高中数学必修五第二章数列单元测试题

合集下载

高一数学必修五第二章试题——数列(带答案)

高一数学必修五第二章试题——数列(带答案)

高一数学必修五第二章试题——数列一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n等于()A.2n B.2n+1 C.2n-1 D.2n+12.记等差数列的前n项和为S n,若S2=4,S4=20,则该数列的公差d=() A.2 B.3 C.6 D.73.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为()A.49 B.50 C.51 D.524.在等差数列{a n}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=()A.45 B.50 C.75 D.605.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.906.等比数列{a n}的通项为a n=2·3n-1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n},那么162是新数列{b n}的()A.第5项B.第12项C.第13项D.第6项7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.54钱B.43钱C.32钱D.53钱8.已知{a n}是等差数列,a3=5,a9=17,数列{b n}的前n项和S n=3n,若a m=b1+b4,则正整数m等于()A.29 B.28 C.27 D.269.在各项均为正数的等比数列{a n}中,a1=2且a2,a4+2,a5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .8110.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .7611.已知函数f (x )=⎩⎨⎧2x -1,x ≤0,f (x -1)+1,x >0,把方程f (x )=x 的根按从小到大的顺序排列成一个数列{a n },则该数列的通项公式为( )A .a n =n (n -1)2(n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *)D .a n =n -2(n ∈N *)12.已知数列{a n }满足a n +1+(-1)n a n =2n -1,S n 为其前n 项和,则S 60=( )A .3690B .1830C .1845D .3660二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }中,a 1=10,a n +1=a n -12,则它的前n 项和S n 的最大值为________.14.已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则a 1+a 2+…+a 51=________.16.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a ,b ,c 是实数,3a ,4b ,5c 成等比数列,且1a ,1b ,1c 成等差数列,求a c +c a 的值.18.(本小题满分12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列;(2)求数列{b n }的通项公式.19.(本小题满分12分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *).(1)证明:数列{a n +1-a n }是等比数列;(2)求数列{a n }的通项公式.20.(本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发,弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n -1)米至50n 米的扇环面记为第n 区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%、第3区较第2区又减少了2%,依此类推,问:(1)离火山口1225米处的火山灰大约为每平方米多少千克?(结果精确到1千克)(2)第几区内的火山灰总质量最大?提示:当n较大时,可用(1-x)n≈1-nx进行近似计算.21.(本小题满分12分)设数列{a n}的前n项和为S n=2n2,数列{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a nb n,求数列{c n}的前n项和T n.22.(本小题满分12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….(1)证明:数列{lg (1+a n)}是等比数列;(2)设T n=(1+a1)·(1+a2)…(1+a n),求T n;(3)记b n=1a n+1a n+2,求数列{b n}的前n项和S n,并证明S n<1.一、选择题1.答案 B解析 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1.(或特值法,当n =1时只有B 项符合.)2.答案 B解析 S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3. 3.答案 D解析 ∵2a n +1-2a n =1,∴a n +1-a n =12.∴数列{a n }是首项a 1=2,公差d =12的等差数列.∴a 101=2+12×(101-1)=52.4.答案 B解析 ∵a 1+a 2+a 3=3a 2=32,a 11+a 12+a 13=3a 12=118,∴3(a 2+a 12)=150,即a 2+a 12=50,∴a 4+a 10=a 2+a 12=50.5.答案 C解析 由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),即2a 1+3d =0. ①又S 8=8a 1+562d =32,则2a 1+7d =8. ②由①②,得d =2,a 1=-3.所以S 10=10a 1+902d =60.故选C .6.答案 C解析 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.7.答案 B解析 依题意设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,则由题意可知,a -2d +a -d =a +a +d +a +2d ,即a =-6d ,又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1,则a -2d =a -2×⎝ ⎛⎭⎪⎫-a 6=43a =43.故选B . 8.答案 A解析 因为{a n }是等差数列,a 9=17,a 3=5,所以6d =17-5,得d =2,a n =2n -1.又因为S n =3n ,所以当n =1时,b 1=3,当n ≥2时,S n -1=3n -1,b n =3n -3n -1=2·3n -1,由a m =b 1+b 4,得2m -1=3+54,得m =29,故选A .9.答案 B解析 设各项均为正数的等比数列{a n }的公比为q ,又a 1=2,则a 2=2q ,a 4+2=2q 3+2,a 5=2q 4,∵a 2,a 4+2,a 5成等差数列,∴4q 3+4=2q +2q 4,∴2(q 3+1)=q (q 3+1),由q >0,解得q =2,∴S 5=2(1-25)1-2=62.故选B . 10.答案 B解析 ∵S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),∴S 14=7×(1-5)=-28,a 15=60-3=57,S 22=11×(1-5)=-44,S 30=15×(1-5)=-60,a 31=124-3=121,∴S 15=S 14+a 15=29,S 31=S 30+a 31=61.∴S 15+S 22-S 31=29-44-61=-76.故选B .11.答案 C解析 令2x -1=x (x ≤0),易得x =0.当0<x ≤1时,由已知得f (x -1)+1=x ,即2x -1-1+1=2x -1=x ,则x =1.当1<x ≤2时,由已知得f (x )=x ,即f (x -1)+1=x ,即f (x -2)+1+1=x ,故2x -2+1=x ,则x =2.因此,a 1=0,a 2=1,a 3=2,结合各选项可知该数列的通项公式为a n =n -1(n ∈N *).故选C .12.答案 B解析 ①当n 为奇数时,a n +1-a n =2n -1,a n +2+a n +1=2n +1,两式相减得a n +2+a n =2;②当n 为偶数时,a n +1+a n =2n -1,a n +2-a n +1=2n +1,两式相加得a n +2+a n =4n ,故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60) =2×15+(4×2+4×6+…+4×58)=30+4×450=1830.故选B .二、填空题13.答案 105解析 ∵a n +1-a n =-12,∴d =-12,又a 1=10,∴a n =-n 2+212(n ∈N *).∵a 1=10>0,d =-12<0,设从第n 项起为负数,则-n 2+212<0(n ∈N *).∴n >21,于是前21项和最大,最大值为S 21=105.14.答案 2解析 ∵{a n }是递增的等比数列,且a 1>0,∴q >1.又∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q .∵a n ≠0,∴2q 2-5q +2=0,∴q =2或q =12(舍去),∴公比q 为2.15.答案 676解析 当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676.16.答案 7解析 设该设备第n 年的运营费用为a n 万元,则数列{a n }是以2为首项,3为公差的等差数列,则a n =3n -1.设该设备使用n 年的运营费用总和为T n ,则T n =n (2+3n -1)2=32n 2+12n . 设n 年的盈利总额为S n ,则S n =21n -⎝ ⎛⎭⎪⎫32n 2+12n -9=-32n 2+412n -9. 由二次函数的性质可知,当n =416时,S n 取得最大值,又n ∈N *,故当n =7时,S n 取得最大值.三、解答题17.解 ∵3a ,4b ,5c 成等比数列,∴16b 2=15ac . ① ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c . ②由①,得4b 2·15ac =64. ③将②代入③,得1a +1c 2·15ac =64,∴1a 2+1c 2+2ac ac =6415.∴c a +a c =3415.18.解 (1)证明:∵a 1=S 1,a n +S n =n , ①∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1, ②由①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n=12, 故数列{c n }是等比数列.(2)∵c 1=a 1-1=-12,∴c n =-12n ,a n =c n +1=1-12n ,a n -1=1-12n -1. 故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12也适合上式,∴b n =12n .19.解 (1)证明:∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ),∴a n +2-a n +1a n +1-a n =2. ∵a 1=1,a 2=3,∴{a n +1-a n }是以a 2-a 1=2为首项,2为公比的等比数列.(2)由(1)得a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.故数列{a n }的通项公式为a n =2n -1. 20.解 (1)设第n 区的火山灰为每平方米a n 千克, 依题意,数列{a n }为等比数列,且a 1=1000(千克), 公比q =1-2%=0.98,∴a n =a 1×q n -1=1000×0.98n -1.∵离火山口1225米处的位置在第25区, ∴a 25=1000×(1-0.02)24≈1000×(1-24×0.02)=520,即离火山口1225米处的火山灰大约为每平方米520千克.(2)设第n 区的火山灰总质量为b n 千克,且该区的火山灰总质量最大. 依题意,第n 区的面积为14π{(50n )2-[50(n -1)]2}=625π(2n -1), ∴b n =625π(2n -1)×a n .依题意得⎩⎨⎧ b n ≥b n -1,b n ≥b n +1,解得49.5≤n ≤50.5.∵n ∈N *,∴n =50,即第50区的火山灰总质量最大. 21.解 (1)当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, ∵当n =1时,a 1=4-2=2也适合上式, ∴{a n }的通项公式为a n =4n -2,即{a n }是a 1=2,公差d =4的等差数列.设{b n }的公比为q ,则b 1qd =b 1,∴q =14.故b n =b 1q n -1=2×14n -1. 即{b n }的通项公式为b n =24n -1. (2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1, ∴T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -1, 4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n .两式相减,得3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n+5],∴T n =19[(6n -5)4n +5].22.解 (1)证明:由已知a n +1=a 2n +2a n ,∴a n +1+1=(a n +1)2,∴lg (1+a n +1)=2lg (1+a n ),∴{lg (1+a n )}是公比为2的等比数列.(2)由(1)知lg (1+a n )=2n -1·lg (1+a 1)=2n -1·lg 3=lg 32n -1,∴1+a n =32n -1,∴T n =(1+a 1)(1+a 2)…(1+a n )=320·321·322·…·32n -1=31+2+22+…+2n -1=32n -1.(3)∵点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上, ∴a n +1=a 2n +2a n ,∴a n +1=a n (a n +2).∴1a n +1=12⎝ ⎛⎭⎪⎫1a n -1a n +2,∴1a n +2=1a n -2a n +1, ∴b n =1a n +1a n +2=1a n +1a n -2a n +1=2⎝ ⎛⎭⎪⎫1a n -1a n +1. ∴S n =b 1+b 2+…+b n=2⎝ ⎛ 1a 1-1a 2+1a 2-1a 3+…+ ⎭⎪⎫1a n -1a n +1 =2⎝ ⎛⎭⎪⎫1a 1-1a n +1. ∵a n =32n -1-1,a 1=2,a n +1=32n -1,∴S n =1-232n -1. 32n -1>32-1=8>2,∴0<232n -1<1.∴S n <1.。

新课标A版高中数学必修5:第二章+数列+单元同步测试(含解析)

新课标A版高中数学必修5:第二章+数列+单元同步测试(含解析)

第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A.是公比为2的等比数列B.是公差为2的等差数列C.是公比为12的等比数列 D.既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A.6 B.-3 C.-12D.-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A.a n -1B.naC.a nD.(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A.63B.64C.127D.128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A.-8B.8C.-98D.98 解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A.2B.3C.4D.5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A.4B.14C.-4D.-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A.55 B.95 C.100D.190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95.答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A.S 7B.S 4C.S 13D.S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A.2n -1B.2nC.2n +1D.2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A.4或5B.5或6C.6或7D.不存在解析 由d <0知,{a n }是递减数列,∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A.有两个不等实根 B.有两相等的实根 C.无实数根 D.无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2. 当n ≥2时,由2a n -1=S n,2a n -1=S n -1两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n =log 3q (为常数),∴{b n }是公差为log 3q 的等差数列.(2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12, ∴{a n 2n }是以12为首项,12为公差的等差数列.(2)由(1),得a n 2n =12+(n -1)×12,∴a n =n ·2n -1, ∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得 -S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.。

高一数学必修5第二章数列测试题

高一数学必修5第二章数列测试题

新课标数学必修 5 第 2 章数列单元测试题一说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷在各题后直接作答.共 150 分,考试时间 100 分钟.一、选择题(本大题共 11 小题,每题 4 分,共 44 分)1.等差数列 { a n }中, a 1 3, a 57,则数列 { a n } 第9 项等于()A .9B .10C .11D .122.等比数列 a n 中 , a 2 9, a 5 243, 则 a n 的第 4 项为()A .81B.243 C .27 D . 1923. 2 1 与 2 1 ,两数的等比中项是()A .1B .1C .1D .124.已知一等差数列的前三项挨次为 x,2x 2,4x3 ,那么 21 是此数列的第()项A .2B .4C .6D .85.在公比为整数的等比数列 a n 中,若 a 1 a 3 6, a 2 a 4 12, 则该数列的第 3 项为()A .6B .12C .24D .4855556. 数列 a n 的通项公式 a nn 1n ,则该数列的前 9 项之和等于()A .1B .2C .3D .47. 设 {a n } 是由正数构成的等比数列,公比 q=2,且 a 1a 3 =24,则 a 1a 2a 3a 4a 5 等于( )A.2 102015168.已知等差数列 a n 的公差为 2 , 若 a 1 ,a 3 , a 4 成等比数列 , 则 a 2 ( )A .4B .6C .8D. 109.设S n 是等差数列 a n 的前 n 项和,若 S 2 , ,则S 6 等于( )2 S 4 10 A .12 B .18 C .24 D .4210.已知等差数列 {a }的公差为正数,且 a · a =-12, a +a =- 4,则 S 为n 3 7 4 620()A .180B .- 180C .90D .- 9011.现有 200 根同样的钢管,把它们堆放成正三角形垛,要使节余的钢管尽可能的少,那么节余钢管的根数为()A.9B.10C.19D.29二、填空题(本大题共 5 小题,每题 5 分,共 25 分)12.在等比数列a n中,若a33, a975, 则 a15=___________.13在等比数列a n中,若a1 ,a10是方程3x22x 6 0 的两根则a4 a7=___________.14.在- 9 和 3 之间插入 n 个数,使这 n+2 个数构成和为- 21 的等差数列,则 n=_______.15.已知数列a n的前 n 项和 S n 3 2n,求 a n=_______。

数列经典试题(含答案)

数列经典试题(含答案)

强力推荐人教版数学高中必修5习题第二章数列1.{a n}是首项a1=1,公差为d=3的等差数列,如果a n=2 005,则序号n等于().A.667 B.668 C.669 D.6702.在各项都为正数的等比数列{a n}中,首项a1=3,前三项和为21,则a3+a4+a5=().A.33 B.72 C.84 D.1893.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则().A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5 D.a1a8=a4a54.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|等于().A.1 B. C. D.5.等比数列{a n}中,a2=9,a5=243,则{a n}的前4项和为().A.81 B.120 C.168 D.1926.若数列{a n}是等差数列,首项a1>0,a2 003+a2 004>0,a2·a2 004<0,则使前n项和S n>0成立的最大自然数n是().003A.4 005 B.4 006 C.4 007 D.4 0087.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列, 则a2=().A.-4 B.-6 C.-8 D.-108.设S n是等差数列{a n}的前n项和,若=,则=().A.1 B.-1 C.2 D.9.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则的值是().A. B.- C.-或 D.10.在等差数列{a n}中,a n≠0,a n-1-+a n+1=0(n≥2),若S2n-1=38,则n=().A.38 B.20 C.10 D.9二、填空题11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 .12.已知等比数列{a n}中,(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=.(2)若a1+a2=324,a3+a4=36,则a5+a6=.(3)若S4=2,S8=6,则a17+a18+a19+a20= .13.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.14.在等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为 .15.在等差数列{a n}中,a5=3,a6=-2,则a4+a5+…+a10=.16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=.三、解答题17.(1)已知数列{a n}的前n项和S n=3n2-2n,求证数列{a n}成等差数列.(2)已知,,成等差数列,求证,,也成等差数列.18.设{a n}是公比为q 的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.19.数列{a n}的前n项和记为S n,已知a1=1,a n+1=S n(n=1,2,3…).求证:数列{}是等比数列.20.已知数列{a n}是首项为a且公比不等于1的等比数列,S n为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1+(n-1)d,即2 005=1+3(n -1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n}的公比为q(q>0),由题意得a1+a2+a3=21,即a1(1+q+q2)=21,又a1=3,∴1+q+q2=7.解得q=2或q=-3(不合题意,舍去),∴a3+a4+a5=a1q2(1+q+q2)=3×22×7=84.3.B.解析:由a1+a8=a4+a5,∴排除C.又a1·a8=a1(a1+7d)=a12+7a1d,∴a4·a5=(a1+3d)(a1+4d)=a12+7a1d+12d2>a1·a8.4.C解析:解法1:设a1=,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m =0中两根之和为2,x2-2x+n=0中两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴d=,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.∴,分别为m或n,∴|m-n|=,故选C.解法2:设方程的四个根为x1,x2,x3,x4,且x1+x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若γ+s=p+q,则aγ+a s=a p+a q,若设x1为第一项,x2必为第四项,则x2=,于是可得等差数列为,,,,∴m=,n=,∴|m-n|=.5.B解析:∵a2=9,a5=243,=q3==27,∴q=3,a1q=9,a1=3,∴S4===120.6.B解析:解法1:由a2 003+a2 004>0,a2 003·a2 004<0,知a2 003和a2 004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2 003>a2 004,即a2 003>0,a2 004<0.∴S4 006==>0,∴S4 007=·(a1+a4 007)=·2a2 004<0,故4 006为S n>0的最大自然数. 选B.解法2:由a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同解法1的分析得a2 003>0,a2 004<0,(第6题)∴S2 003为S n中的最大值.∵S n是关于n的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴在对称轴的右侧.根据已知条件及图象的对称性可得4 006在图象中右侧零点B的左侧,4 007,4 008都在其右侧,S n>0的最大自然数是4 006.7.B解析:∵{a n}是等差数列,∴a3=a1+4,a4=a1+6,又由a1,a3,a4成等比数列,∴(a1+4)2=a1(a1+6),解得a1=-8,∴a2=-8+2=-6.8.A解析:∵===·=1,∴选A.9.A解析:设d和q分别为公差和公比,则-4=-1+3d且-4=(-1)q4,∴d=-1,q2=2,∴==.10.C解析:∵{a n}为等差数列,∴=a n-1+a n+1,∴=2a n,又a n≠0,∴a n=2,{a n}为常数数列,而a n=,即2n-1==19,∴n=10.二、填空题11..解析:∵f(x)=,∴f(1-x)===,∴f(x)+f(1-x)=+===.设S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),则S=f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),∴2S=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)]=6,∴S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=3.12.(1)32;(2)4;(3)32.解析:(1)由a3·a5=,得a4=2,∴a2·a3·a4·a5·a6==32.(2),∴a5+a6=(a1+a2)q4=4.(3),∴a17+a18+a19+a20=S4q16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与,同号,由等比中项的中间数为=6,插入的三个数之积为××6=216.14.26.解析:∵a3+a5=2a4,a7+a13=2a10,∴6(a4+a10)=24,a4+a10=4,∴S13====26.15.-49.解析:∵d=a6-a5=-5,∴a4+a5+…+a10===7(a5+2d)=-49.16.5,(n+1)(n-2).解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f(k-1)+(k-1).由f(3)=2,f(4)=f(3)+3=2+3=5,f(5)=f(4)+4=2+3+4=9,……f(n)=f(n-1)+(n-1),相加得f(n)=2+3+4+…+(n-1)=(n+1)(n-2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n=1时,a1=S1=3-2=1,当n≥2时,a n=S n-S n-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,n=1时,亦满足,∴a n=6n-5(n∈N*).首项a1=1,a n-a n-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),∴数列{a n}成等差数列且a1=1,公差为6.(2)∵,,成等差数列,∴=+化简得2ac=b(a+c).+=====2·,∴,,也成等差数列.18.解:(1)由题设2a3=a1+a2,即2a1q2=a1+a1q,∵a1≠0,∴2q2-q-1=0,∴q=1或-.(2)若q=1,则S n=2n+=.当n≥2时,S n-b n=S n-1=>0,故S n>b n.若q=-,则S n=2n+ (-)=.当n≥2时,S n-b n=S n-1=,故对于n∈N+,当2≤n≤9时,S n>b n;当n=10时,S n=b n;当n≥11时,S n<b n.19.证明:∵a n+1=S n+1-S n,a n+1=S n,∴(n+2)S n=n(S n+1-S n),整理得nS n+1=2(n+1) S n,所以=.故{}是以2为公比的等比数列.20.证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4a1q6=a1+3a1q3,变形得(4q3+1)(q3-1)=0,∴q3=-或q3=1(舍).由===;=-1=-1=1+q6-1=;得=.∴12S3,S6,S12-S6成等比数列.。

高二数学必修5第二章数列单元测试(含答案)

高二数学必修5第二章数列单元测试(含答案)

高二数学必修5第二章数列单元测试(含答案)班级:________学号:__________姓名:__________成绩:__________ 一、 选择题。

(每题4分,10题共40分) 1、等差数列—3,1,5,…的第15项的值是() A .40 B .53 C .63 D .76 2、等比数列{}n a 中,===+q a a a a 则,8,63232( )A .2B .21C .2或21D .-2或21-3、已知,231,231-=+=b a 则,a b 的等差中项为()A .3B .2C .31 D .214.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列, 则2a =( ).A .-4B .-6C .-8D . -105、设4321,,,a a a a 成等比数列,其公比为2,则432122a a a a ++的值为( )A .41B .21C .81D .16、设n S 为等差数列{}n a 的前项和,若36324S S ==,,则9a =( )A. 15B. 45C. 192D. 27 7、某工厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起五年内这个工厂的总产值( D ) A.1.14a B. 1.15aC.11(1.16-1)aD.11(1.15-1)a .8.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( C )A .130B .170C .210D .260 9、若等差数列共有2n +1(n ∈N +)项,且奇数项的和为44,偶数项的和为33,则项数=( )A .5B .4C .3D .610.若数列{}n a 中,n a =43-3n ,则n S 取最大值时n =( B ) A .13 B .14 C .15 D .14或15二、填空题。

(每题4分,4题共16分) 11、数列{}n a 中,11,111+==-n n a a a ,则=4a12、 数列{}n a 的前n项的和231n S n n =++则此数列的通项公式是__.13、两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =__________. 14、设n S 是等差数列{}n a 的前n 项和,且8765S S S S >=< ,则下列结论一定正确的有(1).0<d (2).07=a (3)59S S > (4)01<a(5).6S 和7S 均为n S 的最大值 三、解答题。

高中数学必修5数列单元测试题含解析

高中数学必修5数列单元测试题含解析

新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。

高中数学必修五第二章《数列》单元测试题(含答案)

高中数学必修五第二章《数列》单元测试题(含答案)

高中数学必修五第二章单元测试题《数列》一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a n =cos n π,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列2.在数列2,9,23,44,72,…中,第6项是( ) A .82 B .107 C .100D .833.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24D .424.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516D.31155.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6D .76.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln nD .1+n +ln n7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .188.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .99.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .1610.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .2n +1-1B .2n -1C .2n -1D .2n +111.含2n +1个项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1n B.n +1n C.n -1nD.n +12n12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210B.129C.110D.15二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=________. 14.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________.15.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 16.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,则a 36=________. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的两实数根,求此数列的通项公式.18.(12分)等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.19.(12分)某市共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%.试问:(1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过公交车总量的1320.(12分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若{c n }是1,1,2,…,求数列{c n }的前10项的和.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.22.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项; (2)求{nS n }的前n 项和T n .高中数学必修五第二章单元测试题《数列》参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a n =cos n π,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列答案 D2.在数列2,9,23,44,72,…中,第6项是( ) A .82 B .107 C .100 D .83 答案 B3.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42 答案 C解析 思路一:设公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+d =2,4a 1+6d =10,解得a 1=14,d =32.则S 6=6a 1+15d =24.思路二:S 2,S 4-S 2,S 6-S 4也成等差数列,则2(S 4-S 2)=S 6-S 4+S 2,所以S 6=3S 4-3S 2=24.4.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.3115 答案 A5.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .7答案 C解析 由等差数列的性质可知a 2、a 5、a 8也成等差数列,故a 5= a 2+a 82=6,故选C. 6.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 依题意得a n +1-a n =ln n +1n ,则有a 2-a 1=ln 21,a 3-a 2=ln 32,a 4-a 3=ln 43,…,a n -a n -1=ln nn -1,叠加得a n -a 1=ln(21·32·43·…·nn -1)=ln n ,故a n =2+ln n ,选A.7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18答案 B解析 ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n .令a n =0且a n +1<0,n ∈N *,则有n =20.故选B.8.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9 答案 A解析 设等差数列{a n }的公差为d ,∵a 4+a 6=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a 6=-1<0,a 7=1>0,故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6.9.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .16答案 C解析 由4a 1+a 3=4a 2⇒4+q 2=4q ⇒q =2,则S 4=a 1+a 2+a 3+a 4=1+2+4+8=15.故选C.10.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .2n +1-1B .2n -1C .2n -1D .2n +1 答案 B11.含2n +1个项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1n B.n +1n C.n -1n D.n +12n 答案 B12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210B.129 C.110 D.15 答案 D解析 ∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,∴{a n ·a n -1a n -1-a n}为常数列.∴a n ·a n -1a n -1-a n =a 2·a 1a 1-a 2=2,∴a n ·a n -1=2a n -1-2a n . ∴1a n -1a n -1=12,∴{1a n }为等差数列,1a 1=12,d =12. ∴1a n=12+(n -1)·12=n 2.∴a n =2n ,∴a 10=15. 二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -9解析 由题意得a 23=a 1a 4,所以(a 1+6)2=a 1(a 1+9),解得a 1=-12.所以a 2=-12+3=-9.14.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是________. 答案 n 22-n2+3(n ≥3)解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n 2+3(n ≥3).15.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 ⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②,①-②,得3a 3=a 4-a 3,4a 3=a 4,q =a 4a 3=4.16.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=19,则a 36=________.答案 4 解析 ∵a 1=19,∴a 2=a 1+a 1=29,a 4=a 2+a 2=49,a 8=a 4+a 4=89.∴a 36=a 18+a 18=2a 18=2(a 9+a 9)=4a 9=4(a 1+a 8)=4(19+89)=4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的两实数根,求此数列的通项公式.答案 a n =2+(n -1)×2=2n18.(12分)等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d , a 6=a 4+2d =10+2d .a 10=a 4+6d =10+6d . 由a 3,a 6,a 10成等比数列,得a 3a 10=a 26. 即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200; 当d =1时,a 1=a 4-3d =10-3×1=7. 于是S 20=20a 1+20×192d =20×7+190=330.19.(12分)某市共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%.试问:(1)该市在2010年应该投入多少辆电力型公交车? (2)到哪一年底,电力型公交车的数量开始超过公交车总量的13 答案 (1)1 458辆 (2)2011年底20.(12分)设{a n }为等比数列,{b n }为等差数列,且b 1=0,c n =a n +b n ,若{c n }是1,1,2,…,求数列{c n }的前10项的和.解析 ∵c 1=a 1+b 1,即1=a 1+0,∴a 1=1. 又⎩⎪⎨⎪⎧ a 2+b 2=c 2,a 3+b 3=c 3,即⎩⎪⎨⎪⎧q +d =1, ①q 2+2d =2. ②②-2×①,得q 2-2q =0. 又∵q ≠0,∴q =2,d =-1. c 1+c 2+c 3+…+c 10=(a 1+a 2+a 3+…+a 10)+(b 1+b 2+b 3+…+b 10) =a 1(1-q 10)1-q +10b 1+10×92d=210-1+45·(-1)=978.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析 (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1-(-12)n -11-(-12)=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).22.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项;(2)求{nS n }的前n 项和T n .解析 (1)a n =12n ,n =1,2,…(2)∵{a n }是首项a 1=12,公比q =12的等比数列,∴S n =12(1-12n )1-12=1-12n ,nS n =n -n 2n . 则数列{nS n }的前n 项和T n =(1+2+…+n )-(12+222+…+n 2n ), ①T n 2=12(1+2+…+n )-(122+223+…+n -12n +n 2n +1),② ①-②,得T n 2=12(1+2+…+n )-(12+122+…+12n )+n 2n +1=n (n +1)4-12(1-12n )1-12+n 2n +1, 即T n =n (n +1)2+12n -1+n 2n -2.。

人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc

人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列 D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12D .-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A .2B .3C .4D .5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A .4 B.14 C .-4D .-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A .S 7B .S 4C .S 13D .S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A .2n -1B .2nC .2n +1D .2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A .4或5B .5或6C .6或7D .不存在解析 由d <0知,{a n }是递减数列, ∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A .有两个不等实根 B .有两相等的实根 C .无实数根 D .无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1=S n -1 两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n=log 3q (为常数),∴{b n }是公差为log 3q 的等差数列. (2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n=3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12, ∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。

高中数学人教A版必修五 第二章 数列 学业分层测评6 Word版含答案

高中数学人教A版必修五 第二章 数列 学业分层测评6 Word版含答案

高中数学必修五《数列》单元测试一、选择题1.已知数列{a n }满足:a 1=-14,a n =1-1a n -1(n >1),则a 4等于( ) A.45 B.14 C .-14 D.15【解析】 a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14. 【答案】 C2.数列1,3,6,10,15,…的递推公式是( )A .a n +1=a n +n ,n ∈N *B .a n =a n -1+n ,n ∈N *,n ≥2C .a n +1=a n +(n +1),n ∈N *,n ≥2D .a n =a n -1+(n -1),n ∈N *,n ≥2【解析】 由a 2-a 1=3-1=2,a 3-a 2=6-3=3,a 4-a 3=10-6=4,a 5-a 4=15-10=5,归纳猜想得a n -a n -1=n (n ≥2),所以a n =a n -1+n ,n ∈N *,n ≥2.【答案】 B3.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4 D .0【解析】 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质得,当n =2或3时,a n 最大,最大为0.【答案】 D4.在数列{a n }中,a 1=2,a n +1-a n -3=0,则{a n }的通项公式为( )A .a n =3n +2B .a n =3n -2C .a n =3n -1D .a n =3n +1【解析】 因为a 1=2,a n +1-a n -3=0,所以a n -a n -1=3,a n -2-a n -3=3,…a 2-a 1=3,以上各式相加,则有a n -a 1=(n -1)×3,所以a n =2+3(n -1)=3n -1.【答案】 C5.已知在数列{a n }中,a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2 016=( )A .3B .-3C .6D .-6【解析】 由题意知:a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,a 9=a 8-a 7=3,a 10=a 9-a 8=-3,…故知{a n }是周期为6的数列,∴a 2 016=a 6=-3.【答案】 B二、填空题6.数列{a n }中,若a n +1-a n -n =0,则a 2 016-a 2 015= .【解析】 由已知a 2 016-a 2 015-2 015=0,∴a 2 016-a 2 015=2 015.【答案】 2 0157.已知数列{a n },a n =a n +m (a <0,n ∈N *),满足a 1=2,a 2=4,则a 3= .【解析】 ⎩⎨⎧a 1=a +m =2,a 2=a 2+m =4,∴a 2-a =2, ∴a =2或-1,又a <0,∴a =-1.又a +m =2,∴m =3,∴a3=(-1)3+3=2.【答案】 28.如图2-1-1①是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2-1-1②的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图②中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为a n= .图2-1-1【解析】因为OA1=1,OA2=2,OA3=3,…,OA n=n,…,所以a1=1,a2=2,a3=3,…,a n=n.【答案】n三、解答题9.根据数列的前几项,写出下列各数列的一个通项公式:(1)45,12,411,27,…;(2)12,2,92,8,252,…;(3)1,3,6,10,15,…;(4)7,77,777,….【解】(1)注意前4项中有两项的分子为4,不妨把分子统一为4,即为45,48,4 11,414,…,于是它们的分母依次相差3,因而有a n=43n+2.(2)把分母统一为2,则有12,42,92,162,252,…,因而有a n=n22.(3)注意6=2×3,10=2×5,15=3×5,规律还不明显,再把各项的分子和分母都乘以2,即1×22,2×32,3×42,4×52,5×62,…,因而有a n =n (n +1)2.(4)把各项除以7,得1,11,111,…,再乘以9,得9,99,999,…,因而有a n =79(10n -1).10.在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式;(2)求a 2016;(3)2016是否为数列{a n }中的项?【解】 (1)设a n =kn +b (k ≠0),则有⎩⎨⎧k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2.(2)a 2 016=4×2 016-2=8 062.(3)由4n -2=2 016得n =504.5∉N *,故2 016不是数列{a n }中的项.[能力提升]1.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .log 23+log 31325 【解析】 a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5.【答案】 B2.已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }单调递增,则k 的取值范围是( )A .(-∞,2]B .(-∞,3)C .(-∞,2)D .(-∞,3]【解析】 a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k ,又{a n }单调递增,故应有a n +1-a n >0,即2n +1-k >0恒成立,分离变量得k <2n +1,故只需k <3即可.【答案】 B3.根据图2-1-2中的5个图形及相应点的个数的变化规律,试猜测第n 个图中有 个点.图2-1-2【解析】 观察图形可知,第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加中心上1个点,则有n (n -1)+1=n 2-n +1个点.【答案】 n 2-n +14.已知数列{a n }的通项公式为a n =n 2-21n 2(n ∈N *).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项.【解】 (1)令a n =0,得n 2-21n =0,∴n =21或n =0(舍去),∴0是数列{a n }中的第21项. 令a n =1,得n 2-21n 2=1,而该方程无正整数解,∴1不是数列{a n }中的项.(2)假设存在连续且相等的两项是a n ,a n +1,则有a n =a n +1,即n 2-21n 2=(n +1)2-21(n +1)2. 解得n =10,所以存在连续且相等的两项,它们分别是第10项和第11项.。

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

第二章 数列测评(A 卷)(总分:120分 时间:90分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.等差数列-2,0,2,…的第15项为A .11 2B .12 2C .13 2D .142 答案:C ∵a 1=-2,d =2,∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等比数列{a n }的首项a 1=1002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为A .8B .9C .10D .11答案:C a n =1002×(12)n -1<1⇒n>10,即等比数列{a n }前10项大于1,从第11项起小于1,故p 10最大.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于 A .64 B .81 C .128 D .243答案:A 公比q =a 2+a 3a 1+a 2=63=2.由a 1+a 2=a 1+2a 1=3a 1=3,得a 1=1,a 7=26=64.4.设{a n }是等差数列,a 1+a 3+a 5=9,a 6=9,则这个数列的前6项和等于 A .12 B .24 C .36 D .48答案:B {a n }是等差数列,a 1+a 3+a 5=3a 3=9,a 3=3,a 6=9.∴d =2,a 1=-1,则这个数列的前6项和等于6(a 1+a 6)2=24.5.数列{a n }的通项公式为a n =(-1)n -1(4n -3),则它的前100项之和S 100等于 A .200 B .-200 C .400 D .-400答案:B 设数列可记为1,-5,9,-13,…,393,-397.其奇数项与偶数项分别是公差为8,-8的等差数列.于是,S 100=(1+9+13+…+393)-(5+13+…+397)=50×(1+393)2-50×(5+397)2=-200.6.各项都是正数的等比数列{a n }的公比q ≠1,且2a 2,a 3,a 1成等差数列,则a 5+a 6a 3+a 4的值为A .1+32B .1-32 C.1-52 D.5+12答案:A 由2a 2,a 3,a 1成等差数列得2a 3=2a 2+a 1,∴2a 1q 2=2a 1q +a 1,整理得2q 2-2q -1=0,解得q =1+32或q =1-32<0(因等比数列各项都是正数,故舍去).∴a 5+a 6a 3+a 4=a 3q 2+a 4q 2a 3+a 4=q 2=(1+32)2=1+32.7.(2009广东高考,理4)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于A .n(2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C 由{a n }为等比数列,则a 5·a 2n -5=a 1·a 2n -1=22n , 则(a 1·a 3·a 5·…·a 2n -1)2=(22n )n ⇒a 1·a 3·…·a 2n -1=2n 2, 故log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1·a 3·…·a 2n -1)=n 2.8.在各项均不为零的等差数列{a n }中,若a n +1-a n 2+a n -1=0(n ≥2),则S 2n -1-4n 等于 A .-2 B .0 C .1 D .2 答案:A 由a n +1-a n 2+a n -1=0(n ≥2),2a n =a n +1+a n -1,得a n 2=2a n ,即a n =2或a n =0(舍去),所以S 2n -1-4n =(2n -1)×2-4n =-2.9.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是A .i<4?B .i<5?C .i ≥5?D .i<6? 答案:D 该程序的功能是求和∑i =1n1i(i +1),由输出结果56=11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,得n =5. 10.(2009山东潍坊高三第二次质检,11)已知函数f(x)=log 2x 的反函数为f -1(x),等比数列{a n }的公比为2,若f -1(a 2)·f -1(a 4)=210,则2f(a 1)+f(a 2)+…+f(a 2009)等于A .21004×2008B .21005×2009C .21005×2008D .21004×2009答案:D 由题意,得f -1(x)=2x ,故f -1(a 2)·f -1(a 4)=4222aa ⋅=210, ∴a 2+a 4=10,即2a 1+8a 1=10. ∴a 1=1.则f(a 1)+f(a 2)+…+f(a 2009)=log 2(a 1·a 2·…·a 2009)=log 220+1+2+…+2008=1+20082×2008=1004×2009.第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上) 11.若等差数列{a n }中,a 1+4a 7+a 13=96,则2a 2+a 17的值是__________. 答案:48 ∵a 1+4a 7+a 13=96,a 1+a 13=2a 7, ∴a 7=16.∴2a 2+a 17=a 1+a 3+a 17=a 7+a 11+a 3=a 7+2a 7=3a 7=48.12.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无数项为0,其中正确判断的序号是__________.答案:①④ 从定义可知,数列{a n }若构成“等差比数列”,则相邻两项不可能相等,所以①正确;而等差数列与等比数列均可能为常数列,就有可能不能构成“等差比数列”,所以②③错误;如数列为{2,0,2,0,2,0,…},则能构成“等差比数列”,所以④正确.综上所述,正确的判断是①④.13.在等比数列{a n }中,若a 5+a 6=a(a ≠0),a 15+a 16=b ,则a 25+a 26等于__________.答案:b 2a 由a 15+a 16a 5+a 6=(a 5+a 6)q 10a 5+a 6=b a ,则q 10=ba ,则a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)(q 10)2=a ×(b a )2=b 2a.14.对于一切实数x ,令[x]为不大于x 的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若a n =f(n3),n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =__________.答案:3n 2-n 2 ∵f(x)=[x],∴a n =f(n 3)=[n3],n ∈N *.于是,S 3n =(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3n -2+a 3n -1+a 3n ) =(0+0+1)+(1+1+2)+…+[(n -1)+(n -1)+n]=1+4+…+(3n -2)=n[1+(3n -2)]2=3n 2-n 2.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)(2009福建高考,文17)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .答案:解:(1)设{a n }的公比为q. 由已知得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. ∴数列{b n }的前n 项和S n =n(-16+12n -28)2=6n 2-22n.16.(本小题满分10分)已知数列{a n }的前n 项和S n =n(2n -1)(n ∈N *). (1)证明数列{a n }为等差数列;(2)设数列{b n }满足b n =S 1+S 22+S 33+…+S nn(n ∈N *),试判定:是否存在自然数n ,使得b n =900,若存在,求出n 的值;若不存在,请说明理由.答案:(1)证明:当n ≥2时,a n =S n -S n -1=n(2n -1)-(n -1)(2n -3)=4n -3, 当n =1时,a 1=S 1=1,适合. ∴a n =4n -3.∵a n -a n -1=4(n ≥2),∴{a n }为等差数列.(2)解:由(1)知,S n =2n 2-n ,∴S nn=2n -1.∴b n =S 1+S 22+S 33+…+S nn=1+3+5+7+…+(2n -1)=n 2.由n 2=900,得n =30,即存在满足条件的自然数,且n =30.17.(本小题满分10分)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n}是等比数列;(2)求数列{a n }的前n 项和S n .答案:(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *. 又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =(1+4+…+4n -1)+(1+2+…+n)=4n -13+n(n +1)2.18.(本小题满分12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求和:1S 1+1S 2+…+1S n.答案:解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(9+3d)q 2=960,S 2b 2=(6+d)q =64.解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎨⎧d =-65,q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n(n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n(n +2) =12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2). 19.(本小题满分12分)在数列{a n }中,a 1=2,a 4=8,且满足a n +2=2a n +1-a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2n -1·a n ,求数列{b n }的前n 项和S n .答案:解:(1)∵a n +2=2a n +1-a n (n ∈N *), ∴a n +2-a n +1=a n +1-a n . ∴{a n }为等差数列.设公差为d ,则由题意,得8=2+3d ,∴d =2. ∴a n =2+2(n -1)=2n.(2)∵b n =2n -1·2n =n·2n ,∴S n =b 1+b 2+b 3+…+b n =1×21+2×22+3×23+…+n ×2n .①∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =21+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n)×2n +1-2.∴S n =(n -1)·2n +1+2.。

高中数学必修五第二章《数列》单元测试卷及答案

高中数学必修五第二章《数列》单元测试卷及答案

高中数学必修五第二章《数列》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为( ) A .1B .2C .3D .42.在等比数列{}n a 中,4a 、12a 是方程2310x x +=+的两根,则8a 等于( ) A .1B .1-C .1±D .不能确定3.已知数列{}n a 的通项公式是31,22,n n n a n n +⎧=⎨-⎩为奇数为偶数,则23a a 等于( )A .70B .28C .20D .84.已知0a b c <<<,且a ,b ,c 为成等比数列的整数,n 为大于1的整数,则log a n ,log b n ,log c n 成( )A .等差数列B .等比数列C .各项倒数成等差数列D .以上都不对5.在等比数列{}n a 中,1n n a a +<,且2116a a =,495a a +=,则611a a 等于( ) A .6B .23C .16D .326.在等比数列{}n a 中,11a =,则其前3项的和3S 的取值范围是( ) A .(],1-∞- B .(),01),(-∞∞+C .3,4⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞7.正项等比数列{}n a 满足241a a =,313S =,3log n n b a =,则数列{}n b 的前10项和是( ) A .65B .65-C .25D .25-8.等差数列{}n a 中,若81335a a =,且10a >,n S 为前n 项和,则n S 中最大的是( ) A .21SB .20SC .11SD .10S9.已知等比数列{}n a 的前n 项和为n S ,1316n n S x -⋅=-,则x 的值为( ) A .13B .13-C .12D .12-10.等差数列{}n a 中,n S 是{}n a 前n 项和,已知62S =,95S =,则15S =( )A .15B .30C .45D .6011.一个卷筒纸,其内圆直径为4 cm ,外圆直径为12 cm ,一共卷60层,若把各层都视为一个同心圆, 3.14π=,则这个卷筒纸的长度为(精确到个位) ( ) A .14 mB .15 mC .16 mD .17 m12.数列{}n a 的首项为3,{}n b 为等差数列且1()n n n b a a n ++-∈=N .若32b =-,1012b =,则8a =( ) A .0B .3C .8D .11二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知n S 是等比数列{}n a 的前n 项和,52a =-,816a =,则6S 等于________. 14.设S n 为等差数列{}n a 的前n 项和,若33S =,624S =,则9a =__________. 15.在等差数列{}n a 中,n S 为它的前n 项和,若10a >,160S >,170S <则当n =________时,n S 最大.16.数列{}n x 满足1lg 1lg ()n n x x x *++∈=N ,且12100100x x x +++=,则101102200()lg x x x +++=________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c .20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?答 案一、选择题 1.【答案】B【解析】设公差为d ,由题意得11141037a a d a d ++=⎧⎨+=⎩,解得2d =.故选B .2.【答案】B【解析】由题意得,41230a a +=-<,41210a a ⋅=>, ∴40a <,120a <.∴80a <,又∵812421a a a ⋅==,∴81a =-.故选B . 3.【答案】C【解析】由通项公式可得22=a ,30=1a ,∴2320=a a .故选C . 4.【答案】C【解析】∵a ,b ,c 成等比数列,∴2b ac =. 又∵()log log log 2log log log log 112n n c b n n a a c ac b n n n==+=+=,∴log log g 1l 12o c b a n n n=+.故选C . 5.【答案】B【解析】∵492116a a a a ==⋅,又∵495a a +=,且1n n a a <+,∴42a =,93a =,∴45932a a q ==, 又6151123a q a ==.故选B . 6.【答案】C【解析】设等比数列的公比为q ,则22313124S q q q ⎛⎫++++ ⎪⎝⎭==.∴3S 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭.故选C .7.【答案】D【解析】∵{}n a 为正项等比数列,241a a =, ∴31a =,又∵313S =,∴公比1q ≠. 又∵()3311131a q S q-==-,231aa q =,解得13q =. ∴3333133n n n n a a q--⎛⎫= ⎪⎝⎭==-,∴3log 3n n b a n ==-.∴12b =,107b =-.∴()()11010101052522S b b +⨯-===-.故选D .8.【答案】B【解析】设数列{}n a 的公差为d ,因为81335a a =,所以12390a d +=,即1400a a +=, 所以20210a a +=,又10a >,0d <,故200a >,210a <, 所以n S 中最大的是20S .故选B . 9.【答案】C 【解析】1116a S x ==-, 221113266a S S x x x --+===-,3321136669a S S x x x --+===-, ∵{}n a 为等比数列,∴2213a a a =,∴21466x x x ⎛⎫=- ⎪⎝⎭,解得12x =.故选C .10.【答案】A【解析】解法一:由等差数列的求和公式及6925S S =⎧⎨=⎩知,116562259829a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,∴1427127a d =-⎧⎪⎪⎨⎪=⎪⎩,∴115151415152S a d ⨯=+=.故选A .解法二:由等差数列性质知,n S n ⎧⎫⎨⎬⎩⎭成等差数列,设其公差为D ,则96522396969S S D -==-=,∴227D =, ∴15952661159927S S D =+=+⨯=,∴1515S =.故选A . 11.【答案】B【解析】纸的厚度相同,且各层同心圆直径成等差数列, 则()126041260480 3.141507.2152l d d d cm m +=ππ+ππ⨯=+⨯6=≈+=,故选B . 12.【答案】B【解析】本题主要考查等差数列的性质及累加法求通项, 由32b =-,1012b =,∴2d =,16b =-,∴28n b n =-, ∵1n n n b a a =-+.∴8877665544332211()()()()()()()a a a a a a a a a a a a a a a a =-+-+-+-+-+-++- ()7654321176278332b b b b b b b a -+⨯-++++++=+=+=.故选B .二、填空题 13.【答案】218【解析】∵{}n a 为等比数列,∴385a a q =, ∴31682q ==--,∴2q =-. 又451a a q =,∴121168a -==-, ∴()()666111212181128S a q q⎡⎤----⎣⎦===-+.14.【答案】15【解析】设等差数列公差为d ,则3113233233S a a d d ⨯=+=+=,11a d +=,① 又161656615242d d S a a ⨯=+=+=,即1258a d +=.② 联立①②两式得11a =-,2d =, 故91818215a a d =-+⨯==+. 15.【答案】8【解析】∵()()()116168911717916802171702a a S a a a a S a ⎧+==+>⎪⎪⎨+⎪==<⎪⎩,∴80a >而10a >,∴数列{}n a 是一个前8项均为正,从第9项起为负值的等差数列,从而n =8时,S n 最大. 16.【答案】102【解析】由题意得110n n x x +=,即数列{}n x 是公比为10的等比数列, 所以100102101102200121001010()x x x x x x ++=++=++⋅,故101102200l (g )102x x x ++=+.三、解答题17.(10分)已知数列{}n a 是首项为1的等差数列,且公差不为零.而等比数列{}n b 的前三项分别是1a ,2a ,6a .(1)求数列{}n a 的通项公式n a ; (2)若1285k b b b +++=,求正整数k 的值.【答案】(1)32n a n =-;(2)4. 【解析】(1)设数列{}n a 的公差为d , ∵1a ,2a ,6a 成等比数列,∴1226a a a =⋅, ∴211()(1)5d d +⨯=+,∴23d d =, ∵0d ≠,∴3d =, ∴11()332n a n n +-⨯=-=. (2)数列{}n b 的首项为1,公比为214a q a ==. ∵121441143k k k b b b -==-+-++, ∴41853k -=,∴4256k =,∴4k =,∴正整数k 的值为4.18.(12分)等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n n b a n =-+,求12310b b b b ++++的值.【答案】(1)2n a n =+;(2)2101. 【解析】(1)设等差数列{}n a 的公差为d . 由已知得11143615a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩.所以1)2(1n a a n d n -=++=. (2)由(1)可得2n n b n =+. ∴231012310212()()(223210)()b b b b +++=++++⋯+++++ 231022221210((3))=+++++++++()()1021210110122-⨯+=+-()111122552532101===-++.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足:34117a a ⋅=,2522a a +=.(1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 是等差数列,且nn b S n c=+,求非零常数c . 【答案】(1)43n a n =-;(2)12-.【解析】(1){}n a 为等差数列, ∵342522a a a a +=+=, 又34117a a ⋅=,∴3a ,4a 是方程2221170x x +=-的两个根. 又公差0d >,∴34a a <,∴39a =,413a =. ∴1129313a d a d +=⎧⎨+=⎩,∴114a d =⎧⎨=⎩,∴43n a n =-.(2)由(1)知,()211422n n n S n n n -⋅+⨯=-=,∴22n n S n c n cn nb ==-++, ∴111b c =+,262b c =+,3153b c=+, ∵{}n b 是等差数列,∴2132b b b =+, ∴220c c +=,∴12c =-(0c =舍去).20.(12分)数列{}n a 的前n 项和为n S ,且11a =,113n n a S +=,1n ≥,n +∈N ,求:(1)数列{}n a 的通项公式; (2)2462n a a a a ++++的值.【答案】(1)21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩;(2)316179n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】(1)∵11()3n n a S n ++=∈N ,∴11()32,n n a S n n +≥∈=N -,∴两式相减,得113n n n a a a +-=.即()1423n n a a n +=≥.11111333a S ==,211433a a =≠.∴数列{}n a 是从第2项起公比为43的等比数列, ∴21,114,233n n n n a -=⎧⎪=⎨⎛⎫⋅≥⎪ ⎪⎝⎭⎩.(2)由(1)知,数列2a ,4a ,6a ,…,2n a 是首项为13,公比为169的等比数列,∴24621161393161167919nnn a a a a ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦+++==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-+.21.(12分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且111a b ==,2332a b b +=,2537a b -=;求:(1){}n a 和{}n b 的通项公式;(2)设n n n c a b =,n *∈N ,求数列{}n c 的前n 项和.【答案】(1)12n n a -=,*n ∈N ,21n b n =-,*n ∈N ;(2)233(2)n n S n -=+,*n ∈N . 【解析】(1)设{}n a 的公比为q ,{}n b 的公差为d .由题意0q >,由已知,有24232310q d q d ⎧-=⎪⎨-=⎪⎩,消去d ,得42280q q --=. 又因为0q >,解得2q =,2d =. 所以{}n a 的通项公式为12n n a -=,*n ∈N ,{}n b 的通项公式为21n b n =-,*n ∈N .(2)由(1)有1)1(22n n c n =--, 设{}n c 的前n 项和为n S , 则0121123252(212)n n S n -=+⨯⨯⨯+-⨯++, 123(212325222)1n n S n ⨯⨯⨯+=-++⨯+,两式相减,得23()()12222122323n n n n S n n -++-⨯-⨯=++---=.所以233(2)n n S n -=+,*n ∈N .22.(12分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? 【答案】(1)2018年底;(2)2014年底. 【解析】(1)设中低价房面积构成数列{}n a , 由题意知:{}n a 是等差数列,其中1250a =,50d =, ∴()2125050252252n n n S n n n -+⨯+==,令2252254750n n +≥, 即291900n n -≥+, 解得19n ≤-或10n ≥, ∴10n ≥.故到2018年底,该市历年所建中低价房累计面积首次不少于4750万m 2. (2)设新建住房面积构成等比数列{}n b .由题意知{}n b 为等比数列,1400b =, 1.08q =.∴1400 1.08()n n b -⨯=, 令0.85n n a b >,即1250150400 1.0()()80.85n n -+-⨯>⨯⨯, ∴满足不等式的最小正整数6n =.故到2014年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49B .50C .51D .522.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15B .30C .31D .643.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81B .120C .168D .1924.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160B .180C .200D .2205.数列{}n a 中,37 ()n a n n +=∈N -,数列{}n b 满足113b =,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( ) A .唯一存在,且为13B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( )A .8B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2B .1或2-C .1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4B .2:3C .1:2D .1:39.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( )A .1514B .1213C .1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21B .20C .19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ) A .2X Z Y += B .()()Y Y X Z Z X =-- C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项 C .第50项 D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 1311的等比中项是________.14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.18.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =. (1)求数列{}n a 的通项公式; (2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.21.(12分)已知数列{}n a 的前n 项和为n S ,且11a =,11,2,1(,)23n n a S n +==.(1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.22.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D .2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++ 120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B . 6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠, ∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C . 8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =. 所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B . 11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--, 即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个, 即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫⎪-⎝⎭,则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个, 其项数为1239)550(++++=+.故选C .二、填空题 13.【答案】1±【解析】11的等比中项为a ,由等比中项的性质可知,)2111a ==,∴1a =±.14.【答案】4-【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a , 则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误. ④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =,∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =. ∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-. 【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d ⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--, ∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----. 20.【答案】(1)见解析;(2)1()21n n S n -⋅=+. 【解析】(1)证明由已知122nn n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n n n n S n n n ++-=-=-++⋅----=,∴1()21n n S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析.【解析】(1)解由已知()1112,212n nn n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=. ∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-. 【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,①∴当1n =时,有1111112()()6S a a a ==++,解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.②①-②并整理得113()()0n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,∴13n n a a --=. 当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+ 21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=--242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-。

人教A版高中数学必修五第二章数列单元试题.doc

人教A版高中数学必修五第二章数列单元试题.doc

新课标数学必修5第二章数列单元试题说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等差数列,公差为11,数a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36.4,n ∈N *,∴n ≤36.【答案】C2.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( )A .-1B .1C .0D .2考查数列通项的理解及递推关系.【解析】由已知:a n +1=a n 2-1=(a n +1)(a n -1),∴a 2=0,a 3=-1,a 4=0,a 5=-1.【答案】A3.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .33考查等差数列的性质及运用.【解析】a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,故a 3+a 6+a 9=2×39-45=33.【答案】D4.设函数f (x )满足f (n +1)=2)(2n n f (n ∈N *)且f (1)=2,则f (20)为( ) A .95 B .97C .105D .192考查递推公式的应用.【解析】f (n +1)-f (n )=2n ⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⨯=-⨯=-⨯=-1921)19()20( 221)2()3(121)1()2(f f f f f f 相加得f (20)-f (1)=21(1+2+…+19)⇒f (20)=95+f (1)=97. 【答案】B5.等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )A .5B .6C .7D .8考查等差数列的通项.【解析】a n =a 1+(n -1)d ,即-6+(n -1)d =0⇒n =d6+1 ∵d ∈N *,当d =1时,n 取最大值n =7.【答案】C6.设a n =-n 2+10n +11,则数列{a n }从首项到第几项的和最大( )A .第10项B .第11项C .第10项或11项D .第12项 考查数列求和的最值及问题转化的能力.【解析】由a n =-n 2+10n +11=-(n +1)(n -11),得a 11=0,而a 10>0,a 12<0,S 10=S 11.【答案】C7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-90考查等差数列的运用.【解析】由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3,a 7是方程x 2+4x -12=0的两根,又公差d >0,∴a 7>a 3⇒a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.【答案】A8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为( )A .9B .10C .19D .29考查数学建模和探索问题的能力.【解析】1+2+3+…+n <200,即2)1(-n n <200. 显然n =20时,剩余钢管最少,此时用去22019⨯=190根. 【答案】B9.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列考查等差数列的性质.【解析】(a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.【答案】B10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为( )A .14B .15C .16D .17考查等差数列的求和及运用.【解析】S 9=2)(991a a +=18⇒a 1+a 9=4⇒2(a 1+4d )=4. ∴a 1+4d =2,又a n =a n -4+4d .∴S n =2)(1n a a n +=16n =240. ∴n =15.【答案】B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分) 11.在数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则72是这个数列的第_________项. 考查数列概念的理解及观察变形能力. 【解析】由已知得11+n a =n a 1+21,∴{n a 1}是以11a =1为首项,公差d =21的等差数列. ∴n a 1=1+(n -1)21,∴a n =12+n =72,∴n =6. 【答案】612.在等差数列{a n }中,已知S 100=10,S 10=100,则S 110=_________.考查等差数列性质及和的理解.【解析】S 100-S 10=a 11+a 12+…+a 100=45(a 11+a 100)=45(a 1+a 110)=-90⇒a 1+a 110=-2.S 110=21(a 1+a 110)×110=-110. 【答案】-11013.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______. 考查等差数列的前n 项和公式及等差数列的概念.【解析】-21=2)39)(2(+-+n ,∴n =5. 【答案】5 14.等差数列{a n },{b n }的前n 项和分别为S n 、T n ,若n n T S =132+n n ,则1111b a =_________. 考查等差数列求和公式及等差中项的灵活运用. 【解】1111b a =2)(212)(212)(2)(211211211211b b a a b b a a ++=++=322112132122121=+⨯⨯=T S . 【答案】3221三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a n }、{b n },则a n =3n +2,b n =4n -1,令a k =b m ,则3k +2=4m -1.∴3k =3(m -1)+m ,∴m 被3整除.设m =3p (p ∈N *),则k =4p -1.∵k 、m ∈[1,100].则1≤3p ≤100且1≤p ≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.考查等差数列的前n 项和公式的应用.【解】∵S 9=S 17,a 1=25,∴9×25+2)19(9-⨯d =17×25+2)117(17-d 解得d =-2,∴S n =25n +2)1(-n n (-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列.a n =25+(n -1)(-2)≥0,即n ≤13.5.∴数列前13项和最大.17.(本小题满分12分)数列通项公式为a n =n 2-5n +4,问(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.考查数列通项及二次函数性质.【解】(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项.(2)∵a n =n 2-5n +4=(n -25)2-49,∴对称轴为n =25=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.18.(本小题满分12分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m .(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.【解】(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-20(舍去)∴第1次相遇在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去)第2次相遇在开始运动后15分钟.19.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. (1)求证:{nS 1}是等差数列; (2)求a n 表达式;(3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1. 考查数列求和及分析解决问题的能力.【解】(1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2) S n ≠0,∴n S 1-11-n S =2,又11S =11a =2,∴{nS 1}是以2为首项,公差为2的等差数列. (2)由(1)n S 1=2+(n -1)2=2n ,∴S n =n21 当n ≥2时,a n =S n -S n -1=-)1(21-n n n =1时,a 1=S 1=21,∴a n =⎪⎪⎩⎪⎪⎨⎧≥=)2( 1)-(21-)1( 21n n n n (3)由(2)知b n =2(1-n )a n =n 1 ∴b 22+b 32+…+b n 2=221+231+…+21n <211⨯+321⨯+…+n n )1(1- =(1-21)+(21-31)+…+(11-n -n 1)=1-n1<1.。

高中数学人教A版必修5第二章 数列本章复习与测试(有答案)

高中数学人教A版必修5第二章 数列本章复习与测试(有答案)

10. 已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D. 18 11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( )A.1B.9C.10D.55 12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 二、填空题13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16. 设{}n a 为公比1>q 的等比数列,若ɑ2019和ɑ2020是方程03842=+-x x 的两根,则 ɑ2020+ɑ2021 =_____________. 三、解答题17. 已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式.18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .(Ⅰ)求na 及n S ;(Ⅰ)求q 的值;(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;(Ⅰ)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.参考答案:二、填空题13. ___24____. 14. )(4*1N n n ∈-. 15. )(22*2N n n n ∈++. 16.______18______.三、解答题17.解:设等比数列{}n a 的公比为q ,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--;当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:(Ⅰ)设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.(Ⅱ)设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d..13,2626756=∴=+=a a a a由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .n n b b b T +++=∴ 21=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn + .20. 解:(Ⅰ)q p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p p.0=∴q(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a.68)1(1-=-+=∴n d n a a n.34log ,68log 222-=-==∴n b n b a n n n故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………(1) 3451212341222222n n n n n T +++=+++++……(2) )()(21-,得: 23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-+=+--12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。

高中数学人教A版必修五 第二章 数列 学业分层测评14 Word版含答案

高中数学人教A版必修五 第二章 数列 学业分层测评14 Word版含答案

高中数学必修五《数列》单元检测(内含答案解析)一、选择题1.已知a n =(-1)n ,数列{a n }的前n 项和为S n ,则S 9与S 10的值分别是( ) A .1,1 B .-1,-1 C .1,0 D .-1,0 【解析】 S 9=-1+1-1+1-1+1-1+1-1=-1. S 10=S 9+a 10=-1+1=0. 【答案】 D2.已知等比数列的公比为2,且前5项和为1,那么前10项和等于( ) A .31 B .33 C .35 D .37 【解析】 根据等比数列性质得S 10-S 5S 5=q 5,∴S 10-11=25,∴S 10=33.【答案】 B3.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( )A .7B .8C .15D .16 【解析】 设{a n }的公比为q , ∵4a 1,2a 2,a 3成等差数列,∴4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2, 即q 2-4q +4=0, ∴q =2, 又a 1=1,∴S 4=1-241-2=15,故选C.【答案】 C4.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .135 B .100 C .95D .80【解析】 由等比数列的性质知a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32. ∴a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.【答案】 A5.数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且a 30+b 30=60,则{a n +b n }的前30项的和为( )A .1 000B .1 020C .1 040D .1 080【解析】 {a n +b n }的前30项的和S 30=(a 1+b 1)+(a 2+b 2)+…+(a 30+b 30)=(a 1+a 2+a 3+…+a 30)+(b 1+b 2+b 3+…+b 30)=30(a 1+a 30)2+30(b 1+b 30)2=15(a 1+a 30+b 1+b 30)=1 080.【答案】 D 二、填空题6.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________.【解析】 设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1,S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2.∴1+q =3,∴q =2. 【答案】 27.数列11,103,1 005,10 007,…的前n 项和S n =________. 【解析】 数列的通项公式a n =10n +(2n -1).所以S n =(10+1)+(102+3)+…+(10n +2n -1)=(10+102+…+10n )+[1+3+…+(2n -1)]=10(1-10n )1-10+n (1+2n -1)2=109(10n-1)+n 2.【答案】 109(10n -1)+n 28.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.【解析】 ∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列, 又∵S n =126,∴2(1-2n )1-2=126,∴n =6.【答案】 6 三、解答题9.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .【解】 (1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由已知可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3,故a 1=4.从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .10.已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .【解】 (1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n +1-b n .整理得b n +1n +1=b nn, 所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n ,因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).[能力提升]1.在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2 C .4n -1D.13(4n -1)【解析】 a 1+a 2+…+a n =2n -1,即S n =2n -1,则S n -1=2n -1-1(n ≥2),则a n =2n -2n -1=2n -1(n ≥2),又a 1=1也符合上式,所以a n =2n -1,a 2n =4n -1,所以a 21+a 22+…+a 2n =13(4n -1). 【答案】 D2.如图2-5-1,作边长为3的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,则前n 个内切圆的面积和为( )图2-5-1A.πa 23⎝ ⎛⎭⎪⎫1-14n B.⎝ ⎛⎭⎪⎫1-14n π C .2⎝ ⎛⎭⎪⎫1-14n πD .3⎝ ⎛⎭⎪⎫1-14n π【解析】 根据条件,第一个内切圆的半径为36×3=32,面积为34π,第二个内切圆的半径为34,面积为316π,…,这些内切圆的面积组成一个等比数列,首项为34π,公比为14,故面积之和为34π⎝ ⎛⎭⎪⎫1-14n 1-14=⎝ ⎛⎭⎪⎫1-14n π. 【答案】 B3.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.【解析】 每天植树棵数构成等比数列{a n },其中a 1=2,q =2,则S n =a 1(1-q n )1-q =2(2n -1)≥100,即2n +1≥102,∴n ≥6,∴最少天数n =6.【答案】 64.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .【解】 (1)由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+…+2n -32n -1+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.。

高中数学必修5第二章数列单元测试

高中数学必修5第二章数列单元测试

高中数学必修 5 第二章数列单元测试一:选择题(共12 小题,第小题 5 分,共 60 分。

)1.已知等差数列a n知足 a2a4 4 , a3a510 ,则它的前10项的和 S10()A.138B.135C. 95D.232.若等差数列{ a n}的前 5 项和S525,且 a2 3 ,则 a7()A .12 B.13 C.14 D.153.已知等差数列{ a }中, a=6,a =15.若 b =a ,则数列{ b }的前 5 项和等于()n25n2n n(A)30( B)45(C)90(D)1864.设a n(n N ) 是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则以下结论错误的是()(A)d<0(B) a =0(C)S>S5(D)S6和 S均为 S的最大值 .797n5.在数列{ a n}中,a n4n5, a1a2a n an2bn ,n N * ,此中a、 b 为常数,则 ab2()(A)-1(B) 0(C)-2(D)16.已知 {a n} 是等比数列,a22, a51,则公比 q=()141(A)(B)-2(C)22(D)27.记等差数列 { a n } 的前 n 项和为 S n,若 S2 4 , S4 20 ,则该数列的公差d()A . 2B. 3C. 6D. 78.设等比数列 { a n } 的公比 q 2 ,前n项和为 S nS4(),则a2A. 2B. 41517 C. D.229.若数列 { a n } 的前n项的和 S n3n 2 ,那么这个数列的通项公式为()A. a n( 3 )n 1B. a n 3 ( 1)n 122C. a n3n2D. a n 1,n12 3n1, n210.等差数列 { a n} 的前 n 项和记为 S n,若a3a7a11为一个确立的常数,则以下各数中也是常数的是()A. S6B. S11C.S12D. S1311.已知S是数列 {an }的前 n项和,S= pn-2(p∈ R,n∈ N*) ,那么数列 {an}()n nA .是等比数列B .当 p≠0时是等比数列C.当 p≠0, p≠1时是等比数列 D .不是等比数列12. 已知等差数列{ a }的公差为2,若 a , a , a 成等比数列,则 a 等于()n1342(A)- 4(B)- 6(C)- 8( D)- 10二:填空题(共 12 小题,第小题 5 分,共 60 分)13.设 { a} 是公比为 q 的等比数列, S是 { a } 的前 n 项和 ,若 { S } 是等差数列,则 q=__n n n n14.在等比数列 a n中,已知 a1a2a31,a4 a5 a62, 则该数列前15项的和S15=.15.设数列n中, a1 2, a n 1a n n1,则通项 a n__________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五第二章数列测试题①
姓名: 班级:
一、选择题
1.等差数列9}{,7,3,}{51第则数列中n n a a a a ==项等于( )
A .9
B .10
C .11
D .12
2.等比数列{}n a 中, ,243,952==a a 则{}n a 的第4项为( )
A .81
B .243
C .27
D .192
3.12+与12-,两数的等比中项是( )
A .1
B .1-
C .1±
D .21
4.已知等差数列的前三项依次为34,22,++x x x ,那么22是此数列的第( )项
A .2
B .4
C .6
D .8
5.在公比为整数的等比数列{}n a 中,若,12,64231=+=+a a a a 则该数列的第3项为(
) A .56
B .512
C .524
D .548
6. 数列{}n a 的通项公式n n a n -+=1,则该数列的前8项之和等于( )
A .1
B .2
C .3
D .4
7. 设{a n }是由正数组成的等比数列,公比q=2,且a 1a 3 =24
,则a 1a 2a 3a 4a 5等于( )
A.210
B.220
C.215
D.216
8.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )
A .4-
B .6-
C .8-
D .10-
9.设n S 是等差数列{}n a 的前n 项和,若642102S S S ,则,==等于( )
A .12
B .18
C .24
D .42
10.已知等差数列{a n }的459=S ,则5a 为( )
A .5
B .7
C .9
D .11
二、填空题
11.在等比数列{}n a 中, 若,15,393==a a 则15a =___________.
12.在等比数列{}n a 中,若101,a a 是方程06232
=--x x 的两根则47a a ⋅=___________.
13.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______.
14.已知数列{}n a 的前n 项和n
n S 23+=,求n a =_______。

15.在数列{a n }中,a 1=1,a n +1=22+n n a a
(n ∈N *),则72
是这个数列的第_________项.
三、解答题
16.成等差数列的三个数的和为12,第二数与第三数之积为24,求这三个数。

17.在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前10项和
18.在各项均为正数的等比数列{}n a 中,10,3312=+=a a a ,求n S 。

19.已知等比数列{}n a 的前n 项和为n S ,已知3213,2,S S S 成等差数列,求等比数列{}n a 的公比q 。

20.设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S 且1a ,2a ,4a 成等比数列.(Ⅰ)证明d a =1; (Ⅱ)求公差d 的值和数列{}n a 的通项公式。

相关文档
最新文档