几何概型的教案

合集下载

几何概型教案

几何概型教案

几何概型教案教案内容:一、教学目标:1. 知识目标:掌握几何概念和定理,如平行线、垂直线、等腰三角形等。

2. 技能目标:能够应用几何概念解决实际问题,如计算线段长度、角度大小等。

3. 情感目标:培养学生对几何学科的兴趣,培养学生的逻辑思维和空间想象能力。

二、教学重难点:1. 重点:平行线与垂直线的概念和判定方法。

2. 难点:应用几何定理解决实际问题。

三、教学方法:1. 概念讲解法:通过教师讲解和示意图,引导学生理解几何概念和关系。

2. 问题解决法:给出实际问题,让学生通过分析和计算,应用几何知识解决问题。

3. 合作学习法:鼓励学生进行小组合作,通过互相讨论和合作完成练习和问题解答。

四、教学过程:1. 导入:通过展示一幅几何图形,引导学生观察并思考,提问如下:a. 你能发现图中有哪些几何形状?b. 是否能找到两条平行线?找出它们的特点。

c. 是否能找到两条垂直线?找出它们的特点。

2. 概念讲解:a. 平行线的定义和判定方法:通过教师讲解和示意图,引导学生理解平行线的概念和判定方法。

b. 垂直线的定义和判定方法:通过教师讲解和示意图,引导学生理解垂直线的概念和判定方法。

c. 其他几何概念和定理的讲解:根据教材内容,讲解其他几何概念和定理,如等腰三角形、直角三角形等。

3. 练习与实践:a. 给出一些练习题,让学生运用所学的几何知识计算线段长度、角度大小等。

b. 给出一些实际问题,让学生应用几何知识解决问题,培养学生的应用能力和解决问题的能力。

4. 总结与归纳:通过学生讨论和总结,归纳几何概念和定理的要点,并与学生一起整理笔记,形成学习资料。

五、教学评价:通过课堂练习和问题解答,评价学生对几何概念和定理的理解和应用能力。

六、拓展延伸:推荐学生参阅几何学方面的相关书籍或网站,拓宽他们的几何知识。

七、教学反思:对本节课的教学进行回顾和反思,总结教学中的不足之处,并提出改进措施。

几何概型教学设计完美版

几何概型教学设计完美版

3.3.1 几何概型教学设计教学目标1.知识目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③会求简单的几何概型试验的概率.2.情感目标①让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价身边的一些随机现象;②通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.重点难点重点:几何概型概念的理解和公式的运用;难点:几何概型的应用.只有掌握了几何概型的概念及特点,才能够判断一个问题是否是几何概型,才能够用几何概型的概率公式去解决这个问题.而在应用公式的过程中,几何度量的正确选取是难点之一,要好好把握.学情分析及教学内容分析本节课是新教材人教B版必修3第三章第三节的第一课,它在课本中的位置排在古典概型之后,在概率的应用之前.我认为教材这样安排的目的,一是为了体现和古典概型的区别和联系,在比较中巩固这两种概型;二是为解决实际问题提供一种简单可行的概率求法,在教材中起承上启下的作用.通过最近几年的实际授课发现,学生在学习本节课时特别容易和古典概型相混淆,把几何概型的“无限性”误认为古典概型的“有限性”.究其原因是思维不严谨,研究问题时过于“想当然”,对几何概型的概念理解不清.因此我认为要在几何概型的特征和概念的理解上下功夫,不要浮于表面.另外,在解决几何概型的问题时,几何度量的选择也是需要特别重视的,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.为了更好地突出重点,突破难点,我将整个教学过程分为“问题引入——概念形成——探索归纳——巩固深化”四个环节.教学过程1.问题引入引例1北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,问顾客能得到一套福娃玩具的概率是多少?设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫.引例2厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图1)转盘被等分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是多少?设计意图:1.以实际问题引发学生的学习兴趣和求知欲望;2.以此为铺垫,通过具体问题情境引入课题;3.简单直观,符合学生的思维习惯和认知规律.问题提出后,学生根据日常生活经验很容易回答:“由面积比计算出概率为1/4.”提问:为什么会想到用面积之比来解决问题的呢?这样做有什么理论依据吗?学生思考,回答:“上一节刚学习的古典概型的概率就是由事件所包含的基本事件数占试验的基本事件总数的比例来解决的,所以联想到用面积的比例来解决.”教师继续提问:这个问题是古典概型吗?通过提问,引导学生回顾古典概型的特点:有限性和等可能性.发现这个问题虽然貌似古典概型,但是由于这个问题中的基本事件应该是“指针指向的位置”,而不是“指针指向的区域”,所以有无限多种可能,不满足有限性这个特点,因此不是古典概型.也就是说,我们不能用古典概型的概率公式去解决这个问题,刚才我们的解答只是猜测.到这里,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念.2.概念形成记引例2中的事件为“指针指向阴影区域”,通过刚才的分析,我们发现事件包含的基本事件有无数个,而试验的基本事件总数也是无数个.如果我们仿照古典概型的概率公式,用事件包含的基本事件个数与试验的基本事件总数的比例来解决这个问题,那样就会出现“无数比无数”的情况,没有办法求解.因此,我们需要一个量,来度量事件和,使这个比例式可以操作,这个量就称为“几何度量”.这就得到了几何概型的概率公式,其中表示区域的几何度量,表示子区域的几何度量.引例2就可以选取面积做几何度量来解决.通过上面的分析,引导学生发现:几何概型与古典概型的区别在于它的试验结果不是有限个,但是它的试验结果在一个区域内均匀地分布,因此它满足无限性和等可能性的特征.其求解思路与古典概型相似,都属于“比例解法”.3. 探索归纳问题1在500ml水中有一个草履虫,现从中随机抽取2ml水样放到显微镜下观察,求发现草履虫的概率.问题2取一根长为4米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不少于1米的概率是多少?设计意图:1.让学生分别体会用体积、长度之比来度量概率,加深学生对几何概型概念的理解;2.强化解决几何概型问题的关键是抓住问题的实质,找出临界状态。

高中数学《几何概型》教案

高中数学《几何概型》教案

高中数学《几何概型》教案一、教学目标1、建立几何概型的概念,了解点、线、面、几何体的基本概念。

2、学习古希腊的几何概型理论,理解“公理化”证明的基本方法。

3、掌握平面几何的基本定理,如欧氏几何五大公设、垂线、角平分线定理等。

4、培养学生思维的逻辑性,进一步提高分析解决问题的能力,以及形象思维的能力和几何思维的能力。

二、教学重点和难点1、平面几何的基本定理。

2、学习古希腊几何学的公理化方法,认识并应用公理、定义、定理、证明等,进一步提高学生的推理思维。

三、教学方法1、理论结合实践,通过练习掌握平面几何的基本定理,培养学生的推导思维。

2、利用黑板画图辅助教学,加强学生的形象思维。

3、倡导学生积极参与课堂讨论,相互分享探讨问题,提高学习效果。

四、教学内容与步骤第一节、几何概念的复习1、点、线、面、几何体的基本概念。

2、点、线、面的分类。

3、几何图形的构造方法。

4、几何问题的解决方法。

第二节、平面几何基本定理1、欧氏几何五大公设的理解和应用。

2、角平分线的定理及其应用。

3、垂线定理及其应用。

4、圆的性质与应用。

5、全等三角形的性质。

第三节、公理化证明的基本方法1、公理与定义的概念及其作用。

2、定理的定义和证明方法。

3、数学证明思路的讲解。

4、实例分析与案例练习。

五、教学手段黑板,笔,直尺,量角器,地球仪等。

六、教学评价1、通过课堂练习加深对平面几何的了解和掌握。

2、通过提高几何思维的能力和推理逻辑的能力,进一步提高学生的数学水平和思维能力。

3、根据课堂互动、单词测试和综合评定等方式,对学生的学习情况进行评价。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。

2. 培养学生运用几何概型解决实际问题的能力。

3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。

二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。

2. 难点:几何概型在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。

2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。

3. 结合实际例子,让学生感受几何概型在生活中的应用。

五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。

2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。

3. 课堂讲解:讲解几何概型的分类和概率计算方法。

4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。

5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。

六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。

2. 评价学生运用几何概型解决实际问题的能力。

3. 评价学生在课堂练习中的表现,包括解题速度和正确率。

4. 评价学生在小组讨论中的参与程度和合作能力。

七、教学资源1. 教材:高中数学几何概型相关内容。

2. 多媒体课件:用于展示几何概型的图形和实例。

3. 练习题库:用于课堂练习和课后作业。

4. 实际案例:用于引导学生将几何概型应用于实际问题。

八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。

2. 第二课时:讲解几何概型的分类和概率计算方法。

3. 第三课时:课堂练习和应用拓展。

九、教学反思1. 反思教学内容是否适合学生的认知水平。

2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。

2. 培养学生运用几何概型解决问题的能力。

3. 提高学生对数学的兴趣,培养学生的创新思维。

二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。

2. 难点:几何概型的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。

2. 利用案例分析法,让学生通过实例理解几何概型的应用。

3. 采用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。

2. 新课导入:讲解几何概型的定义、特征及分类。

3. 案例分析:分析具体实例,让学生理解几何概型的应用。

4. 课堂练习:设计相关练习题,让学生巩固所学知识。

5. 小组讨论:分组讨论几何概型在实际问题中的应用。

6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。

7. 作业布置:布置课后练习,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。

2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。

2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。

八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。

九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。

2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案 教学设计

几何概型【教学目标】1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.【教法指导】本节重点是几何概型的特点及概念;难点是应用几何概型的概率公式求概率;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】一、知识回顾1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.概率公式在几何概型中,事件A的概率计算公式如下想一想几何概型的概率计算与构成事件的区域形状有关吗?概念理解(1)几何概型也可以如下理解对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.( ) (2)在一个正方形区域内任取一点的概率是零.( )(3)[2012·昆明模拟] 在线段[0,3]上任投一点,则此点坐标小于1的概率为13.( )几何概型概率的适用情况和计算步骤 (1)适用情况几何概型用 计算事件发生的概率适用于有无限多个试验结果的情况,每种结果的出现也要求必须是等可能的.而且事件发生在一个有明确范围的区域中,其概率与构成该事件区域的长度(面积或体积)成比例. (2)计算步骤①判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.②计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点. ③利用概率公式计算. 特别提示在使用几何概型中,事件A的概率计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积时,公式中分子和分母涉及的几何度量一定要对等.即若一个是长度,则另一个也是长度.一个若是面积,则另一个也必然是面积,同样,一个若是体积,另一个也必然是体积.题型一与长度有关的几何概型例、(1)如图A,B两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C、D,问A与C,B与D之间的距离都不小于10米的概率是多少?(2)已知函数f(x)=log2x,在区间[12,2]上随机取一x0,则使得f(x0)≥0的概率为________.解析f(x)=log2x≥0可以得出x≥1,所以在区间⎣⎢⎡⎦⎥⎤12,2上使f(x)≥0的范围为[1,2],所以使得f(x0)≥0的概率为P=2-12-12=23.答案23规律方法将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型(长度比长度) 求解. 变式训练一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少? (1)红灯亮; (2)黄灯亮; (3)不是红灯亮.【解析】 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二 与面积有关的几何概型例、(1)一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.总结规律、得出方法此类几何概型题,关键是要构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型公式,从而求得随机事件的概率. 变式训练(1)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为________.【答案】 1-π4【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.(2)已知x ≤2, y ≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.题型三 与体积、角度有关的几何概型例、(1)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,在正方体内随机取一点M.(1)求点M 落在三棱锥B 1-A 1BC 1内的概率;[ 学_ _ ] (2)求点M 与平面ABCD 及平面A 1B 1C 1D 1的距离都大于a3的概率;(3)求使四棱锥M -ABCD 的体积小于16a 3的概率.总结规律、提高升华这类题目一般需要分清题中的条件,提炼出几何体的形状,并找出总体积是多少.以及所求的事件占有的几何体是什么几何体并计算出体积.课堂小结1.几何概型与古典概型的区别.2.几何概型的定义及其特点.3.应用几何概型的概率计算公式求几何概型的概率.。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握其基本性质和判定方法。

2. 培养学生运用几何概型解决实际问题的能力。

3. 提高学生对概率论的兴趣,培养学生的逻辑思维和抽象思维能力。

二、教学内容1. 几何概型的定义和基本性质2. 几何概型的判定方法3. 几何概型在实际问题中的应用三、教学重点与难点1. 教学重点:几何概型的定义、基本性质和判定方法。

2. 教学难点:几何概型的判定方法及其在实际问题中的应用。

四、教学方法与手段1. 教学方法:讲解法、案例分析法、讨论法。

2. 教学手段:黑板、PPT、教学案例。

五、教学过程1. 导入新课:通过一个简单的实例,引导学生思考几何概型的概念。

2. 讲解几何概型的定义和基本性质:结合实例,讲解几何概型的概念,引导学生理解其基本性质。

3. 讲解几何概型的判定方法:引导学生掌握几何概型的判定方法,并通过实例进行分析。

4. 应用案例分析:让学生运用几何概型解决实际问题,巩固所学知识。

5. 课堂小结:总结本节课的主要内容,强调几何概型在实际问题中的应用。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学拓展1. 对比几何概型和古典概型的区别和联系,让学生更好地理解两种概率模型。

2. 引入更复杂的多维几何概型,让学生了解几何概型的推广形式。

七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,及时解答学生心中的疑问。

2. 小组讨论:在学习几何概型的判定方法时,让学生分小组进行讨论,分享各自的解题思路。

八、教学评价1. 课后作业:通过布置相关练习题,检验学生对几何概型的理解和掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的表现,评价学生的学习效果。

九、教学反思1. 反思教学内容:根据学生的反馈,调整和优化教学内容,使其更符合学生的学习需求。

2. 反思教学方法:根据学生的参与情况和学习效果,调整教学方法,提高教学效果。

十、教学资源1. 教学PPT:制作精美的PPT,辅助讲解和展示几何概型的相关知识和案例。

《几何概型》教案完美版

《几何概型》教案完美版

《几何概型》教案完美版《几何概型》教案教学目标(1)了解几何概型的概念及基本特点;(2)熟练掌握几何概型中概率的计算公式;(3)会进行简单的几何概率计算.教学重点,难点(1)掌握几何概型中概率的计算公式;(2)会进行简单的几何概率计算.教学过程一.问题情境1.情境:试验1.取一根长度为3m 的绳子,拉直后在任意位置剪断.试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫"黄心".奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm .运动员在70m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.2.问题:对于试验1剪得两段的长都不小于1m 的概率有多大?试验2射中黄心的概率为多少?二.学生活动经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.考虑第一个问题,如图 3 3 1 ,记"剪得两段的长都不小于1m "为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,于是事件A 发生的概率1( )3P A .图3 3 1第二个问题,如图3 3 2 ,记"射中黄心"为事件B ,由于中靶心随机地落在面积为2 __cm 的大圆内,而当中靶点落在面积为 2 2112.24cm 的黄心内时,事件 B 发生,于是事件 B 发生的概率__.24( ) 0.__P B.图 3 3 2三.建构数学1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域 d 内"为事件 A ,则事件 A 发生的概率( )dP AD的测度的测度.说明:(1)D 的测度不为0 ;(2)其中"测度"的意义依D 确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域 D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.四.数学运用1.例题例1.取一个边长为2a 的正方形及其内切圆(如图 3 3 3 ),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.("测度"为面积)分析:由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的,于是豆子落入圆中的概率应等于圆面积与正方形面积的比.解:记"豆子落入圆内"为事件 A ,则22( )4 4aP Aa 圆面积正方形面积.答:豆子落入圆内的概率为4.图3 3 3例2.在1L 高产小麦种子中混入了一粒带锈病的种子,从中随机取出10mL ,含有麦锈病种子的概率是多少?("测度"为体积)分析:病种子在这1L 种子中的分布可以看做是随机的,取得的10mL 种子可视作区域d ,所有种子可视为区域D .解:取出10mL 麦种,其中"含有病种子"这一事件记为 A ,则10 1( )1000 100P A 取出种子的体积所有种子的体积.答:含有麦锈病种子的概率为1100.例3.在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)分析:点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图3 3 5 中线段“AC 内时,AM AC ,故线段"AC 即为区域 d .解:在AB 上截取"AC AC .于是"( ) ( ) P AM AC P AM AC"ACAB ACAB22.答:AM 小于AC 的概率为22.图3 3 52.练习课本第103 页练习1,2,3五.回顾小结:1.几何概型的概念及基本特点2.几何概型中概率的计算公式六.课外作业:课本第103 页习题3.3第1,2,3,4题风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。

几何概型教案

几何概型教案

普通高中课程标准实验教科书——必修3 3.3几何概型3.3.1 几何概型一.复习回顾:古典概型:1)试验中所有可能出现的基本事件只有有限个. (有限性)2)每个基本事件出现的可能性相等. (等可能性)事件包含的基本事件的个数基本事件的总数()A P A二. 情景导入:思考1:取一根长度为3m 的绳子,拉直后在任意的位置剪成两段,那么剪得的两段的长都不小于1m 的概率有多大?思考2:射箭比赛的箭靶涂有10个彩色的分环,射中不同的彩色分环,从内向外依次获得10,9,8,7,6,5,4,3,2,1环.射箭比赛的靶面直径是122cm ,最内层10分环直径是12.2cm ,运动员在距离靶面70m 外射箭.假设射箭都等可能射中靶面内任何一点,则射中靶心得10分的概率是多少?思考2图 思考3图思考3:在一个棱长为4米的正方体玻璃罩内有一只小蜜蜂,它在正方体内部任意飞行,请问它距6个玻璃面的距离都不小于1米的概率是多少?思考并回答如下问题:(1)试验中的基本事件是什么?它有多少个?(2)每个基本事件的发生是等可能的吗?(3)它是古典概型吗?上面三个随机试验有什么共同特点?1)试验中所有可能出现的基本事件个数无限.2)每个基本事件出现的可能性相等三. 探究新知.1. 几何概型的定义:对于一个随机试验,将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到是等可能. 而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验概3m率的模型,称为几何概率模型,简称为几何概型.具备的特征:1)试验中所有可能出现的基本事件有无限个 体现:(无限性)2)每个基本事件出现的可能性相等. 体现:(等可能性)计算公式:构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积()A ()()P A 四. 课堂练习:例1:某人午觉醒来,发现表停了,他打开收音机想听电台的整点报时,求他(她)等待的时间不多于10分钟的概率.解:设事件A={等待时间不多于10分钟},要满足事件A,则打开收音机的时刻位于[50,60]时段内.则(60501)606P A 答:等待报时的时间不多于10分钟的概率为例2:在正方形ABCD 内任取一点P ,求使得点P 落在以AB 为直径的圆内的概率.变式:在正方形ABCD 内任取一点P ,求使得 的概率.几何概型解题策略:1.选择合理的观察角度,把基本事件抽象为在几何区域内取点.2.根据区域类型选择对应的测度(长度,面积,体积).3.利用几何概型概率公式计算求解.解决问题:思考1:构成事件的区域长度试验的全部结果所构成的区域长度()A 1=3P A答:剪得两段的长都不小于1m 的概率为 思考2: 构成事件的区域面积试验的全部结果所构成的区域面积()A P A ()()2212.212===0.011221002面积 线段长度 平面图形 立体图形 体积︒≤∠90APB 核心突破 识别模型运用模型 规范作答思考3: 构成事件的区域体积试验的全部结果所构成的区域体积()A P A 125.081444222==⨯⨯⨯⨯=五. 深化探究:问题:下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?变式:甲乙两人玩转盘游戏,在如图所示的正方形中,指针指向区域1时,则甲获胜;指向区域2时则乙获胜;其他位置视为平局。

数学 3.3几何概型教案 新人教A版必修3 教案

数学 3.3几何概型教案 新人教A版必修3 教案

§3.3.1 几何概型(一)【课题】几何概型【教材分析】几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.【学情分析】学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟.学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清.另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.【教学目标】知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法.情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界.【重点难点】教学重点: 几何概型的基本特征及如何求几何概型的概率.教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量.【教法学法】问题解决的教学模式,分层实现教学目标.【教学基本流程】温故知新↓创设情境↓新知探究↓形成概念↓典例分析↓巩固深化↓课堂梳理↓布置作业【教学情景设计】【教学反思】本节课的定位是几何概型的建构及其应用,我采用了“问题解决”的教学模式,分层实现教学目标。

在对比分析过程中,激发学生的学习兴趣,使其初步感受从有限到无限,从古典概型到几何概型的过渡,同时也在学生的思维中呈现了“面积”这一几何测度,引出课题—几何概型。

在此教学环节中,我将旧知识的检查有机融合在学生对新知识的探求过程中,力求新知导入的自然、快捷、高效。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案
教学重点:掌握概型相关概念和性质,能够熟练运用概型解决几何问题。

教学难点:灵活运用概型解决实际问题,结合实际情境进行概型应用。

教学方法:讲授、举例、演示、讨论。

教学资源:教材、黑板、彩色粉笔、计算器。

教学过程:
一、导入(5分钟)
引导学生回顾前一节课的内容,概述几何相关知识,并提出问题引起学生思考。

二、讲解概型概念和性质(15分钟)
1. 讲解概型的定义和基本性质。

2. 举例说明不同类型的概型,引导学生思考。

3. 解释概型在数学中的应用,并讨论实例。

三、练习与讨论(20分钟)
1. 给学生发放练习题,让学生自主练习。

2. 学生互相讨论解题思路,分享解题方法。

3. 收集学生答案,讨论解题过程和答案。

解决学生疑惑。

四、实践运用(10分钟)
1. 提供实际问题,让学生结合几何知识和概型解决问题。

2. 学生在小组中合作,共同讨论解决方案。

3. 学生上台汇报解题过程和答案。

五、总结和作业布置(5分钟)
1. 总结本节课的内容,强调要点。

2. 布置相关练习作业,鼓励学生多练习、巩固知识。

教后反思:本节课主要通过讲解、练习和实践运用,使学生对几何概型有了更深入的理解,并能够运用概型解决实际问题。

在实践运用环节,让学生在小组中合作,培养了学生的团
队合作能力和解决问题的能力。

待下次课程中再次引导学生灵活运用概型解决实际问题。

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计

高中数学《几何概型》教案、教学设计
一、教学目标
【知识与技能】
理解几何概型的特点,掌握几何概型的概率计算公式,并能应用公式解决实际问题。

【过程与方法】
经历归纳几何概型的特点以及推导几何概型的概率计算公式的过程,提升抽象概括能力与逻辑推理能力。

【情感、态度与价值观】
体会数学与生活的联系,养成良好的数学思维习惯。

二、教学重难点
【重点】几何概型的特点以及概率计算公式。

【难点】几何概型特点的归纳以及概率计算公式的推导。

三、教学过程
(一)导入新课
回顾古典概型。

出示问题情境:往一方格中投一个石子。

请学生思考石子可能落在哪里,如何求概率。

在学生明确事件所有的可能结果是无限个,无法用古典概型求解的情况下,说明今天这节课将解决这样的问题。

引出课题。

(二)讲解新知
出示问题情境:如图有两个转盘,甲乙两人玩转盘游戏,规定当指针指向
区域时,甲获胜,否则乙获胜。

请学生在两种情况下分别求出甲获胜的概率是多少。

(四)小结作业
小结:今天有什么收获?回顾几何概型的特点以及概率计算公式。

作业:从几何概型的角度思考,是否概率为0的事件都是不可能事件,概率为1的事件都是必然事件?
四、板书设计。

《几何概型》教案例文

《几何概型》教案例文

《几何概型》教案例文一、教学目标1.知识目标:掌握几何概型相关的基本概念,如点,线,面等;了解几何中的一些常用定理,如平行线定理,垂直线定理等。

2.能力目标:培养学生观察问题,分析问题,解决问题的能力;培养学生的几何思维和空间想象能力。

3.情感目标:培养学生对几何学科的兴趣和热爱,培养学生的观察力和思考能力。

二、教学重点与难点1.教学重点:几何概型相关的基本概念的讲解和理解。

2.教学难点:培养学生的几何思维和空间想象能力。

三、教学准备1.教学用具:教学课件、黑板、白板笔、几何工具(直尺、量角器、圆规等)。

2.教学素材:几何概型的相关图形和题目。

四、教学过程Step 1:导入新课1.利用教学课件展示一张几何概型的图形。

2.引导学生观察图形的特点,鼓励学生发言。

Step 2:概念讲解1.通过教学课件或黑板,分别向学生讲解几何概型相关的基本概念,如点,线,面等。

2.结合实例,帮助学生理解每个概念的含义。

Step 3:概念运用1.给学生分发一份练习题,让他们根据所学的几何概型相关概念进行练习。

2.检查学生的答案,并进行讲解和解释。

Step 4:定理讲解1.通过教学课件或黑板,向学生讲解几何中的一些常用定理,如平行线定理,垂直线定理等。

2.结合实例,帮助学生理解每个定理的含义和应用方法。

Step 5:定理运用1.给学生分发一份练习题,让他们根据所学的几何定理进行练习。

2.检查学生的答案,并进行讲解和解释。

Step 6:拓展延伸1.利用教学课件展示一些几何概型相关的拓展题目。

2.引导学生观察和分析拓展题目,鼓励学生发言并提出自己的解题思路。

Step 7:归纳总结1.向学生归纳总结所学的几何概型相关的基本概念和定理。

2.提醒学生复习和巩固所学内容,并预告下一堂课的内容。

五、教学反思通过本节课的教学,学生对几何概型的相关概念和定理有了初步的认识,并能够在一定程度上运用所学知识解决问题。

但仍有部分学生在几何思维和空间想象能力方面表现较弱,需要加强相关训练。

《几何概型》教案

《几何概型》教案

《几何概型》教案《《几何概型》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标(1)正确理解几何概型的概念,掌握几何概型的特点,明确几何概型与古典概型的区别;(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)掌握几何概型的概率公式;(4)简单应用几何概型概率计算公式,并理解均匀分布的概念。

二、教学重点,难点(1)掌握几何概型中概率的计算公式;(2)会进行简单的几何概率计算.三、教学过程(一)展示教学目标(1)了解几何概型的概念及基本特点;(2)熟练掌握几何概型中概率的计算公式;(3)会进行简单的几何概率计算.(二)自主学习:阅读课本135页—136页,并思考下列问题:1.你记得古典概型的特点吗?还有古典概型的概率计算公式是怎样的?2.几何概型的定义是怎样的?理解这个定义要注意什么?3.如何理解“均匀分布”?4.归纳几何概型的特点5.在几何概型中,事件A的概率的计算公式知识梳理(一)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型.(与该区域的形状、位置无关)(二)几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.(三)在几何概型中,事件A的概率的计算公式:知识串联:两种概型特点的异同1.古典概型的两个基本特点:(1)试验中所有可能出现的结果(基本事件)只有有限个;(2)每个基本事件出现的可能性相等.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等3.相同:每个基本事件出现的可能性相等;不同:古典概型:基本事件有限个,几何概型:基本事件无限多个.(辨别两种概率模型的重要依据)知识串联:两种概型概率公式的联系1.古典概型的概率公式:2.几何概型的概率公式:求几何概型的概率时考虑试验的结果个数失去意义几何概型可以看作是古典概型的推广。

《几何概型》教学设计

《几何概型》教学设计

几何概型教学设计一、教学目标1.了解几何形状及其特点;2.掌握几何图形的基本名称;3.学会使用几何工具进行几何图形绘制和测量;4.培养学生的几何思维和空间想象能力。

二、教学重点难点1.教学重点:几何图形的基本名称和绘制;2.教学难点:几何工具的使用和几何空间想象能力。

三、教学内容及方法1.教学内容:几何图形的基本名称、绘制和测量;2.教学方法:(1)讲解法:通过讲解几何图形的基本特点、名称和相关知识点,帮助学生了解几何图形的基础知识。

(2)演示法:演示几何图形的绘制和操作方式,引导学生正确使用几何工具,提高学生的操作技能。

(3)实践法:引导学生进行几何图形的绘制和测量实践,通过实践巩固学生的知识点和技能。

四、教学步骤1.引入:呈现几何图形的相关图片和实际应用场景,引导学生关注几何图形的形状、特点和重要性。

2.讲解:讲解几何图形的基本特点、名称和相关知识点,包括正方形、矩形、三角形、圆形等。

3.演示:通过几何工具演示各种几何图形的绘制和测量方法,引导学生正确使用几何工具,提高学生的操作技能。

4.实践:组织学生进行几何图形的绘制和测量实践,通过实践巩固学生的知识点和技能,并且培养学生的几何思维和空间想象能力。

五、教具准备1.黑板或白板;2.彩色粉笔或白板笔;3.几何工具箱(直尺、圆规、量角器、三角板等);4.课件或PPT。

六、板书设计几何图形名称正方形四边相等,四角均为直角的四边形矩形对边相等,四角均为直角的四边形三角形三边相等或两边角度相同的三边形圆形平面内一个点到一条确定的直线的距离为定值的点的集合七、课后练习与反思1.给学生布置几何图形的相关练习,巩固学生的知识点和技能。

2.回顾本节课的教学过程,总结教学经验和教学不足,不断完善和提高教学质量。

八、教学心得通过本次几何概型教学设计,我深刻认识到有效的教学设计不仅能够提高教学效率和质量,同时也能够培养学生的创新能力和实践能力,帮助学生更好地适应和应对未来的挑战。

几何概型优秀教案

几何概型优秀教案

一说教材1教材的地位和作用本课时选自人教A版数学必修3第三章概率第33节的内容。

几何概型是概率必修章节的收尾篇,共有两个课时,本节课为第一课时,它是继古典概型之后学习的另一类等可能概型;是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义。

几何概型的研究,是古典概型的拓广,将古典概型试验结果由有限个拓广到无限个;课本介绍几何概型主要是为了更广泛地满足随机模拟的需要。

概率教学的核心问题是让学生了解随机现象与概率的意义,运用数学方法去研究不确定现象的规律,让学生初步形成用随机的观念去观察、分析、研究客观世界的态度,并获取认识世界的初步知识和科学方法。

2教学目标★知识与技能:了解几何概型的两个特征,会识别几何概型,并能正确求解概率。

★过程与方法:通过问题探究,动手实验,辨析异同,发现概念,学生体验“做数学”的乐趣和概念生成的过程。

学生对照古典概型,类比推理,能提出解决几何概型问题的可行性想法。

★情感、态度与价值观:通过设置的故事情境,调动学生的兴趣,积极的进行自主探究,并进行合作交流。

让学生认识到数学与我们的生活息息相关,数学是有用的、是自然的、是清楚的,也是丰富多彩的,让学生体验成功的喜悦。

3教学重点与难点根据《新课程标准》和学生的基本情况,制定如下的教学重点、难点:★重点:①正确理解几何概型的定义、特点;②会用几何概型概率公式求解随机事件的概率。

★难点:将实际问题抽象成几何概型并求解其概率。

二.说学情学生的认知水平有了一定的基础,前面学习了随机事件的概率和古典概型,并且掌握了二元一次不等式表示平面区域问题。

但学生的抽象思维能力还有待于进一步提高,因此在从古典概型向几何概型的过渡时,如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导、合理的解释和明确的辨析。

三.说教学方法与学习方法1教学方法高中新课程注重以学生的发展为本,结合学生认知规律及内容特点,采用先学后教探究式教学方法。

高中数学-《几何概型》教案、教学设计、简案

高中数学-《几何概型》教案、教学设计、简案

《几何概型》教案、教学设计、简案一、说教材《几何概型》是在学生已经学习了古典概型的基础上,学习的另一类等可能概型,是对古典概型内容的进一步拓展,为解决实际问题提供了一种新的模型,因此本课在在教材中起到了承上启下的作用。

二、教学目标理解几何概型的概念,会用几何概型概率公式求解随机事件的概率,了解古典概型与几何概型的不同体会数学结合的数学思想。

三、教学重难点【教学重点】理解几何概型的概念,会用几何概型概率公式求解随机事件的概率。

【教学难点】了解古典概型与几何概型的不同四、教学方法用启发式教学法,讨论引导法、练习法五、教学过程(一)、复习导入通过问题设疑引导学生回顾古典概型的内容,并通过例题的对比,提出问题,激发学生的学习兴趣和求知欲望,并引出几何概型。

引例:1.在区间[0,10]上任取一个整数,则不大于3的概率为?。

2.在区间[0,10]上任取一个实数,则不大于3的概率为?。

问题:1、本题中基本事件是指什么?其个数分别是多少?2、基本事件是否等可能?3、a例与b例分别可以建立什么模型?如何求解(二)、探究新知1、提出问题、合作探究通过多媒体播放一段转盘游戏视频,在多媒体上展示问题:当指针指向B区域甲获胜,否则乙获胜,在两种情况下,分别求甲获胜的概率是多少?开展小组小组讨论活动,引出几何概型的概念。

2、归纳总结,引出公式学生自主活动,初步总结几何概型概率求解公式。

老师验证完善,最终得出几何概型概率求解公式。

3、掌握公式,解决问题通过多媒体展示例1。

请两位学生上黑板板演,并与学生一起对题目进行分析并验证,得出结论。

(三)、巩固练习学生把导入部分的问题进行解决,请两位学生进行板演,对古典概型与几何概型通过例题进行对比。

(四)、课堂小结师生互动总结本课,我会请学生自由发言谈谈本节课的收获与体会,进行适当的总结与补充。

(五)、布置作业采用分层作业,满足不同基础水平学生的需要,能够使不同的学生在数学上得到不同的发展,导学案基础题,学有余力的学生可以选做导学案上的提高题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何概型教案
教案背景
1 面向学生:高中
2 学科:数学
3 课时:2
学情分析:
这部分是新增加的内容,介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的,随机模拟部分是本节的重点内容。

几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个。

本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性。

几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个;它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。

教材的地位与作用:
概率的初步知识在初中已经介绍,在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用。

本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成用科学的态度、辩证的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识和科学方法;这对全面系统地掌握概率知识,对于学生辩证思想的进一步形成具有促进的作用。

教学目标:
知识与技能
了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。

过程与方法
通过游戏、案例分析,学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

情感、态度与价值观
通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:
几何概型的特点,几何概型的识别,几何概型的概率公式。

教学难点:
将现实问题转化为几何概型问题,从实际背景中找几何度量。

教学过程:
一、复习引入
1、古典概型的两个基本特征是什么?
2、如何计算古典概型的概率?
二、创设情景,引入新课 1、问题情境
⑴、下图中有个转盘,甲、乙两人玩转盘游戏,规定当指针指向奖项区域时,获得该奖项,.求甲获一等奖的概率是多少?
百度图片;转盘
⑵、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳子)
⑶、射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm 。

假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?
百度图片:箭靶图片
2、学生活动(分组讨论)
分析上述三个题目,回答问题:
1) 下图中有个转盘,甲、乙两人玩转盘游戏,规定当指针指向奖项区域时,获得该奖项,.求甲获一等奖的概率是多少?
显然,它无法用古典概型解答,虽然它发生的可能性是相同的,但试验可能
的结果是无穷的。

甲获得奖品的概率是6
1。

2)如图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪
断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31
,于是事件A 发生的概率P(A)=31。

3)如图,记“射中黄心”为事件B,由于中靶心随机地落在面积为
41×π×1222 cm2的大圆内,而当中靶点落在面积为41
×π×12.22 cm2的黄心
内时,事件B 发生,于是事件B 发生的概率 P(B)=2
212241
2.1241
⨯⨯⨯⨯ππ=0.01.
设计目的:通过具体事例,让学生抽象出几何模型。

通过与古典概型进行比较,找出本节课所要研究的模型——几何概型,弄清它与古典概型的不同之处,从而引出几何概型的概念、基本特点、概率计算公式,之后要加以说明,以便学生理解与记忆.帮助学生弄清其形式和本质,明确学习的目的。

三、形成概念:
1、对以上三个试验做出分析 ⑴、以上三个试验共同点:
①所有基本事件的个数都是无限多个; ②每个基本事件发生的可能性都相等。

⑵三个试验的概率是怎样求得的?
简单的说所求概率就是它们的面积之比、体积之比和长度之比,具体的说,就是把基本事件空间理解为一个区域,不妨记为Ω,而事件A 可以理解为它的一个子区域,而所求的概率就是用子区域A 的几何度量(长度、面积、体积)比上区域Ω的几何度量。

⑶我们把满足上述条件的试验称为几何概型,参照上述三个试验请给出几何概型的定义。

2、几何概型的定义、计算公式与特征
(1)定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。

满足以上条件的试验称为几何概型。

(2)在几何概型中,事件A的概率计算公式为
其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量。

(3)特征:
①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件发生的可能性都相等。

3、古典概型和几何概型的比较
Ω
=μμA
A P )(
4、怎样求几何概型的概率
对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解.
⑴ 利用几何概型的定义判断该问题能否转化为几何概型求解; ⑵ 把基本事件空间转化为与之对应的区域Ω; ⑶ 把随机事件A 转化为与之对应的区域A ; ⑷ 利用几何概型概率公式计算。

四、应用练习 练习题
设计目的:
1)分别从三个测度——体积、面积、长度来体现几何概型的求解方式。

2)经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法。

2、归纳总结
怎样求几何概型的概率
对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解,具体分以下四个步骤:
⑴ 利用几何概型的定义判断该问题能否转化为几何概型求解; ⑵ 把基本事件空间转化为与之对应的区域Ω; ⑶ 把随机事件A 转化为与之对应的区域A ; ⑷ 利用几何概型概率公式计算。

五.回顾小结:
(1)几何概型的概念及基本特点;
(2)几何概型中概率的计算公式;一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A,则事件A 发生的概率为:的测度
的测度
D d A P
)(几何测度--------指长度、面积或体积
(3)背景相似的问题,当等可能的角度不同时,其概率是不一样的.
(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.
设计目的:通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力;进一步完成教学目标.
有关于几何概型的更多题型,同学们可以从网上搜索查找,有关于百度搜索引擎的使用,可以在下面的网页中学习:
百度视频/u11/v_MjU2MzQ0OTk.html。

相关文档
最新文档