几何概型及随机模拟(B3三).
几何概型

几何概型1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率. 概念方法微思考1.古典概型与几何概型有什么区别?提示 古典概型与几何概型中基本事件发生的可能性都是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型中线段的端点、图形的边框是否包含在内影响概率值吗? 提示 几何概型中线段的端点,图形的边框是否包含在内不会影响概率值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )题组二 教材改编2.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D.1 答案 B解析 坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.3.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B.π-22C.π6D.4-π4答案 D解析 如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分(不包括AC )表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.题组三 易错自纠5.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.答案 3解析 由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.故m =3.6.在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32 cm 2的概率为________. 答案 23解析 设AC =x cm(0<x <12),则CB =(12-x )cm ,则矩形的面积S =x (12-x )=12x -x 2(cm 2).由12x -x 2<32,即(x -8)(x -4)>0,解得0<x <4或8<x <12. 在数轴上表示,如图所示.由几何概型概率计算公式,得所求概率为812=23.题型一 与长度、角度有关的几何概型例1 在等腰Rt △ABC 中,直角顶点为C . (1)在斜边AB 上任取一点M ,求|AM |<|AC |的概率;(2)在∠ACB 的内部,以C 为端点任作一条射线CM ,与线段AB 交于点M ,求|AM |<|AC |的概率.解 (1)如图所示,在AB 上取一点C ′,使|AC ′|=|AC |,连接CC ′.由题意,知|AB |=2|AC |.由于点M 是在斜边AB 上任取的,所以点M 等可能分布在线段AB 上,因此基本事件的区域应是线段AB . 所以P (|AM |<|AC |)=|AC ′||AB |=|AC |2|AC |=22. (2)由于在∠ACB 内以C 为端点任作射线CM ,所以CM 等可能分布在∠ACB 内的任一位置(如图所示),因此基本事件的区域应是∠ACB ,所以P (|AM |<|AC |)=∠ACC ′∠ACB=π-π42π2=34.思维升华 求解与长度、角度有关的几何概型的概率的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同,解题的关键是构建事件的区域(长度或角度).跟踪训练1 (1)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为____________. 答案 23解析 方程x 2+2px +3p -2=0有两个负根, 则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.答案 13解析 因为在∠DAB 内任作射线AP ,所以它的所有等可能事件所在的区域是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,则区域为∠CAB ,所以射线AP 与线段BC 有公共点的概率为∠CAB ∠DAB =30°90°=13.题型二 与面积有关的几何概型命题点1 与面积有关的几何概型的计算例2 (1)(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π4 答案 B解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.(2)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率为________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =⎝⎛⎭⎫4x -13x 3|21=53, 所以所求概率P =S S 矩形ABCD =531×4=512.命题点2 随机模拟例3 (1)如图所示,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据估计椭圆的面积为()A.7.68B.8.68C.16.32D.17.32答案 C解析 由随机模拟的思想方法,可得黄豆落在椭圆内的概率为300-96300=0.68.由几何概型的概率计算公式,可得S 椭圆S 矩形=0.68,而S 矩形=6×4=24,则S 椭圆=0.68×24=16.32.(2)若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该运动员射击4次至少击中3次的概率为________. 答案 0.4解析 根据数据得该运动员射击4次至少击中3次的数据分别为7527 9857 8636 6947 4698 8045 9597 7424,共8个,所以该运动员射击4次至少击中3次的概率为820=0.4.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.跟踪训练2 (1)(2016·全国Ⅱ)从区间[0,1]内随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn,∴π=4mn,故选C.(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案2e 2解析 由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|10=2[e -e -(0-1)]=2.又该正方形的面积为e 2,故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例4 已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.答案2764解析 当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2, 所以PE P A =34,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PE P A 3=⎝⎛⎭⎫343=2764.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.跟踪训练3 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3π D.233π 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝⎛⎭⎫323=32π, 则此点落在正方体内部的概率P =V 1V 2=233π.1.已知函数f (x )=x 2-x -2,x ∈[-3,3],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A.13 B.23 C.12 D.16 答案 C解析 由f (x 0)≤0,可得-1≤x 0≤2,所以D =3-(-3)=6,d =2-(-1)=3,故由几何概型的概率计算公式可得所求概率为P =d D =12,故选C.2.在区间[-1,3]上随机取一个数x ,若x 满足|x |≤m 的概率为12,则实数m 为( )A.0B.1C.2D.3 答案 B解析 区间[-1,3]的区间长度为4. 不等式|x |≤m 的解集为[-m ,m ],当1<m ≤3时,由题意得m +14=12,解得m =1(舍),当0<m ≤1时,由2m 4=12,则m =1.故m =1.3.若正方形ABCD 的边长为4,E 为四边上任意一点,则AE 的长度大于5的概率等于( ) A.132 B.78 C.38 D.18 答案 D解析 设M ,N 分别为BC ,CD 靠近点C 的四等分点,则当E 在线段CM ,CN (不包括M ,N )上时,AE 的长度大于5,因为正方形的周长为16,CM +CN =2,所以AE 的长度大于5的概率为216=18,故选D.4.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A.2-33πB.4-63πC.-13-32πD.23答案 B解析 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B.5.如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππππ44(sin cos )d (cos sin )|x x x x x ⎰-=--=1-⎝⎛⎭⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率计算公式得该点落在阴影区域内的概率是1+22π.故选B.6.(2018·郑州模拟)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A.866B.500C.300D.134答案 D解析 设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32×1 000≈134. 7.记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________. 答案 59解析 设事件“在区间[-4,5]上随机取一个数x ,则x ∈D ”为事件A , 由6+x -x 2≥0,解得-2≤x ≤3, ∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5,∴P (A )=59.8.在等腰直角三角形ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 因为点M 在直角边BC 上是等可能出现的,所以“区域”是长度.设BC =a ,则所求概率P =33a a =33.9.如图,在长方体ABCD —A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD 内的概率为______.答案 16解析 因为11A A BD A ABD V V =--=13AA 1×S △ABD=16×AA 1×S 矩形ABCD =16V 长方体, 故所求概率为11.6A A BD V V =-长方体10.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入到正方形ABCD 中,则质点落在图中阴影区域的概率是______.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-⎝⎛⎭⎫-23=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个. 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为 Ω={(x ,y )|1≤x ≤6,1≤y ≤6}.满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图像如图所示,矩形的面积为S 矩形=25, 阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出, 当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上, 即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成的集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.13.在长为1的线段上任取两点,则这两点之间的距离小于12的概率为________.答案 34解析 设任取两点所表示的数分别为x ,y ,则0≤x ≤1,且0≤y ≤1,如图所示,则总事件所占的面积为 1.记这两点之间的距离小于12为事件A ,则A ={(x ,y )||x -y |<12,0≤x ≤1,0≤y ≤1},如图中阴影部分所示,空白部分所占的面积为2×12×12×12=14,所以所求两点之间的距离小于12的概率P (A )=1-141=34.14.向圆C :(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________. 答案 16-34π解析 如图所示,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以∠ACB =60°,所以S 圆C =π×22=4π,所以S 弓形ADB =60°×π×22360°-12×2×3=2π3-3,所以向圆C 内随机投掷一点,则该点落在x 轴下方的概率P =2π3-34π=16-34π.15.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥13”的概率,p 2为事件“|x -y |≤13”的概率,p 3为事件“xy ≤13”的概率,则( )A.p 1<p 2<p 3B.p 2<p 3<p 1C.p 3<p 1<p 2D.p 3<p 2<p 1答案 B解析 因为x ,y ∈[0,1],所以事件“x +y ≥13”表示的平面区域如图(1)阴影部分(含边界)S 1,事件“|x -y |≤13”表示的平面区域如图(2)阴影部分(含边界)S 2,事件“xy ≤13”表示的平面区域如图(3)阴影部分(含边界)S 3,由图知,阴影部分的面积满足S 2<S 3<S 1,正方形的面积为1×1=1,根据几何概型概率计算公式可得p 2<p 3<p 1.16.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,求此点取自空白部分的概率.解 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整个图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以P =2π.。
最新-2018学年高中数学 331 几何概型课件 新人教B版必修3 精品

同样地,例2中由于取水样的随机性,
所求事件A:“在取出的2ml的水样中有
草履虫”的概率等于水样的体积与总体 积之2比 0.004
500
总之,这两个试验的共同点是: 如果把事件A理解为区域Ω的某一个子 区域A,A的概率只与子区域A的几何度量 (长度、面积或体积)成正比,而与A的 位置和形状无关,则称满足以上条件的试 验为几何概型 .
解:以O为起点作射线OA 是随机的,因而射线OA落 在任何位置都是等可能的。 落在∠XOT内的概率只与 ∠XOA的大小有关,符合 几何概型的条件。
记事件A={射线OA落在∠XOT内}.
因为∠XOT=60°, 所以P(A)= 60 1
360 6
例10. 将长为l的棒随机折成3段,求3段长 度能构成三角形的概率.
总的情况是Ω={(x,y)| 6.5≤x≤7.5, 7≤y≤8}.
事件A满足的条件是
A={(x,y)| y≤x, x∈Ω, y∈Ω}.
在直角坐标系中画出图形。
Ω表示的是矩形面积1,
y
8
A表示的是阴影部分面积 7.5 y≥x
所以P(A)=
7 8
7
6.5 x
6.5 7 7.5 8
例9. 如图,在直角坐标系内,射线OT落 在60°角的终边上,任作一条射线OA, 求射线OA落在XOT内的概率.
M
与任一条平行线相碰”.
为了确定硬币的位置,由 2a r O
硬币中心O向靠得最近的
平行线引垂线OM,垂足
为M,
参看图,这样线段OM长度(记作|OM|) 的取值范围是[0,a],只有当r<|OM|≤a时, 硬币不与平行线相碰,
M
所以P(A)=
(r, a]的长度 [0, a]的长度
人教A版高中数学必修3《第三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》_6

均匀随机数的产生教学设计教学目标:1.能够利用随机模拟试验估计事件的概率.2.了解把未知量的估计问题转化为随机模拟问题.3.会根据题目条件合理设计简单的随机模拟试验. 教学重点:会根据题目条件合理设计简单的随机模拟试验. 教学方法:讲练结合、启发式. 教学过程: 知识梳理知识点1: 均匀随机数定义:如果试验的结果是在区间[a ,b]上的__________,并且出现每一个实数都是________的,则称这些实数为均匀随机数. 知识点2:均匀随机数的产生1.计算器上产生[0,1]的均匀随机数的函数是________函数.2.Excel 软件产生[0,1]区间上均匀随机数的函数为“________”. 知识点3:用模拟方法近似计算某事件概率的方法[化解疑难](1)均匀随机数的理解①均匀随机数是随机产生的,在一定的区域长度上出现的概率是均等的.②均匀随机数是小数或整数,相邻两个均匀随机数的步长是人为设定的.(2)应用模拟试验近似计算概率的方法要点分析用均匀随机数模拟试验时,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型只用一组,面积型需要两组.②由所有基本事件总体对应的区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式求事件A的概率.基础自测1.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率解析:很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.2.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )A.a=a1*8B.a=a1*8+2C.a=a1*8-2D.a=a1*6解析:将[0,1]内的随机数转化为[a,b]内的随机数需进行的变化为a=a1*(b-a)+a=a1*8-2.答案:C3.下列关于随机数的说法中:①计算器只能产生(0,1)之间的随机数;②计算器能产生指定两个整数值之间的均匀随机数;用随机模拟法估计长度型几何概型自主练透型例1、 取一根长度为5 m 的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m 的概率有多大? 解析: 设剪得两段的长都不小于2 m 为事件A.法一:(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND ; (2)作伸缩变换:y =x*(5-0),转化为[0,5]上的均匀随机数; (3)统计出[2,3]内均匀随机数的个数m ; (4)则概率P(A)的近似值为m/n.法二:(1)做一个带有指针的转盘,把圆周五等分,标上刻度[0,5](这里5和0重合); (2)固定指针转动转盘或固定转盘旋转指针,记下指针在[2,3]内(表示剪断绳子位置在[2,3]范围内)的次数m 及试验总次数n ; (3)则概率P(A)的近似值为m/n. [归纳升华]利用随机模拟计算概率的步骤 (1)确定概率模型;(2)进行随机模拟试验,即利用计算器等以及伸缩和平移变换得到[a,b]上的均匀随机数;(3)统计计算;(4)得出结论,近似求得概率.1.已知米粒等可能地落入如图所示的四边形ABCD 内,如果通过大量的实验发现米粒落入△BCD 内的频率稳定在49附近,那么点A 和点C 到直线BD 的距离之比约为 .解析: 设米粒落入△BCD 内的频率为P 1,米粒落入△BAD 内的频率为P 2,点C 和点A 到直线BD的距离分别为d 1,d 2,根据题意:P 2=1-P 1=1-49=59, 又∵P 1=S △BCDS 四边形ABCD=12×BD ×d 1S 四边形ABCD , P 2=S △BAD S 四边形ABCD =12×BD ×d 2S 四边形ABCD∴P 2P1=d 2d 1=54. 用随机模拟估计面积型的几何概型多维探究型如图所示,在墙上挂着一块边长为32 cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为3 cm ,6 cm ,9 cm ,某人站在3 m 之外向此板投镖,假设投镖击在线上或没有投中木板不算,可重投,用随机模拟的方法估计:(1)“投中小圆内”的概率是多少?(2)“投中小圆与中圆形成的圆环”的概率是多少?解析:记事件A ={投中小圆内},事件B={投中小圆与中圆形成的圆环}.按如下步骤进行:(1)用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND;(2)经过伸缩和平移变换,a=a1·32-16,b=b1·32-16,得到两组[-16,16]上的均匀随机数;(3)统计投在小圆内的次数N1(即满足a2+b2<9的点(a,b)的个数),投中小圆与中圆形成的圆环的次数N2(即满足9<a2+b2<36的点(a,b)的个数),投中木板的总次数N(即满足-16<a<16,-16<b<16的点(a,b)的个数);(4)计算频率f n(A)=N1N,f n(B)=N2N,即分别为概率P(A),P(B)的近似值.[归纳升华]用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别(1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.2.现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解析:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a1、b1(共N组);(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出满足不等式b<2a-43,即6a-3b>4的数组数N1.所求概率P≈N1N.可以发现,试验次数越多,概率P越接近25 144.利用随机模拟的方法计算不规则图形的面积多维探究型(1)如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.无法计算(2)利用随机模拟的方法近似计算图中阴影部分(抛物线y =2-2x -x 2与x 轴围成的图形)的面积.解析: (1)由几何概型的公式可得S 阴影S 正方形=23,又S 正方形=4, ∴S 阴影=4×23=83.(2)①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;②经过平移和伸缩变换,a =a 1·4-3,b =b 1·3,得到一组[-3,1]和一组[0,3]上的均匀随机数;③统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数);④计算频率N 1N就是点落在阴影部分的概率的近似值;⑤设阴影部分的面积为S ,由几何概型概率公式得点落在阴影部分的概率为S 12,所以S 12≈N 1N ,故S ≈12N 1N即为阴影部分面积的近似值.[归纳升华]利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;(3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1NS ′,则已知图形面积的近似值为N 1NS ′.3.利用随机模拟的方法近似计算图中阴影部分(曲线y =2x与直线x =±1及x 轴围成的图形)的面积.解析: 设事件A 为“随机向正方形内投点,所投的点落在阴影部分”,操作步骤如下:第一步,用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x(即点落在图中阴影部分),首先设置n =0,m =0;第二步,用变换rand( )*2-1产生-1~1之间的均匀随机数x 表示所投点的横坐标,用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;第三步,判断点是否落在阴影部分,即是否满足y <2x,如果是, 则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;第四步,表示随机试验次数的计数器n的值加1,即n=n+1,如果还要试验,则返回步骤第二步继续执行,否则结束.程序结束后事件A发生的频率mn作为事件A的概率的近似值.设阴影部分的面积为S,正方形面积为4,由几何概型概率计算公式得,P(A)=S4,所以mn≈S4,故4mn可作为阴影部分面积S的近似值.。
高中数学第三章概率3.3几何概型3.3.1几何概型3.3.2几何概型均匀随机数的产生课件新人教A版

记“等车时间超过 10 min”为事件 A,则当乘客到达车 站的时刻 t 落在线段 T1T 上(不含端点)时,事件 A 发生.
∴P(A)=TT11TT2的的长长度度=155=13, 即该乘客等车时间超过 10 min 的概率是31.
拓展提升 1.解几何概型概率问题的一般步骤 (1)选择适当的观察角度(一定要注意观察角度的等可能 性); (2)把基本事件转化为与之对应的区域 D; (3)把所求随机事件 A 转化为与之对应的区域 I; (4)利用概率公式计算.
【跟踪训练 2】 如图,在圆心角为直角的扇形 OAB
中,分别以 OA,OB 为直径作两个半圆.在扇形 OAB 内随
机取一点,则此点取自阴影部分的概率是( )
A.1-π2 B.21-π1
2
1
C.π
D.π
解析 设扇形的半径为 2,则其面积为π×422=π.阴影部 分的面积可转化为扇形的面积减去△AOB 的面积,即阴影 部分的面积为 π-12×2×2=π-2.因此任取一点,此点取自 阴影部分的概率为π-π 2=1-2π.
拓展提升 1.解与体积有关的几何概型的关键点 分清题中的条件,提炼出几何体的形状,找出总体积是 多少以及所求的事件占பைடு நூலகம்的几何体是什么几何体,并计算出 体积. 2.与体积有关的几何概型概率的求法 如果试验的结果所构成的区域的几何度量可用体积表 示,则其概率的计算公式为 P(A)=试验的构全成部事结件果A所的构区成域的体区积域体积.
所以作 AC′=AC,且∠ACC′=180°2-45°=67.5°.
如图,当 CM 在∠ACC′内部的任意一个位置时,皆有 AM<AC′=AC,即 P(AM<AC)=6970.5°°=34.
探究 5 用随机模拟法估计图形的面积
第21讲几何概型及随机模拟doc高中数学

第21讲几何概型及随机模拟doc 高中数学 高三新数学第一轮复习教案〔讲座21〕—几何概型及随机模拟一.课标要求:1.了解随机数的意义,能运用模拟方法〔包括运算器产生随机数来进行模拟〕估量概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
推测07年高考:〔1〕题目类型多以选择题、填空题形式显现,;〔2〕本建考试的重点内容几何概型的求值咨询题,我们要善于将实际咨询题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范畴内随机产生的数,同时得到那个范畴内任何一个数的机会是均等的。
2.随机数的产生方法〔1〕利用函数运算器能够得到0~1之间的随机数;〔2〕在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念假如每个事件发生的概率只与构成该事件区域的长度〔面积或体积〕成比例,那么称如此的概率模型为几何概率模型;4.几何概型的概率公式:P 〔A 〕=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型〔1〕设线段l 是线段L 的一部分,向线段L 上任投一点.假设落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,那么点落在线段l 上的概率为:P=l 的长度/L 的长度〔2〕设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,假设落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,那么点落在区域g 上概率为:P=g 的面积/G 的面积〔3〕设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.假设落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,那么点落在区域V 上的概率为: P=v 的体积/V 的体积 四.典例解析 题型1:线长咨询题 例1.一个实验是如此做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
高中数学3.3应用随机模拟法解决几何概型问题论文新人教A版必修

应用随机模拟法解决几何概型问题在新课标教材中我们学习了几何概型, 用随机模拟法可以对几何概型类问题进行估计.其应用比较广泛.下面举例说明.一、用随机模拟法估计与长度有关的几何概型例1 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形.试求这个正方形的面积介于36 cm 2与81 cm 2之间的概率.分析:正方形的面积只与边长有关,此题可以转化为12 cm 长的线段上取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率.解:(1)用计算机产生一组[0,1]内均匀随机数a 1=RAND. (2)经过伸缩变换,a=a 1*12得到[0,12]内均匀随机数.(3)统计试验总数N 和[6,9]内随机数个数N 1.(4)计算频率N N 1.记事件A={面积介于36 cm 2与81 cm 2之间}={边长介于6 cm 与9 cm 之间},则P(A)的近似值为NN 1. 点评:用随机模拟的方法解决与长度有关的几何概型关键在于将对应的区域长度转化为随机数的范围[a,b],进行在[a,b]上产生随机数.二、用随机模拟法估计与面积有关的几何概型例2 利用随机模拟方法计算图中阴影部分(曲线y=2x 与x 轴、x=±1和y=2围成的部分)的面积.分析:用随机模拟的方法可以求出阴影部分与正方形面积之比,从而求得阴影部分面积的近似值.解:(1) 利用计算机产生两组[0, 1]上的均匀随机数,a 1=RAND, b 1=RAND. (2)进行平移和伸缩变换,a =(a 10.5)*2,b=b l *2得到一组[1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N 和落在阴影内的点数N 1(满足条件b< 2a 的点(a, b)数).(4)计算频率N N 14S P =,所以41S N N ≈.所以NN S 14≈即为阴影部分面积的近似值. 点评:解决本题的关键是利用随机模拟法和几何概型的概率公式分别求的几何概率,然后通过解方程求得阴影部分面积的近似值.三、用随机模拟法估计图形的面积例3 利用随机模拟的方法近似计算如图所示阴影部分(函数y=22xx 2与x 轴围成的图形)的面积.分析:先计算与之相应的规则多边形的面积,然后由几何概率进行面积估计. 解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND,b 1=RAND. (2)经过平移和伸缩变换a =a 1*43,b=b l *3得到一组[3,1]和一组[0,3]上的均匀随机数.(3)统计试验总数N 和落在阴影部分的点数N 1(满足条件b< 2-2aa 2的点(a, b)数).(4)计算频率N N 112S ,所以≈12S N N 1.所以NN S 112=即为阴影部分面积的近似值. 点评:利用随机模拟实验估计图形的面积时,一要选取合适的对应图形,二要由几何概型正确计算概率.四、随机模拟法的应用例4(探究题)如图所示,利用随机模拟的方法近似计算长为2的正方形内切圆面积,并估计π的近似值.分析:用随机模拟的方法可以估算点落在圈内的概率,由几何概型的概率公式可得点落在圆内的概率为4圆S .这样就可以计算圆的面积,应用圆面积公式可得ππ==2r S 圆.所以上面求得的圆S 的近似值即为π的近似值.解:(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND, b 1= RAND.(2)经过平移和伸缩变换,a =(a 10.5)*2,b= (b 10.5)*2,得到两组[1,1]上的均匀随机数.(3)统计试验总次数N 和点落在圆内的次数N 1(满足a 2+b 2≤1的点(a,b)数). (4) 计算频率NN 1即为点落在圆内的概率. (5)设圆面积为S,则由几何概型的概率公式得4S P =.所以NN S 14≈,即N N S 14=即为圆面积的近似值.又因为ππ==2r S 圆,所以N N S 14==π即为圆周率π的近似值.点评:如果我们能设计一个圆形使其面积与某个常数有关,我们就以设计一个概率模型,然后设计适当的试验,并通过这个结果来确定该量的近似值.。
高中数学第3章概率3-3几何概型互动课堂学案

教学资料范本高中数学第3章概率3-3几何概型互动课堂学案编辑:__________________时间:__________________3.3 几何概型互动课堂疏导引导1.几何概型的定义在古典概型中,利用等可能性的概念,成功地计算了某一类问题的概率;不过,古典概型要求可能结果的总数必须有限.这不能不说是一个很大的限制,人们当然要竭力突破这个限制,以扩大自己的研究范围.因此历史上有不少人企图把这种做法推广到有无限多个结果而又有某种等可能性的场合.这类问题一般可以通过几何方法来求解.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.对于这一定义也可以作以下理解:设在空间上有一区域D,又知区域d包含在区域D内(如下图所示),而区域D与d都是可以度量的(可求面积、长度、体积等),现随机地向D内投掷一点M,假设点M必落在D中,且点M可能落在区域D的任何部分,那么落在区域d内的概率只与d的度量(长度、面积、体积等)成正比,而与d的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.2.几何概型的概率计算一般地,在几何区域D中随机地抽取一点,记“该点落在其内部的一个区域d内”为事件A,则事件A发生的概率P(A)=的测度的测度D d .这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等. 疑难疏引 (1)几何概型的概率的取值范围同古典概型概率的取值范围一样,几何概型的概率的取值范围也是0≤P(A)≤1.这是因为区域d包含在区域D内,则区域d的“测度”不大于区域D的“测度”.当区域d的“测度”为0时,事件A是不可能事件,此时P(A)=0;当区域d的“测度”与区域D的“测度”相等时,事件A是必然事件,此时P(A)=1. (2)求古典概型概率的步骤: ①求区域D的“测度”; ②求区域d的“测度”; ③代入计算公式.(3)对于一个具体问题能否应用几何概率公式计算事件的概率,关键在于将问题几何化,也即可根据问题的情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个区域,且是可度量的.案例1某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走站上的所有乘客),乘客到达汽车站的任一时刻是任意的,求乘客候车时间不超过3分钟的概率. 【探究】这是一个与长度有关的几何概型问题.记A=“候车时间不超过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车站后来到的第一辆汽车的时刻,据题意,乘客必然在(t -5,t]内来到车站,于是D={x|t -5<x≤t}. 若乘客候车时间不超过3分钟,必须t -3≤x≤t,所以A={x|t -3≤x≤t}据几何概率公式得P(A)=53=的长度的长度D d =0.6规律总结(1)把所求问题归结到x轴上的一个区间内是解题的关键.然后寻找事件A发生的区域,从而求得d的测度.(2)本题也可这样理解:乘客在时间段(0,5]内任意时刻到达,等待不超过3分钟,则到达的时间在区间[2,5]内. 案例2甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠时必须等待的概率. 【探究】这是一类与面积有关的几何概型问题.设A={两艘船中至少有一艘停靠时等待}.建立平面直角坐标系,x轴表示甲船到达的时间,y轴表示乙船到达的时间,则(x,y)表示的所有结果是以24为边长的正方形.事件A发生的条件是0<x -y<6或0<y -x<6,即图中阴影部分,则D的面积为242,d的面积为242-182.∴P(A)=167242824222=-. 规律总结 (1)甲、乙两船都是在0—24小时内的任一时刻停靠,故每一个结果对应两个时间;分别用x,y轴上的数表示,则每一个结果(x,y)就对应于图中正方形内的任一点.(2)找出事件A发生的条件,并把它在图中的区域找出来,分别计算面积即可. (3)这一类问题我们称为约会问题. 案例3在长度为a的线段上任取两点将线段分成三段,求它们可以构成三角形的概率. 【探究】解法一:假设x、y表示三段长度中的任意两个,因为是长度,所以应有x >0,y>0且x+y<a,即x、y的值在以(0,a)、(a,0)和(0,0)为顶点的三角形内,如右图所示.要形成三角形,由构成三角形的条件知,x和y都小于,且x+y>(如图阴影部分).又因为阴影部分的三角形的面积占形成总面积的,故能够形成三角形的概率为.解法二:如右图,作等边三角形ABC,使其高为a,过各边中点作△DEF.△DEF的面积占△ABC的面积的.因为从△ABC内任意一点P到等边三角形三边的垂线段长度之和等于三角形的高(由等积法易知),为了使这三条垂线线段中没有一条的长度大于,P点必须落在阴影部分即△DEF内(DM=).所以符合题意要求的情况占全部情况的,即所求概率为.解法三:如下图,作一边长为a的正方形,过相对两边的中点作两条斜线,阴影部分占整个正方形面积的.令AB上距离底边为x的点表示第一个截点的位置,则第二个截点一定落入阴影部分(y<,z<).因此,符合题意要求的情况占全部情况的.所以所求的概率为.规律总结解决此题的关键在于弄清三角形三边长之间的关系,由题意易知,三边长之和为定值a,且三边长分别小于a2.把握住了这两点,就能使问题准确获解.3.随机数的产生与随机模拟方法(1)随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x1=RAND,然后利用伸缩和平移变换,x=x1*(b-a)+a,就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能出现的.(2)随机模拟试验用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法进行,因而随机模拟试验就成为一种重要的方法,它可以在短时间内多次重复.用计算器或计算机模拟试验,首先需要把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型(一维)只用一组,面积型(二维)需要用两组.②由所有的基本事件总体(基本事件空间)对应区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式.(3)随机模拟的基本思想是用频率近似于概率,频率可由试验获得.案例4 取一根长度为3m的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 m的概率有多大?【探究】在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意实数,并且每一个实数被取到的可能性相等,因此在任意位置剪断绳子的所有结果(即基本事件)对应[0,3 ]上的均匀随机数,其中[1,2]上的均匀随机数就表示剪断位置与端点 的距离在[1,2]内,也就是剪得两段的长都不小于1 m,这样取得的[1,2]内的随机数个数与[0,3]内的随机数个数之比就是事件A 发生的频率.【解析】记事件A={剪得两段的长都不小于1 m}.①利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.②经过伸缩变换,a=a1*3.③统计出试验总次数N和[1,2]内的随机数个数N1.④计算频率fn (A)=N1/N即为概率P(A)的近似值.规律总结用随机模拟法估算几何概率的关键是把事件A及基本事件空间对应的区域转化为随机数的范围.案例5利用随机模拟方法计算图中阴影部分(曲线y=2x与x轴,x=±1围成的部分)的面积.【探究】在坐标系中画出正方形,用随机模拟的方法可以求出阴影部分面积与正方形面积之比,从而求得阴影部分面积的近似值.【解析】(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND,b1=RAND.(2)进行平移和伸缩变换,a=2a1-1,b=b1*2,得到一组[-1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N和落在阴影内的次数N1(满足条件b<2a的点(a,b)).(4)计算频率,即为点落在阴影部分的概率的近似值.(5)用几何概率公式求得点落在阴影部分的概率为P=.∴≈.∴S≈即为阴影部分面积的近似值.规律总结解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过方程求得阴影部分面积的近似值.活学巧用1.判断下列概率模型是古典概型还是几何概型?(1)如下图,转盘上有8个面积相等的扇形.转动转盘,求转盘停止转动时指针落在阴影部分的概率.(2)在500 mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.解析:以上2个试验的可能结果个数无限,所以它们都不是古典概型.而是几何概型.2.利用几何概型求概率应注意哪些问题?解:应该注意到:(1)几何型适用于试验结果是无穷多且事件是等可能发生的概率类型;(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=;(4)计算几何概率要先计算基本事件总体与事件A包含的基本事件对应的长度(角度、面积、体积).3.有一杯1 L的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1L水,则小杯水中含有这个细菌的概率为( )A.0B.0.1C.0.01D.1解析:1个细菌在1L的水中,在每一个位置都是可能的,那么只有这个细菌在这0.1L的水中,这件事件才能发生.由几何概型公式得P(A)==0.1.答案:B4.如下图,如果你向靶子上射200支镖,大概有多少支镖落在红色区域(颜色较深的区域)( )A.50B.100C.150D.200解析:这是几何概型问题.这200支镖落在每一点的可能性都是一样的,对每一支镖来说,落在红色区域的概率P=,每一支镖落在红色区域的概率都是12,则200支镖落在红色区域的概率还是,则落在红色区域的支数=200支×=100支.答案:B5.如下图,假设你在每个图形上随机撒一粒黄豆,则它落到阴影部分的概率分别为_____________________,___________________.解析:这是几何概型问题,在平面上随机撒一粒黄豆,那么黄豆既可能落在三角形内,也可能落在圆内空白区域,并且落在每一点的可能性是一样的,只有落在三角形内才说明事件A发生.①P(A)==.②P(A)==.答案:6.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.解:在75秒内,每一时刻到达路口的时候是等可能的,属于几何概型.(1)P==;(2)P==;(3)P===.7.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A. B. C. D.解析:在线段[0,3]上任取一点的可能性是相等的,若在其上任意取一点,此点坐标不小于2,则该点应落在线段[2,3]上.所以,在线段[0,3]上任取一点,则此点坐标不小于2的概率应是线段[2,3]的长度与线段[0,3]的长度之比,即为.答案:A8.圆O有一内接正三角形,向圆O随机投一点,则该点落在内接正三角形内的概率是_______.解析:向圆内投点,所投的点落在圆形区域内任意一点的可能性相等,所以本题的概率模型是几何概型.向圆O随机投一点,则该点落在内接正三角形内的概率应为正三角形的面积与圆的面积的比.答案:9.假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家之前能得到报纸(称为事件A)的概率是多少?解析:如下图所示,正方形区域内任取一点的横坐标表示送报人到达的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任何一点是等可能的,所以符合几何概型的条件,根据题意,只要点落到阴影部分,就表示父亲在离开家前得到报纸,即事件A发生,所以P(A)==87.5%.10.如右图所示,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,求射线OA落∠xOT内的概率.分析:以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在∠xOT内的概率只与∠xOT的大小有关,符合几何概型的条件.解:设事件A“射线OA落在∠xOT内”.事件A的角度是60°,区域D的角度是360°,所以,由几何概率公式得P(A)=.11.甲、乙两辆货车停靠站台卸货的时间分别是6小时和4小时,用随机模拟法估算有一辆货车停靠站台时必须等待一段时间的概率.解析:设事件A:“有一辆货车停靠站台时必须等待一段时间”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩变换,x=x1*24,y=y1*24得到两组[0,24]上的均匀随机数.(3)统计出试验总次数N和满足条件-4≤x-y≤6的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.12.如右图,在长为4宽为2的矩形中有一以矩形的长为直径的半圆,试用随机模拟法近似计算半圆面积,并估计π值.解析:设事件A:“随机向矩形内投点,所投的点落在半圆内”.(1)利用计算机或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*4-2,y=y1*2.(3)统计出试验总数N和满足条件x2+y2<4的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.半圆的面积为S1=2π,矩形的面积为S=8.由几何概型概率公式得P(A)=,所以=.所以即为π的近似值.13.利用随机模拟法近似计算右图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.解析:设事件A:“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1之间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*3,y=y1*3.得到两组[0,3]的均匀随机数.(3)统计出试验总次数N和满足条件y<log3x的点(x,y)的个数N1.(4)计算频率fn(B)=,即为频率P(A)的近似值.设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=.所以=,故S=即为阴影部分面积的近似值.。
3.3几何概型

2
-1
0
1
x
以直线 x=1,x=-1,y=0,y=1 为边界作矩 形,用随机模拟方法计算落在抛物区域内的均 匀随机点的频率,则所求区域的面积=频率×2.
理论迁移
例4.在一边长为2的正六边形的纸片上,
有一个半径为R的半圆孔,随机向该纸
片投掷一粒芝麻,若芝麻恰好从半圆孔
穿过的概率为 3 ,则R=_________.
知识探究(二) :几何概型的概率
思考 2:在玩转盘游戏中,对于下列两个转盘, 甲获胜的概率分别是多少?你是怎样计算的?
B N B N B N N B N N B
B
知识探究(二) :几何概型的概率
思考 3:射箭比赛的箭靶涂有五个彩色的分环, 从外向内依次为白色、黑色、蓝色、红色,靶心 是金色,金色靶心叫“黄心”.奥运会射箭比赛 的靶面直径是 122cm,黄心直径是 12.2cm,运 动员在距离靶面 70m 外射箭.假设射箭都等可能 射中靶面内任何一点, 那么如何计算射中黄心的 概率?
分布直方图,数据在[3, 5]内的频数为m,
现向该频率分布直方图内(即5个小长方形
内)抛掷一点,则该点落在阴影部分的概率
是0.7,求m.
频率 组距
O1 2 3 4 5 6
x
小 结
1. 在区间[a,b]上的均匀随机数与整数值随机 数的共同点都是等可能取值,不同点是均匀随 机数可以取区间内的任意一个实数,整数值随 机数只取区间内的整数.
小 结
1. 在区间[a,b]上的均匀随机数与整数值随机 数的共同点都是等可能取值,不同点是均匀随 机数可以取区间内的任意一个实数,整数值随 机数只取区间内的整数.
2. 利用几何概型的概率公式,结合随机模拟试 验,可以解决求概率、面积、参数值等一系列 问题,体现了数学知识的应用价值.
随机模拟

随机模拟随机模拟又称为Monte Carlo 方法,是一种采用统计抽样理论近似地求解数学问题或物理问题的方法。
它既可以用来研究概率问题,也可以用来研究非概率问题。
基本想法: 首先建立与描述该问题有相似性的概率模型。
利用这种相似性把概率模型的某些特征(如随机事件的概率或随机变量的平均值等)与数学分析问题的解答(如积分值,微分方程的解等)联系起来,然后对模型进行随机模拟统计抽样,再利用所得的结果求出这些特征的统计估计值作为原来的分析问题的近似解。
基本理论依据:大数定律。
一 引入随机模拟方法用于近似数值计算领域已有近百年的历史。
可追溯到历史上著名的蒲丰(Buffon )投针问题。
(1) 蒲丰(Buffon )投针问题平面上,画有等距离的平行线,平行线之间的距离为a ,(a>0),向平面上任意投一枚长为l (a l <)的针,试求针与平行线之间相交的概率。
又以φ表示针与此直线的夹角。
则:πφ≤≤≤≤02/0a x令A :“针与平行线相交”,显然有“针与平行线相交”⇔“φsin 2lx ≤”。
则由几何概型有al d lS SA P a A ππϕϕπ2sin 2)(20=⋅==⎰Ω(*)若在(*)中以Nn 替代(估计))(A P ,⇒an lN2=π。
历史上有几位科学家做过此实验。
下表列出了其中的一部分实验结果: 人名 年份 N n 针长πWolf 1850 5000 2532 0.8 3.1596 Smith 1855 3204 1218 0.6 3.1514 Laggerini 1901 3408 1808 0.83 3.1415929 (2) 用Monte Carlo 方法计算面积考虑积分dx x f I ⎰=1)(,设],1,0[∈x 1)(0≤≤x f 。
这时积分I 等于由曲线)(x f y =,ox 轴和oy 轴以及x =1所围成的区域G 的面积。
现在向单位正方形区域(010,1≤≤≤≤y x )中,随机地投掷一点,即它的两个坐标),(y x d i i ..~]1,0[U 。
3.3几何概型

2 2
1的点
4m . n
23/46
例3:利用随机模拟方法计算 右图中阴影部分(由 y 1 2 和 y x 所围成的部分)的 面积.
做题步骤如下: (1)利用计算机产生两组0~1区间的均匀随机数:
当a≥0,b≥0时,方程f(x)=0有两个不相等实根的
条件为a>b. 当a>b时,a,b取值的情况有(1,0),(2,0),(2,1), (3,0),(3,1),(3,2),即A包含的基本事件数为6, ∴方程f(x)=0有两个不相等实根的概率 6 1 P( A) . 12 2
34/46
(2)∵a从区间[0,2]中任取一个数,
b从区间[0,3]中任取一个数,则试
验的全部结果构成区域 Ω={(a,b)| 0≤a≤2,0≤b≤3},这是一个矩形 区域,其面积 S Ω 2 3 6. 设“方程f(x)=0没有实根”为事件B,则事件B所构成 的区域为M={(a,b)|0≤a≤2,0≤b≤3,a<b},即图中 1 阴影部分的梯形,其面积 S M 6 2 2 4. 2 由几何概型的概率计算公式可得方程f(x)=0没有实根 的概率 P( B) S M 4 2 . SΩ 6 3
1 即“等待的时间不超过10分钟”的概率为 6
6/46
60 50 1 P( A) 60 6
例2.取一个边长为2a的正方形及其内切圆,随机 向正方形内丢一粒豆子,求豆子落入圆内的概率.
2a
解: 记“豆子落在圆内”为 事件A,
圆的面积 π a2 π P(A) 2 正方形面积 4a 4 π 答:豆子落入圆内的概率为 . 4
数学人教B版必修3教案3.3 几何概型含答案

例4:在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.
讲练
教学过程
一、复习引入
创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2:某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
二、新课讲授
(一)知识点讲解
1.几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
2.几何概型的概率公式:
P(A)= ;
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
(二)例题讲解
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= = ,即此人等车时间不多于10分钟的概率为 .
2010高三数学高考复习必备精品教案:几何概型及随机模拟

几何概型及随机模拟一.【课标要求】1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程二.【命题走向】本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大预测2010年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.【要点精讲】1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.【典例解析】题型1:线长问题例1. (09山东11)在区间[]1,1-上随机取一个数x ,cos 2xπ的值介于0到12之间的概率为 ( )A .13 B .2π C . 12 D . 23【解析】在区间[-1,1]上随机取一个数x,即[1,1]x ∈-时,要使cos 2xπ的值介于0到21之间,需使223xπππ-≤≤-或322xπππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知cos 2x π的值介于0到21之间的概率为31232=.故选A.答案 A例2.(2009辽宁卷文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .4πB .14π-C .8π D .18π-【解析】长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π 因此取到的点到O 的距离小于1的概率为2π÷2=4π 取到的点到O 的距离大于1的概率为14π- 答案 B例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ? 解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S ,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
几何概型和随机模拟方法

几何概型与随机模拟方法孙老师目录1几何概型2 2随机模拟方法31几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:P(A)=S AS,其中S A=构成事件A的区域长度(面积或体积),S=试验的全部结果所构成的区域长度(面积或体积).例1.1在区间[−1,1]上任取一个数x,则cosπ2x的值在区间[0,12]的概率为.解.这是一个典型的几何概型.0≤cos π2x≤12⇒−23≤x≤23所以S A=43,显然S=2.P=S AS=23.练习:假如你买了一件东西,快递员可能在早上6:30−−7: 30之间把快递送到你家,你离开家出去的时间在早上7:00−−8:00之间,那么你在离开家前能拿到快递(称为事件A)的概率是多少?2随机模拟方法随机模拟方法,也称为Monte Carlo方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第二次世界大战期间进行的研制原子弹的“曼哈顿计划”。
该计划的主持人之一数学家冯·诺依曼用驰名世界的赌城–摩纳哥的Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。
冯·诺依曼是公理化方法和计算机体系的领袖人物,MonteCarlo方法也是他的重要贡献。
事实上,Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的“频率”来近似事件的“概率”。
18世纪下半叶,法国学者Buffon (蒲丰)提出用投针试验的方法来确定圆周率π的值。
这个著名的Buffon试验是Montc Carlo方法的最早尝试。
例2.1如图,正方形的边长为2,在正方形中随机撒一把豆子,用随机模拟的方法估计圆周率的值.图1解.随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积成正比.因此这是一个典型的几何概型.豆子落在圆内的概率P=S1S,其中S1是圆的面积,S是正方形的面积.而豆子落在圆内的概率可以由豆子落在圆内的频率来近似.所以P=S1S=π4≈落在圆中的豆子数/落在正方形中的豆子数.这样就得到了π的近似值.我们用计算机模拟上述过程,步骤如下:(1)用Excel的RAND函数产生两组[0,1]之间的均匀随机数a,b;(2)经平移和伸缩变换,x=2(a−0.5),y=2(b−0.5),此时x,y 是区间[−1,1]之间的随机数;(3)计算出落在圆内(x2+y2<1)的点(x,y)的个数N1,计算π≈4N1N(N代表试验次数).如下表,可以发现,随着试验次数的增加,得到的π的近似值的精度会越来越高.图2例2.2利用随机模拟方法计算图2中阴影部分(x ∈[0,π],y =sin x 和x 轴所围成的部分)的面积.图3解.在坐标系中画出矩形(x =0,x =π,y =0,y =1所围成的部分),用随机模拟的方法可以得到它的面积的近似值.具体步骤如下:(1)用Excel 的RAND 函数产生两组[0,1]之间的均匀随机数a ,b ;(2)经平移和伸缩变换,x =π·a ,y =b ,此时(x ,y )是矩形区域上的一个随机点;(3)计算出落在阴影内(y <sin x )的点(x ,y )的个数N 1,计算S ≈N 1N·π(其中N 是落在矩形区域的点的个数).如下表,可以发现,随着试验次数的增加,得到的S 的近似值的精度会越来越高(由定积分理论可以准确计算出S =2).图4练习:利用随机模拟方法近似计算图形的面积:y=x2+1和y=6所围区域的面积.图5。
几何概型及随机模拟

专题 21 几何概型及随机模拟(B3 三)一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
预测高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法( 1)利用函数计算器可以得到0~1 之间的随机数;( 2)在 Scilab 语言中,应用不同的函数可产生0~1 或 a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式:构成事件 A的区域长度(面积或体积)P(A )=试验的全部结果所构成的区域长度(面积或体5.几种常见的几何概型。
积)( 1)设线段 l 是线段 L 的一部分 , 向线段 L 上任投一点 . 若落在线段 l 上的点数与线段 L 的长度成正比 , 而与线段 l 在线段 l 上的相对位置无关 , 则点落在线段 l 上的概率为:P=l 的长度 /L 的长度( 2)设平面区域g 是平面区域G的一部分 , 向区域 G上任投一点 , 若落在区域g 上的点数与区域g 的面积成正比 , 而与区域g 在区域 G上的相对位置无关, 则点落在区域g 上概率为:P=g 的面积 /G 的面积( 3)设空间区域上v 是空间区域V 的一部分 , 向区域 V 上任投一点 . 若落在区域v 上的点数与区域v 的体积成正比, 而与区域v 在区域 v 上的相对位置无关, 则点落在区域V 上的概率为:P=v 的体积 /V 的体积四.典例解析题型 1:线长问题例 1.一个实验是这样做的,将一条 5 米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于 1 米的事件,考虑事件T 发生的概率。
人教B版高中数学必修三课件第三章3.33.3.1几何概型

[悟一法] 当涉及射线的转动,扇形中有关落点区域问题时,常以 角的大小作为区域度量来计算概率,切不可以用线段代 替.
[通一类] 2.设A为圆周上一定点,在圆周上等可能地任取一点与A
连接,求弦长超过半径的概率. 解:如图所示,当弦长等于半径时,弦 所对的圆心角为 60°,只有当点在优弧 BC 上时弦长超过半径,由于优弧BC 所 对的圆心角为 240°,故 P=234600=23, 即弦长超过半径的概率为23.
设有一个正方形网格,其中每个小正方形的边长都等于 6cm,现用直径等于2cm的硬币投掷到此网格上,求硬币 落下后与格线有公共点的概率.
[错解] 由硬币中心 O 向最近的格 线作垂线 OM,垂足为 M,如图 1 所示, 线段 OM 长度的取值范围是[0,3],而只 有当 OM 长在[0,1]范围内时与格线有公 共点,故 P=[[00,,13]]的的长长度度=13.
[研一题] [例3] 假设你家订了一份报纸,送报人可能在早上 6∶30~7∶30之间把报纸送到你家,你父亲离开家去工作 的时间在早上7∶00~8∶00之间,问你父亲在离开家前能 得到报纸(称为事件A)的概率是多少
[自主解答] 如图,设送报人到达的 时间为x,父亲离开家的时间为y. (x,y)可以看成平面中的点. 试验的全部结果所构成的区域为Ω={(x, y)|6.5≤x≤7.5,7≤y≤8},这是一个正方形区域, 面积为SΩ=1×1=1.
高中数学课件灿若寒星整理制作Fra bibliotek3. 3
第随
三机
章数
的
概 率
含 义 与
应
用
3.3.1
几 何 概 型
课前预习·巧设计
读教材·填要点
小问题·大思维
名
2019-2020人教B版数学必修3 第3章 3.3.1 几何概型 3.3.2 随机数的含义与应用课件PPT

B [A、C、D的基本事件是有限的,为古典概型,只有B为几 何概型.]
栏目导航
2.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,
那么点落在△ABD内的概率为( )
1 A.3
1 B.2
1 C.4
D.16
B [向△ABC内投一点的结果有无限个,属几何概型.设点落 在△ABD内为事件A,则P(A)=△△AABBDC面面积积=12.]
1,1]的长度为2,x取每个值为随机的,
∴在[-1,2]上取一个数x,|x|≤1的概率P=23.]
栏目导航
合作探究 提素养
栏目导航
与长度、角度有关的几何概型 [探究问题] 1.古典概型和几何概型有何异同点? [提示] 相同点:古典概型与几何概型中每一个基本事件发生 的可能性都是相等的. 不同点:古典概型要求随机试验的基本事件的总数必须是有限 的;几何概型要求随机试验的基本事件的个数是无限的,而且几何 概型解决的问题一般都与几何知识有关.
题.(难点)
用随机模拟法解决概率
3.会利用随机数模拟某一问题的试验来解 问题,提升学生的数学
决具体的有关概率的问题.(重点、难点) 运算的核心素养.
栏目导航
自主预习 探新知
栏目导航
1.几何概型的定义 事件A理解为区域Ω的某一子区域A(如图所示),A的概率只与子 区域A的几何度量( 长度 、 面积 或 体积 )成正比,而与A的位置 和 _形__状___无关,满足以上条件的试验称为几何概型.
栏目导航
(2)用计算机软件产生随机数(这里介绍的是Scilab中产生随机数 的方法):
①Scilab中用 rand() 函数来产生0~1的均匀随机数.每调用一 次rand()函数,就产生一个随机数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题21 几何概型及随机模拟(B3三)一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。
二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。
预测高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。
三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。
2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数。
3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4.几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A 。
5.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积四.典例解析题型1:线长问题例1.一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,考虑事件T 发生的概率。
分析:类似于古典概型,我们希望先找到基本事件组,既找到其中每一个基本事件。
注意到每一个基本事件都与唯一一个断点一一对应,故引例中的实验所对应的基本事件组中的基本事件就与线段AB 上的点一一对应,若把离绳AB 首尾两端1的点记作M 、N ,则显然事件T 所对应的基本事件所对应的点在线段MN 上。
由于在古典概型中事件T 的概率为T 包含的基本事件个数/总的基本事件个数,但这两个数字(T 包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN 的长除以线段AB 的长表示事件T 的概率似乎也是合理的。
解:P (T )=3/5。
例2.(磁带问题)乔和摩进行了一次关于他们前一天夜里进行的活动的谈话。
然而谈话却被监听录音机记录了下来,联邦调查局拿到磁带并发现其中有10秒钟长的一段内容包含有他们俩犯罪的信息 然而后来发现,这段谈话的一部分被联邦调查局的一名工作人员擦掉了,该工作人员声称她完全是无意中按错了键,并从即刻起往后的所有内容都被榛掉了试问如果这10秒钟长的谈话记录开始于磁带记录后的半分钟处,那么含有犯罪内容的谈话被部分或全部偶然擦掉的概率将是多大?解析:将3O 分钟的磁带表示为长度为3O 的线段R ,则代表10秒钟与犯罪活动有关的谈话的区间为 r,如右图所示,10秒钟的谈话被偶然擦掉部分或全部的事件仅在擦掉开始的时间位于该区间内或始于该区间左边的任何点。
因此事件r 是始于R 线段的左端点且长度为326121=+的事件。
因此,02.09023032)(====的面积的面积R r r p 。
例3.假设车站每隔 10 分钟发一班车,随机到达车站,问等车时间不超过 3 分钟的概率 ? 解:以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S ,乘客随机地到达,即在这个长度是 10 的区间里任何一个点都是等可能地发生,因此是几何概率问题。
要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中 A 包含的样本点,p=的长度的长度S a =103= 0.3 。
题型2:面积问题例4.投镖游戏中的靶子由边长为1米的四方板构成,并将此板分成四个边长为1/2米的小方块。
实验是向板中投镖,事件A 表示投中阴影部分为成功,考虑事件A 发生的概率。
分析与解答:类似于引例1的解释,完全可以把此引例中的实验所对应的基本事件组与大的正方形区域联系在一起,既事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A 所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A 的概率是合理的。
这一点我们完全可以用引例1的方法验证其正确性。
解析:P (A )=(1/2)2/12=1/4。
例5.(CB 对讲机问题)(CB 即CitizenBand 市民波段的英文缩写)两个CB 对讲机持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:0O 时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:0O 时他们能够通过对讲机交谈的概率有多大?解:设x 和y 分别代表莉莉和霍伊距某地的距离,于是400,300≤≤≤≤y x则他俩所有可能的距离的数据构成有序点对(x,y),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间0← S →10的距离不超过25公里时发生(如右图)因此构成该事件的点由满足不等式2522≤+y x 的数对组成,此不等式等价于62522≤+y x 右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1200平方米公里,而事件的面积为()462525412ππ=⎪⎭⎫ ⎝⎛, 于是有41.0902480062512004/625====ππp 。
例6.(意大利馅饼问题)山姆的意大利馅饼屋中设有一个投镖靶 该靶为正方形板.边长为18厘米,挂于前门附近的墙上,顾客花两角伍分的硬币便可投一镖并可有机会赢得一种意大利馅饼中的一个,投镖靶中画有三个同心圆,圆心在靶的中心,当投镖击中半径为1厘米的最内层圆域时.可得到一个大馅饼;当击中半径为1厘米到2厘米之间的环域时,可得到一个中馅饼;如果击中半径为2厘米到3厘米之间的环域时,可得到一个小馅饼,如果击中靶上的其他部分,则得不到谄饼,我们假设每一个顾客都能投镖中靶,并假设每个圆的周边线没有宽度,即每个投镖不会击中线上,试求一顾客将嬴得:(a )一张大馅饼,(b )一张中馅饼,(c )一张小馅饼,(d )没得到馅饼的概率解析:我们实验的样本空间可由一个边长为18的正方形表示。
右图表明R 和子区域r 1、r 2、r 3和r,它们分别表示得大馅饼、中馅饼、小馅饼或没得到馅饼的事件。
01.032418)1()()(2211====ππ的面积的面积R r r p a ; 03.0324318)1()2()()(22222==-==πππ的面积的面积R r r p b ; 05.0324518)2()3()()(22233==-==πππ的面积的面积R r r p c ; 91.0324318)3(324)()(2244==-==ππ的面积的面积R r r p d 。
题型3:体积问题例7.(1)在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率。
解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即2/400=0.005。
(2)如果在一个5万平方公里的海域里有表面积达40平方公里的大陆架贮藏着石油,假如在这海领域里随意选定一点钻探,问钻到石油的概率是多少?解析:由于选点的随机性,可以认为该海域中各点被选中的可能性是一样的,因而所求概率自然认为等于贮油海域的面积与整个海域面积之比,即等于40/50000=0.0008。
例8.在线段[0,1]上任意投三个点,问由0至三点的三线段,能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大。
解析:设0到三点的三线段长分别为x,y,z右端点坐标为x,y,z ,显然1,,0≤≤z y x。
这三条线 段构成三角形的充要条件是:x z y y z x z y x >+>+>+,,。
在线段[0,1]上任意投三点x,y,z 。
与立方体10≤≤x ,10≤≤y ,10≤≤z 中的点),,(z y x边长为1的立方体T 中均匀地掷点,而点落在x z y y z x z y x >+>+>+,,区域中的概率;这也就是落在图中由ΔADC ,ΔADB ,ΔBDC ,ΔAOC ,ΔAOB ,ΔBOC 所围成的区域G 中的概率。
由于,1)(=T V 211213131)(33=⨯⨯⨯-=G V , 21)(/)(==∴T V G V p 由此得,能与不能构成三角形两事件的概率一样大。
题型4:随机模拟例9.随机地向半圆0y <<a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.解析:半圆域如图设A =‘原点与该点连线与x 轴夹角小于/4π’ 由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+。
例10.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解析:01,01x y ≤≤≤≤,不等式确定平面域S 。
A =‘1,0.09x y xy +≤≥’则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故:0.90.10.9()(1)A P A x dx x ==--⎰的面积S 的面积 0.40.18ln30.2=-=例11. 曲线y=-x 2+1与x 轴、y 轴围成一个区域A ,直线x=1、直线y=1、x 轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A 内的芝麻数与落在正方形中的芝麻数。
答案:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y )的坐标。
如果一个点(x,y )满足y ≤-x 2+1,就表示这个点落在区域A 内,在下表中最后一列相应地就填上1,否则填0。
1.几何概率是考研大纲上要求的基本内容,也是近年来新增考察内容之一;2.有关几何概率的题目难度不大,但需要准确理解题意,利用图形分析问题。