平面桁架内力计算

合集下载

第6次 简单平面桁架的内力计算

第6次 简单平面桁架的内力计算

a
a
a
a
B
C
D
FC
1.取整体为研究对象, 受力分析如图。
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
§2.9简单平面桁架的内力计算 例题 3-10
2.列平衡方程。
Fx 0, Fy 0, M AF 0,
FAx FE 0 FB FAy FC 0 FC a FE a FB 3a 0
§2.9简单平面桁架的内力计算
几个概念
平面桁架—— 所有杆件都在同一平面内的桁架。 节 点—— 桁架中杆件的铰链接头。 杆件内力—— 各杆件所承受的力。
§2.9简单平面桁架的内力计算
几个概念
无余杆桁架—— 如果从桁架中任意抽去一根杆件,则桁架 就会活动变形,即失去形状的固定性。
§2.9简单平面桁架的内力计算
FCA FCD FCE cos 45 0
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
Fy 0,
FC FCF FCE cos 45 0 解得
FCE 2 2 kN , FCD 2 kN
§2.9简单平面桁架的内力计算 例题 3-10
FDE
8.取节点D,受力分析如图。
A
FAx
Fx 0,
B
FBD FBE cos 45 0
Fy 0,
F
E FE
FB
a
a
a
a
C

理论力学4.4第4-4章平面简单桁架的内力计算

理论力学4.4第4-4章平面简单桁架的内力计算
20kN 1 A C 2 3 4 5 6 7 8 9 10 11 12 13 14 18 21 B 15 17 19 16 20
x y
0, F2 20 0 0, F1 0
解得: F1 0 F2 20kN
20kN
C
FAx F3 F4 FAy
10kN 10kN 10kN 10kN
F1
A
FBy
F2
FAx
解:(1) 取整体为研究对象
FAy
F1
(3) 取节点A为研究对象
F 0 , F F F cos 45 0 x Ax 4 3 F 0 , F F F sin 45 0 y Ay 1 3
F 0, F F 0, F M 0,
再以截面m-n左面部分为研究对象 MC 0
F3 A C FA F2 F4 F1
Fa F1b FA 2a 0 F1 4a F b
F
F
b
FB
例 题 4
C
求:桁架1、2杆的力。 解:(1) 取整体为研究对象
D a
M
解得:
a
B
0, P.2a FAy 3a 0
FAy 2P 3
α A E F FAC α α C α α
O α B C F G D FBC FGy FGx M
2M CG 2l cos 30 FBC 3l 参考受力图(b), 选x轴与FOB垂直。 ' O O F 0 , F . COS 30 F . COS 60 0 x BC AB
Fi Fix i Fiy j FR
i 1 i 1 i 1
n
n
n

平面简单桁架内力计算

平面简单桁架内力计算

截面法
假想用一截面截取出桁架的某一部分作为研究对象求解方法
1. 被截开杆件的内力成为该研究对象外力,可应用平面一


般力系的平衡条件求出这些被截开杆件的内力。
要 2. 由于平面一般力系只有三个独立平衡方程,所以一般说 点
来,被截杆件应不超出三个。
适用于求桁架中某些指定杆件的内力
平面简单桁架内力计算
平面简单桁架内力计算
1.桁架:一种由杆件彼此在两端用铰链连接而成的结构。
按 平面桁架:所有杆件的轴
空间桁架:杆件轴线不
空 间
线都在同一平面内的桁架;
在同一平面内的桁架。




所有杆件、结点、荷载和反力都共面。
平面简单桁架内力计算
按内力计算分类 静定桁架:杆件的内力可用静力平衡方程全部求得的桁架。 超静定桁架:杆件的内力不能用静力平衡方程全部求得的桁架。
即表示该杆受压。
节点法适用于求解全部杆件内力的情况
平面简单桁架内力计算
1.节点法:逐一取桁架节点 为研究对象,利用平面汇交 力系的平衡条件求解桁架杆 件内力的方法。
F1
3
5
R1X 1
4
6
ห้องสมุดไป่ตู้
R1y
F2
7
2 8
R2y
N13 R1X
N14
R1y
F1
3
N35
N31
N36
N34
N43
N41
N46
4
平面简单桁架内力计算桁架的内力计算
2.截面法
3 F1 N355
F2 7
R1X 1
4 R1y
N36 N46 6
应用平面一般力系平衡条件

静力学-平面简单桁架的内力计算

静力学-平面简单桁架的内力计算

3. 取左(右)部分分析, 列平面任意力系的平衡方程。
2. 截面法 求某几根杆件内力常用的方法 —平面任意力系问题
例: 求:1、2、3杆件内力
3. 取左(右)部分分析,假设 “拉”
C ①D
FAy

A

F FB 列平面任C意力①系的平F衡1方程。
B
FAy
② F2
FAx E
G
F1
F2
解:1. 求支座约束力
A
(2)
F
f f
A
如果作用于物块的全部主动力合力 F
的作用线落在摩擦角之外( ≥ f ),则
无论此合力多小,物块必滑动。
FRA
2. 自锁现象
(phenomena of self-locking)
FRA
FRA
0 f 物体静止平衡时,全约束力必在摩擦角内
Fmax FS
FN f
A
(1)
F
f f
(2)
A
FAx
③ E
F3
P1
MA0
FB
ME 0
F1
MB 0
FAy
Fy 0
F2
Fx 0
FAx
Fx 0
F3
2. 把桁架截开 不要截在节点处
赛 车 起 跑
为什么赛车运动员起跑前要将车轮与 地面摩擦生烟?
第四章 摩擦 Friction
摩擦(friction): 一种极其复杂的物理-力学现象。
涉及:
“滚动摩阻定律”
—滚动摩阻系数 ,长度量纲
r
P A
FS FN
Q
r
临界平衡 P
A
Mf
FS
FN

6-3-2平面静定桁架的内力计算(精)

6-3-2平面静定桁架的内力计算(精)
6- 3 - 2
1. 内力计算的方法
平面静定桁架的内计算
平面静定桁架的内力计算的方法通常有结点法和截面法。 结点法是截取桁架的一个结点为隔离体,利用该结点的静力 平衡方程来计算截断杆的轴力。 截面法是用一截面(平面或曲面)截取桁架的某一部分(两个结 点以上)为隔离体,利用该部分的静力平衡方程来计算截断杆 的轴力。
FNADy=10kN-40kN=-30kN FNADy FNAD 3.35m 67KN 1.5m FNADy FNADx 3m 60kN 1.5m
国家共享型教学资源库
四川建筑职业技术学院
取结点C为隔离体 (图 c),由∑Fx=0得
FNCF= FNAC=60kN 取结点D为隔离体(图d),列出平衡方程
M
D
0

FNdx=-15kN
利用比例关系,得
FNd= -18.05KN
国家共享型教学资源库
四川建筑职业技术学院
国家共享型教学资源库
四川建筑职业技术学院
3. 比例关系的应用
F N F Nx FNy l lx ly
例6-5 求图a所示桁架各杆的轴力。
国家共享型教学资源库
四川建筑职业技术学院
解 (1)求支座反力。
FAx 0
FAy 40KN
FB 40KN
(2)求各杆的内力。
取结点A为隔离体(图b)
利用比例关系,得
FNb
FNbx 3.61m 18.05KN 3m
四川建筑职业技术学院
国家共享型教学资源库
(3)求杆d的内力。联合应用结点法和截面法计算杆d的内力较
为方便。先取结点E为隔离体(图c),由平衡方程∑Fx=0 ,得
FNCE= FNc=52.5kN 再用截面Ⅱ-Ⅱ截取桁架左半部分为隔离体(图d),列平衡方程 由

静定平面桁架的内力计算——结点法课件最新实用版

静定平面桁架的内力计算——结点法课件最新实用版

⑷各杆的自重不计,或平均分配到杆两端的结点上。
静定平面桁架的内力计算——结点法
F =F =-30kN 5kN F7=0kN
静定平面桁架的8内力计算6——结点法
F9=F5=12.5kN
F =F =22.5kN 静定平面桁架的内力计算——结点法
静5kN定平F7面=0桁kN架的1内0力计算(4 结点法)
F =F =20kN F =F =22.5kN 桁架是指多个直杆在两端用适当的方式联结而成的结构。
C
D
6
8
F
1 3 5 7 9 11 12 4m
A
2 B4
10
13 H
E
G
F
3m
F
3m
F
3m
3m
5 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
解:(1)以整体为研究对象,求桁架的支座反力。
(2)以A结点为研究对象,求1、2杆的内力。
6 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
(3)以B结点为研究对象,求3、4杆的内力。
(4)以C、D结点为研究对象,求5、6、7杆的内力。
列出节点C的平衡方程,解得F5=12.5kN,F6=-30kN 列出节点D的平衡方程,解得 F7=0
7 静定平面桁架的内力计算——结点法
知识引入 案案例例分分析析 自己动手
⑵各杆轴线都求是直出线,左并都半位于部桁架分平面各内。杆件的内力后,可根据对称性得到右半部分各杆件的内力,即:
5静kN定平F7面=0桁kN架的内力计算⑷(结各点杆法)的自重不计,或平均分配到杆两端的结点上。
为了求得桁架各杆的内力,截取桁架的一个结点作为研究对象,用汇交力系的平衡方程 求解杆件内力,这种方法叫做结点法。

四、平面桁架的内力计算

四、平面桁架的内力计算
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
2.平面简单桁架
以一个铰链三角形框架为基础,每增一个节点需增 加二根杆件,如此构成的无多余杆的平面桁架。
总杆数 m
总节点数 n
m 3 2(n 3)
m 2n 3
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
m 2n 3 平面复杂(超静定)桁架:如果从桁架中抽去某几根杆 件,桁架不会活动变形。
a
C
D
F3
FC
Fx 0, F3 FAx F1 F2 cos 45 0 Fy 0, FAy FC F2 cos 45 0 M C F 0, F1 a FAy a 0
求解得 F1 2 kN F2 2 2 kN F3 2 kN
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
n
FR Fi i 1
—— 力系的主矢
第三章 平面任意力系和平面平行力系
n
M O
M O (Fi )
i 1
—— 力系对简化中心的主矩
本章小结 3、平面任意力系向一点简化的结果分析 (1)主矢不等于零,即 FR’ ≠ 0
主矩 合成结果
说明
MO = 0
合力 FR’
此力为原力系的合力,合力的 作用线通过简化中心。
这就是桁架结构广泛应用的主要原因 同时应注意:实际桁架和理想桁架是有差别 的,对重要的建筑物上采用的桁架结构,还需 考虑节点刚性、非节点荷载和节点偏心等造成 的影响。
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 (三) 计算平面简单桁架杆件内力的方法
1、节点法—— 应用汇交力系平衡方程,逐一地选取平面简

静定结构的内力—静定平面桁架(建筑力学)

静定结构的内力—静定平面桁架(建筑力学)
截面法的运用技巧 (1)欲求图示桁架中杆ED的轴力 可用Ⅰ-Ⅰ截面将桁架截开,在被
截断的五根杆件中,除杆ED外,其余 四杆均汇交于结点C,由力矩方程 ΣMC=0即可求得FNED。
静定平面桁架的内力计算
(2)欲求图复杂桁架中杆CB的轴力 可用Ⅰ-Ⅰ截面将桁架截开,在
被截断的四根杆件中,除杆CB外,
其余三杆互相平行,选取y轴与此三
静定平面桁架的工程实例和计算简图
1 静定平面桁架的工程实例
桁架是由直杆组成,全部由铰结点连接而成的结构。
屋架
桥梁
静定平面桁架的工程实例和计算简图
纵梁
横梁 主桁架
工业厂房
静定平面桁架的工程实例和计算简图
2 静定平面桁架的计算简图
(1)桁架各部分名称
斜杆 Diagonal chard
弦杆
上弦杆 Top chard
静定平面桁架的内力计算
MD 0 Fx 0
FNc 4 FAy 3 20 3 0 FNc 52.5kN FNbx FNa FNc 0
FNbx FNa FNc 15kN
由比例关系可得
FNb
lb lbxy
FNbx
3.61m 3m
15kN
18.05kN
静定平面桁架的内力计算
主内力:按理想桁架算出的内力,各杆只有轴力。 次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲,由此引起的内力。
实际桁架不完全符合上述假定, 但次内力的影响是次要的。
静定平面桁架的工程实例和计算简图
3 静定平面桁架的分类
(1)按几何组成规律分类 简单桁架 由基础或一个铰接三角形开始,依
次增加二元体而组成的桁架 联合桁架 由几个简单桁架按照几何不变体系

静定平面桁架的内力计算

静定平面桁架的内力计算

静定平面桁架的内力计算
图13-11
静定平面桁架的内力计算
按照桁架的杆件所在位 置不同,可分为弦杆和腹杆 两类。弦杆是指在桁架上、 下外围的杆件,上边的杆件 称为上弦杆,下边的杆件称 为下弦杆。桁架上弦杆和下 弦杆之间的杆件称为腹杆, 腹杆又称为竖杆和斜杆。弦 杆上相邻两结点之间的区间 称为节间,其距离d称为节间 长度(见图13-12)。
静定平面桁架的内力计算
常用的桁架一般是按下列两种方式组成的。 (1)由基础或由一个基本铰结三角形开始,依 次增加二元体,组成一个桁架,如图13-11(a)、 (b)、(c)所示。这样的桁架称为简单桁架。 (2)几个简单桁架按照几何不变体系的简单组 成规则联成一个桁架,如图13-11(d)、(e)所 示。这样的桁架称为联合桁架。
静定平面桁架的内力计算
【例13-5】
图13-16
静定平面桁架的内力计算
静定平面桁架的内力计算
一般截面法截断的杆件个数不超过三根可以直 接求得杆的内力,但有一些特殊情况虽然截开的杆件 个数超过三个,但对于某一个杆件仍可以直接求解, 如图13-17所示。图13-17(a)中除a杆外截断的其他 杆件交于一点K,则取隔离体对K点取矩,可以直接 求得a杆轴力;图13-17(b)中除b杆外,截断的其 他杆件都相互平行,则取隔离体,利用∑Fx=0,可能完全符合上述理想情况。例如,桁架的 结点具有一定的刚性,有些杆件在结点处可能是连续直杆,或杆 件之间的夹角几乎不变动。另外,各杆轴无法绝对平直,结点上 各杆的轴线也不一定全交于一点,荷载不一定都作用在结点上等。 因此,桁架在荷载作用下,其中某些杆件必将发生弯曲而产生弯 曲应力,并不能如理想情况下只产生轴向均匀分布的应力。通常 把桁架理想情况下计算出来的应力称为初应力或基本应力,由非 理想情况产生的附加应力称为次应力。关于次应力的计算有专门 的参考文献论述,本节只限于讨论桁架的理想情况。

四平面桁架的内力计算

四平面桁架的内力计算

四平面桁架的内力计算平面桁架是由各种杆件和节点组成的结构,用来支撑和传递荷载。

在设计和分析平面桁架时,需要计算每个杆件上的内力,以确定结构的稳定性和强度。

以下是平面桁架内力计算的方法。

平面桁架的内力计算可以分为两个步骤:静力平衡方程的建立和内力计算。

首先,建立静力平衡方程。

根据平面桁架的静力学原理,每个节点上的力的合力应等于零,每个节点上的力的合力矩也应等于零。

使用静力平衡方程可以得到各个节点上的力的关系。

节点力的计算可以通过以下步骤进行:1.选择一个节点作为参考节点,通常选择固定支座或者荷载作用点。

2.对于选择的参考节点,假设节点上的力的方向和大小,通常选择正向或者逆时针方向。

3.根据杆件的连接方式和静力平衡方程,计算其他节点上的力的方向和大小。

4.如果计算出的节点力的方向和大小与假设的相符,则计算准确。

如果不相符,则重新选择节点力的方向和大小,重复第3步。

5.重复第2和第3步,直到计算出所有节点上的力的方向和大小。

节点力的方向和大小确定后,可以计算每个杆件上的内力。

杆件内力的计算可以通过以下步骤进行:1.根据杆件的连接方式,在每个节点上绘制弯矩图和剪力图。

2.根据支点条件和杆件的连接方式,计算杆件上的弯矩和剪力。

3.根据杆件的材料性质和截面形状,计算杆件上的正应力和切应力。

4.计算出每个杆件上的内力,包括正应力和切应力的大小和方向。

在计算内力时,需要注意以下几个问题:1.合理选择参考节点,通常选择固定支座或者荷载作用点,可以简化计算过程。

2.在考虑弯矩和剪力时,需要考虑实际杆件长度和杆件的连接方式。

3.在计算正应力和切应力时,需要考虑杆件的材料性质和截面形状。

4.内力的计算需要满足力的平衡条件和结构的力学平衡条件。

总之,平面桁架的内力计算是通过建立静力平衡方程和应力平衡方程,确定每个节点和杆件上的力的大小和方向,然后根据杆件的连接方式和材料性质,计算杆件上的弯矩和剪力,最终计算出杆件上的内力。

工程力学第5节 平面静定桁架的内力计算

工程力学第5节 平面静定桁架的内力计算

F1 sin 30 G 0
n
Fiy 0
i1
F1 cos 30 F2 0
得 F1 40 kN(拉) F2 34.6 kN(压)
节点 B:
n
Fix 0
i1 n
Fiy 0
i1
F2 F6 0

F3 G 0
F6 34.6 kN(压) F3 20 kN(拉)
i1 n
Fiy 0
i1
FS1 sin 60 FS4 sin 60 0 FS1 cos 60 FS4 cos 60 FS3 0
解得
FS4 FS1 2F(压) 校核计算结果
将各杆内力计算结果列表如下
杆号
1
2
3
内 力 2F 1.73F 2F
半部分为研究对象进行受力分析,列平衡方程:
n
M E (Fi ) 0
FS1 1sin 60 FAy 1 0
i1
n
M D (Fi ) 0
i1 n
Fiy 0
i1
F1

1 2

FS3
1
sin
60


FAy

2 3

0
FAy FS2 sin 60 F1 0
• 因为只有三个独立平衡方程,因此作假想截面时, 一般每次最多只能截断三根杆件。
注意
• 由于平面汇交力系只能列出两个独立平衡方程,所 以应用节点法必须从只含两个未知力大小的节点开 始计算。
例2-15 平面桁架的受力及尺寸如图所示, 试求桁 架各杆的内力。
解 1)先求支座反力:以整体桁架为研究对象进行

桁架内力的计算3.4静定平面桁架

桁架内力的计算3.4静定平面桁架

桁架内力的计算3.4 静定平面桁架教学要求掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法3.4.1 桁架的特点和组成3.4.1.1 静定平面桁架桁架结构是指若干直杆在两端铰接组成的静定结构。

这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。

实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。

但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。

因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。

(2)各杆的轴线都是直线并通过铰的中心。

(3)荷载和支座反力都作用在铰结点上。

通常把符合上述假定条件的桁架称为理想桁架。

3.4.1.2 桁架的受力特点桁架的杆件只在两端受力。

因此,桁架中的所有杆件均为二力杆。

在杆的截面上只有轴力。

3.4.1.3 桁架的分类(1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。

(图3-14a)(2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。

(图3-14b)(3)复杂桁架:不属于前两类的桁架。

(图3-14c)3.4.2 桁架内力计算的方法桁架结构的内力计算方法主要为:结点法、截面法、联合法结点法――适用于计算简单桁架。

截面法――适用于计算联合桁架、简单桁架中少数杆件的计算。

联合法――在解决一些复杂的桁架时,单独应用结点法或截面法往往不能够求解结构的内力,这时需要将这两种方法进行联合应用,从而进行解题。

解题的关键是从几何构造分析着手,利用结点单杆、截面单杆的特点,使问题可解。

第二节 平面静定桁架的内力计算

第二节 平面静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。

桁架中各杆件的连接处称为节点。

由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。

房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。

图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。

本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。

在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。

满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。

分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。

一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。

由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。

例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。

图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F 以及约束反力YA F 、xB F 、YB F 作用,列平衡方程并求解:1=∑=ni ixF,xB F =0)(1=∑=ni i BmF , 2F ×2l-Y A F l =0, Y A F=F1=∑=ni iyF,YA F +YB F -2F =0,YB F =2F -YA F =F(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。

平面简单桁架的内力计算

平面简单桁架的内力计算
(a)无载二根
非共线杆
F2
F1
F3=0
F1 F
F2=0
(b)无载三根杆, (c)有载二根非
二根共线杆
共线杆
两杆形成的节点,如果没有外力或约束力作用于该节点,则两 杆为零力杆;三杆形成的节点,其中有两杆共线如,果没有 外力或约束力作用 于该节点,则第三杆为零力杆。
节点法与截面法的联合应用
节点法:因为桁架中各杆都是二力杆,所以每个节点都受 到平面汇交力系的作用,为计算各杆内力,可以逐个地取 各节点为研究对象,根据平面汇交力系的平衡条件,计算 桁架内各个杆件内力的方法。
)所有杆件的内力先设为拉力,计算结果为负,说明该杆为
压力;(3)用节点法时,节点上的未知力一般不能多于两个
,用截面法时,节点上的总未知力一般不能多于三个,否则
不能全部解出。(4)若只要求桁架中某几个杆件的内力时,
可以采用截面法或节点法结合截面法,可较快地求得某些杆
的内力。
41
本章小结
一、力线平移定理是力系简化的理论基础 力 力+力偶
Q q
2l
l
3
3
3、梯形荷载
可以看作一个三角形荷载和一 个均布荷载的叠加
q1
q2
l
49
50
51
组合梁AC和CE用铰链C相连,A端为固定端,E端为活动 铰链支座。受力如图所示。已知: l =8 m,F=5 kN,均布载 荷集度q=2.5 kN/m,力偶矩的大小M= 5 kN•m,试求固端A, 铰链C和支座E的约束力。
1.对称性
结构对称,载荷对称,则内力必对称; 结构对称,载荷反对称,则内力必反对称;
求内力时,可利用下列情况简化计算:
2.零杆的判别

计算静定平面桁架内力的两种基本方法

计算静定平面桁架内力的两种基本方法

主题:计算静定平面桁架内力的两种基本方法随着现代建筑工程的发展,计算静定平面桁架内力成为了结构分析中的重要问题。

在计算静定平面桁架内力时,有两种基本的方法,即力法和位移法。

本文将分别介绍这两种方法的基本原理和应用,以及它们的优缺点。

一、力法1. 基本原理力法是通过平衡节点上的受力来计算静定平面桁架内力的一种方法。

在力法中,首先要对整个桁架进行受力分析,确定各个节点上的受力情况,然后根据节点受力的平衡条件,计算出每根构件的内力。

2. 应用力法广泛应用于静定平面桁架内力的计算中。

通过力法可以清晰地了解每根构件受力的情况,对于设计师来说具有很大的实用价值。

3. 优缺点优点:力法计算简单、直观,适用于多种不同类型的静定平面桁架。

缺点:力法在计算过程中需要考虑节点受力平衡的条件,当桁架节点较多时,计算过程较为繁琐,且容易出错。

二、位移法1. 基本原理位移法是通过分析节点的位移来计算静定平面桁架内力的一种方法。

在位移法中,首先需要假设桁架中的某个节点发生位移,然后根据位移引起的构件变形情况,计算出每根构件的内力。

2. 应用位移法在计算静定平面桁架内力时具有一定的优势,特别是在复杂结构的分析中,位移法可以更加直观地反映构件的变形情况,对于设计师来说具有较大的帮助。

3. 优缺点优点:位移法对于复杂结构的分析更加直观,能够清晰地揭示构件的内力分布情况。

缺点:位移法在计算过程中需要假设节点发生位移,这种假设可能与实际情况不符,导致计算结果存在一定误差。

三、综合比较1. 适用范围力法和位移法各有其适用范围,力法适用于简单桁架的受力分析,而位移法适用于复杂结构的受力分析。

2. 精度和准确性在计算静定平面桁架内力时,力法的结果相对准确,而位移法的结果受到假设位移的影响,精度较低。

3. 计算复杂度力法在计算过程中相对简单直观,适用于简单结构的分析;而位移法在复杂结构的分析中可以更加直观地反映构件的变形情况。

四、结论力法和位移法是计算静定平面桁架内力的两种基本方法,各自具有自身的优势和不足。

4.1、平面简单桁架的内力计算

4.1、平面简单桁架的内力计算
实际桁架经如下处理即得理想桁架: 1、把杆件之间的刚性连接简化为理想的光滑铰链连接; 2、忽略各杆自身重量,
或将自重平均分配到杆端铰链销钉上;
这种简化处理降低了实际桁架结构中各杆内力的 计算难度,而且计算结果与杆件的实际受力非常吻合;
(刚化公理的应用)
6
平面简单桁架:以三角形框架为基础,每增加一个节点 就要增加两根杆,而且所有的杆件都在同一平面内;
4.1、平面简单桁架的内力计算
4.1、平面简单桁架的内力计算
桁架: 由二力杆件铰接而成,以三角形为基本框架单元 节点:桁架的杆端铰链销钉 桁架结构的特点: 充分发挥材料的承载能力,
节约材料, 减轻系统整体重量
2
FE 实际桁架:刚性“铰接”
理想桁架:光滑5铰接
实际桁架中各杆之间都是铆接、焊接或螺栓连接等 刚性连接形式;我们这里讲述的桁架都是二力杆件 用光滑铰链铰接而成,这种桁架称为理想桁架
设1/2/3杆都处于“受压”状态,用mn面同时截断杆1、2和杆3,取右半部
分M 为FiG 研(F 究0i)对0象 (F F F 图1 3 2 * cbaF )oc23cso0 3o6sF 0s B 0 F Y H F3 F * H aF sE0 i 3n00FBY *(aasi3n0)0
F31.2 3(1 kN ) F22.8(2kN ) F18.72(kN)
10
课堂练习题1 求图4.1-6a/b所示桁架结构中带数字 编号的各杆件内力。
I
F
I
11
课堂练习题2,图4.1-7a所示桁架结构中 Fp 10KN 求JO杆、FK杆的内力
12
各图桁架中带有编号 的杆是否都是零力杆?
13
零杆作用:可以把处 于受压状态的细长杆 “割断”成“短粗杆 ”,避免其“突然变 形”

平面桁架的内力计算课件

平面桁架的内力计算课件
平面桁架的内力计算课件
目录
• 平面桁架概述 • 平面桁架的内力分析 • 平面桁架的节点位移 • 平面桁架的稳定性分析 • 平面桁架的内力计算实例
01
平面桁架概述
定义与特点
定义
平面桁架是一种由杆件组成的结 构,其所有杆件都位于同一平面 内。
特点
具有较高的承载能力和稳定性, 且结构简单、制造方便,广泛应 用于桥梁、建筑等领域。
内力分析的方法
解析法
通过建立数学模型,利用物理和数学知识求解内力。这种 方法适用于简单结构和对称性较好的情况。
实验法
通过实验测试和观察,利用传感器和测量仪器直接测量内 力。这种方法适用于复杂结构和无对称性的情况。
有限元法
将结构离散化为有限个小的单元,通过分析每个单元的内 力和相互间的约束关系,推算出整个结构的内力。这种方 法适用于大型复杂结构和动态分析。
结构的边界条件
结构的边界条件,如固定、 自由等,会影响节点的位 移。
04
平面桁架的稳定性分析
稳定性分析的定义与重要性
稳定性分析的定义
稳定性分析是评估结构在受到外力作用时能否保持稳定,不发生屈曲或失稳的力 学性能研究。
稳定性分析的重要性
对于平面桁架而言,稳定性是保证其承载能力和安全性的关键因素。通过稳定性 分析,可以预测结构在各种工况下的行为,从而采取相应的措施来提高结构的稳 定性,避免因失稳而导致的结构破坏和安全事故。
荷载
包括竖向荷载和水平荷载,竖向荷 载主要是由自重和活载组成,水平 荷载主要是风载和地震作用。
02
平面桁架的内力分析
内力的定义与分类
内力的定义
内力是指物体在受力过程中,由于外力作用而产生的内部应力。在平面桁架中, 内力是由于杆件间的相互作用而产生的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学
0 FR
第 三 章
平面任意力系
平衡条件和平衡方程
MO 0
与简化中心的位置无关
复 习
F
x
0
F
0
y
0
M F 0
o
平衡方程的一矩式
二矩式
F
x
M F 0 M F 0
A
B
B C
其中A、B两点连线不能垂直X坐标轴 三矩式
M F 0 M F 0 M F 0
mO ( Fi ) 0
独立方程数目≥未知数数目时,是静定问题(可求解)
独立方程数目<未知数数目时,是静不定问题(超静定问题)
理论力学
[ 例]
第 三 章
平面任意力系
静定(未知数三个)
静不定(未知数四个)
静不定问题在强度力学(材力,结力,弹力)中用位 移协调条件来求解。
理论力学 平 面 简 单 桁 架 的 内 力 计 算
F=20kN 1
A
3
2
B
5
4
7
E
9
10
11 12
G H
13
求出左半部分各杆件的内力后,可根据对称性得到右半 部分各杆件的内力,即
F8=F6=-30kN F9=F5=12.5kN F10=F4=22.5kN F11=F3=20kN F12=F1=22.5kN F13=F2=-37.5kN F7=0kN
A
其中A、B、C三点不能共线
理论力学
我们学过:
第 三 章
平面任意力系
一、静定与静不定问题的概念 平面汇交力系 X 0 两个独立方程,只能求两个 Y 0 独立未知数。
平面力偶系mi 0 一个独立方程,只能求一个独立未知数。
X 0 三个独立方程,只能求三个独立未知数。 平面 Y 0 任意力系
第 三 章
平面任意力系
例题1
C
6
D
8
F
F=20kN 1
A
3
2
B
5
4
7
E
9
10
11 12
G H
13
列出节点C的平衡方程, 解得F5=12.5kN,F6=30kN 列出节点D的平衡方 程,解得 F7=0
理论力学
第 四 节 平 面 简 单 桁 架 的 内 力 计 算
第 三 章
平面任意力系
例题1
C
6
D
8
F
XA A YA
RB
YA = - P
理论力学
第 三 章
平面任意力系
平 面 简 单 桁 架 的 内 力 计 算
对整体进行构 成分析 桁架由两个简
E
F
P
单桁架 ABC 和
DEF用AE,CD,BF 三根杆连接而成.
a /2
C
D
a /2 A P a/3 a/3 a/3 B P
这类问题应先
截断连接杆,求出 其内力.
3
2
F B
5
F7 5
E
11 12
G H
A
FAy
4 m’F4F
10
F
13
FH
理论力学
例题2
第 三 章
平面任意力系
C
F6
3 5
B
6
D
8 9
F
1
FAx
F7 5
11 12
G H
A
2
F
4
FAy
F4
E
10
13
理论力学 内力S1。
a /2
第 三 章
平面任意力系
图示为一平面组合桁架.已知力P,求AB杆的
E F
P
P
理论力学
第 三 章
平面任意力系
SAE C SBF
截开连接杆AE,CD 和BF并取下半个桁 架为研究对象画受 力图.
O
SCD
mO(Fi) = 0
理论力学
第 三 章
平面任意力系
1、平面桁架
节点数 (汇交力系)
3 4
5 7
6
7
……
3+n 3+2n
杆件 3 5 (内力未知数)
9 11 ……
3+2n+3=6+2n 未知数:
(3+n)×2=6+2n 方程数:
理论力学
第 三 章
平面任意力系
2、节点法
每个节点都受到一个平面汇交力系的作用, 所以每个节点可以列两个方程,所以共有 2n+6个方程,每个杆件有一个内力为未知 数,另外外界会有三个位置数,所以有 2n+6个未知数。
C
D
a /2
B
A
a/3
a/3
a/3
理论力学
第 三 章
E
平面任意力系
F
解:取整体为研
P
究对象画受力图. a /2 Xi = 0 XA + P = 0
XA = - P
C D
mA(Fi) = 0
aRB - aP = 0 RB = P Yi = 0 YA + P = 0
a /2 B a/3 a/3 a/3
第 三 章
平面任意力系
一、平面桁架
理论力学
第 三 章
平面任意力系
二、平面桁架
桁架是一种由杆件彼此在两端用铰链连接而成的结构,它 受力后几何形状不变。 桁架中杆件的铰链接头称为节点。
平面简单桁架采用以下几种假
2.杆件用光滑的铰链连接。
3.桁架所受的力都是作用在节点上,而且在桁架的平面内。 4.桁架杆件的重量略去不计,或平均分配在杆件两端的节点 上。
H
10
F
3m
13
3m
3m
3m
求解:4、5、6杆的内力
理论力学
例题2
第 三 章
平面任意力系
C
m 6
D
8 9
F
1
FAx
3
2
F B
5
4 m’ F
7
E
11 12
G H
A
FAy
10
F
13
FH
【解】取桁架整体为研究对象。根据结构及载荷的对称性
理论力学
例题2
第 三 章
平面任意力系
C
F m 6
6
D
8 9
F
1
FAx
【解】取桁架整体为研究对象。根据结构及载荷的对称性
理论力学
例题1
第 三 章
平面任意力系
C
6
D
8
F
F=20kN 1
A
3
2
B
5
4
7
E
9
10
11 12
G H
13
理论力学
例题1
第 三 章
平面任意力系
C
6
D
8
F
F=20kN 1
A
3
2
B
5
4
7
E
9
10
11 12
G H
13
理论力学
第 四 节 平 面 简 单 桁 架 的 内 力 计 算
理论力学
第 三 章
平面任意力系
3、零力杆 零力杆: 在一定荷载作用下,桁架中内力为零的杆件。
S1= 0
1 2 1 2
S1= 0 P S1= 0 S2
S2= 0
S3
1 3 2
S2
理论力学
第 三 章
平面任意力系
三、零力杆
A
判定图示桁架中的零杆.
I H G
F
E
B C D
P
P
解:AB和BC是零杆. CI是零杆. EG是零杆.
EH是零杆.
理论力学
第 三 章
平面任意力系
4、截面法
C
6
3 5
B
D
8
9
F
1
A
7
E
11 12
G
H
2
4
10
13
用适当截面切取桁架的一部分作为考查对象,考 虑其平衡,求得割断杆件内力的一种方法。
理论力学
第 三 章
平面任意力系
例题十三 C
6
D
8 9
F
F=20kN 1
A
3
2
F B
5
4
F
7
E
11 12
G
4m
节点法:取节点为研究对象,考虑其平衡, 以求解杆内力的方法
理论力学
例题1
平 面 简 单 桁 架 的 内 力 计 算
第 三 章
平面任意力系
C D A F
3m
F
4m
F=20kN
B F G
H
E
F
3m
3m
3m
理论力学
例题1
第 三 章
平面任意力系
C D A B F F
F
F=20kN
FAx
G
H
FAy
E
F
FH
相关文档
最新文档