人教版高中数学必修五第二章单元测试(一)- Word版含答案

合集下载

最新人教A版高中数学必修5第二章测评试卷及答案

最新人教A版高中数学必修5第二章测评试卷及答案

第二章测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.已知数列{a n}是等差数列,a1=2,其公差d≠0.若a5是a3和a8的等比中项,则S18=()A.398B.388C.189D.199a52=a3·a8,公差d≠0,a1=2,∴(a1+4d)2=(a1+2d)·(a1+7d),代入数据可得d=189.故选C.(2+4d)2=(2+2d)·(2+7d),解得d=1,∴S18=18a1+18×1722.已知数列{b n}是等比数列,b9是1和3的等差中项,则b2b16=()A.16B.8C.4D.2b9是1和3的等差中项,所以2b9=1+3,即b9=2.由等比数列{b n}的性质可得b2b16=b92=4.3.已知在递减的等差数列{a n}中,a3=-1,a1,a4,-a6成等比数列,若S n为数列{a n}的前n项和,则S7的值为() A.-14 B.-9C.-5D.-1{a n}的公差为d,由已知得a3=a1+2d=-1,a42=a1·(-a6),即(a1+3d)2=a1·(-a1-5d),且{a n}为递减d=7-21=-14.数列,则d=-1,a1=1.故S7=7a1+7×624.等差数列{a n}中,S16>0,S17<0,当其前n项和取得最大值时,n=()A.8B.9C.16D.17,S16>0,即a1+a16=a8+a9>0,S17<0,即a1+a17=2a9<0,所以a9<0,a8>0,所以等差数列{a n}为递减数列,且前8项为正数,从第9项以后为负数,所以当其前n项和取得最大值时,n=8.故选A.5.(2020·全国Ⅱ高考,文6)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S n=()a nA.2n-1B.2-21-nC.2-2n-1D.21-n-1{a n}的公比为q.∵a5-a3=12,a6-a4=24,∴a6-a4=q=2.a5-a3又a 5-a 3=a 1q 4-a 1q 2=12a 1=12,∴a 1=1.∴a n =a 1·q n-1=2n-1,S n =a 1(1-q n )1-q =1×(1-2n )1-2=2n-1. ∴S na n=2n -12n -1=2-12n -1=2-21-n.故选B .6.已知数列{a n }满足a n +a n+1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A.5 B.72C.92D.132a n +a n+1=12,a 2=2,∴a n ={-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.故选B .7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件,可求得该女子第4天所织布的尺数为( ) A .815B .1615C .2031D .4031n 天织的布为a n 尺,且数列{a n }为公比q=2的等比数列,由题意可得a 1(1-25)1-2=5,解得a 1=531.所以该女子第4天所织布的尺数为a 4=a 1q 3=4031. 故选D .8.在各项都为正数且不相等的等比数列{a n }中,S n 为其前n 项和,若a m ·a 2m+2=a 72=642(m ∈N *),且a m =8,则S 2m =( ) A.127 B.255 C.511D.1 023{a n }的公比为q ,则a 1q m-1·a 1q 2m+1=(a 1q 6)2.因为等比数列{a n }的各项都为正数且不相等,所以m-1+2m+1=12,解得m=4,故a 4=8.又因为a 72=642,所以a 7=64,q 3=a7a 4=8,解得q=2,所以a 1=a 423=1.故S 2m =S 8=1-281-2=255.9.已知在各项均为正数的数列{a n }中,a 1=1,a 2=2,2a n 2=a n -12+a n+12(n ≥2),b n =1a n +an+1,记数列{b n }的前n 项和为S n ,若S n =3,则n 的值是( ) A.99B.33C.48D.92a n 2=a n -12+a n+12(n ≥2),∴数列{a n 2}是首项为1,公差为22-1=3的等差数列,∴a n 2=1+3(n-1)=3n-2.又a n >0,∴a n =√3n -2,∴b n =1an +a n+1=√3n -2+√3n+1=13·(√3n +1−√3n -2), 故数列{b n }的前n 项和S n =13[(√4−√1)+(√7−√4)+…+(√3n +1−√3n -2)]=13·(√3n +1-1).由S n =13(√3n +1-1)=3,解得n=33.故选B 10.已知数列{a n }满足a 1+3a 2+32a 3+…+3n-1a n =n3(n ∈N *),则a n =( ) A.13n B.13n -1C.13nD.13n+1a 1+3a 2+32a 3+…+3n-1a n =n 3,①a 1+3a 2+32a 3+…+3n-2a n-1=n -13(n ≥2),② ①-②,得3n-1a n =n3−n -13=13(n ≥2),∴a n =13n (n ≥2).由①得a 1=13,经验证也满足上式,∴a n =13n (n ∈N *).故选C .11.对于正项数列{a n },定义:G n =a 1+2a 2+3a 3+…+na nn为数列{a n }的“匀称值”.已知数列{a n }的“匀称值”为G n =n+2,则该数列中的a 10等于( ) A .83B .125C .94D .2110G n=a1+2a2+3a3+…+na n,G n=n+2,∴n·G n=n·(n+2)=a1+2a2+3a3+…+na n,∴n.故10×(10+2)=a1+2a2+3a3+…+10a10;9×(9+2)=a1+2a2+3a3+…+9a9,两式相减得10·a10=21,∴a10=2110选D.12.在数列{a n}中,a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则S100=()A.0B.1 300C.2 600D.2 602a n+2-a n=1+(-1)n(n∈N*),当n=1时,得a3-a1=0,即a3=a1;当n=2时,得a4-a2=2.由此可得,当n为+a2=n.奇数时,a n=a1;当n为偶数时,a n=2×n-22所以S100=a1+a2+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50a1+(2+4+ (100)=2 600.=50+50×(100+2)2二、填空题(每小题5分,共20分)13.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为.,当n=1时,a1=S1=-7,当n≥2时,a n=S n-S n-1=2n-9.而a1=2×1-9=-7.综上,a n=2n-9.,又因为n∈N*.由2n-9>0,得n>92故满足a n>0的n的最小值为5.14.已知在公差不为零的正项等差数列{a n}中,S n为其前n项和,lg a1,lg a2,lg a4也成等差数列.若a5=10,则S5=.{a n}的公差为d,则d>0.由lg a1,lg a2,lg a4成等差数列,得2lg a2=lg a1+lg a4,则a22=a1a4,即(a1+d)2=a1(a1+3d),d2=a1d.因为d>0,所以d=a1,a5=5a1=10,解得d=a1=2.故S5=5a1+5×4×d=30.215.若等差数列{a n}的前n项和为S n,且a2=0,S5=10,数列{b n}满足b1=0,且b n+1=a n+1+b n,则数列{b n}的通项公式为.{a n }的公差为d ,则{a 1+d =0,5a 1+10d =10,解得{a 1=-2,d =2.于是a n =-2+2(n-1)=2n-4.因此a n+1=2n-2.于是b n+1-b n =2n-2,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=0+0+2+…+(2n-4)=n 2-3n+2,故数列{b n }的通项公式为b n =n 2-3n+2.n =n 2-3n+216.(2020·全国Ⅰ高考,文16)数列{a n }满足a n+2+(-1)n a n =3n-1,前16项和为540,则a 1= .n 为偶数时,有a n+2+a n =3n-1,则(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92, 因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448.当n 为奇数时,有a n+2-a n =3n-1,由累加法得a n+2-a 1=3(1+3+5+…+n )-1+n2=34n 2+n+14,所以a n+2=34n 2+n+14+a 1,所以a 1+34×12+1+14+a 1+34×32+3+14+a 1+34×52+5+14+a 1+34×72+7+14+a 1+34×92+9+14+a 1+34×112+11+14+a 1+34×132+13+14+a 1=448,解得a 1=7.三、解答题(共6小题,共70分)17.(本小题满分10分)已知数列{a n }是等差数列,前n 项和为S n ,且满足a 2+a 7=23,S 7=10a 3. (1)求数列{a n }的通项公式;(2)若a 2,a k ,a k+5(k ∈N *)构成等比数列,求k 的值.设等差数列{a n }的公差是d.根据题意有{a 1+d +a 1+6d =23,7a 1+7×62d =10(a 1+2d ), 解得{a 1=1,d =3.所以数列{a n }的通项公式为a n =3n-2. (2)由(1)得a 2=4,a k =3k-2,a k+5=3(k+5)-2, 由于a 2,a k ,a k+5(k ∈N *)构成等比数列, 所以(3k-2)2=4[3(k+5)-2],整理得3k 2-8k-16=0,解得k=4(舍去k =-43). 故k=4.18.(本小题满分12分)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且2a 2=S 2+12,a 3=2. (1)求数列{a n }的通项公式;(2)若b n =log 2a n +3,数列1b n b n+1的前n 项和为T n ,求满足T n >13的正整数n 的最小值.由题意知,2a 2=S 2+12,∴2a 2=a 1+a 2+12,得a 2=a 1+12.设等比数列{a n }的公比为q ,∵a 3=2,∴2q =2q 2+12,化简得q 2-4q+4=0,解得q=2, ∴a n =a 3·q n-3=2·2n-3=2n-2.(2)由(1)知,b n =log 2a n +3=log 22n-2+3=n-2+3=n+1,∴1b n b n+1=1(n+1)(n+2)=1n+1−1n+2, ∴T n =1b1b 2+1b 2b 3+…+1b n b n+1=12−13+13−14+…+1n+1−1n+2=12−1n+2=n2(n+2). 令T n >13,得n2(n+2)>13,解得n>4,∴满足T n >13的正整数n 的最小值是5.19.(本小题满分12分)已知数列{a n }满足2a n+1=1a n+1a n+2(n ∈N *),且a 3=15,a 2=3a 5.(1)求{a n }的通项公式;(2)若b n =3a n a n+1(n ∈N *),求数列{b n }的前n 项和S n .由2a n+1=1a n+1a n+2(n ∈N *)可知数列{1a n}为等差数列.由已知得1a 3=5,1a 2=13·1a 5, 设其公差为d ,则1a 1+2d=5,1a 1+d=13(1a 1+4d),解得1a 1=1,d=2,于是1a n=1+2(n-1)=2n-1,整理得a n =12n -1.(2)由(1)得b n =3a n a n+1=3(2n -1)(2n+1)=32(12n -1-12n+1), 所以S n =32(1-13+13−15+…+12n -1−12n+1)=3n2n+1. 20.(本小题满分12分)已知数列{a n }的前n 项和S n =2a n -2n . (1)求a 1,a 2.(2)设c n =a n+1-2a n ,证明数列{c n }是等比数列.(3)求数列{n+12c n}的前n 项和T n .a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2.由2a n =S n +2n ,知2a n+1=S n+1+2n+1=a n+1+S n +2n+1,∴a n+1=S n +2n+1,①∴a 2=S 1+22=2+22=6.①式知a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,即c n =2n ,∴cn+1c n=2(常数). ∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列.c n =2n ,∴n+12c n=n+12n+1.∴数列{n+12c n}的前n 项和T n =222+323+424+…+n+12n+1,12T n =223+324+…+n 2n+1+n+12n+2,两式相减,得12T n =222+123+124+125+…+12n+1−n+12n+2=12+123×(1-12n -1)1-12−n+12n+2=34−12n+1−n+12n+2=34−n+32n+2.∴T n =32−n+32n+1. 21.(本小题满分12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n-2(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n ={1(a n -1)(a n +1),n 为奇数,4·(12)a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .由于S n =a n +12n 2+32n-2,所以当n ≥2时,S n-1=a n-1+12(n-1)2+32(n-1)-2,两式相减得a n =a n -a n-1+n+1,于是a n-1=n+1,所以a n =n+2. (2)由(1)得b n ={1(n+1)(n+3),n 为奇数,(12)n ,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n-1)+(b 2+b 4+…+b 2n ).因为b 1+b 3+…+b 2n-1=12×4+14×6+16×8+…+12n×(2n+2)=14[11×2+12×3+…+1n×(n+1)]=14(1-12+12-13+…+1n -1n+1)=n 4(n+1),b 2+b 4+…+b 2n =(12)2+(14)4+…+(12)2n =14[1-(14)n ]1-14=13[1-(14)n],于是T 2n =n4(n+1)+13[1-(14)n].22.(本小题满分12分)已知数列{a n }满足3(n+1)a n =na n+1(n ∈N *),且a 1=3. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和; (3)若a nb n=2n+3n+1,求证:56≤1b 1+1b 2+…+1b n<1.3(n+1)a n =na n+1,所以an+1a n=3(n+1)n(n ∈N *), 则a2a 1=3×21,a 3a 2=3×32,a 4a 3=3×43,……a n a n -1=3×n n -1,累乘可得an a 1=3n-1×n. 又因为a 1=3,所以a n =n×3n (n ∈N *).{a n }的前n 项和为S n ,则S n =1×3+2×32+3×33+…+(n-1)×3n-1+n×3n ,①3S n =1×32+2×33+3×34+…+(n-1)×3n +n×3n+1,② ①-②,可得-2S n =3+32+33+…+3n -n×3n+1=3(1-3n )1-3-n×3n+1=32(3n -1)-n×3n+1 =(12-n)×3n+1-32. 所以S n =(n 2-14)×3n+1+34.因为an b n=2n+3n+1, 所以1b n=2n+3n+1×1n×3n =2n+3n (n+1)×13n=3(n+1)-nn (n+1)×13n =(3n -1n+1)×13n =1n ×13n -1−1n+1×13n , 则1b 1+1b 2+…+1b n=(1×13-12×131)+(12×131-13×132)+…+(1n×13n -1-1n+1×13n )=1-1n+1×13n .因为n ∈N *,所以0<1n+1×13n≤16,即56≤1-1n+1×13n <1, 于是56≤1b 1+1b 2+…+1b n <1.。

2021年高中数学 第二章 数列单元测试(含解析)新人教版必修5

2021年高中数学 第二章 数列单元测试(含解析)新人教版必修5

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 2011是等差数列:1,4,7,10,…的第几项( )(A)669 (B)670 (C)671 (D)6722.数列{an }满足an=4an-1+3,a1=0,则此数列的第5项是()(A)15 (B)255 (C)20 (D)83.等比数列{an }中,如果a6=6,a9=9,那么a3为()(A)4 (B)(C)(D)24.在等差数列{an }中,a1+a3+a5=105,a2+a4+a6=99,则a20=( )(A)-1 (B)1(C)3 (D)75.在等差数列{an }中,已知a1=2,a2+a3=13,则a4+a5+a6=( )(A)40 (B)42(C)43 (D)456.记等差数列的前n项和为Sn ,若S2=4,S4=20,则该数列的公差d=()(A)2 (B)3 (C)6 (D)77.等差数列{an }的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是()(A)90 (B)100 (C)145 (D)1908.在数列{an }中,a1=2,2an+1-2an=1,则a101的值为()(A)49 (B)50 (C)51 (D)529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数转换成十进制数的形式是()(A)217-2 (B)216-1(C)216-2 (D)215-110.在等差数列{an }中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=()(A)45 (B)50 (C)75 (D)60二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)11.(2011·江西高考)已知数列{an }的前n项和Sn满足:Sn+Sm=Sn+m,且a1=1,那么a10=_______12.等比数列{an }满足an>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=____13.等差数列{an}前m项的和为30,前2m项的和为100,则它的前3m项的和为______.14.(2011·广东高考)已知{an }是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=______.15.两个等差数列{an }, {bn}, ,则______.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)16. (12分)已知等差数列{a n}的公差d=1,前n项和为S n.(1)若1,a1,a3成等比数列,求a1;(2)若S5>a1a9,求a1的取值范围.17.(10分)已知数列{an }是等差数列,a2=3,a5=6,求数列{an}的通项公式与前n项的和Mn.18.(12分)等比数列{an }的前n项和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求Sn.19.(12分)数列{an }的前n项和为Sn,数列{bn}中,b1=a1,bn=an-an-1(n≥2),若an+Sn=n,cn=an-1.(1)求证:数列{cn}是等比数列;(2)求数列{bn}的通项公式.20.(12分)如果有穷数列a1,a2,a3,…,am(m为正整数)满足条件a1=am, a2=am-1,…,am=a1,即ai =am-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{bn }是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;(2)设{cn }是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{cn}各项的和S.21.(12分)已知数列{an }的前n项和为(),等差数列{bn}中,bn>0(),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.(1)求数列{an },{bn}的通项公式;(2)求数列{an +bn}的前n项和Tn.(选做题)22.(12分)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,每月利息按复利计算,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1),∴n=671.2.【解析】选B.由an =4an-1+3,a1=0,依次求得a2=3,a3=15,a4=63,a5=255.3.【解析】选A.等比数列{an }中,a3,a6,a9也成等比数列,∴a62=a3a9,∴a3=4.4.【解析】选B.a1+a3+a5=105,∴a3=35,同理a4=33,∴d=-2,a1=39,∴a20=a1+19d=1.5.【解析】选B.设公差为d,由a1=2,a2+a3=13,得d=3,则a4+a5+a6= (a1+3d)+(a2+3d)+(a3+3d)=(a1+a2+a3)+9d=15+27=42.6.【解析】选B.S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d),∵d≠0,∴d=2,从而S10=100.8.【解题提示】利用等差数列的定义.【解析】选D.∵2an+1-2an=1,∴,∴数列{an }是首项a1=2,公差的等差数列,∴.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1.10.【解析】选B.由已知a1+a2+a3+a11+a12+a13=150,∴3(a1+a13)=150,∴a1+a13=50,∴a4+a10=a1+a13=50.11.【解题提示】结合Sn +Sm=Sn+m,对m,n赋值,令n=9,m=1,即得S9+S1=S10,即得a10=1.【解析】选A.∵Sn +Sm=Sn+m,∴令n=9,m=1,即得S9+S1=S10,即S1=S10-S9=a10,又∵S1=a1,∴a10=1.12.【解题提示】由已知可先求得通项公式,再由对数的性质进行运算.【解析】选C.a5·a2n-5=22n(n≥3),∴an 2=22n,an>0,∴an =2n,log2a1+log2a3+…+log2a2n-1=1+3+…+(2n-1)=n2.13.【解题提示】利用等差数列前n项和的性质【解析】由题意可知Sm ,S2m-Sm,S3m-S2m成等差数列,2(S2m-Sm)=Sm+S3m-S2m∴S3m =3(S2m-Sm)=3×(100-30)=210.答案:21014.【解题提示】由等比数列的通项公式,可得关于公比q的方程,从而求出q.【解析】由a4-a3=4得a2q2-a2q=4,即2q2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去).答案:215.【解题提示】利用等差数列的前n项和的有关性质进行运算.【解析】设两个等差数列{an },{bn}的前n项和分别为An,Bn.则.答案:三、解答题:16.【解析(1)因为数列{a n}的公差d=1,且1,a1,a3成等比数列,所以a21=1×(a1+2),即a21-a1-2=0,解得a1=-1或a1=2.(2)因为数列{a n}的公差d=1,且S5>a1a9,所以5a1+10>a21+8a1,即a21+3a1-10<0,解得-5<a1<2.故a1的取值范围为(-5,2).17.【解析】设{an}的公差为d,∵a2=3,a5=6,∴,∴a1=2,d=1,∴an=2+(n-1)=n+1.18.【解析】(1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2)由于a1≠0,故2q2+q=0,又q≠0,从而.(2)由已知得a1-a1()2=3,故a1=4从而.19.【解析】(1)∵a1=S1,an+Sn=n,①∴a1+S1=1,得.又an+1+Sn+1=n+1 ②①②两式相减得2(an+1-1)=an-1,即,也即,故数列{cn}是等比数列.(2)∵,∴,.故当n≥2时,.又,即.20.【解题提示】利用等比数列的前n项和公式进行计算.【解析】(1)设数列{bn }的公差为d,则b4=b1+3d=2+3d=11,解得d=3,∴数列{bn}为2,5,8,11,8,5,2.(2)S=c1+c2+…+c49=2(c25+c26+…+c49)-c25=2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a1=1,an=Sn-Sn-1=3n-1,n>1,∴an =3n-1(),∴数列{an}是以1为首项,3为公比的等比数列,∴a1=1,a2=3,a3=9,在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.又因a1+b1,a2+b2,a3+b3成等比数列,设等差数列{bn}的公差为d,∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn>0(),∴舍去d=-10,取d=2,∴b1=3.∴bn=2n+1().(2)由(1)知∴Tn =a1+b1+a2+b2+…+an+bn=(a1+a2+…+an)+(b1+b2+…+bn).22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论.【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则第1次付款金额为a1=200+2 000×0.01=220(元);第2次付款金额为a2=200+(2 000-200)×0.01=218(元)……第n次付款金额为an=200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为 (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2 000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为.应有,精品文档实用文档 所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱.【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解;(2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.B\31329 7A61 穡_ 37134 910E 鄎35625 8B29 謩24994 61A2 憢39366 99C6 駆34817 8801 蠁34370 8642 虂30352 7690 皐-133115 815B 腛。

人教版高中数学必修5测试题及答案全套【最新整理】

人教版高中数学必修5测试题及答案全套【最新整理】

第一章 解三角形测试一 正弦定理和余弦定理Ⅰ 学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ 基础训练题一、选择题1.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60°(B)30°(C)60°或120°(D)30°或150°2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,cos C =-41,则c 等于( ) (A)2(B)3(C)4(D)53.在△ABC 中,已知32sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45(B)35(C)920(D)512 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c =150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于( )(A)1∶2∶3(B)1∶3∶2(C)1∶4∶9(D)1∶2∶3二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B =45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若2cos B cos C =1-cos A ,则△ABC 形状是________三角形.9.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________. 10.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________.三、解答题11.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =4,C =60°,试解△ABC . 12.在△ABC 中,已知AB =3,BC =4,AC =13.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),求角A 的大小.14.在△ABC 中,已知BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.测试二 解三角形全章综合练习Ⅰ 基础训练题一、选择题1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 等于( )(A)6π (B)3π (C)32π (D)65π2.在△ABC 中,给出下列关系式:①sin(A +B )=sin C②cos(A +B )=cos C ③2cos 2sinCB A =+ 其中正确的个数是( ) (A)0 (B)1(C)2 (D)33.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c .若a =3,sin A =32,sin(A +C )=43,则b 等于( ) (A)4(B)38(C)6 (D)827 4.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,sin C =32,则此三角形的面积是( ) (A)8 (B)6 (C)4 (D)35.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,则此三角形的形状是( ) (A)直角三角形 (B)正三角形 (C)腰和底边不等的等腰三角形 (D)等腰直角三角形 二、填空题6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,B =45°,则角A =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3,c =19,则角C =________. 8.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若b =3,c =4,cos A =53,则此三角形的面积为________. 9.已知△ABC 的顶点A (1,0),B (0,2),C (4,4),则cos A =________. 10.已知△ABC 的三个内角A ,B ,C 满足2B =A +C ,且AB =1,BC =4,那么边BC 上的中线AD 的长为________. 三、解答题11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =3,b =4,C =60°.(1)求c ; (2)求sin B .12.设向量a ,b 满足a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为O (0,0),A (5,2)和B (-9,8),若BD ⊥OA 于D .(1)求高线BD 的长; (2)求△OAB 的面积.14.在△ABC 中,若sin 2A +sin 2B >sin 2C ,求证:C 为锐角.(提示:利用正弦定理R CcB b A a 2sin sin sin ===,其中R 为△ABC 外接圆半径) Ⅱ 拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX 、OY 上的A 、B 两点,| OA |=3km ,| OB |=1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向. 问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且ca bC B +-=2cos cos . (1)求角B 的值;(2)若b =13,a +c =4,求△ABC 的面积.第二章 数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数. 2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n (B)a n =4n(C)a n =94(10n -1)(D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( )(A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( )(A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( )(A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122+n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211-++++=n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312-+n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项? 13.已知函数xx x f 1)(-=,设a n =f (n )(n ∈N +).(1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( )(A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( )(A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( )(A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b - (B)1+-n a b (C)1++n a b (D)2+-n a b5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( )(A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( )(A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4 (B)23 (C)916(D)34.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( )(A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列. 其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=1,a 42=1,a 54=5.(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( )(A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( )(A)100 (B)-100 (C)200 (D)-200 4.数列⎭⎬⎫⎩⎨⎧+-)12)(12(1n n 的前n 项和为( )(A)12+n n (B)122+n n (C)24+n n (D)12+n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( )(A)7000 (B)7250 (C)7500 (D)14950 二、填空题6.nn +++++++++11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________.9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211⨯++⨯+⨯+⨯=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111++++n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211-++++n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( )(A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( )(A)5 (B)10 (C)15 (D)203.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( )(A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是( )5.已知数列{a n }满足a 1=0,1331+-=+n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且⎪⎪⎩⎪⎪⎨⎧+=+.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________.7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________.8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________. 10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和.12.已知函数f (x )=422+x (x >0),设a 1=1,a 21+n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( )(A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( )(A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( )(A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( )(A)-2 (B)2 (C)-4 (D)4 5.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )(A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________.7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a aa a ++++=________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21+n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元. (1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题 15.已知函数f (x )=412-x (x <-2),数列{a n }满足a 1=1,a n =f (-11+n a )(n ∈N *).(1)求a n ;(2)设b n =a 21+n +a 22+n +…+a 212+n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q =f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1.了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小. 2.理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( )(A)a >b ⇒a -c >b -c (B)a >b ⇒ac >bc (C)a >b ⇒a 2>b 2 (D)a >b ⇒ac 2>bc 2 2.若-1<α<β<1,则α-β 的取值范围是( )(A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3.设a >2,b >2,则ab 与a +b 的大小关系是( )(A)ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4.使不等式a >b 和ba 11>同时成立的条件是( )(A)a >b >0 (B)a >0>b (C)b >a >0 (D)b >0>a 5.设1<x <10,则下列不等关系正确的是( )(A)lg 2x >lg x 2>lg(lg x ) (B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x ) (D)lg x 2>lg(lg x )>lg 2x 二、填空题6.已知a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c ________(b -2)c ; (2)a c ________bc; (3)b -a ________|a |-|b |. 7.已知a <0,-1<b <0,那么a 、ab 、ab 2按从小到大排列为________. 8.已知60<a <84,28<b <33,则a -b 的取值范围是________;ba的取值范围是________. 9.已知a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③cbc a >;④a -c >b -c .以其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是________⇒________;________⇒________.(在“⇒”的两侧填上论断序号).10.设a >0,0<b <1,则P =23+a b 与)2)(1(++=a a bQ 的大小关系是________.三、解答题11.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.12.设a >0,b >0,且a ≠b ,b a q a b ba p +=+=,22.证明:p >q .注:解题时可参考公式x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知a >0,且a ≠1,设M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较a 5和b 5的大小.测试十 均值不等式Ⅰ 学习目标1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.Ⅱ 基础训练题一、选择题1.已知正数a ,b 满足a +b =1,则ab ( )(A)有最小值41 (B)有最小值21 (C)有最大值41(D)有最大值212.若a >0,b >0,且a ≠b ,则( )(A)2222b a ab ba +<<+ (B)2222b a ba ab +<+< (C)2222ba b a ab +<+<(D)2222ba ab b a +<<+ 3.若矩形的面积为a 2(a >0),则其周长的最小值为( )(A)a (B)2a (C)3a(D)4a4.设a ,b ∈R ,且2a +b -2=0,则4a +2b 的最小值是( )(A)22(B)4(C)24(D)85.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )(A)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (B)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值唯一 (C)ab ≤c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 (D)ab ≥c +d ,且等号成立时a ,b ,c ,d 的取值不唯一 二、填空题6.若x >0,则变量x x 9+的最小值是________;取到最小值时,x =________.7.函数y =142+x x(x >0)的最大值是________;取到最大值时,x =________. 8.已知a <0,则316-+a a 的最大值是________. 9.函数f (x )=2log 2(x +2)-log 2x 的最小值是________.10.已知a ,b ,c ∈R ,a +b +c =3,且a ,b ,c 成等比数列,则b 的取值范围是________. 三、解答题11.四个互不相等的正数a ,b ,c ,d 成等比数列,判断2da +和bc 的大小关系并加以证明. 12.已知a >0,a ≠1,t >0,试比较21log a t 与21log +t a 的大小.Ⅲ 拓展训练题13.若正数x ,y 满足x +y =1,且不等式a y x ≤+恒成立,求a 的取值范围. 14.(1)用函数单调性的定义讨论函数f (x )=x +xa(a >0)在(0,+∞)上的单调性; (2)设函数f (x )=x +xa(a >0)在(0,2]上的最小值为g (a ),求g (a )的解析式.测试十一 一元二次不等式及其解法Ⅰ 学习目标1.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系. 2.会解简单的一元二次不等式.Ⅱ 基础训练题一、选择题1.不等式5x +4>-x 2的解集是( )(A){x |x >-1,或x <-4} (B){x |-4<x <-1} (C){x |x >4,或x <1}(D){x |1<x <4}2.不等式-x 2+x -2>0的解集是( )(A){x |x >1,或x <-2}(B){x |-2<x <1}(C)R(D)∅3.不等式x 2>a 2(a <0)的解集为( )(A){x |x >±a }(B){x |-a <x <a } (C){x |x >-a ,或x <a }(D){x |x >a ,或x <-a } 4.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )(A){x |-3<x <21} (B){x |x <-3,或x >21} (C){x -2<x <31}(D){x |x <-2,或x >31}5.若函数y =px 2-px -1(p ∈R )的图象永远在x 轴的下方,则p 的取值范围是( )(A)(-∞,0) (B)(-4,0] (C)(-∞,-4) (D)[-4,0) 二、填空题6.不等式x 2+x -12<0的解集是________.7.不等式05213≤+-x x 的解集是________.8.不等式|x 2-1|<1的解集是________. 9.不等式0<x 2-3x <4的解集是________. 10.已知关于x 的不等式x 2-(a +a 1)x +1<0的解集为非空集合{x |a <x <a1},则实数a 的取值范围是________. 三、解答题11.求不等式x 2-2ax -3a 2<0(a ∈R )的解集.12.k 在什么范围内取值时,方程组⎩⎨⎧=+-=-+0430222k y x x y x 有两组不同的实数解?Ⅲ 拓展训练题13.已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1)求实数a 的取值范围,使C ⊇(A ∩B );(2)求实数a 的取值范围,使C ⊇(U A )∩(U B ).14.设a ∈R ,解关于x 的不等式ax 2-2x +1<0.测试十二 不等式的实际应用Ⅰ 学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ 基础训练题一、选择题 1.函数241xy -=的定义域是( )(A){x |-2<x <2}(B){x |-2≤x ≤2} (C){x |x >2,或x <-2}(D){x |x ≥2,或x ≤-2}2.某村办服装厂生产某种风衣,月销售量x (件)与售价p (元/件)的关系为p =300-2x ,生产x 件的成本r =500+30x (元),为使月获利不少于8600元,则月产量x 满足( ) (A)55≤x ≤60 (B)60≤x ≤65 (C)65≤x ≤70 (D)70≤x ≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r 的取值范围为( ) (A)2≤r ≤10 (B)8≤r ≤10 (C)2≤r ≤8 (D)0≤r ≤84.若关于x 的不等式(1+k 2)x ≤k 4+4的解集是M ,则对任意实常数k ,总有( )(A)2∈M ,0∈M (B)2∉M ,0∉M (C)2∈M ,0∉M (D)2∉M ,0∈M 二、填空题5.已知矩形的周长为36cm ,则其面积的最大值为________.6.不等式2x 2+ax +2>0的解集是R ,则实数a 的取值范围是________. 7.已知函数f (x )=x |x -2|,则不等式f (x )<3的解集为________.8.若不等式|x +1|≥kx 对任意x ∈R 均成立,则k 的取值范围是________. 三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状. 10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m ,乙车的刹车距离略超过10m .已知甲乙两种车型的刹车距离s (km)与车速x (km/h)之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.问交通事故的主要责任方是谁?Ⅲ 拓展训练题11.当x ∈[-1,3]时,不等式-x 2+2x +a >0恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm 2.如何选择纸张的尺寸,才能使纸的用量最小?测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 2.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题1.已知点A (2,0),B (-1,3)及直线l :x -2y =0,那么( )(A)A ,B 都在l 上方 (B)A ,B 都在l 下方 (C)A 在l 上方,B 在l 下方 (D)A 在l 下方,B 在l 上方2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤+≥≥2,0,0y x y x 所表示的平面区域的面积为( )(A)1 (B)2 (C)3 (D)43.三条直线y =x ,y =-x ,y =2围成一个三角形区域,表示该区域的不等式组是( )(A)⎪⎩⎪⎨⎧≤-≥≥.2,,y x y x y(B)⎪⎩⎪⎨⎧≤-≤≤.2,,y x y x y (C)⎪⎩⎪⎨⎧≤-≥≤.2,,y x y x y (D)⎪⎩⎪⎨⎧≤-≤≥.2,,y x y x y4.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )(A)-6 (B)-10 (C)5 (D)105.某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( ) (A)5种 (B)6种 (C)7种 (D)8种 二、填空题6.在平面直角坐标系中,不等式组⎩⎨⎧<>00y x 所表示的平面区域内的点位于第________象限. 7.若不等式|2x +y +m |<3表示的平面区域包含原点和点(-1,1),则m 的取值范围是________.8.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,033,3,1y x y x 那么z =x -y 的取值范围是________.9.已知点P (x ,y )的坐标满足条件⎪⎩⎪⎨⎧≥-+≤≤,022,2,1y x y x 那么x y 的取值范围是________.10.方程|x |+|y |≤1所确定的曲线围成封闭图形的面积是________. 三、解答题11.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x12.某实验室需购某种化工原料106kg ,现在市场上该原料有两种包装,一种是每袋35kg ,价格为140元;另一种是每袋24kg ,价格为120元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13.商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向A ,B 两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A 镇需大米70吨,B 镇需大米110吨,两个粮库到两镇的路程和运费如下表:(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题1.设a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2 (B)ba 11< (C)a -c >b -c (D)|a |>|b |2.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+2,042,04y y x y x 表示的平面区域的面积是( )(A)23 (B)3 (C)4 (D)63.某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为10m ,则这个矩形的面积最大值是( ) (A)50m 2 (B)100m 2 (C)200m 2 (D)250m 24.设函数f (x )=222xx x +-,若对x >0恒有xf (x )+a >0成立,则实数a 的取值范围是( ) (A)a <1-22(B)a <22-1(C)a >22-1(D)a >1-22 5.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0,则( )(A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题6.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________.7.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.8.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 9.若函数f (x )=1222--⋅+aax x的定义域为R ,则a 的取值范围为________.10.三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路. 甲说:“只须不等式左边的最小值不小于右边的最大值.” 乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于x 的函数,作出函数图象.”参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是________. 三、解答题11.已知全集U =R ,集合A ={x | |x -1|<6},B ={x |128--x x >0}.(1)求A ∩B ; (2)求(U A )∪B .12.某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题 13.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与ij a a 两数中至少有一个属于A .(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P ,并说明理由; (2)证明:a 1=1,且n nna a a a a a a =++++++---1121121 .测试十五 必修5模块自我检测题一、选择题1.函数42-=x y 的定义域是( )(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0<ba<1(C)ab <2ba + (D)ab >a +b3.设不等式组⎪⎩⎪⎨⎧≥-≥≤0,0,1y x y x 所表示的平面区域是W ,则下列各点中,在区域W 内的点是( )(A))31,21( (B))31,21(-(C))31,21(-- (D))31,21(-4.设等比数列{a n }的前n 项和为S n ,则下列不等式中一定成立的是( )(A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<05.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c 等于( )(A)1∶3∶2 (B)1∶2∶3 (C)2∶3∶1 (D)3∶2∶16.已知等差数列{a n }的前20项和S 20=340,则a 6+a 9+a 11+a 16等于( )(A)31 (B)34 (C)68 (D)70 7.已知正数x 、y 满足x +y =4,则log 2x +log 2y 的最大值是( )(A)-4 (B)4 (C)-2 (D)28.如图,在限速为90km/h 的公路AB 旁有一测速站P ,已知点P 距测速区起点A 的距离为0.08 km ,距测速区终点B 的距离为0.05 km ,且∠APB =60°.现测得某辆汽车从A 点行驶到B 点所用的时间为3s ,则此车的速度介于( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h 二、填空题9.不等式x (x -1)<2的解集为________.10.在△ABC 中,三个内角A ,B ,C 成等差数列,则cos(A +C )的值为________. 11.已知{a n }是公差为-2的等差数列,其前5项的和S 5=0,那么a 1等于________. 12.在△ABC 中,BC =1,角C =120°,cos A =32,则AB =________. 13.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤-+≤-+≥≥030420,0y x y x y x ,所表示的平面区域的面积是________;变量z =x +3y 的最大值是________.14.如图,n 2(n ≥4)个正数排成n 行n 列方阵,符号a ij (1≤i ≤n ,1≤j ≤n ,i ,j ∈N )表示位于第i 行第j 列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q .若a 11=21,a 24=1,a 32=41,则q =________;a ij =________.三、解答题15.已知函数f (x )=x 2+ax +6.(1)当a =5时,解不等式f (x )<0;(2)若不等式f (x )>0的解集为R ,求实数a 的取值范围.16.已知{a n }是等差数列,a 2=5,a 5=14.(1)求{a n }的通项公式;(2)设{a n }的前n 项和S n =155,求n 的值.17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,A ,B 是锐角,c =10,且34cos cos ==a b B A . (1)证明角C =90°; (2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配用煤(吨) 用电(千瓦) 产值(万元) 甲种产品 7 2 8 乙种产品 3 5 1119.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos A =31.(1)求A CB 2cos 2sin 2++的值;(2)若a =3,求bc 的最大值.20.数列{a n }的前n 项和是S n ,a 1=5,且a n =S n -1(n =2,3,4,…).(1)求数列{a n }的通项公式;(2)求证:⋅<++++531111321n a a a a参考答案 第一章 解三角形测试一 正弦定理和余弦定理一、选择题1.B 2.C 3.B 4.D 5.B 提示:4.由正弦定理,得sin C =23,所以C =60°或C =120°, 当C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形. 5.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°,由正弦定理CcB b A a sin sin sin ===k , 得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 二、填空题6.362 7.30° 8.等腰三角形 9.2373+ 10.425 提示:8.∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1, ∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即B =C . 9.利用余弦定理b 2=a 2+c 2-2ac cos B .10.由tan A =2,得52sin =A ,根据正弦定理,得ABC B AC sin sin =,得AC =425. 三、解答题11.c =23,A =30°,B =90°. 12.(1)60°;(2)AD =7. 13.如右图,由两点间距离公式,得OA =29)02()05(22=-+-,同理得232,145==AB OB .由余弦定理,得cos A =222222=⨯⨯-+AB OA OB AB OA , ∴A =45°.14.(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =23,ab =2,又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10.所以AB =10.(3)S △ABC =21ab sin C =21·2·23=23.测试二 解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:5.化简(a +b +c )(b +c -a )=3bc ,得b 2+c 2-a 2=bc ,由余弦定理,得cos A =212222=-+bc a c b ,所以∠A =60°.因为sin A =2sin B cos C ,A +B +C =180°, 所以sin(B +C )=2sin B cos C ,即sin B cos C +cos B sin C =2sin B cos C . 所以sin(B -C )=0,故B =C . 故△ABC 是正三角形. 二、填空题6.30° 7.120° 8.524 9.55 10.3三、解答题11.(1)由余弦定理,得c =13;(2)由正弦定理,得sin B =13392. 12.(1)由a ·b =|a |·|b |·cos 〈a ,b 〉,得〈a ,b 〉=60°;(2)由向量减法几何意义,知|a |,|b |,|a -b |可以组成三角形,所以|a -b |2=|a |2+|b |2-2|a |·|b |·cos 〈a ,b 〉=7,故|a -b |=7.13.(1)如右图,由两点间距离公式,得29)02()05(22=-+-=OA , 同理得232,145==AB OB . 由余弦定理,得,222cos 222=⨯⨯-+=AB OA OB AB OA A所以A =45°.故BD =AB ×sin A =229.(2)S △OAB =21·OA ·BD =21·29·229=29. 14.由正弦定理R CcB b A a 2sin sin sin ===,得C Rc B R b A R a sin 2,sin 2,sin 2===. 因为sin 2A +sin 2B >sin 2C ,所以222)2()2()2(R cR b R a >+,即a 2+b 2>c 2.所以cos C =abc b a 2222-+>0, 由C ∈(0,π),得角C 为锐角.15.(1)设t 小时后甲、乙分别到达P 、Q 点,如图,则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以t =43h 时,P 与O 重合. 故当t ∈[0,43]时, |PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°; 当t >43h 时,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°. 故得|PQ |=724482+-t t (t ≥0). (2)当t =h 4148224=⨯--时,两人距离最近,最近距离为2km . 16.(1)由正弦定理R CcB b A a 2sin sin sin ===, 得a =2R sin A ,b =2R sin B ,c =2R sinC .所以等式c a b C B +-=2cos cos 可化为CR A R BR C B sin 2sin 22sin 2cos cos +⋅-=, 即CA BC B sin sin 2sin cos cos +-=, 2sin A cos B +sin C cos B =-cos C ·sin B ,故2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为A +B +C =π,所以sin A =sin(B +C ),故cos B =-21, 所以B =120°.(2)由余弦定理,得b 2=13=a 2+c 2-2ac ×cos120°,即a 2+c 2+ac =13 又a +c =4, 解得⎩⎨⎧==31c a ,或⎩⎨⎧==13c a . 所以S △ABC =21ac sin B =21×1×3×23=433.第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12+=n a n (或其他符合要求的答案) (2)2)1(1n n a -+=(或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102-+=++==+n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11+-n ]-(n -n1)=1+)1(1+n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).所以数列{a 2m }是等差数列.故S 10=5a 1+5a 2+2)15(5-⨯×2=35.三、解答题11.设等差数列{a n }的公差是d ,依题意得⎪⎩⎪⎨⎧=⨯+=+.242344,7211d a d a 解得⎩⎨⎧==.2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得⎩⎨⎧=+=+.5019,30911d a d a 解得⎩⎨⎧==.2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1(-⨯n n ×2=n 2+11n ,∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1(-n n d =50n +2)1(-n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4. 14.∵3a n +1=3a n +2,∴a n +1-a n =32, 由等差数列定义知:数列{a n }是公差为32的等差数列. 记a 1+a 3+a 5+…+a 99=A ,a 2+a 4+a 6+…+a 100=B , 则B =(a 1+d )+(a 3+d )+(a 5+d )+…+(a 99+d )=A +50d =90+3100. 所以S 100=A +B =90+90+3100=21331. 测试五 等比数列一、选择题1.B 2.C 3.A 4.B 5.D 提示:5.当a 1=0时,数列{a n }是等差数列;当a 1≠0时,数列{a n }是等比数列;当a 1>0时,数列{a n }是递增数列;当a 1<0时,数列{a n }是递减数列. 二、填空题6.-3 7.12 8.279 9.216 10.-2 提示:10.分q =1与q ≠1讨论.当q =1时,S n =na 1,又∵2S n =S n +1+S n +2, ∴2na 1=(n +1)a 1+(n +2)a 1, ∴a 1=0(舍).。

人教A版高中数学必修五第二章单元测试题.docx

人教A版高中数学必修五第二章单元测试题.docx

高中数学必修5第二章单元测试题班级: 姓名: 得分:一、 选择题(共8小题,每题5分,共40分,四个选项中只有一个符合要求 )1.数列{}n a 为等差数列,123,,a a a 为等比数列,51a =,则10a =( )A .5B .1-C .0D .12.已知等差数列}{n a 中,897,,16a a a 则=+的值是 ( )A.16B.7C.8D.43.在数列1,1,2,3,5,8,x ,21,34,55,…中,x 等于( )A .11B .12C .13D .144.已知{}n a 是等比数列,前n 项和为n S ,41252==a a ,,则5S = ( ) A.132 B.314 C.334 D.10185.在各项都为正数的等比数列{}n a 中,13a =,前三项的和为21,则345a a a ++=( )A.33B.72C.84D.1896.在等比数列{}n a 中,若3578a a a =,则28a a =( )A .4B .4-C .2D .2-7.数列{}n a 的前n 项和为221n S n =+,则a n =( )A .a n =4n-2B .a n =2n-1C .⎪⎩⎪⎨⎧≥-==)2(24)1(3n n n a n D .⎪⎩⎪⎨⎧≥-==)2(24)1(2n n n a n 8.设n S 是等差数列{}n a 的前n 项和,若439,15a S ==,则数列{}n a 的通项公式为( )A . n a =2n -3B . n a =2n -1C . n a =2n +1D . n a =2n +9二、 填空题(共4小题,每题5分,共20分,把答案填在题中横线上)9.设n S 是等差数列{}n a 的前n 项和,且3613S S =,则912S S = . 10.等比数列{a n }中,已知a 2=1,a 5=8,则公比=q11.若数列{a n }的前n 项和S n =n 2+3n ,则a 6+a 7+a 8=________.12.若等比数列{}n a 满足243520,40a a a a +=+=,则前n 项n S =___ _. 三、解答题(共3小题,13题12分,14、15题每题14分,共40分)13. 设数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足21(1)log n nb n a =+. (1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T . 14.已知等比数列{}n a 中,12a =,318a =,等差数列{}n b 中,12b =,且123123420a a a b b b b ++=+++>. ⑴求数列{}n a 的通项公式n a ; ⑵求数列{}n b 的前n 项和n S .15. 已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式;(2)求数列{}n na 的前n 项和n T . 答案 1.D 2.C 3.C4.B5.C6.A7.C8.C9. 3510.2 11.48 12. 122n +- 13.(1)2n n a =;(2)n 1n T n =+.14.(1) n a =132-•n ;(2)n n S n 21232+=. 15.(1)12-=n n a ;(2)12)1(+-=n n n T .。

2021年新人教版高一数学必修5第二章数列单元测试及答案

2021年新人教版高一数学必修5第二章数列单元测试及答案

浙江省瓯海中学高一数学必修5第二章《数列》单元测试班级 姓名 座号一、选择题(每小题6分)1、数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .)12()1(--=n a nnC .)21()1(n a n n --=D .)12()1(+-=n a nn2、等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3、等比数列{}n a 中,已知112733n a a q ===,,,则n 为( )A .3B .4C .5D .64、等比数列{}n a 中,9696==a a ,,则3a 等于( )A .3B .23C .916D .45、若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或156、等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么等于( )A .3B .2C .-2D .2±7、等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( )A .130B .170C .210D .2608、 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( )A .12B .11C .10D .9二、填空题(每小题6分)9、等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________ 10、{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______11、在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += __________12、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a =______三、解答题13、(本题10分)求数列11111,2,3,424816…的前n 项和。

(好题)高中数学必修五第二章《解三角形》测试卷(含答案解析)(1)

(好题)高中数学必修五第二章《解三角形》测试卷(含答案解析)(1)

一、选择题1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且c =3C π=,则a =( )A .1B C .1 D 2.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .24.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知3a =,b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( )A .[12,34] B .(12,34) C .[1324,34] D .(1324,34)5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为6a ,则c bb c+的最大值是( )A .8B .6C .D .46.已知△ABC 中,2cos =c b A ,则△ABC 一定是A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形7.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线BD =△ABC 的周长为( ) A .15B .14C .16D .128.在ABC 中,60A ∠=︒,1b =,ABCS =2sin 2sin sin a b cA B C++=++( )A B C D .9.正三棱锥P ABC -中,若6PA =,40APB ∠=︒,点E 、F 分别在侧棱PB 、PC 上运动,则AEF 的周长的最小值为( )A .36sin 20︒B .62C .12D .6310.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形11.已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( )A .2B .22C .3D .2312.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C .23D .43二、填空题13.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.14.在ABC 中,已知25,cos 4A B π==,若25BC =,D 为AB 的中点,则CD 的长为________.15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1a =,3B π=,当ABC ∆的面积等于3时,tan C =__________.16.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若223a b bc -=,sin 23sin C B =,则A =____.17.在锐角ABC 中,内角A 、B 、C 的对边分别是,,a b c ,若()231a b b a +-=,1c =,则3a b -的取值范围是______.18.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.19.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.三、解答题21.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos b A a B c A +=. (1)求A ;(2)若2a =,ABC 的面积为3,求ABC 的周长. 22.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知:5,2,45b c B ==∠=︒.(1)求边BC 的长和三角形ABC 的面积; (2)在边BC 上取一点D ,使得4cos 5ADB,求tan DAC ∠的值. 23.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 22a b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分.24.a ,b ,c 分别为锐角ABC 内角A ,B ,C 的对边.已知2sin (2sin sin )(2sin sin )a A B C b C B c =-+-.(1)求A ;(2)若2c =,试问b 的值是否可能为5?若可能,求ABC 的周长;若不可能,请说明理由.25.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC a-=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 26.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC为锐角三角形,b =2a c -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a ==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积.【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】因为b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.4.D解析:D 【分析】本题先求9c b=,再化简22222819cos 218b bc a b A bc +-+-==,接着求出22817545()42b b +∈,,最后求出cos A 的取值范围即可. 【详解】 解:由题意有3a =,223cos cos a b B b A =+,由余弦定理得:2222222233232a c b b c a b b c bc+-+-=⋅+⋅⨯⨯,整理得:9bc = , 所以9c b=, 则22222819cos 218b bc ab A bc+-+-==. 因为(2332)b ∈,,所以2(1218)b ∈,,所以22817545()42b b +∈,,则133cos (,)244A ∈. 故选:D. 【点睛】本题考查余弦定理,利用函数ky x x=+,(0k >)的单调性求范围,是中档题. 5.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 226bc A a a =⨯,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.6.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.7.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =, 若AC边上的中线2BD =, 所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.8.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin6042︒=⋅⋅⋅=∴=ABCSc由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin ++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目.9.D解析:D 【分析】画出正三棱锥P ABC -侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果. 【详解】将三棱锥由PA 展开,如图,正三棱锥P ABC -中,40APB ∠=︒,则图中1120APA ∠=︒, 当点A 、E 、F 、1A 位于同一条直线上时,AEF ∆的周长最小, 故1AA 为AEF ∆的周长的最小值, 又1PA PA =,1PAA ∴∆为等腰三角形,6PA =,16PA ∴=,22166266cos12063AA ∴=+-⨯⨯⨯︒=,AEF ∴∆的最小周长为:63.故选:D . 【点睛】本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.10.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.11.B解析:B 【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解. 【详解】∵cos cos 2a B b A +=,∴222222222a c b b c a a b ac bc+-+-⋅+⋅=,∴2c =,∵sin sin 3sin A B C += ∴36a b c +==,即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长22, 以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系,其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题.当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B . 【点睛】本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.12.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.二、填空题13.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C =,即22sin sin 22sin cos a a a AA A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.14.【分析】由条件求得利用正弦定理求得在中利用余弦定理即可求得【详解】故由正弦定理知即解得在中所以故答案为:【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出利用余弦定理求解考查了运算能力属于中档题【分析】由条件求得sin B ,sin C ,利用正弦定理sin sin BC ABA C=求得AB , 在BCD △中,利用余弦定理即可求得CD . 【详解】cos (0,),B B π=∈sin B ∴==故333cos cos()cos cos sin sin 444C B B B πππ=-=+22⎛=-⨯+= ⎝⎭⎝⎭⎝⎭,nsi C===∴,由正弦定理知sin sinBC ABA C=310,解得6AB=,在BCD△中,222222cos3235CD BC AD BC AD B=+-⋅=+-⨯⨯=所以CD=【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出cos B,利用余弦定理求解CD,考查了运算能力,属于中档题.15.【解析】由题意即则所以由余弦定理所以所以应填答案点睛:解答本题的思路是先借助三角形的面积公式求出边进而运用余弦定理求出边然后再运用余弦定理求出进而求出最后求出解析:-【解析】由题意1sin23acπ=4c=⇒=,则b==,所以由余弦定理cos C==sin C==tan(C==--点睛:解答本题的思路是先借助三角形的面积公式求出边4c=,进而运用余弦定理求出边b==,然后再运用余弦定理求出cos C==,进而求出sin C==tan(C==-16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解解析:6π【分析】由sin C B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C= ∴可得c =根据余弦定理:2222cos a b c bc A =+-由已知可得:22a b -=故可联立方程:222222cos c a b c bc A a b ⎧=⎪=+-⎨⎪-=⎩解得:cos 2A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】根据结合余弦定理可得再根据正弦定理将化简成关于的三角函数表达式再根据锐角求得的取值范围结合三角函数的性质求解值域即可【详解】因为故所以又锐角故由正弦定理所以又锐角故解得即故故答案为:【点睛】解析:(【分析】根据()21a b b +=,结合余弦定理可得6C π=b -化简成关于A 的三角函数表达式,再根据锐角ABC 求得A 的取值范围,结合三角函数的性质求解值域即可. 【详解】因为()21a b b +=,1c =,故222c a b =+.所以222cos 222a b c C ab ab +-===.又锐角ABC ,故6C π=. 由正弦定理,12sin sin sin sin 6a b c A B C π====,)52sin 2sin 6b A B A A π⎤⎛⎫-=-=-- ⎪⎥⎝⎭⎦112cos 2cos 2sin 226A A A A A A π⎫⎫⎛⎫=-=-=-⎪⎪ ⎪⎪⎪⎝⎭⎭⎝⎭. 又锐角ABC ,故02062A A ππππ⎧<<⎪⎪⎨⎪<--<⎪⎩,解得32A ππ<<,即663A πππ<-<.(2sin 6b A π⎛⎫-=-∈ ⎪⎝⎭.故答案为:( 【点睛】本题主要考查了正余弦定理在解三角形中的应用、边角互化求取值范围的问题,需要将所给的边的表达式利用正弦定理转换为角的表达式,同时结合角度的范围求解.属于中档题.18.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠,在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.19.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角 解析:)431【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得3cos 2CBD ∠=,由三角恒等变换得sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭, 所以23cos 1sin 2CBD CBD ∠=-∠=, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠122224=⨯-=, 在BCD △中,由正弦定理得sin sin 2BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.三、解答题21.(1)3A π=;(2)6.【分析】(1)根据cos cos 2cos b A a B c A +=,利用正弦定理,结合两角和的正弦公式得到()sin 2sin cos A B C A +=,又A B C π+=-,由sin 2sin cos C C A =求解;(2)根据3A π=,ABC 4bc =,再结合余弦定理求得b c +即可. 【详解】(1)因为cos cos 2cos b A a B c A += 所以sin cos sin cos 2sin cos B A A B C A +=, 所以()sin 2sin cos A B C A +=, 因为A B C π+=-, 所以sin 2sin cos C C A =, 因为sin 0C ≠,所以1cos 2A =. 因为0A π<<,所以3A π=.(2)因为3A π=,ABC所以1sin 23ABC S bc π==△ 解得4bc =,由余弦定理2222cos a b c bc A =+-, 得()22243b c bc b c bc =+-=+-, 所以4b c +=, 所以6a b c ++=. 所以ABC 的周长为6. 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制. 22.(1)3BC =;32ABCS =;(2)211. 【分析】(1)法一:ABC 中,由余弦定理求BC 的长,应用三角形面积公式求ABC 的面积;法二:过A 作出高交BC 于F ,在所得直角三角形中应用勾股定理求,BF FC ,即可求BC ,由三角形面积公式求ABC 的面积;(2)由正弦定理、三角形的性质、同角三角函数的关系,法一:求sin C 、cos C 、sin ADB ∠、cos ADB ∠,由sin sin()DAC ADB C ∠=∠-∠结合两角差正弦公式求值即可;法二:求tan C 、tan ADB ∠,再由tan tan(())DAC ADC C π∠=-∠+∠结合两角和正切公式求值即可;法三:由(1)法二所作的高,直角△AFD 中求sin ADB ∠,进而求sin ADC ∠,再根据正弦定理及同角三角函数关系求值即可. 【详解】(1)法一:在ABC 中,由5,2,45b c B ==∠=︒,由余弦定理,2222cos b a c ac B =+-,得2252222a a =+-⨯⨯⨯,解得3a =或1a =-(舍),所以3BC a ==,1123sin 32222ABCSac B ==⋅⋅⋅=. 法二:(1)过点A 作出高交BC 于F ,即ABF 为等腰直角三角形,2AB =1AF BF ==,同理△AFC 为直角三角形,1,5AF AC ==2FC ∴=,故3BC BF FC =+=,13||||22ABCSBC AF =⋅=. (2)在ABC 中,由正弦定理sin sin b c B C =52=,得5sin C =,又52b c =>=,所以C ∠为锐角,法一:由上,25cos 1sin 5C C =-=,由4cos 5ADB (ADB ∠为锐角),得2163sin 1cos 1255ADB ADB ∠=-∠=-=, sin sin()DAC ADB C ∠=∠-∠3254525sin cos cos sin 55ADB C ADB C =∠⋅∠-∠⋅∠==由图可知:DAC ∠为锐角,则2115cos 1sin 25DAC DAC ∠=-∠=,所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.法二:由上,1tan 2C =,由4cos 5ADB (ADB ∠为锐角),得3tan 4ADB ∠=, ADB ADC π∠+∠=,3tan 4ADC ∴∠=-,故tan tan(())DAC ADC C π∠=-∠+∠tan()tan()tan()1tan()tan()ADC C ADC C ADC C ∠+∠=-∠+∠=--∠⋅∠312423111142⎛⎫-+ ⎪⎝⎭=-=⎛⎫--⋅ ⎪⎝⎭.法三:△AFD 为直角三角形,且4||1,cos 5AF ADB =∠=,所以2163sin 1cos 1255ADB ADB ∠=-∠=-=, 5423,cos ,,sin sin 3335AF AD DF AD ADB CD ADC ADB ∴===⋅∠==∠=∠,在ADC 中,由正弦定理得,sin sin CD AC DAC ADC =∠∠,故25sin DAC ∠=,由图可知DAC ∠为锐角,则2115cos 1sin DAC DAC ∠=-∠=sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】关键点点睛:(1)应用余弦定理的边角关系或勾股定理求边长,由三角形面积公式求面积;(2)综合应用三角形性质、正弦定理、同角三角函数关系以及三角恒等变换求三角函数值. 23.选择见解析;3A π=,512C π=. 【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简2b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin 2A 的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知, ()22b c a bc -=-,整理得,222b c a bc +-=; 由余弦定理可得,2221cos 222b c a bc A bc bc +-===; 又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π= (2)选择条件②,因为A B C π++=,所以222B C A π+=-; 由sin sin 2B C b a B +=得,cos sin 2A b a B = 由正弦定理知,sin cossin sin 2sin cos sin 222A A A B A B B ==; 又sin 0B >,sin 02A >,可得1sin 22A =; 又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭,因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=- ⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos sin 62A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】 方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有:1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边.24.(1)3A π=;(2)不可能,理由见解析.【分析】(1)由正弦定理化角为边,再由余弦定理即可求出;(2)由余弦定理得出cos 0B <,得出B 为钝角,与已知矛盾.【详解】解:(1)因为2sin (2sin sin )(2sin sin )a A B C b C B c =-+-,由正弦定理可得22(2)(2)a b c b c b c =-+-,即222a b c bc =+-.再由余弦定理得2222cos a b c bc A =+-,所以1cos 2A =. 因为(0,)A π∈,所以3A π=.(2)假设5b =,则由余弦定理,得2222cos 19a b c bc A =+-=, 所以22219425cos 022a c b B ac ac+-+-==<, 所以B 为钝角,这与ABC 为锐角三角形矛盾,故b 的值不可能为5.25.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos 10B =-,由题得出33a BD ==,再由余弦定理即可求出AD .【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos A A A+=∴cos A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴3a BD ==,又222cos 210a cb B ac +-==-,∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.26.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案.【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+. 再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b =224sin 2sin 4sin 2sin 3a c A C C C π⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos C << 所以2a c -的取值范围为()0,3.。

人教A版高中数学必修五第一二章综合测试(答案).docx

人教A版高中数学必修五第一二章综合测试(答案).docx

高中数学学习材料马鸣风萧萧*整理制作高中数学必修5第一二章综合测试一、选择题:(每小题4分,共计40分)1.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o,则a 等于( D )A .6B .2C .3D .22.在△ABC 中,已知b=2,B=45°,如果用正弦定理解三角形有两解,则边长a 的取值范围是 ( A )A .222<<aB .42<<aC .22<<aD .222<<a3.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D )A.6πB.3π C .6π或56π D.3π或23π4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( D )A.185 B.43C. 23D. 875.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于( A )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-a C .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a6.已知等差数列{a n }满足a 2+a 4=4, a 3+a 5=10,则它的前10项的和S 10=( C )A .138B .135C .95D .237.已知{a n }是等比数列,a 2=2, a 5=41,则a 1a 2+ a 2a 3+…+ a n a n+1=( C )A .16(n --41)B .16(n --21)C .332(n --41)D .332(n --21)8 如果a 1,a 2,…, a 8为各项都大于零的等差数列,公差0d ≠,则 ( B )A 5481a a a a >B 5481a a a a <C 1845a a a a +>+D 5481a a a a =[解析]:因为128,,,a a a 为各项都大于零的等差数列,公差0d ≠故2121115412111817)4)(3(,7)7(dd a a d a d a a a d a a d a a a a ++=++=+=+=;故5481a a a a <9、3、已知数列{a n }满足a 1=0, a n+1=a n +2n ,那么a 2003的值是 ( C ) A 、20032 B 、2002×2001 C 、2003×2002 D 、2003×2004 10、已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使前n 项和S n 取最大值的正整数n 是(B)A 、4或5B 、5或6C 、6或7D 、8或9二、填空题:(每小题4分,共计20分)11.已知a +1,a +2,a +3是钝角三角形的三边,则a 的取值范围是 (0,2)12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若(3b – c)cosA=acosC ,则cosA=3313.若AB=2, AC=2BC ,则S △ABC 的最大值 2214.在等比数列{a n }中,若a 9·a 11=4,则数列{n a 21log }前19项之和为___-19 ___[解析]:由题意a n >0,且a 1·a 19 =a 2·a 18 =…=a 9·a 11=210a又a 9·a 11=4 ,故1921a a a =192 故+121log a 221log a +…+1921log a =19)(log 192121-=a a a15.已知函数f(x)=2x ,等差数列{a x }的公差为2.若f(a 2+a 4+a 6+a 8+a 10)=4,则log 2[f(a 1)f(a 2)f(a 3)…f(a 10)]= -6三、解答题:(共计40分)16.(本题10分)△ABC 中,∠A=45°,AD ⊥BC ,且AD=3,CD=2,求三角形的面积S.解:记,,βα=∠=∠CAD BADβαβαβαβαt a n t a n 1t a n t a n )t a n (45tan ,2tan ,3tan -+=+=︒∴==∴hh1(60656522-==⇒=--⇒-=h h h h h h不合), 155621=⨯⨯=∴S .17、(本题10分)已知数列{a n }为等差数列,公差d≠0,其中1k a ,2k a ,…,n k a 恰为等比数列,若k 1=1,k 2=5,k 3=17,求k 1+k 2+…+k n 。

高中数学人教A版必修五 第二章 数列 章末综合测评及答案

高中数学人教A版必修五 第二章 数列 章末综合测评及答案

A.2
B.5
C.-12
1 D.2
【解析】 a1=5,a2=23,a3=95,令 bn=an3+n λ,则 b1=5+3 λ,b2=239+λ,
b3=952+7 λ,
∵b1+b3=2b2,
∴λ=-12.
【答案】 C
12.在等差数列{an}中,a10<0,a11>0,且 a11>|a10|,则{an}的前 n 项和 Sn 中最
【解】 (1)由已知 Sn=2an-a1,有 an=Sn-Sn-1=2an-2an-1(n≥2), 即 an=2an-1(n≥2),所以 q=2. 从而 a2=2a1,a3=2a2=4a1. 又因为 a1,a2+1,a3 成等差数列,即 a1+a3=2(a2+1), 所以 a1+4a1=2(2a1+1),解得 a1=2. 所以数列{an}是首项为 2,公比为 2 的等比数列. 故 an=2n. (2)由(1)得a1n=21n, 所以 Tn=12+212+…+21n=1211--1212n=1-21n. 由|Tn-1|<1 0100,得1-21n-1<1 0100, 即 2n>1 000. 因为 29=512<1 000<1 024=210,所以 n≥10. 于是使|Tn-1|<1 0100成立的 n 的最小值为 10. 22.(本小题满分 12 分)在等差数列{an}中,已知公差 d=2,a2 是 a1 与 a4 的等 比中项. (1)求数列{an}的通项公式; (2)设 bn=an(n+1),记 Tn=-b1+b2-b3+b4-…+(-1)nbn,求 Tn.
高中数学人教 A 版必修五 第二章 数列
章末综合测评(1)
(时间 120 分钟,满分 150 分)

(好题)高中数学必修五第二章《解三角形》测试(有答案解析)(1)

(好题)高中数学必修五第二章《解三角形》测试(有答案解析)(1)

一、选择题1.在ABC 中,30A =︒,BC 边上的高为1,则ABC 面积的最小值为( )A .25-B .23-C .23+D .25+2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知()()sin sin 3sin 2B A B A A -++=,且7c =,3C π=,则a =( )A .1B .221C .1或221D .2133.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,已知5c =,3b =,23A π=,则sin sin A C=( ) A .75 B .57C .37D .734.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为126海里,灯塔C 在A 的北偏西30,距离为123海里,该游轮由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin 3sin sin A C B A C +-=,1b =,则223a c -的最小值为( )A .4-B .23-C .2-D .3-6.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .D .8.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca =( )A B C .23D 9.已知△ABC 中,2cos =c b A ,则△ABC 一定是 A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 成等差数列,且直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长,则△ABC 的面积的最大值为( )A .BC .32D 11.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 12.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④cos BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( )A .B .12mC .D .二、填空题13.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 14.在ABC 中,3A π∠=,D 是BC 的中点.若34AD BC ≤,则sin sin B C 的最大值为____________.15.如图,A ,B 两点都在河的对岸(不可到达),在所在的河岸边选取相距30m 的C ,D 两点,测得75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,其中A ,B ,C ,D 四点在同一平面内,则A ,B 两点之间的距离是_______m .16.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC 中,角,,A B C 的对边分别为,,a b c ,22b =且ABC ∆面积为)2223S b a c =--,则面积S 的最大值为_____. 19.在ABC 中,若3b =3c =,30B ︒=,则a 等于________.20.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.三、解答题21.已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,22(sin sin )sin sin sin A B C A B -=-.(Ⅰ)求角C 的大小;(Ⅱ)若3a b =,求cos(2)B C +的值.22.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC =22,求CD .23.在ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,若2b =,3cos sin B b B =-.(1)求角B 的大小;(2)若BAC ∠的平分线AD 交BC 于点D ,△ACD 的面积为3,求线段BD 的长度. 24.如图,在ABC 中,2AB =,3B π∠=,点D 在线段BC 上.(1)若4BAD π∠=,求AD 的长;(2)若3BD DC =,且23ABCS=sin sin BADCAD∠∠的值.25.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可求得11,sin sin AB AC B C==,代入面积公式,可求得面积的表达式,设4sin sin y B C =,根据B 、C 的关系,利用两角差的正弦公式及辅助角公式,可得2sin(2)33y B π=-+,根据B 的范围,即可求得max y ,即可得答案.【详解】设BC 边上的高为AD ,则AD =1,AD BC ⊥,如图所示:所以11sin ,sin AD AD B C AB AB AC AC====, 所以11,sin sin AB AC B C==, 所以111sin 244sin sin ABCSAB AC A AB AC B C=⨯⨯⨯=⨯=, 设4sin sin y B C =,因为6A π=,则56B C π+=, 所以5554sin sin 4sin sin()4sin sin cos cos sin 666y B C B B B B B πππ⎛⎫==-=- ⎪⎝⎭=22sin cos 23sin 2323B B B B B += =2sin(2)33B π-+,因为5(0,)6B π∈,所以42(,)333B πππ-∈-, 所以3sin(2)(3B π-∈,则2sin(2)3(0,23]3y B π=-+,所以max 2y = 所以ABC面积的最小值为max12y =故选:B 【点睛】解题的关键是将题干条件,转化为4sin sin y B C =,根据B 的范围,结合三角函数的图象与性质求解,考查分析理解,计算求值的能力,属中档题.2.C解析:C 【分析】由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,可得结果. 【详解】∵()()32sin B A sin B A sin A -++=, ∴3sinBcosA sinAcosA =.①当0cosA =时,ABC 为直角三角形,且2A π=.∵c =3C π=,∴3sin3a ==.②当0cosA ≠时,则有3sinB sinA =, 由正弦定理得3b a =.由余弦定理得2222c a b abcosC =+-, 即()()22173232a a a a =+-⋅⋅, 解得1a =. 综上可得,a =1故选:C . 【点睛】本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,考查学生分类讨论思想,属于中档题.3.A解析:A 【分析】利用余弦定理求得a,再利用正弦定理即得结果. 【详解】由余弦定理:2222cos a b c bc A =+-,得7a =, 由正弦定理:sin7sin 5A a C c ==. 故选A 【点睛】本题考查正弦定理和余弦定理公式的应用,属于基础题型.4.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有126242sin 45sin 6032AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因3AC=,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,3sin CDA ∠=60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.5.A解析:A【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B a c π====, ∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 2C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<, 所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.7.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.8.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.9.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.10.B解析:B 【分析】由三角形内角和公式以及等差数列的性质可得3B π=,根据直线过圆心可得2312a c +=,根据基本不等式可得6ac ≤,最后由三角形面积公式得结果.【详解】在△ABC 中,A +B +C =π,∵角A ,B ,C 成等差数列,∴2B =A +C , ∴2B =π﹣B ,∴B 3π=.∵直线ax +cy ﹣12=0平分圆x 2+y 2﹣4x ﹣6y =0的周长, ∴圆心(2,3)在直线ax +cy =12上,则2a +3c =12, ∵a >0,c >0,∴12=2a +3c ≥ac ≤6.当且仅当2a =3c ,即a =3,c =2时取等号.∴11sin 622ABCSac B =≤⨯=∴△ABC故选:B. 【点睛】本题主要考查了直线与圆的位置关系,基本不等式以及三角形面积公式的应用,属于中档题.11.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos 2B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.12.D解析:D 【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解. 【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠,即2221222h h =+-⋅,解得h =选①②③④,则AB =,AC =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠,即)2221228=+-,解得h = 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.二、填空题13.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦 解析:23),【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<23,cos ()6422A A ππ∴<<∴∈ sin 2sin cos 2cos (2,3)sin sin b B A A A a A A∴===∈ 故答案为:23, 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.14.【分析】设三角形三条边长分别为先分析得到再利用余弦定理得到最后利用正弦定理即得解【详解】设三角形三条边长分别为那么因为所以故由题意得故答案为:【点睛】本题主要考查正弦定理和余弦定理解三角形意在考查学解析:1532【分析】设AD x =,三角形三条边长分别为,,a b c ,先分析得到222138b c a +≤,再利用余弦定理得到258bc a ≤,最后利用正弦定理即得解. 【详解】设AD x =,三角形三条边长分别为,,a b c , 那么2243,169x a x a ≤∴≤, 因为cos cos 0ADB ADC ∠+∠= 所以2222422+=+x a b c ,故2222222213168849,8x b c a a b c a =+-≤∴+≤由题意得222222221135cos ,,2288b c a A b c bc a a bc a bc +-==∴+=+≤∴≤255315sin sin sin =88432B C A ∴≤=⨯.故答案为:1532【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.15.【分析】本题先在中得出得的值然后在中由正弦定理得出的长最后在中由余弦定理算出即可得到AB 之间的距离【详解】解:如图所示∵∴∴在中∴∵在中∴由正弦定理得可得在中由余弦定理得∴(米)即AB 之间的距离为米解析: 【分析】本题先在ACD △中,得出30CAD ADC ∠=∠=︒,得CD 的值,然后在BCD 中由正弦定理得出BC 的长,最后在ABC 中由余弦定理,算出21500AB =,即可得到A ,B 之间的距离. 【详解】解:如图所示,∵75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒, ∴7545120ACD ACB BCD ︒︒∠=∠+∠=+=︒,∴在ACD △中,18030CAD ACD ADC ADC ∠=︒-∠-∠=︒=∠, ∴30AC CD ==.∵在BCD 中,60CBD ∠=︒,∴由正弦定理,得30sin 75sin 60BC =︒︒,可得sin 753075sin 60BC ︒=⋅=︒︒.在ABC 中,由余弦定理,得()222222cos 30203sin 75230203sin 75cos 75AB AC BC AC BC ACB =+-⋅∠=+︒-⨯⨯︒︒1500=,∴1015AB =(米),即A ,B 之间的距离为1015米. 故答案为:1015.【点睛】本题考查利用正余弦定理解决实际应用问题,是中档题.16.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角 10【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值. 【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =. 设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BCB A=∠∠,即32sin(3)sin παα=-,整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=, 结合sin 0α≠得222(2cos 12cos )3αα-+=,即258cos α=,显然α是锐角,所以106cos αα= ∴15sin 22sin cos ααα==.再由ABC 得:2sin sin 2ABαα=,∴615=解得10AB .10【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长. 【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒, 即30ABC ∠=︒, 则由正弦定理sin sin AB ACACB ABC=∠∠,得:50sin 21sin 2AC ACBAB ABC∠===∠.故答案为:. 【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan 3B =-,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤,代入三角形面积公式可求得最大值. 【详解】()()222312cos sin 12122S b a c ac B ac B =--=⋅-=sin tan cos B B B ∴==()0,B π∈ 56B π∴=cos B ∴=1sin 2B =由余弦定理2222cos b a c ac B =+-得:(2282a c ac =++≥(当且仅当a c =时取等号)(82ac ∴≤= 11sin 424S ac B ac ∴==≤-本题正确结果:4- 【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.19.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析: 【分析】由正弦定理,求得sin 2C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin 2c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:. 【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力.20.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.三、解答题21.(Ⅰ)3π;(Ⅱ)17-.【分析】(Ⅰ)利用正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)利用正弦定理的边角互化可得sin 3sin A B =,再由23A B π+=求出3tan B =,再利用两角和的余弦公式即可求解. 【详解】(Ⅰ)∵22(sin sin )sin sin sin A B C A B -=- ∴由正弦定理得22()a b c ab -=-,即222a b c ab +-=∴1cos 2C =, 又∵(0,)C π∈∴3C π=;(Ⅱ)∵3a b =,∴由正弦定理得sin 3sin A B =, ∵23A B π+=,∴2sin 3sin 3B B π⎛⎫-= ⎪⎝⎭,∴tan B =, ∴0,2B π⎛⎫∈ ⎪⎝⎭∴sin ,cos 14B B == ,∴11sin 22sin cos ,cos 21414B B B B === ∴1cos(2)cos 2cos sin 2sin 7B C B C B C +=-=- 22.(1)cos 4ADB ∠=;(2)CD =【分析】(1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案; (2)BCD △中,利用余弦定理可得CD . 【详解】(1)ABD △中,sin sin AB BDADB BAD=∠∠,即2sin ADB =∠,解得sin 4ADB ∠=,故cos 4ADB ∠=; (2)sin cos 4ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅222424CD CD+-=⋅⋅,化简得(0CD CD -+=,解得CD =23.(1)6B π=;(2)BD =【分析】(1)有已知条件,结合正弦定理边角关系、辅助角公式得sin 13B π⎛⎫+= ⎪⎝⎭,根据三角形内角的性质,即可求角B .(2)由题设,应用正弦定理得1sin 2AD BD θ⋅=,结合三角形面积公式有sin AD θ=BD 的长度.【详解】(1)由2b =sin B b B =-,∴sin 2B B +=,即1sin cos 122B B +=,得sin 13B π⎛⎫+= ⎪⎝⎭,又()0,B π∈, ∴4,333B πππ⎛⎫+∈ ⎪⎝⎭,可知32B ππ+=,解得6B π=. (2)设BAD θ∠=,由AD 是BAC ∠的平分线,有CAD θ∠=,在△ABD 中,由正弦定理得sin sin 6BD ADπθ=,所以1sin 2AD BD θ⋅=. 又△ACD,所以1sin sin 2b AD AD θθ⋅==,∴12BD =BD = 【点睛】 关键点点睛:(1)综合应用正弦定理边角互化,辅助角公式,三角形内角的性质求角; (2)应用正弦定理及三角形面积公式求边长. 24.(1)AD =;(2)sin sin BADCAD∠∠=【分析】(1)利用正弦定理求解即可.(2)用余弦定理求出AC =sin 3sin 2BAD ACCAD ∠=∠,代入AC 值求解即可. 【详解】解:(1)∵sin sin AD ABB ADB=∠,且75ADB ︒∠=∴24=,∴AD = (2)∵1sin 23ABCA SB BC π==⋅⋅,故算得4,3,1BC BD DC ===, 在ABD △中,利用正弦定理有32sin sin BAD ADB=∠∠,在ADC 中,有1sin sin ACDAC ADC=∠∠∴sin 3sin 2BAD ACCAD ∠=∠,∵21416224122AC =+-⨯⨯⨯=,∴23AC = ∴sin 33sin BADCAD∠∠=25.6;32114. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解. 【详解】 如图所示:在等边ABC 中,AD =3CD , 所以AC =2CD . 又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD , 即7)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°, 解得CD =2,可得AD=6, 由27sin 60AD ABD =∠, 得627sin sin 60ABD =∠, 解得sin ∠ABD =32114. 26.3A π=,sin b B c 3=【分析】由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b ,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=, 所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=.因为2b ac =,所以=b a c b ,所以sin sin sin 2b B a B A c b ===故3A π=,sin b B c = 【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。

(完整版)人教版高中数学必修5测试题及答案全套(可编辑修改word版)

(完整版)人教版高中数学必修5测试题及答案全套(可编辑修改word版)

233 2 33513第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ基础训练题一、选择题1.在△ABC 中,若BC=,AC=2,B=45°,则角A 等于( )(A)60°(B)30°(C)60°或120°(D)30°或150°12.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=3,cos C=-,则c 等于( )4(A)2 (B)3 (C)4 (D)53.在△ABC 中,已知cos B =3, sin C =2,AC=2,那么边AB 等于( )(A)545(B)533(C)209(D)1254.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B=30°,c=150,b=50 ,那么这个三角形是( )(A)等边三角形(B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,如果A∶B∶C=1∶2∶3,那么a∶b∶c 等于( )(A)1∶2∶3 (B)1∶∶2 (C)1∶4∶9 (D)1∶∶二、填空题6.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,B=45°,C=75°,则b=.7.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=2 ,c=4,则A=.8.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC 形状是三角形.9.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=3,b=4,B=60°,则c=.10.在△ABC 中,若tan A=2,B=45°,BC=,则AC=.三、解答题11.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=4,C=60°,试解△ABC.12.在△ABC 中,已知AB=3,BC=4,AC=.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O(0,0),A(5,2)和B(-9,8),求角A 的大小.3 2 19 14. 在△ABC 中,已知 BC =a ,AC =b ,且 a ,b 是方程 x 2-2x +2=0 的两根,2cos(A +B )=1.(1) 求角 C 的度数; (2) 求 AB 的长; (3) 求△ABC 的面积.一、选择题测试二 解三角形全章综合练习Ⅰ 基础训练题1. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b 2+c 2-a 2=bc ,则角 A 等于( )π (A)6π (B)3(C)2π3(D)5π 62. 在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③ sin A + B = cos C2 2其中正确的个数是( ) (A)0(B)1(C)2(D)32 33. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c .若 a =3,sin A = ,sin(A +C )= ,则 b 等于()(A)4(B) 833 4(C)6 (D)27 824. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =3,b =4,sin C = ,则此三角形的面积是3( ) (A)8 (B)6 (C)4 (D)3 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且 sin A =2sin B cos C ,则此三角形的形状是( )(A) 直角三角形(B)正三角形(C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =,b =2,B =45°,则角 A =.7. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =2,b =3,c =,则角 C =.3 8. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b =3,c =4,cos A = ,则此三角形的面积为.59.已知△ABC 的顶点 A (1,0),B (0,2),C (4,4),则 cos A = . 10. 已知△ABC 的三个内角 A ,B ,C 满足 2B =A +C ,且 AB =1,BC =4,那么边 BC 上的中线 AD 的长为 .三、解答题11. 在△ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,且 a =3,b =4,C =60°.(1) 求 c ; (2) 求 sin B . 12.设向量 a ,b 满足 a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为 O (0,0),A (5,2)和 B (-9,8),若 BD ⊥OA 于 D .(1) 求高线 BD 的长; (2) 求△OAB 的面积.14.在△ABC 中,若sin2A+sin2B>sin2C,求证:C 为锐角.(提示:利用正弦定理a=sin Absin B=csin C= 2R ,其中R 为△ABC 外接圆半径)Ⅱ拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的A、B两点,| OA |=3km,| OB |=1km,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且(1)求角B 的值;(2)若b=,a+c=4,求△ABC 的面积. cos Bcos C=-b.2a +c13第二章 数列测试三 数列Ⅰ 学习目标1. 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2. 理解数列的通项公式的含义,由通项公式写出数列各项.3. 了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n (B)a n =4n(C)a = 4(10n -1) (D)a =4×11n92.在有一定规律的数列 0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则 a 4 等于( ) (A)4 (B)13 (C)28 (D)43 4.156 是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5. 若数列{a n }的通项公式为 a n =5-3n ,则数列{a n }是( ) (A) 递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对二、填空题6. 数列的前 5 项如下,请写出各数列的一个通项公式:(1)1, 2 , 1 , 3 2 2 , 15 3, , a n = ;(2)0,1,0,1,0,…,a n = .n 27.一个数列的通项公式是 a n = n 2 +1.(1) 它的前五项依次是; (2)0.98 是其中的第项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则 a 4=.9. 数列{a }的通项公式为 a =1(n ∈N *),则 a =.n1+ 2 + 3 + + (2n -1)310. 数列{a n }的通项公式为 a n =2n 2-15n +3,则它的最小项是第 项.三、解答题11. 已知数列{a n }的通项公式为 a n =14-3n .(1) 写出数列{a n }的前 6 项; (2)当 n ≥5 时,证明 a n <0.n 2 + n -112. 在数列{a n }中,已知 a n =(n ∈N *).3(1)写出 a 10,a n +1, a n 2 ;(2) 79 2 是否是此数列中的项?若是,是第几项?313. 已知函数 f (x ) = x - 1,设 a n =f (n )(n ∈N ).x+nnn(1)写出数列{a n}的前4 项;(2)数列{a n}是递增数列还是递减数列?为什么?测试四等差数列Ⅰ学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题.2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ基础训练题一、选择题1.数列{a n}满足:a1=3,a n+1=a n-2,则a100等于( )(A)98 (B)-195 (C)-201 (D)-1982.数列{a n}是首项a1=1,公差d=3 的等差数列,如果a n=2008,那么n 等于( )(A)667 (B)668 (C)669 (D)6703.在等差数列{a n}中,若a7+a9=16,a4=1,则a12的值是( )(A)15 (B)30 (C)31 (D)644.在a 和b(a≠b)之间插入n 个数,使它们与a,b 组成等差数列,则该数列的公差为( )(A)b -an (B)b -an +1(C)b +an +1(D)b -an + 25.设数列{a n}是等差数列,且a2=-6,a8=6,S n是数列{a n}的前n 项和,则( )(A)S4<S5(B)S4=S5(C)S6<S5(D)S6=S5二、填空题6.在等差数列{a n}中,a2与a6的等差中项是.7.在等差数列{a n}中,已知a1+a2=5,a3+a4=9,那么a5+a6=.8.设等差数列{a n}的前n 项和是S n,若S17=102,则a9=.9.如果一个数列的前n 项和S n=3n2+2n,那么它的第n 项a n=.10.在数列{a n}中,若a1=1,a2=2,a n+2-a n=1+(-1)n(n∈N*),设{a n}的前n 项和是S n,则S10=.三、解答题11.已知数列{a n}是等差数列,其前n 项和为S n,a3=7,S4=24.求数列{a n}的通项公式.12.等差数列{a n}的前n 项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{a n}是等差数列,且a1=50,d=-0.6.(1)从第几项开始a n<0;(2)写出数列的前n 项和公式S n,并求S n的最大值.Ⅲ拓展训练题14.记数列{a n}的前n 项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+…+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题.2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题.在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.1. 数列{a n }满足:a 1=3,a n +1=2a n ,则 a 4 等于( )(A) 38(B)24 (C)48(D)542. 在各项都为正数的等比数列{a n }中,首项 a 1=3,前三项和为 21,则 a 3+a 4+a 5 等于()(A)33 (B)72 (C)84 (D)1893. 在等比数列{a n }中,如果 a 6=6,a 9=9,那么 a 3 等于()(A)4 (B) 3 2 (C) 169 (D)3 4. 在等比数列{a n }中,若 a 2=9,a 5=243,则{a n }的前四项和为( )(A)81(B)120(C)168(D)1925. 若数列{a n }满足 a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列;②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列;④{a n }可能是递减数列. 其中正确的结论是( )(A)①③(B)①④(C)②③(D)②④二、填空题6. 在等比数列{a n }中,a 1,a 10 是方程 3x 2+7x -9=0 的两根,则 a 4a 7= . 7.在等比数列{a n }中,已知 a 1+a 2=3,a 3+a 4=6,那么 a 5+a 6= .8.在等比数列{a }中,若 a =9,q = 1,则{a }的前 5 项和为 .n59 8 27 2n3 210. 设等比数列{a n }的公比为 q ,前 n 项和为 S n ,若 S n +1,S n ,S n +2 成等差数列,则 q = .三、解答题11. 已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前 n 项和为 S n .(1) 求数列{a n }的通项公式; (2)若 S n =242,求 n .12. 在等比数列{a n }中,若 a 2a 6=36,a 3+a 5=15,求公比 q .13. 已知实数 a ,b ,c 成等差数列,a +1,b +1,c +4 成等比数列,且 a +b +c =15,求 a ,b ,c .Ⅲ 拓展训练题14. 在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于 q ,每列上的数从上到1 5下都成等差数列.a ij 表示位于第 i 行第 j 列的数,其中 a 24=,a 42=1,a 54=.(1) 求 q 的值;(2) 求 a ij 的计算公式.2 + 13 + 24 + 3n + 1 + n测试六 数列求和Ⅰ 学习目标1. 会求等差、等比数列的和,以及求等差、等比数列中的部分项的和.2. 会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1. 已知等比数列的公比为 2,且前 4 项的和为 1,那么前 8 项的和等于( )(A)15 (B)17 (C)19 (D)212. 若数列{a }是公差为 1 的等差数列,它的前 100 项和为 145,则 a +a +a +…+a的值为()n21 3 5 99(A)60 (B)72.5 (C)85 (D)120 3. 数列{a n }的通项公式 a n =(-1)n -1·2n (n ∈N *),设其前 n 项和为 S n ,则 S 100 等于( )(A)100 (B)-100 (C)200 (D)-200⎧ 1 ⎫ 4.数列⎨(2n -1)(2n +1) ⎬ 的前n 项和为( ) (A) ⎩ n 2n + 1 ⎭ (B)2n2n + 1 (C)n 4n + 2(D)2nn + 1 5.设数列{a n }的前 n 项和为 S n ,a 1=1,a 2=2,且 a n +2=a n +3(n =1,2,3,…),则 S 100 等于( )(A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.1 +1 +1 + +1 = .17.数列{n +2n }的前n 项和为 .8.数列{a n }满足:a 1=1,a n +1=2a n ,则 a 2 +a 2 +…+a 2 = .12n9.设 n ∈N *,a ∈R ,则 1+a +a 2+…+a n =. 1 1 1 1 10.1⨯ 2 + 2 ⨯ 4 + 3⨯ 8 + + n ⨯ 2n =.三、解答题11. 在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前 n 项和 S n .12. 已知函数 f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数 n 都有 f (1)=n 2 成立.(1) 求数列{a n }的通项 a n ;1 (2) 求a a + 1 + + 1 . a a a a1 22 3n n +113.在数列{a }中,a =1,当 n ≥2 时,a =1 + 1 + 1+ +1,求数列的前 n 项和 S .n1n2 42n -1nⅢ 拓展训练题14. 已知数列{a n }是等差数列,且 a 1=2,a 1+a 2+a 3=12.(1) 求数列{a n }的通项公式;(2) na n - 3 3a n +133一、选择题测试七 数列综合问题Ⅰ 基础训练题1.等差数列{a n }中,a 1=1,公差 d ≠0,如果 a 1,a 2,a 5 成等比数列,那么 d 等于( )(A)3 (B)2 (C)-2 (D)2 或-2 2.等比数列{a n }中,a n >0,且 a 2a 4+2a 3a 5+a 4a 6=25,则 a 3+a 5 等于( ) (A)5 (B)10 (C)15 (D)20 3. 如果 a 1,a 2,a 3,…,a 8 为各项都是正数的等差数列,公差 d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5(C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 5 4. 一给定函数 y =f (x )的图象在下列图中,并且对任意 a 1∈(0,1),由关系式 a n +1=f (a n )得到的数列{a n }满足 a n +1>a n (n ∈N *),则该函数的图象是( )5. 已知数列{a }满足 a =0, a= (n ∈N *),则 a 等于()n1n +120 (A)0 (B)- (C) (D)3 2二、填空题⎧1a ,n 且且且 ,1⎪ 2 n6.设数列{a n }的首项 a 1= ,且 a n +1 = ⎨ ⎪a ⎩n+ 1, 4 n 且且且则 a 2=,a 3= ..7. 已知等差数列{a n }的公差为 2,前 20 项和等于 150,那么 a 2+a 4+a 6+…+a 20=.8. 某种细菌的培养过程中,每20 分钟分裂一次(一个分裂为两个),经过3 个小时,这种细菌可以由1 个繁殖成 个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则 a n = .10. 在数列{a n }和{b n }中,a 1=2,且对任意正整数 n 等式 3a n +1-a n =0 成立,若 b n 是 a n 与 a n +1 的等差中项,则{b n }的前 n 项和为 . 三、解答题11. 数列{a n }的前 n 项和记为 S n ,已知 a n =5S n -3(n ∈N *).(1)求 a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求 a 1+a 3+…+a 2n -1 的和.2 12.已知函数 f (x )=(x >0),设 a =1,a 2 ·f (a )=2(n ∈N *),求数列{a }的通项公式.x 2+ 41 n +1 n n13.设等差数列{a n }的前 n 项和为 S n ,已知 a 3=12,S 12>0,S 13<0. (1) 求公差 d 的范围;(2) 指出 S 1,S 2,…,S 12 中哪个值最大,并说明理由.⎪ 4a +a +a n +1 nⅢ 拓展训练题14.甲、乙两物体分别从相距 70m 的两地同时相向运动.甲第 1 分钟走 2m ,以后每分钟比前 1 分钟多走 1m ,乙每分钟走 5m .(1) 甲、乙开始运动后几分钟相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走 1m ,乙继续每分钟走 5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若 a 1,a 2 是正整数,且 a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”. (1) 举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项 a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.一、选择题测试八 数列全章综合练习Ⅰ 基础训练题1.在等差数列{a n }中,已知 a 1+a 2=4,a 3+a 4=12,那么 a 5+a 6 等于( ) (A)16 (B)20 (C)24 (D)36 2. 在 50 和 350 间所有末位数是 1 的整数和( ) (A)5880 (B)5539 (C)5208 (D)4877 3. 若 a ,b ,c 成等比数列,则函数 y =ax 2+bx +c 的图象与 x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4. 在等差数列{a n }中,如果前 5 项的和为 S 5=20,那么 a 3 等于( ) (A)-2 (B)2 (C)-4 (D)45. 若{a n }是等差数列,首项 a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前 n 项和 S n >0 成立的最大自然数 n 是( ) (A)4012(B)4013 (C)4014 (D)4015二、填空题6. 已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项 a n = . 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前 20 项和 S 20= .8. 数列{a n }的前 n 项和记为 S n ,若 S n =n 2-3n +1,则 a n = .9. 等差数列{a n }中,公差 d ≠0,且 a 1,a 3,a 9 成等比数列,则 a 3 + a 6 + a9 = .47 1010. 设数列{a n }是首项为 1 的正数数列,且(n +1)a 2 -na 2 +a n +1a n =0(n ∈N *),则它的通项公式 a n = .三、解答题11. 设等差数列{a n }的前 n 项和为 S n ,且 a 3+a 7-a 10=8,a 11-a 4=4,求 S 13.12. 已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数 f (x )=2x +1 的图象上.(1) 求数列{a n }的通项公式;(2)求数列{a n }的前 n 项和 S n ;(3)设 c n =S n ,求数列{c n }的前 n 项和 T n .13. 已知数列{a n }的前 n 项和 S n 满足条件 S n =3a n +2.(1) 求证:数列{a n }成等比数列;(2)求通项公式 a n .14. 某渔业公司今年初用 98 万元购进一艘渔船,用于捕捞,第一年需各种费用 12 万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4 万元,该船每年捕捞的总收入为50 万元.n(1) 写出该渔船前四年每年所需的费用(不包括购买费用);(2) 该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3) 若当盈利总额达到最大值时,渔船以 8 万元卖出,那么该船为渔业公司带来的收益是多少万元?115. 已知函数 f (x )=Ⅱ 拓展训练题(x <-2),数列{a }满足 a =1,a =f (- 1)(n ∈N *).(1) 求 a n ;n 1 na n +1 (2) 设b =a 2 +a 2 +…+a 2,是否存在最小正整数 m ,使对任意 n ∈N *有 b < m成立?若存在,求出 mnn +1n +22n +125的值,若不存在,请说明理由.16. 已知 f 是直角坐标系平面 xOy 到自身的一个映射,点 P 在映射 f 下的象为点 Q ,记作 Q =f (P ).设 P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点 P n (x n ,y n )(n ∈N *) 都在这个圆内或圆上,那么称这个圆为点 P n (x n ,y n )的一个收敛圆.特别地,当 P 1=f (P 1)时,则称点 P 1 为映射 f 下的不动点.1若点 P (x ,y )在映射 f 下的象为点 Q (-x +1, y ).2(1) 求映射 f 下不动点的坐标;(2) 若 P 1 的坐标为(2,2),求证:点 P n (x n ,y n )(n ∈N *)存在一个半径为 2 的收敛圆.x 2 - 4bb 第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1. 了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2. 理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题 1. 设 a ,b ,c ∈R ,则下列命题为真命题的是( ) (A) a >b ⇒ a -c >b -c (B)a >b ⇒ ac >bc (C)a >b ⇒ a 2>b 2 (D)a >b ⇒ ac 2>bc 2 2.若-1<<<1,则- 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3. 设 a >2,b >2,则 ab 与 a +b 的大小关系是( ) (A) ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4. 使不等式 a >b 和 1 > 1同时成立的条件是( )a b (A)a >b >0 (B)a >0>b (C)b >a >0(D)b >0>a5.设 1<x <10,则下列不等关系正确的是()(A) lg 2x >lg x 2>lg(lg x )(B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x )(D)lg x 2>lg(lg x )>lg 2x二、填空题6. 已知 a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c(b -2)c ; (2) cac ; (3)b -ab|a |-|b |. 7. 已知 a <0,-1<b <0,那么 a 、ab 、ab 2 按从小到大排列为 .a8. 已知 60<a <84,28<b <33,则 a -b 的取值范围是; 的取值范围是.b9. 已知 a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③ a > b;④a -c >b -c .以其中一个论断作条件,另c c 一个论断作结论,写出你认为正确的两个命题是 ⇒ ;⇒ .(在“ ⇒ ”的两侧填上论断序号).10.设 a >0,0<b <1,则 P = b 三、解答题a + 32 与Q = b 的大小关系是 .b b + m11.若 a >b >0,m >0,判断 与的大小关系并加以证明.aa + m12.设 a >0,b >0,且 a ≠b , p = a 2+ a , q = a + b .证明:p >q .注:解题时可参考公式 x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知 a >0,且 a ≠1,设 M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较 a 5 和 b 5 的大小.(a +1)(a +2)2ab ab ab bc y1. 了解基本不等式的证明过程.测试十 均值不等式Ⅰ 学习目标2. 会用基本不等式解决简单的最大(小)值问题.一、选择题1. 已知正数 a ,b 满足 a +b =1,则 ab ( )Ⅱ 基础训练题(A) 有最小值 1 4 (B) 有最小值 12 (C) 有最大值 14(D) 有最大值 122.若 a >0,b >0,且 a ≠b ,则()a + ba +b (A) <<2(B) <<2(C) << a + b 2(D) (D )< a + b2 3. 若矩形的面积为 a 2(a >0),则其周长的最小值为( )(A) a(B)2a (C)3a (D)4a4. 设 a ,b ∈R ,且 2a +b -2=0,则 4a +2b 的最小值是()(A) 2 (B)4 (C) 4 (D)85. 如果正数 a ,b ,c ,d 满足 a +b =cd =4,那么() (A)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(B)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(C)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一(D)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一二、填空题6. 若 x >0,则变量 x + 9的最小值是x;取到最小值时,x = . 4x7. 函数 y =x 2+1(x >0)的最大值是;取到最大值时,x =.8. 已知 a <0,则 a + 16 a - 3的最大值是 .9. 函数 f (x )=2log 2(x +2)-log 2x 的最小值是 . 10. 已知 a ,b ,c ∈R ,a +b +c =3,且 a ,b ,c 成等比数列,则 b 的取值范围是 .三、解答题11. 四个互不相等的正数 a ,b ,c ,d 成等比数列,判断 a + d 和 的大小关系并加以证明.212. 已知 a >0,a ≠1,t >0,试比较 1log t 与log2aat +1 2的大小.13. 若正数 x ,y 满足 x +y =1,且不等式Ⅲ 拓展训练题+ ≤ a 恒成立,求 a 的取值范围. a 14.(1)用函数单调性的定义讨论函数 f (x )=x + (a >0)在(0,+∞)上的单调性;xaa 2 +b 22 a 2 + b 22a 2 +b 2 2 a 2 + b 2 2 22x(2)设函数f(x)=x+(a>0)在(0,2]上的最小值为g(a),求g(a)的解析式.x测试十一 一元二次不等式及其解法Ⅰ 学习目标1. 通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系.2. 会解简单的一元二次不等式.一、选择题 1. 不等式 5x +4>-x 2 的解集是( )(A){x |x >-1,或 x <-4} Ⅱ 基础训练题(B){x |-4<x <-1} (C){x |x >4,或 x <1}(D){x |1<x <4}2. 不等式-x 2+x -2>0 的解集是()(A){x |x >1,或 x <-2}(B){x |-2<x <1} (C)R (D) ∅3. 不等式 x 2>a 2(a <0)的解集为( )(A){x |x >±a } (B){x |-a <x <a }(C) {x |x >-a ,或 x <a }(D) {x |x >a ,或 x <-a }4. 已知不等式 ax 2+bx +c >0 的解集为{x | - 1< x < 2},则不等式 cx 2+bx +a <0 的解集是()31(A){x |-3<x < }21(B){x |x <-3, 或 x > } 2 1(C){x -2<x < }31(D){x |x <-2, 或 x > }35. 若函数 y =px 2-px -1(p ∈R )的图象永远在 x 轴的下方,则 p 的取值范围是( )(A)(-∞,0)(B)(-4,0](C)(-∞,-4) (D)[-4,0)二、填空题 6. 不等式 x 2+x -12<0 的解集是. 7. 不等式 3x -1≤ 0 的解集是. 2x + 58.不等式|x 2-1|<1 的解集是 .9. 不等式 0<x 2-3x <4 的解集是.10. 已知关于 x 的不等式 x 2-(a + 1 )x +1<0 的解集为非空集合{x |a <x < 1},则实数 a 的取值范围是.a a三、解答题11. 求不等式 x 2-2ax -3a 2<0(a ∈R )的解集.⎧x 2 + y 2 - 2x = 012.k 在什么范围内取值时,方程组⎨ ⎩3x - 4 y + k = 0有两组不同的实数解?Ⅲ 拓展训练题13.已知全集 U =R ,集合 A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1) 求实数 a 的取值范围,使 C (2) 求实数 a 的取值范围,使 C ⊇ (A ∩B ); ⊇ ( U A )∩( U B ).14.设 a ∈R ,解关于 x 的不等式 ax 2-2x +1<0.测试十二不等式的实际应用Ⅰ学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ基础训练题一、选择题11.函数y =( )(A){x|-2<x<2} (B){x|-2≤x≤2}(C){x|x>2,或x<-2} (D){x|x≥2,或x≤-2}2.某村办服装厂生产某种风衣,月销售量x(件)与售价p(元/件)的关系为p=300-2x,生产x 件的成本r=500+30x(元),为使月获利不少于8600 元,则月产量x 满足( )(A)55≤x≤60 (B)60≤x≤65(C)65≤x≤70 (D)70≤x≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70 元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100 元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112 万元,那么r 的取值范围为( )(A)2≤r≤10 (B)8≤r≤10(C)2≤r≤8 (D)0≤r≤84.若关于x 的不等式(1+k2)x≤k4+4 的解集是M,则对任意实常数k,总有( )(A)2∈M,0∈M (B)2∉M,0∉M(C)2∈M,0∉M (D)2∉M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为.6.不等式2x2+ax+2>0 的解集是R,则实数a 的取值范围是.7.已知函数f(x)=x|x-2|,则不等式f(x)<3 的解集为.8.若不等式|x+1|≥kx 对任意x∈R 均成立,则k 的取值范围是.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s 甲=0.1x+0.01x2,s 乙=0.05x+0.005x2.问交通事故的主要责任方是谁?Ⅲ拓展训练题11.当x∈[-1,3]时,不等式-x2+2x+a>0 恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?⎨ ⎩ ⎨ ⎨ ⎩⎩⎩⎩⎨ ⎩ ⎨y < 0⎨ ⎩ ⎨ ⎩⎨ ⎩测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1. 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2. 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题 1.已知点 A (2,0),B (-1,3)及直线 l :x -2y =0,那么( ) (A)A ,B 都在 l 上方 (B)A ,B 都在 l 下方 (C)A 在 l 上方,B 在 l 下方(D)A 在 l 下方,B 在 l 上方⎧x ≥ 0,2. 在平面直角坐标系中,不等式组⎪y ≥ 0, 所表示的平面区域的面积为()⎪x + y ≤ 2(A)1(B)2 (C)3(D)43. 三条直线 y =x ,y =-x ,y =2 围成一个三角形区域,表示该区域的不等式组是()⎧ y ≥ x ,⎧ y ≤ x , ⎧ y ≤ x , ⎧ y ≥ x , (A) ⎪ y ≥ -x , ⎪(B) ⎨ y ≤ -x ,(C) ⎪ y ≥ -x , ⎪(D) ⎨ y ≤ -x ,⎪ y ≤ 2. ⎪ y ≤ 2.⎧x - y + 5 ≥ 0, ⎪ y ≤ 2. ⎪ y ≤ 2. 4. 若 x ,y 满足约束条件⎪x + y ≥ 0, ⎪x ≤ 3,则 z =2x +4y 的最小值是()(A)-6 (B)-10 (C)5 (D)10 5. 某电脑用户计划使用不超过 500 元的资金购买单价分别为 60 元,70 元的单片软件和盒装磁盘.根据需要,软件至少买 3 片,磁盘至少买 2 盒,则不同的选购方式共有( ) (A)5 种 (B)6 种 (C)7 种 (D)8 种 二、填空题6. 在平面直角坐标系中,不等式组⎧x > 0所表示的平面区域内的点位于第 象限.⎩ 7. 若不等式|2x +y +m |<3 表示的平面区域包含原点和点(-1,1),则 m 的取值范围是.⎧x ≤ 1,8. 已知点 P (x ,y )的坐标满足条件⎪y ≤ 3, 那么 z =x -y 的取值范围是.⎪3x + y - 3 ≥ 0,⎧x ≤ 1,9.已知点 P (x ,y )的坐标满足条件⎪ y ≤ 2,⎪2x + y - 2 ≥ 0,那么 y 的取值范围是 .x10. 方程|x |+|y |≤1 所确定的曲线围成封闭图形的面积是.三、解答题11. 画出下列不等式(组)表示的平面区域:⎧x ≤ 1, (1)3x +2y +6>0(2) ⎪y ≥ -2,⎪x - y + 1 ≥ 0.2 2 2 ⎨ ⎩12. 某实验室需购某种化工原料 106kg ,现在市场上该原料有两种包装,一种是每袋 35kg ,价格为 140 元;另一种是每袋 24kg ,价格为 120 元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13. 商店现有 75 公斤奶糖和 120 公斤硬糖,准备混合在一起装成每袋 1 公斤出售,有两种混合办法:第一种每袋装 250 克奶糖和 750 克硬糖,每袋可盈利 0.5 元;第二种每袋装 500 克奶糖和 500 克硬糖,每袋可盈利 0.9 元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向 A ,B 两镇运送大米,已知甲库可调出 100 吨,乙库可调出 80 吨,而 A 镇需大米 70 吨,B 镇需大米 110 吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往 A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题 1. 设 a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2 (B) 1 < 1(C)a -c >b -c(D)|a |>|b |a b⎧x + y - 4 ≤ 0, 2.在平面直角坐标系中,不等式组⎪2x - y + 4 ≥ 0, 表示的平面区域的面积是()⎪ y ≥ 2(A) 32(B)3 (C)4 (D)63. 某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为 10m ,则这个矩形的面积最大值是( ) (A)50m 2(B)100m 2 (C)200m 2 (D)250m 2x 2 - x + 2 4. 设函数 f (x )=x 2,若对 x >0 恒有 xf (x )+a >0 成立,则实数 a 的取值范围是()(A)a <1-2 (B)a <2 -1 (C)a >2 -1 (D)a >1-2 5.设 a ,b ∈R ,且 b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题222x +2ax -⋅a-1 12 n6. 已知 1<a <3,2<b <4,那么 2a -b 的取值范围是 a, 的取值范围是.b7. 若不等式 x 2-ax -b <0 的解集为{x |2<x <3},则 a +b = .8. 已知 x ,y ∈R +,且 x +4y =1,则 xy 的最大值为.9. 若函数 f (x )=的定义域为 R ,则 a 的取值范围为.10. 三个同学对问题“关于 x 的不等式 x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数 a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量 x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于 x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即 a 的取值范围是 .三、解答题11.已知全集 U =R ,集合 A ={x | |x -1|<6} ,B ={x |(1) 求 A ∩B ; (2) 求(U A )∪B .x - 8>0}.2x - 112. 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本 1000 元,运费 500 元,可得产品 90 千克;若采用乙种原料,每吨成本 1500 元,运费 400 元,可得产品 100 千克.今预算每日原料总成本不得超过 6000 元, 运费不得超过 2000 元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题a j 13. 已知数集 A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质 P :对任意的 i ,j (1≤i ≤j ≤n ),a i a j 与两a i数中至少有一个属于 A .(1) 分别判断数集{1,3,4}与{1,2,3,6}是否具有性质 P ,并说明理由;(2)证明:a =1,且a 1 + a 2 + + a n= a .1a -1+a -1+ +a -1 nab 3 3 ⎨ ⎩一、选择题1.函数 y = 测试十五 必修 5 模块自我检测题的定义域是()(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设 a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0< a<1b a + b(C) <(D)ab >a +b2 ⎧x ≤ 1, 3.设不等式组⎪y ≥ 0, 所表示的平面区域是 W ,则下列各点中,在区域 W 内的点是()⎪x - y ≥0(A) ( 1 2 , 1)3 (B) (- 1 , 1)2 3 (C) (- 1 ,- 1)(D) ( 1 ,- 1)2 32 34. 设等比数列{a n }的前 n 项和为 S n ,则下列不等式中一定成立的是() (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<0 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别为 a ,b ,c ,若 A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )(A)1∶ ∶2(B)1∶2∶3(C)2∶ ∶1(D)3∶2∶16.已知等差数列{a n }的前 20 项和 S 20=340,则 a 6+a 9+a 11+a 16 等于( )(A)31 (B)34 (C)68 (D)707. 已知正数 x 、y 满足 x +y =4,则 log 2x +log 2y 的最大值是() (A)-4 (B)4 (C)-2 (D)28. 如图,在限速为 90km/h 的公路 AB 旁有一测速站 P ,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点 B 的距离为 0.05 km ,且∠APB =60°.现测得某辆汽车从 A 点行驶到 B 点所用的时间为 3s ,则此车的速度介于 ( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h二、填空题 9. 不等式 x (x -1)<2 的解集为 . 10. 在△ABC 中,三个内角 A ,B ,C 成等差数列,则 cos(A +C )的值为 . 11. 已知{a n }是公差为-2 的等差数列,其前 5 项的和 S 5=0,那么 a 1 等于.12. 在△ABC 中,BC =1,角 C =120°,cos A = 2 ,则 AB =.3x 2 - 43 ⎨⎩⎧x ≥ 0, y ≥ 013.在平面直角坐标系中,不等式组⎪2x +y - 4 ≤ 0 ,所表示的平面区域的面积是;变量z=x+3y 的最大⎪x +y - 3 ≤ 0值是.14.如图,n2(n≥4)个正数排成n 行n 列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i 行第j 列的正数.已1 1知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=2,a24=1,a32=4,则q=;a ij=.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5 时,解不等式f(x)<0;(2)若不等式f(x)>0 的解集为R,求实数a 的取值范围.16.已知{a n}是等差数列,a2=5,a5=14.(1)求{a n}的通项公式;(2)设{a n}的前n 项和S n=155,求n 的值.17.在△ABC 中,a,b,c 分别是角A,B,C 的对边,A,B 是锐角,c=10,且cos A=b=4.cos B a 3(1)证明角C=90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56 吨,供电至多45 千瓦,问该厂如何安排生产,使得该厂日产值最大?用煤(吨) 用电(千瓦) 产值(万元) 甲种产品7 2 8乙种产品 3 5 1119.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且cos A=1.3(1)求sin 2B +C+ cos 2 A的值;2(2)若a=,求bc 的最大值.20.数列{a n}的前n 项和是S n,a1=5,且a n=S n-1(n=2,3,4,…).(1)求数列{a n}的通项公式;(2)求证:1+1a1 a2+1+ +1a3 a n<3⋅53 3 7 (5 - 0)2+ (2 - 0)2 29 3 2 44 参考答案一、选择题 第一章 解三角形测试一 正弦定理和余弦定理1.B 2.C 3.B4.D 5.B提示:4.由正弦定理,得 sin C =3,所以 C =60°或 C =120°,2当 C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当 C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形.5.因为 A ∶B ∶C =1∶2∶3,所以 A =30°,B =60°,C =90°,由正弦定理a = sin Ab sin B = csin C=k , 得 a =k ·sin30°= 1 k ,b =k ·sin60°= 2所以 a ∶b ∶c =1∶ ∶2.3k ,c =k ·sin90°=k ,2二、填空题 6.2 6 提示:7.30° 8.等腰三角形 9. 3 + 3710. 5 2 8. ∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即 B =C .9. 利用余弦定理 b 2=a 2+c 2-2ac cos B .10. 由 tan A =2,得sin A =,根据正弦定理,得AC sin B = BC sin A ,得 AC = 5 2.三、解答题11.c =2 ,A =30°,B =90°.12.(1)60°;(2)AD = .13. 如右图,由两点间距离公式,得 OA = = ,同理得OB = 145, AB = .由余弦定理,得cos A = OA 2 + AB 2 - OB 2 22⨯OA ⨯AB = 2 , ∴A =45°.25232310137(5 - 0)2+ (2 - 0)22923214.(1)因为2cos(A+B)=1,所以A+B=60°,故C=120°.(2)由题意,得a+b=2 ,ab=2,又AB2=c2=a2+b2-2ab cos C=(a+b)2-2ab-2ab cos C=12-4-4×( -1)=10.2所以AB=.(3)S△ABC=1ab sin C=1·2· 3 =3 .2 2 2 2测试二解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:5.化简(a+b+c)(b+c-a)=3bc,得b2+c2-a2=bc,由余弦定理,得cos A=b2+c2-a22bc=1,所以∠A=60°.2因为sin A=2sin B cos C,A+B+C=180°,所以sin(B+C)=2sin B cos C,即sin B cos C+cos B sin C=2sin B cos C.所以sin(B-C)=0,故B=C.故△ABC 是正三角形.二、填空题6.30°7.120°8.24559.510.三、解答题11.(1)由余弦定理,得c=;(2)由正弦定理,得sin B=239 .1312.(1)由a·b=|a|·|b|·cos〈a,b〉,得〈a,b〉=60°;(2)由向量减法几何意义,知|a|,|b|,|a-b|可以组成三角形,所以|a-b|2=|a|2+|b|2-2|a|·|b|·cos〈a,b〉=7,故|a-b|=.13.(1)如右图,由两点间距离公式,得OA ==,同理得OB = 145, AB =.由余弦定理,得329 29 29 48t 2 - 24t +7 cos A = OA 2 + AB 2 - OB 2 2⨯OA ⨯AB = 2 ,2 所以 A =45°.故 BD =AB ×sin A =2 .(2)S1 1 = ·OA ·BD = · ·2 =29. △OAB 2 214.由正弦定理aa = sin Ab b sin B = csin Cc= 2R , 得 = sin A , 2R 2R = sin B , 2R= sin C . 因为 sin 2A +sin 2B >sin 2C ,所 以 ( a )2 + ( b )2 > ( c)2 ,2R 2R 2R 即 a 2+b 2>c 2.a 2 +b 2 -c 2所以 cos C = 2ab>0, 由 C ∈(0,π),得角 C 为锐角.15.(1)设 t 小时后甲、乙分别到达 P 、Q 点,如图,3则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以 t = h 时,P 与 O 重合. 43故当 t ∈[0, ]时,4|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;3当 t > h 时 ,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.4故得|PQ |= (t ≥0).(2)当 t = -- 24 = 2 ⨯ 48 1 h 时,两人距离最近,最近距离为 2km .416.(1)由正弦定理a = sin Ab sin B = csin C= 2R , 得 a =2R sin A ,b =2R sin B ,c =2R sin C .所以等式 cos B = - cos C b 2a + c可化为 cos B = - cos C 2R sin B ,2 ⋅ 2R sin A + 2R sin C 即 cos B = - cos Csin B ,2 sin A + sin C 2sin A cos B +sin C cos B =-cos C ·sin B ,故 2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为 A +B +C =π,所以 sin A =sin(B +C ), 1故 cos B =- ,2所以 B =120°.⎨ ⎨n1 23(2)由余弦定理,得 b 2=13=a 2+c 2-2ac ×cos120°, 即 a 2+c 2+ac =13 又 a +c =4,⎧a = 1 解得 ⎩c = 3 ⎧a = 3 ,或 . ⎩c = 1所以 S1 1 = ac sin B = ×1×3× 3 = 3 3 .△ABC2 22 4一、选择题1.C 2.B 3.C4.C5.B二、填空题第二章 数列测试三 数列6.(1) a = 2 (或其他符合要求的答案)(2) a = nn + 1n 1 + (-1)n2 (或其他符合要求的答案)7.(1) 1 , 4 , 9 , 16 , 25 (2)7 8.679. 1 10.42 5 10 17 26 15提示:9.注意 a n 的分母是 1+2+3+4+5=15.10.将数列{a n }的通项 a n 看成函数 f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前 6 项依次是 11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当 n ≥5 时,a n =14-3n <0.12.(1) a 10 = 109 3 , a n +1 = n 2 + 3n +13 , a 2 = n4 + n 2 -1 ; 3 (2)79 2是该数列的第 15 项.313.(1)因为 a =n - 1 ,所以 a =0,a = 3 ,a = 8 ,a =15 ;n2 344(2)因为 a-a =[(n +1) -1]-(n - 1)=1+1n +1nn + 1 nn (n + 1)又因为 n ∈N +,所以 an +1-a n >0,即 a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题 1.B 2.D3.A4.B5.B二、填空题 6.a 4 7.13 8.6 9.6n -1 10.35 提示:10. 方法一:求出前 10 项,再求和即可;方法二:当 n 为奇数时,由题意,得 a n +2-a n =0,所以 a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当 n 为偶数时,由题意,得 a n +2-a n =2, 即 a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).n。

人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc

人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列 D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12D .-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A .2B .3C .4D .5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A .4 B.14 C .-4D .-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A .S 7B .S 4C .S 13D .S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A .2n -1B .2nC .2n +1D .2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A .4或5B .5或6C .6或7D .不存在解析 由d <0知,{a n }是递减数列, ∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A .有两个不等实根 B .有两相等的实根 C .无实数根 D .无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1=S n -1 两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n=log 3q (为常数),∴{b n }是公差为log 3q 的等差数列. (2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n=3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12, ∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。

高中数学人教A版必修5第二章 数列本章复习与测试(有答案)

高中数学人教A版必修5第二章 数列本章复习与测试(有答案)

10. 已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D. 18 11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( )A.1B.9C.10D.55 12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 二、填空题13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16. 设{}n a 为公比1>q 的等比数列,若ɑ2019和ɑ2020是方程03842=+-x x 的两根,则 ɑ2020+ɑ2021 =_____________. 三、解答题17. 已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式.18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .(Ⅰ)求na 及n S ;(Ⅰ)求q 的值;(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;(Ⅰ)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.参考答案:二、填空题13. ___24____. 14. )(4*1N n n ∈-. 15. )(22*2N n n n ∈++. 16.______18______.三、解答题17.解:设等比数列{}n a 的公比为q ,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--;当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:(Ⅰ)设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.(Ⅱ)设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d..13,2626756=∴=+=a a a a由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .n n b b b T +++=∴ 21=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn + .20. 解:(Ⅰ)q p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p p.0=∴q(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a.68)1(1-=-+=∴n d n a a n.34log ,68log 222-=-==∴n b n b a n n n故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………(1) 3451212341222222n n n n n T +++=+++++……(2) )()(21-,得: 23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-+=+--12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。

人教A版高一必修5数学第二章数列单元测试及答案(练习检测试题卷).doc

人教A版高一必修5数学第二章数列单元测试及答案(练习检测试题卷).doc

班姓座A . a” =2“_1B . a n =(-ir (2n-l) c. a n =(-ir (l-2n) 2、 等比数列2, 4, 8, 16,…的前nA . 2n+1-l B. 2n -23、等比数列{%}中,已知a x a” =27, q = 3,则”为( A . B. 4 4、 等比数列{a”}中,a 6 = 6, a 9 = 9 ,则a 等于( A.5、 若数列{%}中,Q 广43-3n,则»最大血 A. 13 B. 14 6、 成等比数列,那么d 等于A.3 C. -2 D. ±27、 等差数列仏}燈皿聖的和是30, A. 130 亠 170 前加项的和是100,则它的前3加项的和是(C. 210D.2608、 敎刻仏}贏项公式是血二--------- n (M + l )(心),若前刀项的和为罟,则项数0为() A. 12 B.11C. 10D. 91、 1°、{a”}为等差数列,01 + 04 + ^7 = 39, 弘+弘+ ^产込弘+。

6 +。

9二浙江省瓯海中学高一数学必修5第二章《数列》单元测试一、选择题(每小题6分)数列1, ~3, 5, -7, 9,…的一个通项公式为( 二、填空题(每小题6分)9、等差数列{爲}中,S 广40, Q] =13,11、在等差数列{a* }中,1 = 20 ,则 Q] + Q]3 =色=(_ig+i ) D . C. InC. 5D. 6 D. 14 或 15 C. 16 ,如果 Q]、等差数列{a”}的首项a. =1(2)+ a :的和(3)在(2)的条件(1)当a = l 时,求{a”}的通项公式14、(本题18分)已知数列{a ”}的前%项和S” =12>在数列{a”}中,fl] =1,且对于任意自然数”,都有a n+1 = a n + n ,贝ija 100 = __________三、解答题13、(本题10分)求数列耳吗斗4护•的前刀项和。

高中数学必修5第二章单元测评(详解版)

高中数学必修5第二章单元测评(详解版)

第二章单元测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列-,,-,…的一个通项公式是()A.a n=(-1)nB.a n=(-1)nC.a n=(-1)nD.a n=(-1)n2.已知a,b,c,d依次成等比数列,且曲线y=x2-4x+7的顶点坐标是(b,c),则ad等于()A.5B.6C.7D.123.设{a n}是等比数列,若a2=3,a7=1,则数列{a n}前8项的积为 ()A.56B.80C.81D.1284.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的等于较小的两份之和,则最小的一份为()A.B.C.D.5.已知数列{a n}中,a1=2,a n+1=a n+2n(n∈N*),则a100的值是()A.9900B.9902C.9904D.11 0006.在等差数列{a n}中,若a1008+a1009+a1010+a1011=18,则该数列的前2018项的和为 ()A.18 126B.9072C.9081D.12 0847.等差数列{a n}中,已知a1=-12,S13=0,则使得a n>0的最小正整数n为()A.7B.8C.9D.108.已知等差数列{a n}的前n项和为S n,S17>0,S18<0,则当S n取得最大值时,n为()A.7B.8C.9D.109.已知数列{a n}中,a1=3,a n+1=a n+2(n∈N*),则此数列的前10项和S10=()A.140B.120C.80D.6010.在等比数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8= ()A.10B.11C.12D.1411.已知等比数列{a n}的前n项和为S n,且S n=2n-c(c∈R),若log2a1+log2a2+…+log2a n=10,则n=()A.2B.3C.4D.512.对于正项数列{a n},定义G n=为数列{a n}的“匀称”值.已知正项数列{a n}的“匀称”值为G n=n+2,则该数列中的a10等于()A.2B.C.1D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设等比数列{a n}的前n项和为S n,若S10∶S5=1∶2,则S15∶S5= .14.已知数列{a n}中,a1=1,前n项和为S n,且点P(a n,a n+1)(n∈N*)在直线x-y+1=0上,则+++…+= .15.已知数列{a n}满足2a1+22a2+23a3+…+2n a n=n(n∈N*),则数列{a n}的前n项和S n= .16.若一个实数数列{a n}满足条件-a n=d(d为常数,n∈N*),则称这一数列为“伪等差数列”,d称为“伪公差”.给出下列关于“伪等差数列”{a n}的说法:①对于任意的首项a1,若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为递增数列;③若这一数列的首项为1,“伪公差”为3,则-可以是这一数列中的一项;④若这一数列的首项为0,第三项为-1,则这一数列的“伪公差”可以是.其中说法正确的是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知等差数列{a n}中,公差d≠0,a1=2,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)求数列{-1}的前n项和S n.18.(12分) 设{a n}是公比大于1的等比数列,S n为数列{a n}的前n项和,已知S3=7,且a1+3,3a2,a3+4依次构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=ln a3n+1,求数列{b n}的前n项和T n.19.(12分) 已知数列和满足a1=2,b1=1,a n+1=2a n,b1+b2+b3+…+b n=b n+1-1.(1)求a n与b n;(2)记数列的前n项和为T n,求T n.20.(12分)等差数列{a n}中,a1=3,其前n项和为S n.等比数列{b n}的各项均为正数,b1=1,且b2+S2=12,a3=b3.(1)求数列{a n}与{b n}的通项公式;(2)证明:数列的前n项和T n<.21.(12分) 已知数列为等差数列,且a2+a3=8,a5=3a2.(1)求数列的通项公式;(2)记b n=,设的前n项和为S n,求最小的正整数n,使得S n>.22.(12分)已知数列{a n}的前n项和为S n,且S n=2a n-2.(1)求数列{a n}的通项公式;(2)设函数f(x)=,数列{b n}满足条件b1=2,f(b n+1)=,若c n=,求数列{c n}的前n 项和T n.单元测评答案1.C[解析] 观察数列各项知符号可用(-1)n表示.各项绝对值的分母依次为3,5,7,…,故可表示为2n+1;各项绝对值的分子依次为1,4,9,…,故可表示为n2.所以a n=(-1)n,故选C.2.B[解析] 由y=x2-4x+7,得y=(x-2)2+3,所以顶点坐标为(2,3),即b=2,c=3.由a,b,c,d依次成等比数列,得ad=bc=6,故选B.3.C[解析] 由等比数列的性质,得a1a8=a2a7=a3a6=a4a5,则数列{a n}前8项的积为a1a2a3a4a5a6a7a8=(a2a7)4=34=81,故选C.4.A[解析] 设五个人所分得的面包个数为a-2d,a-d,a,a+d,a+2d,其中d>0,则(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=100,∴a=20.由(a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d),∴24d=11a,∴d=,∴最小的一份为a-2d=20-=.故选A.5.B[解析] ∵a1=2,a n+1=a n+2n,∴a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2(n-1)+2(n-2)+…+2×1+2=2×+2=n2-n+2,∴a100=1002-100+2=9902.6.C[解析] ∵a1+a2018=a1008+a1011=a1009+a1010,而a1008+a1009+a1010+a1011=18,∴a1+a2018=9,∴S2018=(a1+a2018)×2018=9081,故选C.7.B[解析] 由S13==0,得a13=12,则a1+12d=12,得d=2,∴数列{a n}的通项公式为a n=-12+(n-1)×2=2n-14,由2n-14>0,得n>7,即使得a n>0的最小正整数n为8,故选B.8.C[解析] ∵等差数列{a n}中,S17>0,S18<0,∴a9>0,a9+a10<0,∴a10<0,∴数列的前9项和最大.9.B[解析] ∵a n+1=a n+2,∴a n+1-a n=2,∴{a n}是首项为3,公差为2的等差数列,∴S10=10×3+×2=120,故选B.10.C[解析] 由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,所以a5+a6=2×2=4,a7+a8=4×2=8,所以a5+a6+a7+a8=4+8=12.选C.11.D[解析] 当n≥2时,a n=S n-S n-1=2n-c-(2n-1-c)=2n-1.∵{a n}是等比数列,∴当n=1时,a1=S1=2-c也满足上式,∴2-c=20=1,∴c=1,∴a n=2n-1.∴log2a1+log2a2+…+log2a n=log2(a1a2…a n)=log2(20×21×…×2n-1)=log220+1+2+…+n-1==10,解得n=5.12.D[解析] 由正项数列{a n}的“匀称”值的定义,得G1=a1=3;G2==4,即a2=;G3==5,即a3=;…….故数列{a n}的通项公式为a n=,所以a10=,故选D.13.3∶4[解析] 显然等比数列{a n}的公比q≠1,则由==1+q5=⇒q5=-,故====.故S15∶S5=3∶4.14.[解析] 由题意,a n-a n+1+1=0,∴a n+1-a n=1,∴{a n}为等差数列,且a1=1,d=1,∴a n=1+(n-1)×1=n,∴S n=,∴==2-,∴++…+=21-+-+…+-=.15.1-[解析] 由2a1+22a2+23a3+…+2n a n=n(n∈N*),可得2a1+22a2+23a3+…+2n a n+2n+1a n+1=n+1,两式相减得2n+1a n+1=1,∴a n+1=.∵当n=1时,2a1=1,∴a1=,∴{a n}是首项a1=,公比q=的等比数列,则数列{a n}的前n项和S n==1-.16.③[解析] ①当a1=,d=-,a n>0时,依题意,a n=,这一数列不是有穷数列,故不正确;②当d>0,a1>0时,∵a n+1=±,∴这一数列不一定是递增数列,故不正确;③∵a1=1,d=3,∴a2=±=±2,当a2=2时,a3=±=±,故正确;④∵a1=0,∴=a1+d=d,∴d≥0,而<0,故不正确.综上所述,③正确.17.解:(1)由题意知=a1a9,即(2+2d)2=2×(2+8d),即d2-2d=0,∴d=2或d=0(舍),∴a n=2n.(2)-1=22n-1=4n-1,∴S n=41+42+43+…+4n-n=(4n-1)-n.18.解:(1)由已知得a1+a2+a3=7,a1+3+a3+4=2×3a2,可得a2=2.设数列{a n}的公比为q,由a2=2,可得a1=,a3=2q,∵S3=7,∴+2+2q=7,即2q2-5q+2=0,解得q=2或q=.由题意知q>1,∴q=2,∴a1=1,故数列{a n}的通项公式为a n=2n-1.(2)∵b n=ln a3n+1,a3n+1=23n,∴b n=ln 23n=3n ln 2,∴b n+1-b n=3ln 2,故数列{b n}为等差数列,∴T n=b1+b2+…+b n===ln 2,故T n=ln 2.19.解:(1)由a1=2,a n+1=2a n,得a n=2n.由题意知,当n=1时,b1=b2-1,故b2=2.易知当n≥2时,b n=b n+1-b n,整理得=(n≥2),所以b n=n(n≥2).又b1=1也满足上式,所以b n=n.(2)由(1)知,a n b n=n·2n,所以T n=2+2×22+3×23+…+n×2n,2T n=22+2×23+3×24+…+(n-1)×2n+n×2n+1,所以T n-2T n=-T n=2+22+23+…+2n-n×2n+1=(1-n)2n+1-2,所以T n=(n-1)2n+1+2.20.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由a1=3,b1=1,b2+S2=12,a3=b3,得又q>0,∴∴数列{a n}的通项公式为a n=3+3(n-1)=3n,数列{b n}的通项公式为b n=3n-1.(2)证明:由(1)知a n=3n,则S n=,∴==-,∴T n=×1-+×-+×-+…+×-=1-<.21.解:(1)设等差数列的公差为d,则依题意有解得所以数列的通项公式为a n=2n-1.(2)因为b n==-,所以S n=++…+=1-.令1->,解得n>1009,所以满足条件的最小正整数n为1010.22.解:(1)当n≥2时,a n=S n-S n-1=2a n-2a n-1,得a n=2a n-1;当n=1时,a1=S1=2a1-2,得a1=2.因此数列{a n}为等比数列,且首项为2,公比为2,∴通项公式为a n=2n.(2)∵f(x)=,f(b n+1)=,∴=,∴=.∴b n+1=b n+3,即b n+1-b n=3.又∵b1=2,∴{b n}是以2为首项,3为公差的等差数列,∴b n=3n-1.∴c n==,T n=+++…++①,T n=+++…++②,①-②得T n=1++++…+-,即T n=1+3×-,即T n=1+-,∴T n=2+3-=2+3--=5-.。

高中数学 第二章 数列同步测试卷(含解析)新人教A版必修5(1)(2021年最新整理)

高中数学 第二章 数列同步测试卷(含解析)新人教A版必修5(1)(2021年最新整理)

高中数学第二章数列同步测试卷(含解析)新人教A版必修5(1) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章数列同步测试卷(含解析)新人教A版必修5(1))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章数列同步测试卷(含解析)新人教A版必修5(1)的全部内容。

数列(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·高考福建卷)等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于( )A.8 B.10 C.12 D.142.(2014·高考重庆卷)对任意等比数列{a n},下列说法一定正确的是( )A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列3.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1 B.0 C.1 D.64.(2014·高考辽宁卷)设等差数列{a n}的公差为d.若数列{2a1a n}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>05.(2014·高考重庆卷)在等差数列{a n}中,a1=2,a3+a5=10,则a7=( )A.5 B.8 C.10 D.146.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则数列{a n}的公比为( )A.1 B.3 C.错误! D.错误!7.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=( )A.错误! B.-错误! C。

(好题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(1)

(好题)高中数学必修五第二章《解三角形》测试卷(包含答案解析)(1)

一、选择题1.在ABC 中,30A =︒,BC 边上的高为1,则ABC 面积的最小值为( )A .2B .2C .2+D .2+2.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .3.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A .2+B .4C .6+D .8+4.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π7.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .28.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8059.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =,cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 10.已知ABC ∆中,2a =,3b =,60B =,那么角A 等于( )A .135B .45C .135或45D .9011.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .912.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .43二、填空题13.在ABC 中,3B π=,32AC =,则4AB BC +的最大值为_______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,ABC 的面积为24b c,且221sin ()(1)sin sin 2A B c B b A ++-=,则A =_______.17.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆,a =___________.18.一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西45︒方向上,另一灯塔在南偏西60︒方向上,则该船的速度是____海里/小时.19.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,b =2ac +的最大值为______.三、解答题21.在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC 的面积为BC 边上的中线AM 的长.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.在①222b a c =+,②cos sin a B b A =,③sin cos B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,b =ABC 的面积.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为2+S .25.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若23a =,4b c +=,求ABC 的面积.26.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可求得11,sin sin AB AC B C==,代入面积公式,可求得面积的表达式,设4sin sin y B C =,根据B 、C 的关系,利用两角差的正弦公式及辅助角公式,可得2sin(2)33y B π=-+,根据B 的范围,即可求得max y ,即可得答案.【详解】设BC 边上的高为AD ,则AD =1,AD BC ⊥,如图所示:所以11sin ,sin AD AD B C AB AB AC AC====, 所以11,sin sin AB AC B C==, 所以111sin 244sin sin ABCSAB AC A AB AC B C=⨯⨯⨯=⨯=, 设4sin sin y B C =,因为6A π=,则56B C π+=,所以555 4sin sin4sin sin()4sin sin cos cos sin666y B C BB B B Bπππ⎛⎫==-=-⎪⎝⎭=22sin cos23sin sin23cos23B B B B B+=-+=2sin(2)33Bπ-+,因为5(0,)6Bπ∈,所以42(,)333Bπππ-∈-,所以3sin(2)(,1]32Bπ-∈-,则2sin(2)3(0,23]3y Bπ=-+∈+,所以max23y=+,所以ABC面积的最小值为max123y=-.故选:B【点睛】解题的关键是将题干条件,转化为4sin siny B C=,根据B的范围,结合三角函数的图象与性质求解,考查分析理解,计算求值的能力,属中档题.2.B解析:B【分析】利用正弦定理边角互化以及余弦定理求出角C的值,由ABC ACD BCDS S S=+△△△可得出ab a b=+,结合3a b=可求得a、b的值,再利用余弦定理可求得c的值.【详解】()sin sin sinc C a A b a B=+-,由正弦定理可得()22c a b a b=+-,可得222a b c ab+-=,由余弦定理可得:2221cos22a b cCab+-==,0Cπ<<,所以3Cπ=,由ABC ACD BCDS S S=+△△△,有111sin sin sin232626ab a CD b CDπππ=⋅+⋅,得ab a b=+,所以234b b=,0b>,43b∴=,34a b==,由余弦定理可得3c ===. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.3.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+, (0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:222212cos 60803028030702AC AB BC AB BC =+-⋅︒=+-⨯⨯⨯=米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状.6.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.7.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】因为b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.8.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒, ∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠ 22802)280802cos135=+-⨯⨯︒2805=⨯,∴5AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.9.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即31sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=, 又3a =即31sin cos A A=. 所以tan 3A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.10.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】 由正弦定理得:23sin sin sin a b A B A =⇒=22sin 23A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.11.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.12.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---,故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.二、填空题13.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 22AB BC C A A B A A A A+=+=++=++()9sin cos 22A A A ϕ=+=+, 其中ϕ为锐角,且tan 9ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C =,即22sin sin 22sin cos a a a A A A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.16.【分析】先由的面积为得到再用正弦定理余弦定理化简已知得解【详解】由三角形的面积公式可知得由得由正弦定理得即所以所以又所以又故故答案为:【点睛】方法点睛:化简三角形中的三角恒等式时要注意观察等式再利用解析:4π【分析】先由ABC 的面积为24b c得到sin 2b A =,再用正弦定理余弦定理化简已知得解.【详解】由三角形的面积公式可知21sin 24b cS bc A ==,得sin 2b A =,由221sin ()(1)sin sin 2A B c B b A ++-=得222sin (1)sin sin C c B A +-=, 由正弦定理得222(1)c c b a +-=即2222c b a b c +-=, 所以2cos b A = , 所以sin cos A A =, 又2A π≠,所以tan 1A =,又0A π<<,故4A π=故答案为:4π 【点睛】方法点睛:化简三角形中的三角恒等式时,要注意观察等式,再利用正弦定理余弦定理角化边或边化角化简求解.17.【分析】利用同角三角函数计算出的值利用三角形的面积公式和条件可求出的值再利用余弦定理求出的值【详解】且的面积是由余弦定理得故答案为【点睛】本题考查利用余弦定理解三角形同时也考查了同角三角函数的基本关 解析:322【分析】利用同角三角函数计算出sin A 的值,利用三角形的面积公式和条件23b c =可求出b 、c 的值,再利用余弦定理求出a 的值. 【详解】1cos 3A =,122sin 19A ∴=-=,23b c =,且ABC ∆的面积是2, 1sin 2ABC S bc A ∆∴=,12222233c c ∴=⨯⨯,322c ∴=,2b =,由余弦定理得222932192cos 2222322a b c bc A =+-=+-⨯⨯⨯=,322a ∴=. 故答案为322. 【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.18.【分析】由题意设得到然后在中利用正弦定理求解【详解】如图所示:设船的初始位置为半小时后行驶到两个港口分别位于和所以则设则在中所以利用正弦定理解得所以船速为故答案为:【点睛】本题主要考查正弦定理的实际 解析:()1031+【分析】由题意,设BA x =,得到CA x =,然后在Rt BDA 中,利用正弦定理求解. 【详解】 如图所示:设船的初始位置为A ,半小时后行驶到B ,两个港口分别位于C 和D , 所以45BCA ∠=︒,15CBD ∠=︒,则30CDB ∠=︒, 设BA x =,则CA x =,在Rt BDA 中,10DA x =+. 所以利用正弦定理10sin 60sin 30x x+=︒︒,解得()531x =+所以船速为()()153110312+÷=+.故答案为:()1031+【点睛】本题主要考查正弦定理的实际应用,还考查了运算求解的能力,属于中档题.19.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)6π;(2) 【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长. 【详解】(1)∵1sin cos 2a B Ab =, 由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=,由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =. 又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 223ABC S ab C a π∆=== ∴4a =,4a =-(舍)又在AMC 中,22222cos 3AM AC MC AC MC π=+-⋅, ∴222221121()2cos 42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴AM =22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin 5C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C =在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C +===△. (3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭,因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B+= 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C BA C A C A c A c 所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=.解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c += 因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin 4B =.所以1sin 2sin 22===ABCSac B B . 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=, 整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=, ∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC 的面积为112sin 4sin223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.26.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)123A π-<-≤则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年必修五第二章训练卷数列(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49B .50C .51D .522.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15B .30C .31D .643.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81B .120C .168D .1924.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160 B .180C .200D .2205.数列{}n a 中,37 ()n a n n +=∈N -,数列{}n b 满足113b =,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( )A .唯一存在,且为13B .唯一存在,且为3C .存在且不唯一D .不一定存在6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( )A .8B .8-C .8±D .以上都不对7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2B .1或2-C .1-或2D .1-或2-8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4B .2:3C .1:2D .1:3 9.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则1392410a a a a a a ++++等于( ) A .1514B .1213C .1316D .151610.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21B .20C .19D .1811.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .2X Z Y +=B .()()Y Y X Z Z X =--C .2Y XZ =D .()()Y Y X X Z X =--12.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的( ) A .第48项 B .第49项C .第50项D .第51项二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.21-与21+的等比中项是________.14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______.15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒.此卷只装订不密封班级 姓名 准考证号 考场号 座位号16.等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a -<;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.18.(12分)已知等差数列{}n a 中,3716a a =-,460a a +=,求{}n a 的前n 项和S n .19.(12分)已知数列{}2log 1()() n a n *∈N -为等差数列,且13a =,39a =. (1)求数列{}n a 的通项公式; (2)证明:213211111n na a a a a a ++++<---.20.(12分)在数列{}n a 中,11a =,122n n n a a =++. (1)设12n n n a b -=.证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.21.(12分)已知数列{}n a 的前n 项和为n S ,且11a =,11,2,1(,)23n n a S n +==.(1)求数列{}n a 的通项公式; (2)当()132log 3n n b a =+时,求证:数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和1n T nn =+.22.(12分)已知数列{}n a 的各项均为正数,对任意n *∈N ,它的前n 项和n S 满足1()()612n n n S a a =++,并且2a ,4a ,9a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11()1n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .2018-2019学年必修五第二章训练卷数列(一)答 案一、选择题 1.【答案】D【解析】由1=221n n a a ++得11=2n n a a -+,∴{}n a 是等差数列首项12=a ,公差1=2d ,∴13212)2(n n a n =++-=,∴1011013522a +==.故选D .2.【答案】A【解析】在等差数列{}n a 中,79412a a a a +=+, ∴1216115a =-=.故选A . 3.【答案】B【解析】由352a a q =得3q =.∴213a a q==,44411133120113q S a q --=⨯=--=.故选B . 4.【答案】B【解析】∵123181920120219318()()()()()a a a a a a a a a a a a +++++=+++++ 120()3247854a a +=+=-=,∴12018a a +=.∴12020201802S a a +==.故选B . 5.【答案】B【解析】依题意,133213111127333n n n n b b ---⎛⎫⎛⎫⎛⎫=⋅=⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴32log 37log 11()3373l g 32o n n k n k ka b n n n -⎛⎫+== ⎪⎭+⎝-+-- 1133log 372log 3k k n ⎛⎫--=+ ⎪⎝⎭, ∵log n k n a b +是常数,∴133log 03k +=,即log 31k =,∴3k =.故选B .6.【答案】A【解析】∵2634a a +=,2664a a ⋅=,∴2464a =, ∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.故选A . 7.【答案】C【解析】依题意有4652a a a =-,即24442a a q a q =-,而40a ≠, ∴220q q --=,1)20()(q q +=-.∴1q =-或2q =.故选C . 8.【答案】A【解析】显然等比数列{}n a 的公比1q ≠,则由105510551111221S q q q S q -==+=⇒=--, 故3155315555111132141112S q q S q q ⋅⎛⎫-- ⎪--⎝⎭====⎛⎫---- ⎪⎝⎭.故选A . 9.【答案】C【解析】因为1239a a a =⋅,所以2111()()28a d a a d +=⋅+.所以1a d =. 所以1391241013101331316a a a a d a a a a d +++==+++.故选C .10.【答案】B【解析】∵214365(())3)(a a a a a a d -+-+-=, ∴991053d -=.∴2d =-.又∵135136105a a a a d ++=+=,∴139a =. ∴()()221140204002n n n d n n na n S -=+=-+=--+.∴当20n =时,n S 有最大值.故选B .11.【答案】D【解析】由题意知n S X =,2n S Y =,3n S Z =. 又∵{}n a 是等比数列,∴n S ,2n n S S -,32n n S S -为等比数列, 即X ,Y X -,Z Y -为等比数列, ∴2()()Y X X Z Y ⋅=--,即222Y XY X ZX XY +-=-, ∴22=Y XY ZX X --,即()()Y Y X X Z X =--.故选D . 12.【答案】C【解析】将数列分为第1组一个,第2组二个,…,第n 组n 个, 即11⎛⎫ ⎪⎝⎭,12,21⎛⎫ ⎪⎝⎭,123,,321⎛⎫ ⎪⎝⎭,…,12,,,11n n n ⎛⎫⎪-⎝⎭, 则第n 组中每个数分子分母的和为1n +,则56为第10组中的第5个, 其项数为1239)550(++++=+.故选C .二、填空题13.【答案】1±【解析】11的等比中项为a, 由等比中项的性质可知,)2111a ==,∴1a =±.14.【答案】4-【解析】由6723502360a d a d =+≥⎧⎨=+<⎩,解得232356d -≤<-,∵d ∈Z ,∴4d =-. 15.【答案】15【解析】设每一秒钟通过的路程依次为1a ,2a ,3a ,…,n a ,则数列{}n a 是首项12a =,公差2d =的等差数列,由求和公式得()112402n na n d -=+,即(12)240n n n +-=,解得15n =. 16.【答案】①②④【解析】①中,()()9910099100111011a a a a a ⎧--<⎪>⎨⎪>⎩⇒99100101a a >⎧⎨<<⎩100990,1()q a a =∈⇒,∴①正确.②中,29910110010099101011a a a a a a ⎧=⎪⇒⎨<<⎪⎩<,∴②正确. ③中,100991001010090901T T a a T T =⎧⇒⎨<<<⎩,∴③错误. ④中,()()()()99198121981198219799100991001T a a a a a a a a a a a =>==,()()199121981991199991011001T a a a a a a a a a ⋅<==,∴④正确.三、解答题17.【答案】(1)212n a n =-;(2)()413n n S =-. 【解析】(1)设等差数列{}n a 的公差为d . ∵36a =-,60a =,∴112650a d a d +=-⎧⎨+=⎩,解得110a =-,2d =.∴101()2212n a n n =-⨯=-=-. (2)设等比数列{}n b 的公比为q .∵212324b a a a =++=-,18b =-,∴824q -=-,3q =. ∴数列{}n b 的前n 项和公式为()111413n n nS q b q-==--. 18.【答案】()9n S n n =-或(9)n S n n -=-. 【解析】设{}n a 的公差为d ,则()()11112616350a d a d a d a d ++=-⎧⎪⎨+++=⎪⎩,即22111812164a da d a d ⎧++=-⎪⎨=-⎪⎩, 解得182a d =-⎧⎨=⎩,或182a d =⎧⎨=-⎩.因此8()19()n S n n n n n +-=-=-,或81()9()n S n n n n n ==----. 19.【答案】(1)21n n a =+;(2)见解析.【解析】(1)解设等差数列{}2(og )l 1 n a -的公差为d . 由13a =,39a =,得22log 91log 32()(1)d --=+,则1d =. 所以2log 1111()()n a n n +-=⨯-=,即21n n a =+. (2)证明因为11111222n n nn n a a ++==--,∴12321321111111111112221112222212n n n n n a a a a a a +-⨯+++=++++==-<----. 20.【答案】(1)见解析;(2)1()21n n S n -⋅=+. 【解析】(1)证明由已知122nn n a a =++,得1111122222nn n nn n n nn a b a b a +-++===+=+.∴11n n b b -=+,又111b a ==.∴{}n b 是首项为1,公差为1的等差数列. (2)解由(1)知,n b n =,12n n n n a b -==.∴12n n a n ⋅=-.∴121122322n n S n +⋅⋅+=⋅++-,两边乘以2得:()11221222122n n n S n n =++⋅+-⋅+⋅⋅-,两式相减得:12112222(21?221)1n n n nnn S n n n ++-=-=-++⋅----=,∴1()21nn S n -⋅=+.21.【答案】(1)21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩;(2)见解析.【解析】(1)解由已知()1112,212n n n n a S a Sn +-⎧=⎪⎪⎨⎪=⎪⎩≥,得()1322n n a a n +≥=.∴数列{}n a 是以2a 为首项,以32为公比的等比数列. 又121111222a S a ===,∴()22322n n a a n -⎛⎫≥ ⎪⎝⎭=⨯.∴21,1132,22n n a n n -⎛⎫≥ =⎧⎪=⨯⎪⎝⎨⎭⎪⎩. (2)证明()11log 3lo 3333=2222g n n n n b a -⎡⎤⎛⎫=⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+.∴()1111111n n b b n n n n +==-++. ∴12233411111111111111122334n n n T b b b b n b b b b n +⎛⎫⎛⎫⎛⎫⎛⎫++++=-+-+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+ 1111nn n=-=++. 22.【答案】(1)32,n a n n *=-∈N ;(2)22186n T n n -=-.【解析】(1)∵对任意n *∈N ,有1()()612n n n S a a =++,①∴当1n =时,有1111112()()6S a a a ==++,解得11a =或2.当2n ≥时,有1111())62(1n n n S a a ---=++.②①-②并整理得113()()0n n n n a a a a --+--=.而数列{}n a 的各项均为正数,∴13n n a a --=. 当11a =时,(1313)2n a n n +-=-=, 此时2249=a a a 成立;当12=a 时,23=(3=11)n a n n +--,此时2249=a a a 不成立,舍去. ∴32,n a n n *=-∈N . (2)212212233445221n n n n T b b b a a a a a a a a a a =++=-+-++-+ 21343522121()()()n n n a a a a a a a a a =-+-++--+242666n a a a --=-- 242(6)n a a a ++=-+246261862n nn n +-=-⨯-=-.。

相关文档
最新文档