a =RAND ,b =RAND ;(2)经过伸缩变换x =a *24,y =b *24,得到[0,24]区间上的两组均匀随机数; (3)统计试验次数N 和事件A 发生对应的次数N 1(满足|x -y |≤1的点(x ,y )的个数); (4)计算频率f n (A )=N 1N,即有一辆班车停泊时必须等待一段时间的概率.6.假设小霞、小倩和小珍所在的班级共有 65名学生,并且这65名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率: (1)小倩比小珍先到校;(2)小倩比小珍先到校,小珍比小霞先到校.解析:因为早上到校先后的可能性是相同的,所以假设每人到校的时间是某一个时间段内的任一时刻,可以分别用三组随机数x 、y 、z 表示,因而可以随机模拟.设事件A :“小倩比小珍先到校”;设事件B :“小倩比小珍先到校,小珍比小霞先到校”. (1)利用计算器或计算机产生一组[0,1]内的均匀随机数,a =RAND ,b =RAND ,c =RAND 分别表示小霞、小倩和小珍三人早上到校的时间;(2)统计出试验总次数N 以及其中满足b <c 的次数N 1,满足b <c <a 的次数N 2; (3)计算频率f n (A )=N 1N ,f n (B )=N 2N,即分别为事件A ,B 的概率的近似值.。
几何概型和随机模拟方法
几何概型与随机模拟方法孙老师目录1几何概型2 2随机模拟方法31几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:P(A)=S AS,其中S A=构成事件A的区域长度(面积或体积),S=试验的全部结果所构成的区域长度(面积或体积).例1.1在区间[−1,1]上任取一个数x,则cosπ2x的值在区间[0,12]的概率为.解.这是一个典型的几何概型.0≤cos π2x≤12⇒−23≤x≤23所以S A=43,显然S=2.P=S AS=23.练习:假如你买了一件东西,快递员可能在早上6:30−−7: 30之间把快递送到你家,你离开家出去的时间在早上7:00−−8:00之间,那么你在离开家前能拿到快递(称为事件A)的概率是多少?2随机模拟方法随机模拟方法,也称为Monte Carlo方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第二次世界大战期间进行的研制原子弹的“曼哈顿计划”。
该计划的主持人之一数学家冯·诺依曼用驰名世界的赌城–摩纳哥的Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。
冯·诺依曼是公理化方法和计算机体系的领袖人物,MonteCarlo方法也是他的重要贡献。
事实上,Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的“频率”来近似事件的“概率”。
18世纪下半叶,法国学者Buffon (蒲丰)提出用投针试验的方法来确定圆周率π的值。
这个著名的Buffon试验是Montc Carlo方法的最早尝试。
例2.1如图,正方形的边长为2,在正方形中随机撒一把豆子,用随机模拟的方法估计圆周率的值.图1解.随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积成正比.因此这是一个典型的几何概型.豆子落在圆内的概率P=S1S,其中S1是圆的面积,S是正方形的面积.而豆子落在圆内的概率可以由豆子落在圆内的频率来近似.所以P=S1S=π4≈落在圆中的豆子数/落在正方形中的豆子数.这样就得到了π的近似值.我们用计算机模拟上述过程,步骤如下:(1)用Excel的RAND函数产生两组[0,1]之间的均匀随机数a,b;(2)经平移和伸缩变换,x=2(a−0.5),y=2(b−0.5),此时x,y 是区间[−1,1]之间的随机数;(3)计算出落在圆内(x2+y2<1)的点(x,y)的个数N1,计算π≈4N1N(N代表试验次数).如下表,可以发现,随着试验次数的增加,得到的π的近似值的精度会越来越高.图2例2.2利用随机模拟方法计算图2中阴影部分(x ∈[0,π],y =sin x 和x 轴所围成的部分)的面积.图3解.在坐标系中画出矩形(x =0,x =π,y =0,y =1所围成的部分),用随机模拟的方法可以得到它的面积的近似值.具体步骤如下:(1)用Excel 的RAND 函数产生两组[0,1]之间的均匀随机数a ,b ;(2)经平移和伸缩变换,x =π·a ,y =b ,此时(x ,y )是矩形区域上的一个随机点;(3)计算出落在阴影内(y <sin x )的点(x ,y )的个数N 1,计算S ≈N 1N·π(其中N 是落在矩形区域的点的个数).如下表,可以发现,随着试验次数的增加,得到的S 的近似值的精度会越来越高(由定积分理论可以准确计算出S =2).图4练习:利用随机模拟方法近似计算图形的面积:y=x2+1和y=6所围区域的面积.图5。
几何概型的常见交汇题型
几何概型的常见交汇题型作者:杨苍洲来源:《数理化学习·高三版》2012年第12期几何概型隐含着一定的几何特征,这也意味着“几何概型”与“线性规划”、“平面几何”、“定积分”、“随机模拟”等知识点有着自然的交汇在几何概型的综合题型中,基于交汇的试题精彩纷呈下面以“交汇”为着眼点,展示几类精彩的试题一、几何概型与线性规划例1(2012年泉州市质检)已知不等式组所表示的平面区域为Ω,从Ω中任取一点Q,则点Q横坐标大于2的概率为所表示的平面区域Ω为图1中△ABC的内部区域;当点Q横坐标大于2时,点Q所在的平面区域为图中△ADE的内部区域所以其概率变式1(2012年高考北京卷)设不等式组表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()解析:题目中不等式组表示的区域如图2正方形所示而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此二、几何概型与定积分例2(2012年福州市质检)若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为()解析:设从区间(0,e)内随机取两个数分别为其表示平面区域为图3中的正方形若这两个数之积不小于f(x)=sin(ωx+φ)的导函数y=f ′(x)的部分图象如图4所示,其中,P为图象与y轴的交点,A、C为图象与x轴的两个交点,B为图象的最低点(1)若φ=π6,点P的坐标为(0,332),则(2)若在曲线段ABC与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为解析:(1)易得ω=3(2)由图知AC=ABC与x轴所围成的区域的面积为S,则又因为f(a)=1,f(c)=-1,所以S=2由几何概型可知该点在△ABC内的概率为三、几何概型与随机模拟例3某同学由于求不出积分∫e1lnxdx的准确值,于是他采用“随机模拟方法”和利用“积分的几何意义”来近似计算积分∫e1lnxdx他用计算机分别产生10个在[1,e]上的均匀随机数xi(1≤i≤10)和10个在[0,1]上的均匀随机数yi(1≤i≤10),其数据记录为如表1的前两行[FL)]则依此表格中的数据,可得积分的一个近似值为解析:当随机数组(xi,yi)落在x=1、x=e、x轴所围成的曲边梯形内时,需满足yi变式3:(2011年泉州市质检)定义函数CONRND(a,b)是产生区间(a,b)内的任一实数的随机函数,如图5所示的程序框图,可用来估计π的值.若输入N=200,则输出m=42,据此估计π的近似值为.解析:根据已知中的流程图我们可以得到该程序的功能是利用随机模拟实验的方法求任取[-1,1]上的两个数A,B,求A2+B2>1的概率因为A∈[-1,1],B∈[-1,1],对应的平面区域面积为4,而A2+B2>1对应的平面区域的面积为:四、几何概型与实际问题例4平面上有一组平行线且相邻平行线间的距离为3 cm,把一枚半径为1 cm的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是()解析:选(B);平面被这一组平行线分割成条状区域,现对两条平行线之间的区域考虑:平行线间的距离为3 cm,硬币半径为1 cm,要想硬币不与两条平行线相碰,硬币中心与两条平行线的距离都应大于1 cm如图6,硬币中心只有落在阴影部分(不包括边界)时,才能让硬币与两条平行线都不相碰,则硬币中心落在阴影部分的概率为13整个平面由无数个这样的条状区域组成,故所求概率是13变式4:已知三座城市A、B、C两两相距40 km,在△ABC内部随机选择一个点建立一个污水处理站,则该污水处理站与三座城市的距离都大于20 km的概率是.解析:以A、B、C为圆心,以20为半径作圆,与△ABC相交出三个扇形(如图7所示)当P不在阴影部分时符合要求,所以福建省泉州第五中学(362000)。
黑龙江省鸡西市一中2024届高三联合高考模拟考数学试题试卷
黑龙江省鸡西市一中2024届高三联合高考模拟考数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4amB .2a m+ C .2a mm+ D .42a mm+ 2.复数432iz i +=-的虚部为( ) A .2iB .2i -C .2D .2-3.已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<4.已知1sin 243απ⎛⎫+= ⎪⎝⎭,则sin α的值等于( ) A .79-B .29-C .29D .795.二项式52x⎫⎪⎭的展开式中,常数项为( )A .80-B .80C .160-D .1606.复数()()()211z a a i a R =-+-∈为纯虚数,则z =( )A .iB .﹣2iC .2iD .﹣i7.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等; ④垂直于同一直线的两条直线必平行. 其中正确命题的个数是( )A .0B .1C .2D .38.以下关于()sin 2cos 2f x x x =-的命题,正确的是 A .函数()f x 在区间20,3π⎛⎫⎪⎝⎭上单调递增 B .直线8x π=需是函数()y f x =图象的一条对称轴C .点,04π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心D .将函数()y f x =图象向左平移需8π个单位,可得到2sin 2y x =的图象 9.2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A .18B .14C .16D .1210.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3211.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位 12.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 二、填空题:本题共4小题,每小题5分,共20分。
几何概型 (1)
黄
黄
绿 绿 绿 红
情景1:
情景2:
转盘游戏
(研究指针位置)
面积
一个路口的红绿灯,红灯亮的时间为 30秒,黄灯亮的时间为5秒,绿灯亮的 时间为40秒,当你到达路口时,遇到 红灯和绿灯的概率那个大?为什么?
长度
A
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关. 满足以上条件的试验称为几何概型. 2、在几何概型中,事件A的概率是怎么定义的?
0
A ( x, y) | y x,6.5 x 7.5,7 y 8 1 1 1 7 即图中的阴影部分,面积为: S A 1 2 2 2 8
6.5
7.5
x(送报人到
这是个几何概型,所以
SA 7 P( A) S 8
课堂小结
1.几何概型的特点. 2.几何概型的概率公式.
几何概型可以看作是古典概型的推广
例 某公共汽车站每 隔15分钟有一辆汽 车到达,乘客到达 车站的时刻是任意 的,求一个乘客到 达车站后候车时间 大于10 分钟的概率?
例 某公共汽车站每隔15分钟有一辆汽车到达, 乘客到达车站的时刻是任意的,求一个乘客到达 车站后候车时间大于10 分钟的概率? 分析:把时刻抽象为点,时间抽象为线段,故可 以用几何概型求解。 T1 T T2 解:设上辆车于时刻T1到达,而下一辆车于时刻 T2到达,线段T1T2的长度为15,设T是T1T2上的点, 且T1T=5,T2T=10,如图所示:·
(2)每个基本事件出现 现的可能性相等.
同
两种概型、概率公式的联系 1.古典概型的概率公式:
高考数学第一轮知识点总复习 第七节 随机数与几何概型
1.
举一反三
(2009·山东)在区间[-1,1]上随机取一个数x,
cos的 x值介于0到12之间的
2
概率为
()
A. 1 B.
C.2
1
D.
2
3
2
3
解析:在区间[-1,1]上随机取一个实数x,cos 的x值位于[0,1]区间,若使
2
的值co位s 于x
2
公式可知
答案:A
区间,取0到, 12的实数x应在2 区1间 p 3
第七节 随机数与几何概型
基础梳理
1. 几何概型的概念 事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量成 正比,而与A的位置和形状无关,此种试验称为几何概型.
2. 几何概型的特点 (1)无限性:即在一次试验中,基本事件的个数可以是无限的. (2)等可能性:即每个基本事件发生的可能性是均等的.
6. 均匀随机数的应用 (1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积.
典例分析
题型一 与长度、角度有关的几何概型
【例1】(2009·盐城模拟)某公共汽车站每隔10分钟有一辆汽车到达, 乘客到达车站的时刻是任意的,求一个乘客候车时间不超过7分钟的概率.
分析 因为乘客在两车间隔的10分钟内任何时刻都可能到,所以该事件包 含的基本事件是无限多个,并且每个事件发生的可能性都是一样的,故 是几何概型问题.
因此,阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相 遇的可能性的大小,也就是所求的概率,即
P S阴影部分 S单位正方形
1-( 1 )2
3 12
8. 9
学后反思 对于几何概型的应用题,关键是构造出随机事件A对应的几何图 形,利用几何图形的度量来求随机事件的概率.根据实际问题的具体情况, 合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一 对应于该坐标系的一点,便可构造出度量区域.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座21)—几何概型及随机模拟一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
预测07年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.典例解析题型1:线长问题例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
分析:类似于古典概型,我们希望先找到基本事件组,既找到其中每一个基本事件。
注意到每一个基本事件都与唯一一个断点一一对应,故引例中的实验所对应的基本事件组中的基本事件就与线段AB 上的点一一对应,若把离绳AB 首尾两端1的点记作M 、N ,则显然事件T 所对应的基本事件所对应的点在线段MN 上。
由于在古典概型中事件T 的概率为T 包含的基本事件个数/总的基本事件个数,但这两个数字(T 包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN 的长除以线段AB 的长表示事件T 的概率似乎也是合理的。
解:P (T )=3/5。
例2.(磁带问题)乔和摩进行了一次关于他们前一天夜里进行的活动的谈话。
然而谈话却被监听录音机记录了下来,联邦调查局拿到磁带并发现其中有10秒钟长的一段内容包含有他们俩犯罪的信息 然而后来发现,这段谈话的一部分被联邦调查局的一名工作人员擦掉了,该工作人员声称她完全是无意中按错了键,并从即刻起往后的所有内容都被榛掉了试问如果这10秒钟长的谈话记录开始于磁带记录后的半分钟处,那么含有犯罪内容的谈话被部分或全部偶然擦掉的概率将是多大?解析:将3O 分钟的磁带表示为长度为3O的线段R ,则代表10秒钟与犯罪活动有关的谈话的区间为 r,如右图所示,10秒钟的谈话被偶然擦掉部分或全部的事件仅在擦掉开始的时间位于该区间内或始于该区间左边的任何点。
因此事件r 是始于R 线段的左端点且长度为326121=+的事件。
因此,02.09023032)(====的面积的面积R r r p 。
例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ?解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S ,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中 A 包含的样本点,0← S →10p=的长度的长度S a =103= 0.3 。
题型2:面积问题例4.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为1/2米的小方块。
实验是向板中投镖,事件A表示投中阴影部分为成功,考虑事件A 发生的概率。
分析与解答:类似于引例1的解释,完全可以把此引例中的实验所对应的基本事件组与大的正方形区域联系在一起,既事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A 所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A 的概率是合理的。
这一点我们完全可以用引例1的方法验证其正确性。
解析:P (A )=(1/2)2/12=1/4。
例5.(CB 对讲机问题)(CB 即CitizenBand 市民波段的英文缩写)两个CB 对讲机持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:0O 时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O 时他们能够通过对讲机交谈的概率有多大?解:设x 和y 分别代表莉莉和霍伊距某地的距离,于是400,300≤≤≤≤y x则他俩所有可能的距离的数据构成有序点对(x,y),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置,他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如右图)因此构成该事件的点由满足不等式2522≤+y x的数对组成,此不等式等价于62522≤+y x右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方米公里,而事件的面积为()462525412ππ=⎪⎭⎫ ⎝⎛, 于是有41.0902480062512004/625====ππp 。
例6.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得: (a )一张大馅饼,(b )一张中馅饼,(c )一张小馅饼,(d )没得到馅饼的概率解析:我们实验的样本空间可由一个边长为18的正方形表示。
右图表明R 和子区域r 1、r 2、r 3和r,它们分别表示得大馅饼、中馅饼、小馅饼或没得到馅饼的事件。
01.032418)1()()(2211====ππ的面积的面积R r r p a ; 03.0324318)1()2()()(22222==-==πππ的面积的面积R r r p b ; 05.0324518)2()3()()(22233==-==πππ的面积的面积R r r p c ; 91.0324318)3(324)()(2244==-==ππ的面积的面积R r r p d 。
题型3:体积问题例7.(1)在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。
解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即2/400=0.005。
(2)如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少?解析:由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008。
例8.在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大。
解析:设0到三点的三线段长分别为x,y,z右端点坐标为x,y,z ,显然1,,0≤≤z y x。
段构成三角形的充要条件是: x z y y z x z y x >+>+>+,,。
在线段[0,1]上任意投三点x,y,z 。
与立方体10≤≤x ,10≤≤y ,10≤≤z 中的点),,(z y x 边长为1的立方体T 中均匀地掷点,而点落在x z y y z x z y x >+>+>+,,区域中的概率;这也就是落在图中由ΔADC ,ΔADB ,ΔBDC ,ΔAOC ,ΔAOB ,ΔBOC 所围成的区域G 中的概率。
由于,1)(=T V211213131)(33=⨯⨯⨯-=G V , 21)(/)(==∴T V G V p 由此得,能与不能构成三角形两事件的概率一样大。
题型4:随机模拟例9.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率. 解析:半圆域如图设A =‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+。
例10.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解析:01,01x y ≤≤≤≤,不等式确定平面域S 。
A =‘1,0.09x y xy +≤≥’则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故:0.90.10.9()(1)A P A x dx x==--⎰的面积S 的面积 0.40.18ln 30.2=-=例11. 曲线y=-x 2+1与x 轴、y 轴围成一个区域A ,直线x=1、直线y=1、x 轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A 内的芝麻数与落在正方形中的芝麻数。
答案:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y )的坐标。
如果一个点(x,y )满足y ≤-x 2+1,就表示这个点落在区域A 内,在下表中最后1.几何概率是考研大纲上要求的基本内容,也是近年来新增考察内容之一;2.有关几何概率的题目难度不大,但需要准确理解题意,利用图形分析问题。