广西南宁市(六市同城)2018年中考数学试题(含解析)
2018年南宁市中考数学真题及答案精品
赛场只设 1、2、3、4 四个跑道,选手以随机抽签的方式决定各自的
跑道,若甲首先抽签,则甲抽到 1 号跑道的概率是(
)
A.1
B.
C.
D.
考 概率公式. 3718684 点: 分 由设 1、2、3、 4 四个跑道,甲抽到 1 号跑道的只有 1 种情况, 析: 直接利用概率公式求解即可求得答案. 解 解:∵设 1、2、3、4 四个跑道,甲抽到 1 号跑道的只有 1 种情 答: 况,
12.(3 分)(2018? 南宁)如图,直线 y= 与双曲线 y= (k> 0,x >0)交于点 A,将直线 y= 向上平移 4 个单位长度后,与 y 轴交于
点 C,与双曲线 y= ( k>0,x>0)交于点 B,若 OA=3B,C 则 k 的值 为( )
A.3
B.6
C.
D.
考 反比例函数综合题. 3718684 点: 专 探究型. 题: 分 先根据一次函数平移的性质求出平移后函数的解析式,再分别 析: 过点 A、B 作 AD⊥x 轴, BE⊥x 轴, CF⊥BE于点 F,再设 A(3x,
8.(3 分)(2018? 南宁)下列各式计算正确的是(
)
A.3a3+2a2=5a6 B.
C.a4? a2=a8 D.(ab2)3=ab6
考 二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方 点: 与积的乘方. 3718684 专 计算题. 题: 分 分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的 析: 乘方法则对各选项进行逐一判断即可. 解 解: A、3a3 与 2a2 不是同类项,不能合并,故本选项错误; 答: B、2 + =3 ,故本选项正确;
广西南宁市(六市同城)2018年中考数学试题(含解析)
3 33 2018 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120分钟满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A.-3B.3C.-1D.1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B.(a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
2018年广西省六市同城中考数学试卷
2018年广西六市同城中考数学试卷ー、选择以(本大题其12小题,每小题3分,共36分)1.–3的倒数是( ) .A .–3B . 3C .–31D .31 2.下列美丽的壮锦图案是中心对称图形的是( ) .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳8l000名观众,其中数据81000用科学计数法表示为( ) .A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) .A .7分B .8分C .9分D .10分5.下列运算正确的是( ) .A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°.则∠ECD 等于( ) .A .40°B .45°C .50°D .55°7.若m >n ,则下不等式正确的是( ) .A .m –2< n –2B . 4m 4n C .6m <6 n D .–8m >–8n 8.从–2、–1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) .A .32B .21C .31D .41 9.将地物线y =21x 2–6 x +21向左平移2个单位后,得到新抛物线的解析式为( ) . A .y =21(x –8)2+5 B .y =21(x –4)2+5 C .y =21(x –8)2+3 D .y =21(x –4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( ) .A .π+3B .π–3C .2π–3D .2π–2311.某种植基地2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜产量的年平均增长率.设疏菜产量的年平均增长率为x ,则可列方程为( ) .A .80(1+x )2=100B .100(1–x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上.将△CDP 沿DP 折叠,点C 落在点E 处.PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( ) .A .1311 B .1513 C .1715 D .1917二、填空题(本大共6小题,每小以3分,共18分)13.要使二次根式5-x 在实数范围内有意义,则实数x 的取值范围是_______.14.因式分解:2a 2–2=_______.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_______.16,如图,从甲楼底A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB 是120m ,则乙楼的高CD 是_______ m(结果保留根号) .17.观察下列等式:3°=1,31=3,32=9,33=27,34=81,35=243,…,根据其规律可得3°+31+32+…+32018的结果的个位数字是_______.18.如图,矩形ABCD 的顶点A 、B 在x 轴上,且关于y 轴对称,反比例函数y =x k 1(x >0)的图象经过点C ,反比例函数 y =xk 2(x <0)的图象分别与AD 、CD 交于点E 、F , 若S △BEF =7,k 1+3k 2=0,则k 1等于_______.三、解答題(本大题共8小题,共66分)19.(本题满分6分)计算:4-+3tan 60°–12–121-⎪⎭⎫ ⎝⎛ 20.(本题满分6分)解分式方程:33211-=--x x x x 21.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1)B(4,1),C(3,3)(1)将△ABC 向下平移5个单后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O 、A 、B 为顶点的三角形的形状.(无需说明理由)22.(本题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A、B、C、D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.(1)求m=______,n=_______;(2)在扇形统计图中,求”C等级”所对应的圆心角的度数;(3)成绩为A的4名同学中有1名男生和3名女生,现从中随机抽取2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(本题满分8分)如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,且BE=DF.(1)求证:□ABCD是菱形;(2)若AB=5,AC=6,求□ABCD的面积.24.(本题满分10分)某公司在甲、乙仓库共存放中某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(10≤a ≤30),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,语求出总运费w 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,w 的变化情况.25.(本题满分10分)如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与⊙O 相切;(2)若85 AC EF ,求OC BE的值;(3)在(2)的件下,若⊙O 的半径为8,PD =OD ,求OE 的长.26.(本题满分10分)如图,抛物线y =ax 2–5ax +c 与坐标轴分別交于点A 、C 、E 三点,其中A(–3,0)、C(0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点M 、N 分别是线段CO 、BC 上的动点,且CM =BN ,连接MN 、AM 、AN .(1)求抛物线的解析式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标;(3)试出AM+AN的最小值.2018年广西六市同城中考参考答案一、选择1.C2.A 3.B 4.B 5.D 6.C7.B 8.C 9.D 10.D 11.A 12.C二、填空13.x≥5 14.2(a+1)(a-1) 15.4 16.40317.318.19.(略) 21.(略) 20.(略) 22.(略) 23.24.25.26.。
最新广西南宁市中考数学试卷和答案(word打印版)
三、解答题(本大题共 8 小题,共 66 分 .解答应写出文字说明、证明过程或演算步骤 .)
19. (本题满分 6 分)计算: 4 3tan60
12
1 (
)
1
2
x
2x
20. (本题满分 6 分)解分式方程:
1
x1
3x 3
21. (本题满分 8 分)如图,在平面直角坐标系中,已知 △ABC 的三个顶点坐标分别是 A ( 1 , 1 ), B( 4 , 1 ), C (3,3 ) ( 1 )将 △ABC 向下平移 5 个单位后得到 △A 1 B1 C1 ,请画出 △A 1B1 C1 ; ( 2 )将 △ABC 绕原点 O 逆时针旋转 90 °后得到△A 2B2C 2 , 请画出 △A 2B2C 2 ; ( 3 )判断以 O, A 1 , B 为顶点的三角形的形状(无须说明理由)
学习 -----好资料
2018 年广西北部湾经济区六市同城初中毕业升学统一考试
(六市:南宁、北海、钦州、防城港、崇左和来宾市)
数学
(考试时间: 120 分钟 满分: 120 分)
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分。在每小题给出的四个选项中只有一项是符合要求的)
1. -3 的倒数是 A. -3
13 B.
15 17 D. 19
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
(
)
13. 要使二次根式 x 5 在实数范围内有意义,则实数 x 的取值范围是 14. 因式分解: 2a 2-2=
15. 已知一组数据 6, x, 3 , 3 , 5 , 1 的众数是 3 和 5 ,则这组数据的
D. 2 π- 2 3
2018年广西省六市同城中考数学试卷及答案
2018年广西六市同城中考数学试卷及答案ー、选择以(本大题其12小题,每小题3分,共36分)1.–3的倒数是( ) .A .–3B . 3C .–31D .31 2.下列美丽的壮锦图案是中心对称图形的是( ) .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳8l000名观众,其中数据81000用科学计数法表示为( ) .A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) .A .7分B .8分C .9分D .10分5.下列运算正确的是( ) .A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°.则∠ECD 等于( ) .A .40°B .45°C .50°D .55°7.若m >n ,则下不等式正确的是( ) .A .m –2< n –2B .>4m 4n C .6m <6 n D .–8m >–8n 8.从–2、–1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) .A .32B .21C .31D .41 9.将地物线y =21x 2–6 x +21向左平移2个单位后,得到新抛物线的解析式为( ) . A .y =21(x –8)2+5 B .y =21(x –4)2+5 C .y =21(x –8)2+3 D .y =21(x –4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( ) .A .π+3B .π–3C .2π–3D .2π–2311.某种植基地2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜产量的年平均增长率.设疏菜产量的年平均增长率为x ,则可列方程为( ) .A .80(1+x )2=100B .100(1–x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上.将△CDP 沿DP 折叠,点C 落在点E 处.PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( ) .A .1311B .1513C .1715D .1917二、填空题(本大共6小题,每小以3分,共18分)13.要使二次根式5-x 在实数范围内有意义,则实数x 的取值范围是_______.14.因式分解:2a 2–2=_______.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_______.16,如图,从甲楼底A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB 是120m ,则乙楼的高CD 是_______ m(结果保留根号) .17.观察下列等式:3°=1,31=3,32=9,33=27,34=81,35=243,…,根据其规律可得3°+31+32+…+32018的结果的个位数字是_______.18.如图,矩形ABCD 的顶点A 、B 在x 轴上,且关于y 轴对称,反比例函数y =xk 1(x >0)的图象经过点C ,反比例函数 y =xk 2(x <0)的图象分别与AD 、CD 交于点E 、F , 若S △BEF =7,k 1+3k 2=0,则k 1等于_______.三、解答題(本大题共8小题,共66分)19.(本题满分6分)计算:4-+3tan 60°–12–121-⎪⎭⎫ ⎝⎛ 20.(本题满分6分)解分式方程:33211-=--x x x x 21.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1)B(4,1),C(3,3)(1)将△ABC 向下平移5个单后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A、B为顶点的三角形的形状.(无需说明理由)22.(本题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A、B、C、D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.(1)求m=______,n=_______;(2)在扇形统计图中,求”C等级”所对应的圆心角的度数;(3)成绩为A的4名同学中有1名男生和3名女生,现从中随机抽取2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(本题满分8分)如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,且BE=DF.(1)求证:□ABCD是菱形;(2)若AB=5,AC=6,求□ABCD的面积.24.(本题满分10分)某公司在甲、乙仓库共存放中某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,语求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.25.(本题满分10分)如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与⊙O 相切;(2)若85 AC EF ,求OCBE 的值; (3)在(2)的件下,若⊙O 的半径为8,PD =OD ,求OE 的长.26.(本题满分10分)如图,抛物线y =ax 2–5ax +c 与坐标轴分別交于点A 、C 、E 三点,其中A(–3,0)、C(0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点 M 、N 分别是线段CO 、BC 上的动点,且CM =BN ,连接MN 、AM 、AN .(1)求抛物线的解析式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标;(3)试出AM +AN 的最小值.2018年广西六市同城中考参考答案一、选择1.C2.A 3.B 4.B 5.D 6.C7.B 8.C 9.D 10.D 11.A 12.C二、填空13.x≥5 14.2(a+1)(a-1) 15.4 16.40317.318.19.(略) 21.(略) 20.(略) 22.(略)23.24.25.26.。
2018年广西南宁市(六市同城)中考数学试题(含答案解析)
3332018 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120 分钟 满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转 180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据 81000 用科学计数法表示为()A. 81 103B. 8.1104C. 8.1105D. 0.81105【答案】B【考点】科学计数法【解析】81000 8.1104 ,故选 B【点评】科学计数法的表示形式为a 10n 的形式,其中1 a 10,n为整数4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分 【解析】12 4 10 684【点评】本题考查用折线图求数据的平均分问题5. 下列运算正确的是A. a (a +1)=a 2+1B. (a 2)3=a 5C. 3a 2+a =4a 3D. a 5÷a 2=a 3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项 A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得 a (a +1)=a 2+a ;选项 B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6;选项 C 错误,直接运用整式的加法法则,3a 2 和 a 不是同类项,不可以合并;选项 D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得 a 5÷a 2=a 3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
2018年广西省六市同城中考数学试卷
2018年广西六市同城中考数学试卷ー、选择以(本大题其12小题,每小题3分,共36分) 1.–3的倒数是( ) . A .–3 B . 3 C .–31 D .31 2.下列美丽的壮锦图案是中心对称图形的是( ) .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳8l000名观众,其中数据81000用科学计数法表示为( ) . A .81×103 B .8.1×104 C .8.1×105 D .0.81×105 4.某球员参加一场球比赛,比赛分4节进行,该球员每节得分如折线 统计图所示,则该球员平均每节得分为( ) . A .7分 B .8分 C .9分 D .10分 5.下列运算正确的是( ) .A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°.则∠ECD 等于( ) .A .40°B .45°C .50°D .55°7.若m >n ,则下不等式正确的是( ) .A .m –2< n –2B .>4m 4nC .6m <6 nD .–8m >–8n 8.从–2、–1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) . A .32 B .21 C .31 D .419.将地物线y =21x 2–6 x +21向左平移2个单位后,得到新抛物线的解析式为( ) . A .y =21(x –8)2+5 B .y =21(x –4)2+5 C .y =21(x –8)2+3 D .y =21(x –4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( ) .A .π+3B .π–3C .2π–3D .2π–2311.某种植基地2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜 产量的年平均增长率.设疏菜产量的年平均增长率为x ,则可列方程为( ) .A .80(1+x )2=100B .100(1–x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上.将△CDP 沿DP 折叠,点C 落在点E 处.PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( ) . A .1311 B .1513 C .1715D .1917二、填空题(本大共6小题,每小以3分,共18分) 13.要使二次根式5-x 在实数范围内有意义,则实数x 的取值范围是_______.14.因式分解:2a 2–2=_______.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_______.16,如图,从甲楼底A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼 的高AB 是120m ,则乙楼的高CD 是_______ m (结果保留根号) .17.观察下列等式:3°=1,31=3,32=9,33=27,34=81,35=243,…,根据其规律可得 3°+31+32+…+32018的结果的个位数字是_______.18.如图,矩形ABCD 的顶点A 、B 在x 轴上,且关于y 轴对称, 反比例函数y =xk 1(x >0)的图象经过点C ,反比例函数 y =xk 2(x <0)的图象分别与AD 、CD 交于点E 、F , 若S △BEF =7,k 1+3k 2=0,则k 1等于_______. 三、解答題(本大题共8小题,共66分)19.(本题满分6分)计算:4-+3tan 60°–12–121-⎪⎭⎫⎝⎛20.(本题满分6分)解分式方程:33211-=--x xx x 21.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1) B(4,1),C(3,3)(1)将△ABC 向下平移5个单后得到△A 1B 1C 1, 请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到 △A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O 、A 、B 为顶点的三角形的形状.(无需说明理由)22.(本题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A、B、C、D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.(1)求m=______,n=_______;(2)在扇形统计图中,求”C等级”所对应的圆心角的度数;(3)成绩为A的4名同学中有1名男生和3名女生,现从中随机抽取2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(本题满分8分)如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,且BE=DF.(1)求证:□ABCD是菱形;(2)若AB=5,AC=6,求□ABCD的面积.24.(本题满分10分)某公司在甲、乙仓库共存放中某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,语求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.25.(本题满分10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若85 AC EF ,求OCBE的值; (3)在(2)的件下,若⊙O 的半径为8,PD =OD ,求OE 的长.26.(本题满分10分)如图,抛物线y =ax 2–5ax +c 与坐标轴分別交于点A 、C 、E 三点,其中 A(–3,0)、C(0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点 M 、N 分别是线段CO 、BC 上的动点,且CM =BN ,连接MN 、AM 、AN . (1)求抛物线的解析式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标; (3)试出AM +AN 的最小值.2018年广西六市同城中考参考答案一、选择1.C 2.A 3.B 4.B 5.D 6.C 7.B 8.C 9.D 10.D 11.A 12.C二、填空13.x≥5 14.2(a+1)(a-1) 15.4 16.40317.318.19.(略) 21.(略) 20.(略) 22.(略)23.24.25.26.。
广西南宁市中考数学试卷和答案(word打印版)
D. -8m>-8n
(
)
A. 2 3
B. 1 2
C. 1 3
9. 将抛物线 y 1 x2 6x 21 向左平移 2 个单位后,得到新抛物线的解析式为 2
D. 1 4
(
)
A. y = 1 (x - 8)2+5 2
B. y = 1 (x - 4)2+5 2
C. y 1 (x 8)23 2
D. y 1 (x 4)23 2
2
20.(本题满分 6 分)解分式方程: x 1 2x
x 1
3x 3
21.(本题满分 8 分)如图,在平面直角坐标系中,已知△ABC 的三个顶
--
--
点坐标分别是 A(1,1),B(4,1),C(3,3) (1)将△ABC向下平移 5 个单位后得到△ A1B1C1 ,请画出△ A1B1C1 ; (2)将△ABC绕原点 O 逆时针旋转 90°后得到△ A2B2C2 , 请画出△ A2B2C2 ; (3)判断以 O, A1 ,B 为顶点的三角形的形状(无须说明理由)
--
2018 年广西北部湾经济区六市同城初中毕业升学统一考试
(六市:南宁、北海、钦州、防城港、崇左和来宾市)
数学
(考试时间:120 分钟 满分:120 分)
一、选择题(本大题共 12小题,每小题 3 分,共 36 分。在每小题给出的四个选项中只有一项是符合要求的)
1. -3 的倒数是
(
)
A. -3
B. 3
2. 下列美丽的壮锦图案是中心对称图形的是
C. 1 3
D. 1 3
(
)
A
B
C
D
3. 2018年俄罗斯世界杯开幕式于6月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000 名观众,其中数
2018年广西南宁市中考数学试卷含解析(完美打印版)
2018年广西南宁市中考数学试卷(含解析)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。
)1.(3分)﹣3的倒数是()A.﹣3B.3C.﹣D.2.(3分)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×1054.(3分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5.(3分)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3分)若m>n,则下列不等式正确的是()A.m﹣2<n﹣2B.C.6m<6n D.﹣8m>﹣8n8.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.B.C.D.9.(3分)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+310.(3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.211.(3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=10012.(3分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使二次根式在实数范围内有意义,则实数x的取值范围是.14.(3分)因式分解:2a2﹣2=.15.(3分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.16.(3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)17.(3分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是.18.(3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19.(6分)计算:|﹣4|+3tan60°﹣﹣()﹣120.(6分)解分式方程:﹣1=.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF ⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.2018年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。
广西南宁市(六市同城)2018年中考数学试题(含解析)
3 33 2018 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120分钟满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A.-3B.3C.-1D.1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B.(a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
2018年广西南宁中考数学试卷(含解析)
2018年广西省南宁市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分. 1.(2018广西南宁,1,3) -3的倒数是( )A .-3B .3C .-13D .13【答案】C ,【解析】根据倒数的定义,如果两个数的乘积等于1,那么我们就说这两个数互为倒数.除0以外的数都存在倒数。
因此-3的倒数为-13.2.(2018广西南宁,2,3)下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D . 【答案】A ,【解析】在平面内,如果把一个图形绕某个点旋转180°后,都能与自身重合,那么这个图形就叫做中心对称图形.A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误; C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误. 3.(2018广西南宁,3,3) 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学计数法表示为( ) A .81×103 B .8.1×104 C .8.1×105 D .0.81×105 【答案】B ,【解析】81000的整数数位有59位,所以a ×10n 中,a 的值为8.1,n 的值为5-1=4,故81000=8.1×104. 4.(2018广西南宁,4,3) 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折现统计图所示,则该球员平均每节得分为( ) A . 7分 B .8分 C . 9分 D .10分【答案】B ,【解析】这四节的得分分别是:12分,4分,10分,6分,则平均数=12+4+10+64=8.5.(2018广西南宁,5,3) 下列运算正确的是( )A .a (a +1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 3 【答案】D ,【解析】直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a (a +1)=a 2+a ,故A 选项错误;直接运用幂的乘方法则,底数不变,指数相乘,可得(a 2)3=a 6,则B 选项错误;直接运用整式的加法法则,3a 2和a 不是同类项,不可以合并,则C 选项错误;直接运用同底数幂的除法,底数不变,指数相减,可得a 5÷a 2=a 3,则D 正确. 6.(2018广西南宁,6,3)如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于( )A .40°B . 45°C .50°D .55°节 2 得分4 6 8 11012 34141 6第4题图【答案】C ,【解析】△ABC 的外角∠ACD = ∠A +∠B =60°+40°=100°,又因为CE 平分∠ACD ,∴∠ACE= ∠ECD =12∠ACD = 12×100°=50°.7.(2018广西南宁,7,3) 若m >n ,则下列不等式正确的是( )A .m -2<n -2B .m 4>n4C .6m <6nD .-8m >-8n【答案】B ,【解析】A .不等式两边同时减去一个相等的数,不等式的符号不改变,故A 错误;B .不等式的两边同时除以一个相等的正数,不等式的符号不改变,故B 正确;C .不等式的两边同时乘以一个相等的正数,不等式的符号不改变,故C 错误;D .不等式的两边同时乘以一个相等的负数,不等式的符号改变,故D 错误. 8.(2018广西南宁,8,3) 从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )A .23B . 12C .13D .14【答案】C ,【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有-2与-1相乘时才得正数,则概率为13.9.(2018广西南宁,9,3) 将抛物线y =12x 2-6x +21向左平移2个单位后,得到新抛物线的解析式为A .y =12(x -8)2+5B .y =12(x -4)2+5C .y =12(x -8)2+3D .y =12(x -4)2+3【答案】D ,【解析】法一:先把解析式配方为顶点式,再把顶点平移.抛物线y =12x 2-6x +21可配方成y =12(x-6)2+3,顶点坐标为(6,3) .∵图形向左平移2个单位,∴顶点向左平移2个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为y =12(x -4)2+3.法二:直接运用函数图象左右平移的“左加右减”法则.向左平移2个单位,即原来解析中所有的“x ”均要变为“x +2”,于是新抛物线的解析式为y =12(x +2)2-6(x +2)+21,整理得y =12x 2-4x +11,配方后得y =12(x-4)2+3. 10.(2018广西南宁,10,3)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,AB =2,则莱洛三角形(即阴影部分面积)为( ) A .π+ 3 B .π- 3 C .2π- 3 D .2π-2 3AB C【答案】D ,【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即S 阴影=3×S 扇形-2S △ABC .由题意的,S 扇形=π×22×60360 =23π.要求等边三角形ABC 的面积需要先求高.如图,过A 作AD ⊥BC 于点D ,可知,在Rt △ABD 中,sin60°=AD AB =AD 2,∴AD =2×sin60°= 3,∴S △ABC =12×BC ×AD =12×2×3=3.∴S 阴影=3×S 扇形-2S △ABC =3×23π-2×3=2π-23.DEA BC40°60° 第6题图D2ABC11.(2018广西南宁,11,3)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .80(1-x )2=100C .80(1+2x )=100D .80(1+x 2)=100 【答案】A ,【解析】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年的蔬菜产量为80(1+x )吨,2018年蔬菜产量为80(1+x ) (1+x )吨.预计2018年蔬菜产量达到100吨,即80(1+x ) (1+x )=100,即80(1+x )2=100. 12.(2018广西南宁,12,3)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( )A .1113B . 1315C .1517D .1719FOECDABP【答案】C ,【解析】由题意得:Rt △DCP ≌Rt △DEP ,∴DC =DE =4,CP =EP 在Rt △OEF 和Rt △OBP 中,∠EOF =∠BOP ,∠B =∠E ,OP =OF Rt △OEF ≌Rt △OBP (AAS ),∴OE =OB ,EF =BP 设EF 为x ,则BP =x ,DF -EF =4-x ,又∵BF =OF +OB =OP +OE =PE =PC ,PC =BC -BP =3-x ∴AF =AB -BF =4-(3-x )=1+x在Rt △DAF 中,AF 2+DF 2=DF 2,即(1+x )2+32=(4-x )2解得x =35,∴EF =35,DF =4-35 = 175∴在Rt △DAF 中,cos ∠ADF =AD DF =1517.二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上. 13.(2018广西南宁,13,3) 要使二次根式x -5在实数范围内有意义,则实数x 的取值范围是 . 【答案】x ≥5,【解析】根据被开方数是非负数,则有x -5≥0,∴x ≥5. 14.(2018广西南宁,14,3) 因式分解:2a 2-2= . 【答案】2(a +1)(a -1),【解析】先提公因式2得到2(a 2-1),再利用平方差公式因式分解得到结果:2(a +1)(a -1) . 15.(2018广西南宁,15,3)已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是 . 【答案】4 【解析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.∵众数为3和5,∴x =5,∴中位数为:(3+5)÷2=4. 16.(2018广西南宁,16,3)如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB 是120m ,则乙楼的高CD 是 m .(结果保留根号)【答案】403,【解析】∵俯角是45°,∴∠BDA =45°,∴AB =AD =120m ,又∵∠CAD =30°∴在Rt △ADC 中,tan ∠CDA =tan30°=CD AD =33.∴CD = 403.17.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.18.(2018广西南宁,18,3) 如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y=k 1x (x >0)的图像经过点C ,反比例函数y =k 2x (x <0)的图像分别与AD ,CD 交于点E ,F , 若S △BEF =7,k 1+3k 2=0则k 1等于__________________.【答案】9,【解析】设B 的坐标为(a ,0),则A 为(-a ,0),其中k 1+3k 2=0,即k 1=-3k 2 ①,根据题意得C (a ,k 1a ),E (-a ,k 2a ),D (-a ,k 1a ),F (-a 3,k 1a )∴矩形面积=2a ⋅k 1a=2k 1∴S △DEF = DF ⋅DE 2 = 23a ×(-2k 2a )2 =-23k 2;S △BCF = CF ⋅BC 2 = 43a ×k 1a 2 =23k 1.∵S △BEF =7 ∴2k 1+-23k 2-23k 1+ k 2=7 ②由①②可得 k 1 =9.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(2018广西南宁,19,6) 计算:|-4|+3tan60°- 12- (12)-1【思路分析】先根据绝对值的性质、三角函数的含义、二次根式的化简和负指数幂分别求|-4|、3tan60°、12、(12)-1,再进行有理数的加减运算.【解答过程】原式=4+3×3-23-2= 2+320.(2018广西南宁,20,6)解分式方程x x -1-1 =2x3x -3【思路分析】先找出最简公分母,方程左右两边乘以最简公分母,化为整式方程,再解整式方程,最后一定注意第18题图xyOC BAD E F y =k 1xy =k 2x 甲 楼AB C D乙 楼30°第16题图45°检验.【解答过程】解:方程左右两边同乘以3(x -1),得3x -3(x -1) = 2x 3x -3x +3 = 2x 2x = 3 x =1.5检验:当x =1.5时,3(x -1)≠0 ∴原分式方程的解为x =1.5. 21.(2018广西南宁,21,8) 如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3) .(1)将△ABC 向下平移5个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)【思路分析】(1)分别作出点A 、B 、C 向下平移5个单位得到的对应点,再顺次连接即可得;(2)作出点A 、B 、C 绕点O 按逆时针方向旋转90°后得到的对应点,再顺次连接可得; (3)分别求出OA1、OB 、A1B 的长度,并求出他们平方间的关系.【解答过程】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求; (3)三角形为等腰直角三角形.22.(2018广西南宁,22,8)某市将开展以“走进中国数学史” 为主题的知识竞赛活动,红树林学校对本校 100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.xyO -4 -3 -2 -1 1 2 3 4 -4 -3 -2 -11 234AB C 第21题答图A 1B 1C 1A 2 C 2B 2 xy O -4 -3 -2 -1 1 2 3 4 -4-3 -2 -1 1 2 3 4ABC 第21题图(1) 求m = ____________,n =____________;(2) 在扇形统计图中,求“C 等级”所对应圆心角的度数;(3) 成绩等级为A 的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛.请用树状图法或者列表法求出恰好选中“1 男 1 女”的概率. 【思路分析】(1)m=0.51×100=51;看扇形可知D 的百分数为15%,则其频率为0.15,则人数为0.15×100=15,总人数为100,则C 的人数=总人数-(A 、B 、D )人数,即n=100-4-51-15=30;(2)圆周角为360°,根据频率之和为1,求出C 的频率为0.3,则“C 等级”对应圆心角的度数为0.3×360°=108°(3)将1名男生和3名女生标记为A 1、A 2、A 3、A 4,用树状图表示,找出符合条件的情况,即可求出.【解答过程】(1)m=51,n=30;(2)108°;(3)12由树状图可知随机挑选2学生的情况总共有12种,其中恰好选中1男和1女的情况有6种,概率= 612 = 12.23.(2018广西南宁,23,8)如图,在〉ABCD 中, AE ⊥BC , AF ⊥CD ,垂足分别为 E 、 F ,且 BE =DF .(1) 求证:〉ABCD 是菱形;(2) 若 AB =5,AC =6,求〉ABCD 的面积.【思路分析】(1)由平行四边形的性质得出∠B =∠D ,由题目 AE ⊥BC ,AF ⊥DC 得出∠AEB =∠AFD =90°,因为 BE =DF ,由ASA 证明△AEB ≌△AFD ,可得出AB =AD ,根据菱形的判定,即可得出四边形 ABCD 为菱形;(2)由平行四边形的性质得出 AC ⊥BD , AO =OC =12AC =3,在 Rt △AOB 中,由勾股定理BO =AB 2-AO 2可求 BD , 再根据菱形面积计算公式可求出答案.成绩等级 频数(人数) 频率A 4 0.04B m 0.51C nD 合计 100 1A BE CFD第23题图 ABC15%D开始A 1A 2A 3A 4A 2 A 3 A 4 A 1 A 3 A 4 A 1 A 2 A 4 A 1 A 2 A 3【解答过程】证明:(1)∵四边形 ABCD 是平行四边形, ∴∠B =∠D .∵AE ⊥BC , AF ⊥DC , ∴∠AEB =∠AFD =90°, 又∵BE =DF ,∴△AEB ≌△AFD (ASA ). ∴AB =AD ,∴四边形 ABCD 是菱形.(2)如图,连接BD 交AC 于点O∵由(1)知四边形ABCD 是菱形,AC =6,∴AC ⊥BD ,AO =OC = 12AC =12 ×6=3, ∵AB =5,AO =3,在Rt △AOB 中,BO =AB 2-AO 2 = 52-32 =4 , ∴BD =2BO =8,∴S 〉ABCD =12AC ⋅BD =12×6×8 =24. 24.(2018广西南宁,24,10) 某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨. (1) 求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100 元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(10≤a ≤30),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,请求出总运费w 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,w 的变化情况.【思路分析】(1)根据题意,可设甲仓库存放原料x 吨,乙仓库存放原料y 吨,利用甲、乙两仓库的原料吨数之和为450吨以及乙仓库剩余的原料比甲的30吨,即可列出二元一次方程组求解.(2)据题意,从甲仓库运m 吨原料到工厂,则从乙仓库运(300-m )吨原料到工厂,甲仓库到工厂的运价为(120-a )元/吨,由乙仓库到工厂的运价不变即为100元/吨,利用“运费=运价×数量”即可求出甲、乙仓库到工厂的总运费;(3)本题考察一次函数的性质, 一次项系数(20-a )的大小决定w 随着m 的增大而如何变化,需根据题中所给参数a 的取值范围,进行3种情况讨论,判断(20-a )的正负,即得w 随着m 的增大的变化情况.【解答过程】(1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨.根据题意得:⎩⎨⎧x +y =450(1-40%)y -(1-60%)x =30解得⎩⎨⎧x =240y =210.故甲仓库存放原料240吨,乙仓库存放原料210吨.(2)据题意, 从甲仓库运m 吨原料到工厂,则从乙仓库运(300-m )吨原料到工厂总运费. w =(120-a )m +100(300-m ) = (20-a )m +300A BE CFD第23题图 O(3)①当20-a >0时,即10≤a <20,由一次函数的性质可知,w 随着m 的增大而增大; ②当20-a =0时, a =20,w 随着 m 的增大没有变化;③当20-a <0时,即20≤a ≤30,w 随着 m 的增大而减小.25.(2018广西南宁,25,10) 如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径, OC 与AB 相交于点E ,过点E 作EF ⊥BC ,垂足为F ,延长CD 交 GB 的延长线于点P ,连接BD . (1) 求证:PG 与⊙O 相切;(2)若EF AC = 58,求 BEOC 的值;(3)在(2)的条件下,若⊙O 的半径为 8,PD =OD ,求OE 的长.【思路分析】(1)要证PG 与⊙O 相切只需证明∠OBG =90°,由∠A 与∠BDC 是同弧所对圆周角且∠BDC =∠DBO 可得∠CBG =∠DBO ,结合∠DBO +∠OBC =90°即可得证;(2)求BEOC 需将BE 与OC 或OC 相等线段放入两三角形中,通过相似求解可得,作OM ⊥AC 、连接OA ,证△BEF ∽△OAM 得EF AM = BE OA ,由AM =12AC 、OA =OC 知EF 12AC = BEOC ,结合EF AC =58即可得;(3)Rt △DBC 中求得BC =83、∠DCB =30°,在Rt △EFC 中设EF =x ,知EC =2x 、FC =3x 、BF =83﹣3x ,继而在Rt △BEF 中利用勾股定理求出x 的,从而得出答案. 【解答过程】解:(1)如图,连接OB ,则OB =OD ,∴∠BDC =∠DBO ,∵∠BAC =∠BDC 、∠BDC =∠GBC , ∴∠GBC =∠BDC , ∵CD 是⊙O 的切线, ∴∠DBO +∠OBC =90°, ∴∠GBC +∠OBC =90°, ∴∠GBO =90°, ∴PG 与⊙O 相切;A CDPBO GFE第25题答图M A CDPBO GFE第25题图 A(2)过点O 作OM ⊥AC 于点M ,连接OA ,则∠AOM =∠COM =12∠AOC ,∵⌒AC =⌒AC ,∴∠ABC =12∠AOC ,又∵∠EFB =∠OGA =90°, ∴△BEF ∽△OAM , ∴EF AM = BE OA, ∵AM =12AC ,OA =OC ,∴EF 12AC = BE OC , 又∵EF AC =58,∴BE OC =2×EF AC =2×58=54; (3)∵PD =OD ,∠PBO =90°, ∴BD =OD =8,在Rt △DBC 中,BC =DC 2-BD 2=83, 又∵OD =OB ,∴△DOB 是等边三角形, ∴∠DOB =60°,∵∠DOB =∠OBC +∠OCB ,OB =OC , ∴∠OCB =30°, ∴EF CE =12,FCEF=3, ∴可设EF =x ,则EC =2x 、FC =3x , ∴BF =83﹣3x ,在Rt △BEF 中,BE 2=EF 2+BF 2, ∴100=x 2+(83﹣3x )2, 解得:x =6±13, ∵6+13>8,舍去, ∴x =6﹣13, ∴EC =12﹣213,∴OE =8﹣(12﹣213)=213﹣4.26.(2018广西南宁,26,10)如图,抛物线y =ax 2﹣5ax +c 与坐标轴分别交于点A ,C ,E 三点,其中A (﹣3,0),C (0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点M ,N 分别是线段CO ,BC 上的动点,且CM =BN ,连接MN ,AM ,AN . (1)求抛物线的解析式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标; (3)试求出AM +AN 的最小值.【思路分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B (3,0),然后计算自变量为3所对应的二次函数值可得到D 点坐标;(2)利用勾股定理计算出BC =5,设M (0,m ),则BN =4﹣m ,CN =5﹣(4﹣m )=m +1,由于∠MCN =∠OCB ,根据相似三角形的判定方法,当CM CO =CNCB时,△CMN ∽△COB ,于是有∠CMN =∠COB =90°,即4-m 4=m +15;当CM CB =CNCO时,△CMN ∽△CBO ,于是有∠CNM = ∠COB =90°,即4-m 5 = m +14,然后分别求出m 的值即可得到M 点的坐标;(3)连接DN ,AD ,如图,先证明△ACM ≌△DBN ,则AM =DN ,所以AM +AN =DN +AN ,利用三角形三边的关系得到DN +AN ≥AD (当且仅当点A 、N 、D 共线时取等号),然后计算出AD 即可.【解答过程】(1)把A (﹣3,0),C (0,4)代入y =ax 2﹣5ax +c 得⎩⎨⎧9a +15a +c =0c =4,解得⎩⎪⎨⎪⎧a =-16c =4, ∴抛物线解析式为y =-16x 2+56x +4;∵AC =BC ,CO ⊥AB , ∴OB =OA =3, ∴B (3,0),∵BD ⊥x 轴交抛物线于点D , ∴D 点的横坐标为3,当x =3时,y =-16×9+56×3+4=5,∴D 点坐标为(3,5);(2)在Rt △OBC 中,BC =OB 2+OC 2=32+42=5, 设M (0,m ),则BN =4﹣m ,CN =5﹣(4﹣m )=m +1,∵∠MCN =∠OCB ,∴当CM CO =CN CB 时,△CMN ∽△COB ,则∠CMN =∠COB =90°,即4-m 4=m +15,解得m =169,此时M 点坐标为(0,169); 当CM CB =CN CO 时,△CMN ∽△CBO ,则∠CNM =∠COB =90°,即4-m 5 = m +14,解得m =119,此时M 点坐标为(0,119);综上所述,M 点的坐标为(0,169)或(0,119);(3)连接DN ,AD ,如图,∵AC =BC ,CO ⊥AB ,∴OC 平分∠ACB ,∴∠ACO =∠BCO ,∵BD ∥OC ,∴∠BCO =∠DBC ,∵DB =BC =AC =5,CM =BN ,∴△ACM ≌△DBN ,∴AM =DN ,∴AM +AN =DN +AN ,而DN +AN ≥AD (当且仅当点A 、N 、D 共线时取等号),∴DN +AN 的最小值=62+52=61,∴AM +AN 的最小值为61.。
2018年广西南宁市中考数学试卷(附答案)
2018年广西北部湾经济区六市同城初中毕业升学统一考试(南宁、北海、钦州、防城港、崇左和来宾市)数 学一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项是符合要求的) 1. -3的倒数是 ( ) A. -3 B. 3 C. 31-D. 31 2. 下列美丽的壮锦图案是中心对称图形的是 ( ) A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为 ( ) A. 81×103 B. 8.1×103 C. 8.1×104 D. 0.81×1054. 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分 A. 7分 B. 8分 ( ) C. 9分 D. 10分5. 下列运算正确的是 ( ) A. a(a+1) = a 2+1 B. (a 2)3 = a 5 C. 3a 2+a=4a 3 D. a 5÷a 2 = a 36. 如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于 ( ) A. 40° B. 45°C. 50°D. 55°7. 若m>n ,则下列不等式正确的是 ( ) A. m-2<n-2 B.4n4m > C. 6m<6n D. -8m>-8n 8. 从-2,-1, 2这三个数中任取两个不同的数相乘,积为正数的概率是 ( ) A.32B.21 C. 31 D.419. 将抛物线216x 2x 21y +-=向左平移2个单位后,得到新抛物线的解析式为 ( )A. +528)-(x 21=yB. +524)-(x 21=yC.328)(x 21y +-=D. 324)(x 21y +-=10. 如图,分别以等边三角形ABC 的三个顶点为圆点,以边长为半径画弧,得到封闭图形是莱洛三角形。
2018年广西省六市同城中考数学试卷
2018年广西六市同城中考数学试卷ー、选择以(本大题其12小题,每小题3分,共36分)1.–3的倒数是( ) .A .–3B . 3C .–31D .31 2.下列美丽的壮锦图案是中心对称图形的是( ) .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳8l000名观众,其中数据81000用科学计数法表示为( ) .A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) .A .7分B .8分C .9分D .10分5.下列运算正确的是( ) .A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°.则∠ECD 等于( ) .A .40°B .45°C .50°D .55°7.若m >n ,则下不等式正确的是( ) .A .m –2< n –2B . 4m 4n C .6m <6 n D .–8m >–8n 8.从–2、–1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) .A .32B .21C .31D .41 9.将地物线y =21x 2–6 x +21向左平移2个单位后,得到新抛物线的解析式为( ) . A .y =21(x –8)2+5 B .y =21(x –4)2+5 C .y =21(x –8)2+3 D .y =21(x –4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( ) .A .π+3B .π–3C .2π–3D .2π–2311.某种植基地2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜产量的年平均增长率.设疏菜产量的年平均增长率为x ,则可列方程为( ) .A .80(1+x )2=100B .100(1–x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上.将△CDP 沿DP 折叠,点C 落在点E 处.PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( ) .A .1311 B .1513 C .1715 D .1917二、填空题(本大共6小题,每小以3分,共18分)13.要使二次根式5-x 在实数范围内有意义,则实数x 的取值范围是_______.14.因式分解:2a 2–2=_______.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_______.16,如图,从甲楼底A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB 是120m ,则乙楼的高CD 是_______ m(结果保留根号) .17.观察下列等式:3°=1,31=3,32=9,33=27,34=81,35=243,…,根据其规律可得3°+31+32+…+32018的结果的个位数字是_______.18.如图,矩形ABCD 的顶点A 、B 在x 轴上,且关于y 轴对称,反比例函数y =xk 1(x >0)的图象经过点C ,反比例函数 y =xk 2(x <0)的图象分别与AD 、CD 交于点E 、F , 若S △BEF =7,k 1+3k 2=0,则k 1等于_______.三、解答題(本大题共8小题,共66分)19.(本题满分6分)计算:4-+3tan 60°–12–121-⎪⎭⎫ ⎝⎛20.(本题满分6分)解分式方程:33211-=--x x x x 21.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1)B(4,1),C(3,3)(1)将△ABC 向下平移5个单后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O 、A 、B 为顶点的三角形的形状.(无需说明理由)22.(本题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A、B、C、D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.(1)求m=______,n=_______;(2)在扇形统计图中,求”C等级”所对应的圆心角的度数;(3)成绩为A的4名同学中有1名男生和3名女生,现从中随机抽取2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(本题满分8分)如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,且BE=DF.(1)求证:□ABCD是菱形;(2)若AB=5,AC=6,求□ABCD的面积.24.(本题满分10分)某公司在甲、乙仓库共存放中某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(10≤a ≤30),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,语求出总运费w 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,w 的变化情况.25.(本题满分10分)如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与⊙O 相切;(2)若85 AC EF ,求OC BE的值;(3)在(2)的件下,若⊙O 的半径为8,PD =OD ,求OE 的长.26.(本题满分10分)如图,抛物线y =ax 2–5ax +c 与坐标轴分別交于点A 、C 、E 三点,其中A(–3,0)、C(0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点M 、N 分别是线段CO 、BC 上的动点,且CM =BN ,连接MN 、AM 、AN .(1)求抛物线的解析式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标;(3)试出AM+AN的最小值.2018年广西六市同城中考参考答案一、选择1.C2.A 3.B 4.B 5.D 6.C7.B 8.C 9.D 10.D 11.A 12.C二、填空13.x≥5 14.2(a+1)(a-1) 15.4 16.40317.318.19.(略) 21.(略) 20.(略) 22.(略)23.24.25.26.。
2018年广西省六市同城中考数学试卷
2018年广西六市同城中考数学试卷ー、选择以(本大题其12小题,每小题3分,共36分)1.–3的倒数是( ) .A .–3B . 3C .–31D .31 2.下列美丽的壮锦图案是中心对称图形的是( ) .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳8l000名观众,其中数据81000用科学计数法表示为( ) .A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) .A .7分B .8分C .9分D .10分5.下列运算正确的是( ) .A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a =4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°.则∠ECD 等于( ) .A .40°B .45°C .50°D .55°7.若m >n ,则下不等式正确的是( ) .A .m –2< n –2B . 4m 4n C .6m <6 n D .–8m >–8n 8.从–2、–1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) .A .32B .21C .31D .41 9.将地物线y =21x 2–6 x +21向左平移2个单位后,得到新抛物线的解析式为( ) . A .y =21(x –8)2+5 B .y =21(x –4)2+5 C .y =21(x –8)2+3 D .y =21(x –4)2+3 10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB =2,则莱洛三角形的面积(即阴影部分面积)为( ) .A .π+3B .π–3C .2π–3D .2π–2311.某种植基地2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜产量的年平均增长率.设疏菜产量的年平均增长率为x ,则可列方程为( ) .A .80(1+x )2=100B .100(1–x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上.将△CDP 沿DP 折叠,点C 落在点E 处.PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为( ) .A .1311 B .1513 C .1715 D .1917二、填空题(本大共6小题,每小以3分,共18分)13.要使二次根式5-x 在实数范围内有意义,则实数x 的取值范围是_______.14.因式分解:2a 2–2=_______.15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_______.16,如图,从甲楼底A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高AB 是120m ,则乙楼的高CD 是_______ m(结果保留根号) .17.观察下列等式:3°=1,31=3,32=9,33=27,34=81,35=243,…,根据其规律可得 3°+31+32+…+32018的结果的个位数字是_______.18.如图,矩形ABCD 的顶点A 、B 在x 轴上,且关于y 轴对称,反比例函数y =xk 1(x >0)的图象经过点C ,反比例函数 y =xk 2(x <0)的图象分别与AD 、CD 交于点E 、F , 若S △BEF =7,k 1+3k 2=0,则k 1等于_______.三、解答題(本大题共8小题,共66分)19.(本题满分6分)计算:4-+3tan 60°–12–121-⎪⎭⎫ ⎝⎛20.(本题满分6分)解分式方程:33211-=--x x x x 21.(本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A(1,1)B(4,1),C(3,3)(1)将△ABC 向下平移5个单后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O 、A 、B 为顶点的三角形的形状.(无需说明理由)22.(本题满分8分)某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A、B、C、D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图.(1)求m=______,n=_______;(2)在扇形统计图中,求”C等级”所对应的圆心角的度数;(3)成绩为A的4名同学中有1名男生和3名女生,现从中随机抽取2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(本题满分8分)如图,在□ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,且BE=DF.(1)求证:□ABCD是菱形;(2)若AB=5,AC=6,求□ABCD的面积.24.(本题满分10分)某公司在甲、乙仓库共存放中某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a 元/吨(10≤a ≤30),从乙仓库到工厂的运价不变.设从甲仓库运m 吨原料到工厂,语求出总运费w 关于m 的函数解析式(不要求写出m 的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m 的增大,w 的变化情况.25.(本题满分10分)如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD .(1)求证:PG 与⊙O 相切;(2)若85 AC EF ,求OCBE 的值; (3)在(2)的件下,若⊙O 的半径为8,PD =OD ,求OE 的长.26.(本题满分10分)如图,抛物线y =ax 2–5ax +c 与坐标轴分別交于点A 、C 、E 三点,其中 A(–3,0)、C(0,4),点B 在x 轴上,AC =BC ,过点B 作BD ⊥x 轴交抛物线于点D ,点 M 、N 分别是线段CO 、BC 上的动点,且CM =BN ,连接MN 、AM 、AN .(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试出AM+AN的最小值.2018年广西六市同城中考参考答案一、选择1.C2.A 3.B 4.B 5.D 6.C7.B 8.C 9.D 10.D 11.A 12.C二、填空13.x≥5 14.2(a+1)(a-1) 15.4 16.40317.318.19.(略) 21.(略) 20.(略) 22.(略)23.24.25.26.。
2018-年广西北部湾六市同考初三升学统一考试数学试卷(含详细答案与解析-word文档)
2018-年广西北部湾六市同考初三升学统一考试数学试卷(含详细答案与解析-word文档)2018年广西南宁市初三毕业升学统一考试试卷数学(考试时间:120 分钟满分:120 分)注意事项:1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2.答题前,请认真阅读答题卡上的注意事项。
3.不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.-3 的倒数是()A. -3B. 3C. -1D. 12.下列美丽的壮锦图案是中心对称图形的是()3.2018 年俄罗斯世界杯开幕式于 6 月 14 日在莫斯科卢日尼基球场举行,该球场可容纳 81000名观众,其中数据 81000 用科学计数法表示为()A. 31081⨯ B.4101.8⨯ C. 5101.8⨯ D. 51081.0⨯4.某球员参加一场篮球比赛,比赛分 4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分5.下列运算正确的是()A. a(a+1)=2a+1B. ()32a=5aC. 32a+a=43aD. 5a÷2a=3a6.如图,∠ACD 是∆ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于()A.40°B.45°C.50°D.55°7.若n m >,则下列不等式正确的是( ) A.22-<-n m B.44nm > C.n m 66< D.n m 88->- 8.从-2,-1,2 这三个数中任取两个不同的数相乘,积为正数的概率是 A.32 B. 21 C.31 D.419.将抛物线216212+-=x x y 向左平移 2 个单位后,得到新抛物线的解析式为( )A. ()58212+-=x y B . ()54212+-=x y C. ()38212+-=x y D. ()34212+-=x y10.如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 AB =2,则莱洛三角形的面积(即阴影部分面积)为A. 3+πB. 3-πC. 32-πD. 322-π11.某种植基地 2016 年蔬菜产量为 80 吨,预计 2018 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为( )A. 80(1 + x )2= 100B. 100(1 − x )2= 80C. 80(1 + 2x ) = 100D. 80(1 + x )2= 10012.如图,矩形纸片 ABCD ,AB =4,BC =3,点 P 在 BC 边上,将△CDP 沿 DP 折叠,点 C 落在点 E 处,PE 、DE 分别交 AB 于点 O 、F ,且 OP =OF ,则 cos ∠ADF 的值为( )A.1311 B.1315 C.1715 D.1917 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.要使二次根式5-x 在实数范围内有意义,则实数 x 的取值范围是 14.因式分解:=-222a .15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 33 2018 年广西六市同城初中毕业升学统一考试试卷解析数学(考试时间:120分钟满分:120 分)注意事项:1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,请在答题卡上作答,在试卷上作答无效。
2. 答题前,请认真阅读答题卡上的注意事项。
3. 不能使用计算器,考试结束前,将本试卷和答题卡一并交回。
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A.-3B.3C.-1D.1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。
因此-3 的倒数为-1【点评】主要考察倒数的定义2.下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。
【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B.(a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。
6.如图,∠ACD是∆ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【答案】C【考点】三角形外角的性质,角平分线的定义【解析】∆ABC的外角∠ACD=∠A+∠B =60︒+40︒=100︒,又因为CE平分∠ACD,所以∠ACE=∠ECD=1∠ACD=1⨯100︒=50︒.2 2【点评】三角形的一个外角等于与它不相邻的两个内角和7.若m>n,则下列不等式正确的是【答案】B【考点】不等式的性质【解析】A:不等式两边同时减去一个相等的数,不等式的符号不改变错误B:不等式两边同时除以一个相等的正数,不等式的符号不改变正确C:不等式两边同时乘以一个相等的正数,不等式的符号不改变错误D:不等式两边同时乘以一个相等的负数,不等式的符号改变错误【点评】本题目考察了对于不等式性质的理解与判断,属于基础题目8.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是A.2B.13 2C.13D.14【答案】C【考点】概率统计、有理数乘法【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有- 2 与2x2x2(x2(x1相乘时才得正数,所以是13【点评】此题目考察了对于概率统计基本概念的理解以及有理数乘法的判断9.将抛物线y=12-6x+21向左平移2个单位后,得到新抛物线的解析式为A. y=1-8)2+5 B.y=1-4)2+52(x 2(xC. y=1-8)2+3 D.y=1-4)2+32(x【答案】D2(x【考点】配方法;函数图像的平移规律;点的平移规律;【解析】方法1:先把解析式配方为顶点式,再把顶点平移。
抛物线y=12-6x+21 可配方12(x-6)2+3,顶点坐标为(6,3).因为图形向左平移2 个单位,所以顶点向左平移2 个单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为y=1-4)2+3.方法2:直接运用函数图像左右平移的“左加右减”法则。
向左平移2个单位,即原来解析式中所有的“x”均要变为“x+2”,于是新抛物线解析式为y=1+2)2-6(x+2)+21,整理得y=12-4x+11,配方后得y=1-4)2+3.2x 2(x【点评】本题可运用点的平移规律,也可运用函数图像平移规律,但要注意的是二者的区别:其中点的平移规律是上加下减,左减右加;而函数图像的平移规律是上加下减,左加右减。
10.如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 AB=2,则莱洛三角形的面积(即阴影部分面积)为A. π+B. π-C. 2π-D.2π-2【答案】 D成y=【考点】等边三角形的性质与面积计算、扇形的面积计算公式.【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即S 阴影=3×S 扇形-2×S ∆ABC . 602由题意可得,S 扇形=π×22×= π.360 3要求等边三角形 ABC 的面积需要先求高. 如下图,过 AD 垂直 BC 于 D ,可知, 在 Rt ∆ABD 中 ,sin60°= AD =AD,AB2所以AD=2×sin60°=,所以S ∆ABC =1×BC×AD=1×2×= .2 2所以S 阴影=3×S 扇形-2×S ∆ABC =3×2π-2×=2π-2.3故选 D.【点评】求不规则图形面积关键是转化到规则图形中应用公式求解。
11. 某种植基地 2016 年蔬菜产量为 80 吨,预计 2018 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为 A.80(1+x ):=100 B.100(1−x ):=80 C.80(1+2x )=100 D.80(1+x :)=100【答案】 A【考点】由实际问题抽象出一元二次方程B.C.D.【解析】由题意知,蔬菜产量的年平均增长率为x ,根据 2016 年蔬菜产量为 80 吨,则 2017 年蔬菜产量为80(1 + x )吨,2018 年蔬菜产量为80(1 + x ) (1 + x )吨. 预计 2018 年蔬菜产量达到100吨,即80(1+x )(1+x )=100,即80(1+x ):=100. 故选 A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键是在于理清题目的意思, 找到 2017 年和 2018 年的产量的代数式,根据条件找出等量关系式,列出方程.12. 如图,矩形纸片 ABCD ,AB =4,BC =3,点 P 在 BC 边上,将△CDP 沿 DP 折叠,点 C落在点 E 处,PE 、DE 分别交 AB 于点 O 、F ,且 OP =OF ,则 cos ∠ADF 的值为11 13 15 17 13151719【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值 【解析】由题意得:Rt △DCP ≌Rt △DEP ,所以 DC =DE =4,CP =EP 在 Rt △OEF 和 Rt △OBP 中,∠EOF =∠BOP ,∠B =∠E ,OP =OF Rt △OEF ≌Rt △OBP (AAS ),所以 OE =OB ,EF =BP 设 EF 为 x ,则 BP =x ,DF =DE -EF =4-x ,又因为 BF =OF +OB =OP +OE =PE =PC ,PC =BC -BP =3-xA.所以,AF =AB -BF =4-(3-x )=1+x在 Rt △DAF 中,AF 2+AD 2=DF 2,也就是(1+x )2+32=(4-x )2 3 3 3 17解之得,x =5,所以 EF =5,DF =4-5= 5 AD 15最终,在 Rt △DAF 中,cos ∠ADF =DF =17【点评】本题由题意可知,Rt △DCP ≌Rt △DEP 并推理出 Rt △OEF ≌Rt △OBP ,寻找出合适的线段设未知数,运用勾股定理列方程求解,并代入求解出所求cos 值即可得。
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13. 要使二次根式 【答案】 x ≥ 5x -5在实数范围内有意义,则实数x 的取值范围是【考点】二次根式有意义的条件.【解析】根据被开方数是非负数,则有 x - 5 ≥ 0 ,∴x ≥ 5 .【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.14.因式分解:2a 2-2= .【答案】2(a +1)(a -1)【考点】因式分解【解析】2a 2- 2 = 2(a 2-1)= 2(a +1)(a -1)步骤一:先提公因式2得到:2(a 2-1),步骤二:再利用平方差公式因式分解得到结果: 2(a +1)(a -1)【点评】此题目考察了对于因式分解的基本判断与认识,属于基础题目15. 已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是。
【答案】4【考点】中位数【解析】解:因为众数为 3 和 5,所以x = 5 ,所以中位数为:(3+ 5)÷ 2 = 4【点评】主要考察了众数的知识点,通过众数求中位数16.如图,从甲楼底部A 处测得乙楼顶部 C 处的仰角是 30°,从甲楼顶部B 处测得乙楼底部D处的俯角是45°.已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)。
【答案】40【考点】三角函数【解析】∵俯角是45! ,∴∠BDA = 45!,∴AB = AD=120m,又∵ ∠CAD = 30!,∴在Rt△ADC 中tan∠CDA=tan30°= CD= 3,AD 3∴CD = 40 3 (m)【点评】学会应用三角函数解决实际问题。