第五章固液界面.

合集下载

固液界面

固液界面

W黏附 S G L g S L
(4-9)
与Young方程结合,得: W黏附 LG (1 cos ) (4-10)
第四节 Young-Dupre公式
若θ=00,则:
W黏附 2 LG
(4-7)
黏附功等于液体的内聚功,固体被液体完全润湿。
若 1800 , 则
第一节 Young方程和接触角
s
P
(l/g)
N
M
(s/g) O
O
(s/l)
接触角(润湿角)
由接触点O沿液—气界面作的切线OP与固— 液界面ON间的夹角 称为接触角或叫润湿角。
当液体对固体润湿达平衡时,则在O点处 必有: (s / g) (s / l) (l / g) cos (4-1) 此式称为杨氏(Young)方程。
(4-2)
(3)不润湿: sg sl时, 0,90 180。 cos 固体不能为液体所润湿;
=0,完全润湿并铺展,薄膜
0< < 90—润湿;棱镜状 一般
90 < < 180—不润湿;平底球状,半球状
=180,完全不润湿,球状
润湿作用应用
1.金属基复合材料 2.超疏水界面材料 3.日常生活中的应用
表面现象
水滴 蜡质层
微细突起
润湿作用应用
莲 花 效 应 主 要 是 指 莲 叶 表 面 具 有 超 疏 水 (superhydrophobicity)以及自洁(self-cleaning)的特性。
水黾腿部特殊的微纳米结构。这种结构使水 黾腿部周围被一层空气垫环绕,防止其腿 部被水打湿,从而保证了水黾具有“水上 飞”的能力。
第一节 Young方程和接触角

第五章表面与界面第一讲

第五章表面与界面第一讲

关的属性。
(3)与两种材料间的封接和结合界面间的啮合和结合 强度有关。
表面裂纹
表面裂纹因晶体缺陷或外力而产生。表面裂纹在
材料中起着应力倍增器的作用,使位于裂纹尖端 的实际应力远大于所施加的应力。格里菲斯关于Biblioteka 微裂纹的公式:c
2 E c
固体的表面能
定义:在恒温恒压下形成单位新表面所需要的最大功
[110] [112] [111]
周期
图5.1.2Pt铂(557)有序原子台阶表面示意图
(2) 弛豫表面 (图5.1.3,图5.1.4 ) 由于固相的三维周期性在固体表面处突 然中断,表面上原子产生的相对于正常位置 的上、下位移,称为表面弛豫。 0.1A
0.35A
图5.1.3 弛豫表面示意图
图5.1.4 LiF(001)弛豫 表面示意图, Li F
晶界的特性 晶界上由于原子排列的不规则而造成结构比较疏松, 因而也使晶界具有一些不同于晶粒的特性 : (1)晶界较晶粒内部容易受腐蚀(热腐蚀、化学腐蚀); (2)在多晶体中,晶界是原子(或离子)快速扩散的通 道; (3)晶界上容易引起杂质原子(或离子)的偏聚; (4)晶界处的熔点低于晶粒的熔点; (5)晶界成为固态相变时优先成核的区域 ; (6)晶界可以阻止位错的移动、增加滑移的困难。
5.3.2 相界结构的分类:
共格相界:界面两侧的晶体具有非常相似的结构 和类似的取向,越过界面原子面是连续的 半共格相界:晶面间距比较小的一个相发生应变, 在界面位错线附近发生局部晶格畸变。 非共格相界:界面两侧结构相差很大且与相邻晶 体间有畸变的原子排列。
表面与界面
看看它们分别是什么类型相界面?
清洁表面是指不存在任何吸附、催化反 应、杂质扩散等物理化学效应的表面。这

材料物理化学-第五章 表面与界面

材料物理化学-第五章 表面与界面
材料物理化学
湖南工学院
④n↑或↓ 三、吸附与表面改性 吸附:新鲜的固体表面能迅速地从空气中吸附气体或其它物质来降低其表面能。吸附是 一种物质的原子或分子附着在另一种物质表面现象。 表面改性:通过改变固体表面结构状态和官能团。 表面活性剂:降低体系的表面(或界面)张力的物质。
5.3 无机材料的晶界与相界
液体
开 the contact 两相的化学性能或
F 为润湿张力,θ为润湿角(接触角 angle),由于 所以,润湿先决条件是γSV>γS或γSL很小,当固液 化学结合方式很接近时,是可以满足这一要求。
材料物理化学

湖南工学院
改变γSV——减少氧化吸附膜; 改变γSL——两相组成相似; 改变γLV——液体中加入表面活性剂 ⑶浸渍润湿 浸渍润湿指固体浸入液体中的过程。
湖南工学院
第五章
表面与界面
表面的质点由于受力不均衡而处于较高的能阶。这就使物体表面呈现一系列特殊的性 质。高分散度物系比低分散度物系能量高得多,必然使物系由于分散度的变化而使两者在物 理性能(如熔点、沸点、蒸气压、溶解度、吸附、润湿和烧结等)和化学性质(化学活性、 催化、固相反应)方面有很大的差别。随着材料科学的发展,固体表面的结构和性能日益受 到科学界的重视。随着近年来表面微区分析、超高真空技术以及低能电子衍射等研究手段的 发展,使固体表面的组态、构型、能量和特性等方面的研究逐渐发展和深入,并逐渐形成一 门独立学科——表面化学和表面物理。 表面与界面的结构、性质,在无机非金属固体材料领域中,起着非常重要的作用。例如 固相反应、烧结、晶体生长、玻璃的强化、陶瓷的显微结构、复合材料都与它密切相关。 表面:—个相和它本身蒸汽(或真空)接触面称之。 界面:—个相与另一个相(结构不同)接触的分界面称之。 相界:指具有不同组成或结构的两固相间的分界面。 晶界:是指同材料相同结构的两个晶粒之间的边界。 习惯上把液-气界面、固-气界面称为液体表面和固体表面。表面可以由一系列的物理化 学数据来描述(表面积、表面组成、表面张力、表面自由能、熵、焓等),表面与界面的组 成和结构对其性能有着重要的影响。 表面与界面起突出作用的新型材料,如薄膜、多层膜、超晶格、超细微粒与纳米材料等 发展如日中天。

3.5 固液界面(吸附作用)

3.5 固液界面(吸附作用)

1.固液吸附的本质和特点
1)本质 是由于固体表面分子对液体分子的作用力大于液体 分子间的作用力而引起的。液体分子在此力的作用 下,向固体表面富集,同时降低表面张力。 2)特点 a、分子间作用力比气相大; b、相互作用力较复杂; c、杂质将影响吸附结果;d、吸附平衡比气相慢; e、以物理吸附居多; f、实验方法简单。
双电层模型
• 图上画出被化学吸附的去水化负离子,它的中心连线形 成的平面称为内赫姆霍茨平面,以 IHP 表示。而由于 静电作用吸附在表面上的水化正离子的中心连线形成的 平面称为外赫姆霍茨平面,以 OHP 表示。在此以内至 电极表面称为紧密层,在此以外延伸至本体溶液,称为 扩散层,扩散双电层即由紧密层和扩散层共同构成。其 电势分布如上图右所示。其中 ψ 为热力学电势, ζ(Zeta) 称为扩散层电势,(ψ-ζ) 为紧密层电势。
1 1 2 2
若以 n , n 表示1g吸附剂在组分1和2的纯饱和蒸 汽中吸附的单层饱和吸附量。即
s 0 1 s 0 2
自浓溶液中的吸附
S1 n
s 1
S
n
s 1 0
0
,S 2
s 2
S
n
s 2 s 1
0
n
s 1

n
n
s 2
0
1, n n
s 1
0
n x n x2 n x x2 n x2
0
n x2 s s s s s n2 x1 n1 x2 n2 n1 n2 x2 m
自浓溶液中的吸附
n0 x2 x2 m 0 n x2 0 x2 x2 , 0 m 0 n x2 0 x2 x2 , 0 m 0 n x2 0 x2 x2 , 0 m

第五章 固液界面培训资料

第五章 固液界面培训资料

第五章固液界面第五章固-液界面要求:掌握Young 方程和接触角;了解粘附功和内聚能,Young-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel对Gouy-Chapman公式的近似处理,Stern对Gouy-Chapman和Debye-Hukel理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。

§5.1 Young方程和接触角1、固体表面的润湿固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。

根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。

2、润湿性的度量——润湿接触角θ三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。

σ和平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力lg σ之间的夹角,叫润湿接触角θ,如图5-2所示。

液固界面张力ls Array图5-2 润湿接触角示意图接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。

一般分下面三种情况:(1)θ< 90o 时:被润湿,润湿过程对外做功,有放热现象; (2)θ= 90o时:中等,无现象;(3)θ> 90o 时: 不被润湿,外界对系统做功,有吸热现象。

3、Young 方程如图5-2 所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有:0cos lg =-+sg ls σθσσθσσσcos lg +=ls sg (5-1)上述方程即为Young 方程,它是研究固液润湿作用的基础方程。

第四章--固液界面

第四章--固液界面

如图5-7所示,设一根纤维浸在某液体中,纤维的另一端挂在电子天 平的测量臂上。用升降装置使液面逐渐下降。纤维经(b)状态脱离液 面,在纤维脱离液面的瞬间,电子天平测出该变化过程中力的变化 P,由记录仪记下如图5-8的曲线。
如果液体完全润湿纤维,则 P = 2rL 式中r为纤维半径。 若选用半径已知金属纤维,使液体能够完全润湿纤维,则测出
4.4 接触角的测定方法 4.4.1 停滴法(图4-5)
图4-5 停滴法测接触角

将液滴视作球形的一部分,测出液滴高度h和2r, 由简单几何分析求出θ:
sin = tan =
2hr h r
2 2
(4 -1 3 ) (4 -1 4 )
2hr r h
2 2
接触角测定仪
仪器结构主要由光源、工作台、底座、放大镜、滴液 器等部分组成
液滴在固体表面 上形成如图4—2所 示的形状,这时系 统达到最小自由焓 状态。假定液滴足 够小,重力影响可 以忽略,现液体发 生一个小的位移, 使各相界面的面积 变化分别为dASL、 dASG、dALG,则
图4-2 Young方程的推导
从能量观点推导Young方程(如图4-2)

系统自由焓的变化
d G L G d A L G S G d AS G S L d AS L
① 具有OH, COOH等极性基的有机物,与水分子吸引较强,它们与 水接触后,在水面上能自动铺展,有较大的铺展系数。 ② 碳氢化合物及其被卤素取代后的衍生物,因分子的极性减弱,因而铺 展系数也较小。 ③ 对于石蜡、溴仿这些极弱的极性键和非极性键物质,与水吸引力很 小,不能在水面上铺展,所以铺展系数为负值。
4-3 Young-Dupre公式

固液界面化学反应机理

固液界面化学反应机理

固液界面化学反应机理固液界面化学反应是指在固液界面上进行的化学反应。

它具有重要的应用价值,如在能源转换、环境控制、材料制备、生命科学等领域。

固液界面化学反应的机理包括吸附、表面化学、界面扩散、反应动力学等多个方面。

一、吸附过程在固液界面化学反应中,吸附过程是首先发生的。

吸附是指分子或离子与一种固体表面相互作用以形成一个化学吸附层的过程。

吸附现象对于固液界面化学反应机理的研究至关重要。

吸附过程可以通过浸润实验和吸附等温线来研究。

具体而言,浸润实验是通过将液体缓慢滴入固体表面,观察其润湿情况来确定吸附现象。

而吸附等温线则是通过测量在一定温度下吸附剂与固体表面吸附的平衡浓度,获得吸附等温线。

二、表面化学表面化学是指化学在分界面或界面区域中发生的各种化学反应。

此处的“化学反应”包括化学键的形成与断裂、化学吸附等等。

这些反应很大程度上影响了固液界面的性质。

表面化学方法可以通过表面活性剂和表面电荷密度的研究来表征,也可以通过X射线光电子能谱等技术来研究。

三、界面扩散界面扩散是指在固液界面上,溶液中的物质从液相向固相的扩散过程。

固液界面中存在着液相分子和固相分子间的接触,因而使得溶液中的物质向固相扩散。

界面扩散过程对于固液界面化学反应过程的影响非常明显,因此,在固液界面化学反应论文中几乎都会涉及界面扩散。

四、反应动力学反应动力学是指化学反应过程中,反应物消耗或生成的速度以及化学反应机制的研究。

在固液界面化学反应中,反应动力学是研究液-固反应过程速率的一个方面。

它的研究旨在了解物质扩散和反应速率的规律,提高反应速率和反应效率并探究化学反应的机理。

总之,固液界面化学反应机理的研究对于理解固液界面交互作用、提高反应速率和效率以及探究化学反应机理方面具有重要的实用价值。

在固液界面化学反应的研究中,需要系统的考虑吸附、表面化学、界面扩散和反应动力学等多个方面。

3.4 固液界面(润湿作用)

3.4 固液界面(润湿作用)

影响接触角测定的因素
b.表面不平 表面不平也是造成接触角滞后的主要因素, 若将一玻璃粗化后,将一水滴滴在倾斜玻璃上, 则出现接触角滞后。 Wenzel研究了固体表面粗度对润湿性的影响, 他指出,一个给定的几何面经粗化后,必然使 表面积增大,若以r表示粗化程度,则
r=A(真实)/A (表观)
影响接触角测定的因素
3.3 固—液界面(润湿作用)
在等温等压条件下,单位面积的液面与固体 表面粘附时对外所作的最大功称为粘附功,它是 液体能否润湿固体的一种量度。粘附功越大,液 体越能润湿固体,液-固结合得越牢。 在粘附过程中,消失了单位液体表面和固体 表面,产生了单位液-固界面。粘附功就等于这个 过程表面吉布斯自由能变化值的负值。
接触角的测定
(4)光点反射法 原理是利用一个点光源照射到小液滴上,并在光源 处观察反射光,当入射光与液面垂直时,才能在液面 看到反射光。测定时,使光点落在三相点位,并以此为 中心,改变入射光角度,使之在固体表面的法平面中作 圆周运动,当光线在某位置突然变亮时,入射光与固体 平面法线的夹角即为接触角,此方法有较好的测量精度, 可用于测定纤维的接触角,缺点是只能测定小于90°的 接触角。
固体的润湿性质
2、低能表面的润湿性质
近年来,随着高聚物的广泛应用,低能表面的润湿 问题越来越引起人们的重视,如某些高聚物做成的生 产用品和生活用品,就要求其能很好地为水所润湿( 加入某些无机氧化物可能是有效的办法),塑料电镀, 降解等也需要解决润湿问题。 Zisman等人首先发现,同系列液体在同一固体表面 的润湿程度随液体表面张力的降低而提高(γ ↓ , θ ↑ ,COSθ ↑,S=γ gl(COSθ -1)若以COSθ 对γ gl 作图,
gh 2 sin q 1 2 l g

第五章 固液界面

第五章 固液界面

第五章 固-液界面要求:掌握Young 方程和接触角;了解粘附功和内聚能,Young-Dupre 公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman 理论,Debye-Hukel 对Gouy-Chapman 公式的近似处理,Stern 对Gouy-Chapman 和Debye-Hukel 理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。

§ Young 方程和接触角1、固体表面的润湿固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。

根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示 三种情况。

2、润湿性的度量——润湿接触角θ三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。

平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力lg σ和液固界面张力ls σ之间的夹角,叫润湿接触角θ,如图5-2所示。

图5-2 润湿接触角示意图接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。

一般分下面三种情况:(1)θ< 90o 时:被润湿,润湿过程对外做功,有放热现象;(2)θ= 90o 时:中等,无现象;(3)θ> 90o 时: 不被润湿,外界对系统做功,有吸热现象。

3、Young 方程如图5-2 所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有:0cos lg =-+sg ls σθσσθσσσcos lg +=ls sg (5-1) 上述方程即为Young 方程,它是研究固液润湿作用的基础方程。

§ 粘附功和内聚能设有α,β两相,其相界面张力为αβσ,如图5-3所示,在外力作用下分离为独立的α,β两相,表面张力分别为βασσ,。

水环境化学 第五章 水环境中的界面过程

水环境化学  第五章  水环境中的界面过程

M
(OH
)n
(S
)
MO(OH
) n1
(S
)
H
M(OH)n-1(H2O)+的数目=MO(OH)n-1-的数目
在该pH值发生的情况称为等电点或零电荷点 (Zero Point of Charge,ZPC)。
pHZPC对于不同金属氧化物有不同数值,而且每种 氧化物均是固定常数。
表5-1 典型矿物的等电点(pHZPC)
大多数情况下,天然水中有机胶体或无机胶体微 粒都带有负电荷。
但一些胶体如水合氧化铁、铝等矿物在水pH值偏 酸下也可以带正电荷。
胶体表面电荷的来源???
(1)表面电荷可来自表面的化学反应 (2)离子置换 (3)离子吸附
(1)表面电荷可来自表面的化学反应
• 此类电荷的产生是由于无机胶体表面上的羟基或 有机质胶体的一些基团如-OH,-COOH,-C6H4OH,-NH2 等获得或失去质子所致。
胶体种类 气溶胶 液溶胶 固溶胶
分散剂状态 气体 液体 固体
实例 雾、云、烟、霾 Fe(OH)3胶体、牛奶、豆浆 烟水晶、有色玻璃
天然水体中的胶体一般可分为三大类: (按分散质分类) 无机胶体,包括各种次生粘土矿物和各种
金属水合氧化物; 有机胶体,包括天然的和人工合成的高分
子有机物、蛋白质、腐殖质等; 有机无机胶体复合体。
如气-液、气-固、液-液、液-固和固-固等界面。
5.1 天然水体中的胶体物质 5.2 固液界面的吸附过程 5.3 水-固体系中的分配过程 5.4 挥发作用
5.1 天然水体中的胶体物质
胶体是分散质的大小介于1~100nm之间的分散系。 胶体有丁达尔效应,能发生布朗运动,有电泳和聚
沉现象。

固液界面结构ppt

固液界面结构ppt

对实际应用的建议
加强基础研究
为了更好地推动固液界面结构的研究发展,需要加强基础研究,包括对界面现象的深入理 解、新的实验技术和表征方法的开发等。
促进学科交叉
固液界面结构Βιβλιοθήκη 及到多个学科领域,需要促进不同学科之间的交叉和合作,以便更好地推 动研究进展和应用拓展。
加强应用研究
需要加强应用研究,将研究成果直接应用于解决实际问题,以推动固液界面结构研究的发 展和实际应用的推广。
润湿性
液体在固体表面铺展的能力,通常用润湿角来表示。润湿角 越大,润湿性越差;润湿角越小,润湿性越好。
界面稳定性与抗磨性
界面稳定性
指液体在固体表面形成稳定、连续的膜的能力。界面稳定性越好,抗磨性越 好。
抗磨性
指液体抵抗固体磨损的能力。抗磨性与液体的粘度、硬度、韧性等因素有关 。
界面结构与传质性能
06
研究展望
研究方向的不足之处
缺乏对固液界面微观结构的深入理解和研究
目前的研究主要集中在宏观层面,对于微观结构的研究尚不充分,这将影响对界面现象的准确描述和预测。
缺乏统一的模型和理论
由于固液界面结构的复杂性和多样性,目前缺乏能够全面描述各种现象的统一模型和理论,这可能导致在实际 应用中的预测和控制能力受限。
改变界面结构
表面活性剂分子有序排列在液固界面上,形成界 面层,改变界面的微观结构和性质。
提高润湿性能
通过在固液界面上形成界面层,改善固体表面的 润湿性能,提高液滴在固体表面的附着力。
界面改性的方法
化学改性
通过化学反应改变界面的性质,如偶联剂处理、化学氧化还原等 。
物理改性
利用物理作用改变界面的性质,如等离子体处理、紫外线照射等 。

固液界面优秀课件

固液界面优秀课件
ρ为液体的密度; 表面张力
接触角的测定方法
三、纤维对液体的接触角测定 测定纤维对液体的接触角非常重要,接触角可用电子天平
法进行测定。 1.单一液体接触角测定 步骤: (1)将一根纤维浸在某液体中,纤维的另一端挂在电子天
平的测量臂上,用升降装置使液面逐渐下降。 (2)纤维经(b)状态脱离液面进入(c)状态,在纤维脱
步骤:
(1)L1和L2为互不相溶的两种液体。纤维S插入通过L1、L2的界 面。
(2)当升降装置下降,在纤维离开L1-L2界面的瞬间,电子天平 测出该过程的力并纪录下来。
(3)若完全润湿,则
若界面张力
已知,液体与纤维之间的接触角为

,求出
4-5 接触角的滞后现象
一般,接触角是指在光滑,组成均匀的表面上的平
粘附功和内聚能
有单位面积的α-β两相 ,其界面张力 ,在外力 的作用下分离为独立的α相和β相,其表面张力分别为 和 ,在这一过程中,外界所做的功Wa为 :
Wa是将结合在一起的两相分离成独立的两相外界所 做的功,称作黏附功 。
粘附功和内聚能
二、内聚能
将单位面积的均相物质分离成两部分,产生两 个新界面所做的功。(重点)
反之,当抽走足够多的液体,液滴周界前沿会突然收缩, 此突然收缩刚要发生时的角度称为最小后退角θr.min。
在倾斜角上,同时可看到液体的前进角和后退角 (图4-12)。假如没有接触角滞后,丙班只要稍倾斜,液 滴就会滚动。接触角滞后使液滴能稳定在斜面上。接触角 滞后的原因是由于液滴的前沿存在着能垒。
接触角的滞后现象
衡接触角,即Young接触角。
实际中,表面都是粗糙的或是不均匀的,即出现
接触角的滞后现象。
一、前进角和后退角

高等物理化学(3)

高等物理化学(3)

n (1 x2 )
s 2
若n2足够大,则n2s约为常数 Γ
0
x2 →
1
2. 单个组分的吸附等温线(即求出n1s 和n2s )
(1) 实验法; 假设固体在溶液中的吸附量和在与溶液成平衡 的蒸汽中的吸附量相同
W n M1 n M 2
s 1 s 2
W:单位质量吸附剂吸附蒸汽 G 的总质量,可通过称量吸 附前后吸附剂的质量求得 L M1、 M2:组分1和组分2的分子 量 将此式与混合吸附等温式联立,即可求得n1s 和n2s
S n
s 2, 0
s2
s2 S
n
s 2, 0
代入(5)式
s n1s n2 s 1 s n1,0 n2,0
与表面过剩量公式联立,即可求出n1s,n2s
对微孔吸附剂
V n V n V
s 1 1
s 2 2
Vi : 液体组分i 的摩尔体积 V: 吸附剂的总孔体积
5-3 自稀溶液中的吸附 在稀溶液中,x2<<x1
b 2 1
xi : 平衡时溶液本体中组分 i的摩尔分数
将(1)、(2)式两边分别乘以x2和 x1,并将上式代入
b s n10 x2 n2 x1 m n 1 x2 0 b s n2 x1 n1 x2 m n2 x1
(3) (4)
b 2 1 0 2 1 0 1 2
(4)- (3) : m( x n x n ) (n x n x ) n x n x
设 固体与纯溶剂的界面张 力为 0 , 界面上铺满单分子层时 的界面张力为 m 则当界面上溶质分子的 覆盖率为 时 界面张力为
0 (1 ) m
n 0 ( 0 m ) - - - (1) n

地震波固液界面的边界条件

地震波固液界面的边界条件

地震波固液界面的边界条件一、引言地震是地球内部能量释放的结果,会产生地震波传播到地球表面。

地震波在传播过程中会遇到不同介质的界面,如固液界面。

固液界面是指地震波从固体传播到液体或从液体传播到固体的界面。

在地震波传播过程中,固液界面的边界条件起着重要作用,影响着地震波的传播特性。

本文将对地震波固液界面的边界条件进行探讨。

二、固液界面的特点固液界面是由固体和液体组成的界面,具有一定的特点。

首先,固液界面具有反射和折射的能力,当地震波从固体传播到液体或从液体传播到固体时,会发生反射和折射现象。

其次,固液界面还存在能量传递的过程,地震波在固液界面上的传播会导致能量的转移。

此外,固液界面的边界条件对地震波的传播速度和传播方向也有一定影响。

三、固液界面的边界条件1. 位移连续性条件固液界面上的位移连续性条件是指固体和液体两侧位移的大小和方向相等。

当地震波从固体传播到液体时,固液界面上的位移连续性条件可以用来描述固体和液体之间的相互作用。

该条件可以表达为:\[u_{1}+u_{2}=0\]其中,\(u_{1}\)为固体侧的位移,\(u_{2}\)为液体侧的位移。

2. 应力连续性条件固液界面上的应力连续性条件是指固体和液体两侧的应力大小和方向相等。

当地震波从固体传播到液体时,固液界面上的应力连续性条件可以用来描述固体和液体之间的相互作用。

该条件可以表达为:\[\sigma_{1}+\sigma_{2}=0\]其中,\(\sigma_{1}\)为固体侧的应力,\(\sigma_{2}\)为液体侧的应力。

3. 质量连续性条件固液界面上的质量连续性条件是指固体和液体两侧的质量流量大小相等。

当地震波从固体传播到液体时,固液界面上的质量连续性条件可以用来描述固体和液体之间质量的交换。

该条件可以表达为:\[\rho_{1}v_{1}=\rho_{2}v_{2}\]其中,\(\rho_{1}\)为固体侧的密度,\(\rho_{2}\)为液体侧的密度,\(v_{1}\)为固体侧的速度,\(v_{2}\)为液体侧的速度。

第五章固液界面-课件

第五章固液界面-课件

第五章固液界面-课件5.1润湿作用(4学时)5.1.1润湿过程5.1.2接触角与润湿方程5.1.3接触角的测量5.1.4影响接触角的因素5.1.5表面活性剂对润湿的影响5.2固液界面的吸附作用(4学时)5.2.1固液界面吸附的特点5.2.2自浓溶液中的吸附5.2.3自稀溶液中的吸附5.2.4自电解质溶液中的吸附5.3大分子的吸附(1学时)5.3.1吸附等温式5.3.2生物大分子和聚合物的吸附5.4表面活性剂在固液界面上的吸附(1学时)5.1润湿作用5.1.1液体在固体表面的润湿作用润湿(wetting)是指在固体表面上一种液体取代另一种与之不相混溶的流体的过程。

润湿过程可分为三类:沾湿(adheion)浸湿(immerion)铺展(preading)(1)沾湿:液体与固体由不接触到接触,变液气界面和固气界面为固液界面的过程Wa=γlg+γg-γlWa:粘附功>0自发(2)浸湿:固体浸入液体的过程。

(洗衣时泡衣服)固气界面为固液界面替代。

-G=γg-γl=WtWt:浸润功>0自发(3)铺展:以固液界面取代固气界面同时,液体表面扩展的过程。

铺展系数S=γg-(γlg+γl)≥0时自发小结:(1)无论哪一种润湿都是界面现象,其过程实质都是界面性质及界面能量的变化(2)对比三者发生的条件沾湿:Wa=γlg+γg-γl≥0浸湿:γg-γl≥0铺展:S=γg-(γlg+γl)≥0(3)固气和固液界面能对体系的三种润湿作用的贡献是一致的。

5.1.2接触角与润湿方程将液体滴于固体表面上,液体或铺展或覆盖于表面,或形成一液滴停于其上,此时在三相交界处,自固液界面经液体内部到气液界面的夹角就叫做接触角。

Yang方程:γg-γl=γlgcoθWa=γlg(coθ+1)≥0θ≤180沾湿A=Wt=γlgcoθ≥0θ≤90浸湿S=γlg(coθ-1)=0θ=0铺展习惯上将θ=90°定义润湿与否标准5.1.3接触角的测量(一)角度测量法(量角法)(1)切线法(2)斜板法γSLγLGθγSG(3)光点反射法(二)长度测量法(1)小滴法(2)大滴法(液饼法)(3)垂片法皆是通过与相关长度测量计算得到。

固液界面

固液界面

2. Young方程
SG SL LG cos
(5-1)
5.2 粘附功和内聚能
在这一过程中,外界所做的功 Wa为:
Wa (5-5)
图5-3 α 、β 相的分离
Wa是将结合在一起的两相分离成独立的两相外 界所做的功,称作粘附功。
图5-4 均相物质的分离
占分数为xA和xB,则复合表面的接触角可表示为:
cos xA cos A x B cos B
所以,表面不均匀性和表面污染是造成接触角滞后 的重要原因
往高能表面上 掺入低能杂质, 将使前进角显 著增加而对后 退角影响不大; 往低能表面上 掺入高能杂质, 会使后退角大 大减小。
图5接触角:在三相交界处自固-液界面经过液体内部 到气-液界面的夹角叫接触角,以θ表示。 (1)θ=0,完全润 湿,液体在固 体表面铺展。
(2)0<θ<90°, 液体可润湿固体, 且θ越小,润湿越好。 (3)90°<θ<180° 液体不润湿固体。 (4)θ=180°,完全不润湿,液体在固体表面凝成小球。
局限性
对仪器精密度要求高,操作难度大;
测试的是单根纤维,误差大。 以对水完全润湿的r=20微米的纤维为例:
图5-10 用纤维束测接触角示意图
以一束纤维代 替一根纤维
在塑料管中充填一束纤维, 充填率ξ=0.47~0.53。使纤 维束与液面接触,因毛细 现象,液体沿着纤维间空 隙上升,用电子天平测出 增重量m随浸润时间变化
WSL 0
(5-12)
液-固分子之间没有吸引力,分开固-液界面不需做功。 此时固体完全不为液体润湿
5.4 接触角的测定方法
5.4.1 停滴法(图5-5)

研究物质在固液界面上的吸附和分离行为

研究物质在固液界面上的吸附和分离行为

研究物质在固液界面上的吸附和分离行为固液界面是指固体与液体相接触的区域,其中存在着物质的吸附和分离行为。

这种行为不仅在日常生活中广泛存在,还在工业制备、环境保护等领域有着重要的应用价值。

因此,研究物质在固液界面上的吸附和分离行为一直是材料科学、化学、环境科学等领域的热门研究课题。

一、固液界面上的吸附行为固体表面通常具有极性和非极性两种区域,其上各自存在着不同的化学键和电子云密度。

当固体表面与液体接触时,两者之间形成的界面区域存在着一定的静电势差,导致物质分子向固液界面聚集并与之发生相互作用。

这种相互作用可以表现为化学键或物理力,导致物质分子在固液界面上发生吸附。

物质在固液界面上的吸附行为是受多种因素影响的。

例如,物质与固体表面的亲和力、表面的粗糙度和形貌、液体的化学性质和溶剂极性等。

因此,在研究固液界面上的吸附行为时,需要考虑物质的性质、表面的形貌、溶液的性质等多个因素。

二、固液界面上的分离行为固液界面上的分离行为是指将吸附在固液界面上的物质分离出来的过程。

这种分离行为在化学合成、制药生产、废水处理等领域中有着广泛的应用。

分离固液界面上的物质通常需要借助化学反应、分子筛分离等技术手段。

其中,分子筛分离技术具有广泛的应用前景。

分子筛是一种能够选择性地吸附和分离特定分子的结构完整的晶体材料。

基于分子筛的分离技术已经被应用于油田采油、气体分离、废水处理等领域。

三、固液界面上的材料设计研究固液界面上的吸附和分离行为可以为新型材料的设计提供一定的理论基础。

例如,通过研究固液界面上物质的表面亲和力和粗糙度,可以设计出更高效的固液分离材料。

通过研究不同溶剂对物质吸附行为的影响,可以为制备更稳定的吸附材料提供指导。

在新型材料的设计中,一个重要的研究方向是固液界面上的微纳米尺度控制。

这种控制可以通过压印、溶胶凝胶、原子层沉积等方法实现。

通过这种方式,在固液界面上制备出具有特定表面能、有效吸附和分离性能的材料,进一步扩大了相关领域的应用范围。

The solid-liquid interface:5固液界面

The solid-liquid interface:5固液界面

S S
L
L
5
Immersional wetting
• In immersional wetting, the solid, which is not originally in contact with the liquid, is immersed completely in the liquid.
• Contamination of the liquid • Solid surface (degree of heterogeneity, impurities) • Advancing angle or receding angle • The extent to which the drop is vibrated.
L
4
Adhesional wetting
• When a liquid combines with a solid as shown in the following figure, the process is termed adhesional wetting.
• The work of adhesion Wa=-G/A= SG +LG -SL = LG (1+cos)
• Wetting agents are used to adjust the wetting in many practical situations. For example, increasing wetting of pesticide with plants and insects can improveห้องสมุดไป่ตู้the insecticidal effect.
5 The solid-liquid interface
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、润湿过程的比较
以上三种润湿发生的条件可归纳如下:
粘附润湿:
浸润: (5-8)
铺展润湿:
讨论:
§5.4接触角的测定方法
接触角的测定方法很多,主要有以下几种。
1、停滴法
在光滑、均匀、水平的固体表面上放一小液滴,因液滴小,重力作用可忽略。将液滴视作球形一部分,测出液滴高度h与底宽2r(见图5-5)。有简单的几何分析可求出θ。
θ h
2r
图5-5停滴法测接触角
2、气泡法测接触角
将光滑、均匀、水平的固体表面放在液体中,在固体表面下方滴入一小气泡,通过显微放大作图法可测接触角,如图5-6所示。
若固体面积为A,则浸湿过程中系统自由焓变化为:
为浸润功,它的大小反映液体在固体表面上取代气体的能力。令 ,称A为粘附张力。由热力学平衡准则可知,只有 的过程才能发生浸润。 时不能浸湿,这时密度小于水的固体将浮于水面,密度大的,将沉于水底,取出后可发现没有被水浸润。这是因为粘附张力为负值,液体分子与固体表面的粘附力小于液体分子自身的内聚力之故。
第五章固-液界面
要求:掌握Young方程和接触角;了解粘附功和内聚能,Young-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel对Gouy-Chapman公式的近似处理,Stern对Gouy-Chapman和Debye-Hukel理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。
2、润湿性的度量——润湿接触角θ
三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。
平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力 和液固界面张力 之间的夹角,叫润湿接触角θ,如图5-2所示。
θ
图5-2润湿接触角示意图
讨论:标出下列图中的润湿接触角。
3、铺展浸润过程
如图5-11所示,铺展润湿是液体与固体表面接触后,在固体表面排除空气而自行铺展的过程,也即一个以液固界面取代气固表面同时液体表面也随之扩展的过程。


侧视图
俯视图
a
B C
图5-11铺展润湿过程
若液滴从C自发铺展至B,覆盖面积为a,则相应的自由焓下降为:

则 为负,液体能在表面自行铺展,反之,若
1、粘附润湿过程
这是液体直接接触固体,变气液表面和气固表面为液固表面的过程。如图5-10所示,液体粘附在固体表面能否自发进行,决定于粘附过程中,自由焓的变

图5-10粘附润湿
化值是否小于零,即:
由上式可知, ,即粘附功 时,粘附润湿能自发进行,并且粘附功越大,粘附越牢。
2、浸湿过程
在固体直接浸入液体的过程中,原来的气固表面为液固表面所代替,见图5-11。
上两式中, 为固体处在真空中的表面张力, 为固体表面为蒸汽饱和时的表面张力,两者之差为扩展压:
因为在气固液三相系统中,固气,液气均达到平衡,即固、液表面都吸附了气体,故式(5-3)变为:
(5-5)
与Young方程结合,可得:
(5-6)
上式即为Young-Dupre方程,它将固液之间的粘附功和接触角联系起来。接触角越小,粘附功越大,液体越容易润湿固体。
若将均相物质分离成两部分,产生两个新界面,如图5-4所示,则上式中, , ,则上式为:
这里 为内聚功或内聚能。物体的内聚能越大,将其分离产生新表面所需的功 均相的分离
§5.3 Young-Dupre公式
对固液界面,式(5-2)粘附功为:
(5-3)
由Young方程知:
(5-4)
接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。一般分下面三种情况:
(1)θ< 90o时:被润湿,润湿过程对外做功,有放热现象;
(2)θ= 90o时:中等,无现象;
(3)θ> 90o时: 不被润湿,外界对系统做功,有吸热现象。
3、Young方程
如图5-2所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有:
则 为正,液体不能在表面自行铺展。故( )为铺展过程的推动力,定义铺展系数为:
(5-7)
在恒温恒压下, 时,液体取代固体表面上的空气而自由铺展,只要液体量足够,可以铺展整个表面。
式(5-7)可改写成为:
式中 为液体内聚功。若 ,则 ,即:当固液的粘附功大于液体的内聚功时,液体可以自行铺展在固体表面。
§5.1 Young方程和接触角
1、固体表面的润湿
固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。
亲水性固体表面中等亲水性固体表面疏水性固体表面
图5-1水在固体表面的润湿情况
根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。
θ
图5-6气泡法测接触角
3、吊片法测接触角
将表面光滑、均匀的固体薄片直接插入液体中,如果液体能够润湿此固体,则将沿薄片平面上升(见图5-7),升高值h与接触角之间关系为:
h
θ θ
图5-7吊片法测接触角
4、电子天平法测接触角
θ液
测定纤维对浸润液的接触角对纤维增强复合材料很重要,可用电子天平进行测定。如图5-8所示。
图5-8电子天平法测接触角
电子天平测出的力变化如图5-9所示。
图5-9电子天平测得的力的变化
如果液体完全润湿纤维,则:
如果液体与纤维之间接触角为θ,则有:
因此,只要知道纤维半径r和液体表面张力,就可测吃接触角θ。
§5.5润湿过程的三种类型
润湿过程有三种类型:粘附润湿(adhesionwetting),浸湿润湿(immersionwetting)和铺展润湿(spreading wetting)。
(5-1)
上述方程即为Young方程,它是研究固液润湿作用的基础方程。
§5.2粘附功和内聚能
设有α,β两相,其相界面张力为 ,如图5-3所示,在外力作用下分离为
α α
β β
图5-3 α,β两相的分离
独立的α,β两相,表面张力分别为 。在这一过程中,外界所作的功为 :
(5-2)
是将结合在一起的两相分离成独立的两相外界所作的功,叫粘附功。
相关文档
最新文档