中考数学几何专题训练

合集下载

2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)

2023年 九年级数学中考复习 几何图形变换综合压轴题 专题训练(含答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题训练(附答案)1.如图,△ABC和△ECD都是等边三角形,直线AE,BD交于点F.(1)如图1,当A,C,D三点在同一直线上时,∠AFB的度数为,线段AE与BD的数量关系为.(2)如图2,当△ECD绕点C顺时针旋转α(0°≤α<360°)时,(1)中的结论是否还成立?若不成立,请说明理由;若成立,请就图2给予证明.(3)若AC=4,CD=3,当△ECD绕点C顺时针旋转一周时,请直接写出BD长的取值范围.2.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D、E两点分别在AC、BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A、B、E三点共线时,若CE=5,AC=4,直接写出线段AD的长.3.已知:如图1,线段AD=5,点B从点A出发沿射线AD方向运动,以AB为底作等腰△ABC,使得AC=BC=AB.(1)如图2,当AB=10时,求证:CD⊥AB;(2)当△BCD是以BC为腰的等腰三角形时,求BC的长;(3)当AB>5时,在线段BC上是否存在点E,使得△BDE与△ACD全等,若存在,求出BC的长;若不存在,请说明理由;(4)作点A关于直线CD的对称点A′,连接CA′当CA′∥AB时,CA′=(请直接写出答案).4.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系是:;数量关系是:;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系为:;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.5.如图,平面直角坐标系中O为原点,Rt△ABC的直角顶点A在y轴正半轴上,斜边BC 在x轴上,已知B、C两点关于y轴对称,且C(﹣8,0).(1)请直接写出A、B两点坐标;(2)动点P在线段AB上,横坐标为t,连接OP,请用含t的式子表示△POB的面积;(3)在(2)的条件下,当△POB的面积为24时,延长OP到Q,使得PQ=OP,在第一象限内是否存在点D,使得△OQD是等腰直角三角形,如果存在,求出D点坐标;如果不存在,请说明理由.6.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD =AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.7.如图①,将两个等腰直角三角形纸片OAB和OCD放置在平面直角坐标系中,点O(0,0),点A(0,+1),点B(+1,0),点C(0,1),点D(1,0).(Ⅰ)求证:AC=BD;(Ⅱ)如图②,现将△OCD绕点O顺时针方向旋转,旋转角为α(0°<α<180°),连接AC,BD,这一过程中AC和BD是否仍然保持相等?说明理由;当旋转角α的度数为时,AC所在直线能够垂直平分BD;(Ⅲ)在(Ⅱ)的情况下,将旋转角α的范围扩大为0°<α<360°,那么在旋转过程中,求△BAD的面积的最大值,并写出此时旋转角α的度数.(直接写出结果即可)8.在△ABC中,AB=AC,∠BAC=α,过点A作直线l平行于BC,点D是直线l上一动点,连接CD,射线DC绕点D顺时针旋转α交直线AB于点E.(1)如图1,若α=60°,当点E在线段AB上时,请直接写出线段AC,AD,AE之间的数量关系,不用证明;(2)如图2,若α=60°,当点E在线段BA的延长线上时,(1)中的结论是否成立?若成立,请证明;若不成立,请写出正确结论,并证明.(3)如图3,若α=90°,BC=6,AD=,请直接写出AE的长.9.有一根直尺短边长4cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长为16cm,如图甲,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D 与点A重合.将直尺沿射线AB方向平移,如图乙,设平移的长度为xcm,且满足0≤x ≤12,直尺和三角形纸板重叠部分的面积为Scm2.(1)当x=0cm时,S=;当x=12cm时,S=.(2)当0<x<8(如图乙、图丙),请用含x的代数式表示S.(3)是否存在一个位置,使重叠部分面积为28cm2?若存在求出此时x的值.10.如图①,C为线段BD上的一点,BC≠CD,分别以BC,BD为边在BD的上方作等边△ABC和等边△CDE,连接AE,F,G,H分别是BC,AE,CD的中点,连接FG,GH,FH.(1)△FGH的形状是;(2)将图①中的△CDE绕点C顺时针旋转,其他条件不变,(1)的结论是否成立?结合图②说明理由;(3)若BC=2,CD=4,将△CDE绕点C旋转一周,当A,E,D三点共线时,直接写出△FGH的周长.11.已知,射线AB∥CD,P是直线AC右侧一动点,连接AP,CP,E是射线AB上一动点,过点E的直线分别与AP,CP交于点M,N,与射线CD交于点F,设∠BAP=∠1,∠DCP=∠2.(1)如图1,当点P在AB,CD之间时,求证:∠P=∠1+∠2;(2)如图2,在(1)的条件下,作△PMN关于直线EF对称的△P'MN,求证:∠3+∠4=2(∠1+∠2);(3)如图3,当点P在AB上方时,作△PMN关于直线EF对称的△P'MN,(1)(2)的结论是否仍然成立,若成立,请说明理由;若不成立,请直接写出∠P,∠1,∠2之间数量关系,以及∠3,∠4与∠1,∠2之间数量关系.12.(1)如图1,平面直角坐标系中A(0,a),B(a,0)(a>0).C为线段AB的中点,CD⊥x轴于D,若△AOB的面积为2,则△CDB的面积为.(2)如图2,△AOB为等腰直角三角形,O为直角顶点,点E为线段OB上一点,且OB=3OE,C与E关于原点对称,线段AB交x轴于点D,连CD,若CD⊥AE,试求的值.(3)如图3,点C、E在x轴上,B在y轴上,OB=OC,△BDE是以B为直角顶点的等腰直角三角形,直线CB、ED交于点A,CD交y轴于点F,试探究:是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.13.在△ABC中,AB=AC,∠BAC=90°.(1)如图1,点P,Q在线段BC上,AP=AQ,∠BAP=15°,求∠AQB的度数;(2)点P,Q在线段BC上(不与点B,C重合),AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②用等式表示线段BP,AP,PC之间的数量关系,并证明.14.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD =,直接写出△BDC的面积为.15.在平面直角坐标系中,A(a,0),B(0,b)分别是x轴负半轴和y轴正半轴上一点,点C与点A关于y轴对称,点P是x轴正半轴上C点右侧一动点.(1)当2a2+4ab+4b2+2a+1=0时,求A,B的坐标;(2)当a+b=0时,①如图1,若D与P关于y轴对称,PE⊥DB并交DB延长线于E,交AB的延长线于F,求证:PB=PF;②如图2,把射线BP绕点B顺时针旋转45o,交x轴于点Q,当CP=AQ时,求∠APB的大小.16.已知:在Rt△ABC中,∠C=90°,∠B=30°,BC=6,左右作平行移动的等边三角形DEF的两个顶点E、F始终在边BC上,DE、DF分别与AB相交于点G、H.(1)如图1,当点F与点C重合时,点D恰好在斜边AB上,求△DEF的周长;(2)如图2,在△DEF作平行移动的过程中,图中是否存在与线段CF始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设C点与F点的距离为x,△DEF与△ABC的重叠部分的面积为y,求y与x的函数关系式,并写出定义域.17.在△ABC中,∠C=90°,AC=2,BC=2,点D为边AC的中点(如图),点P、Q 分别是射线BC、BA上的动点,且BQ=BP,联结PQ、QD、DP.(1)求证:PQ⊥AB;(2)如果点P在线段BC上,当△PQD是直角三角形时,求BP的长;(3)将△PQD沿直线QP翻折,点D的对应点为点D',如果点D'位于△ABC内,请直接写出BP的取值范围.18.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长.(2)如图2,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M,N为边AB上两点满足∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程.19.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.20.【教材呈现】如图是苏科版九年级下册数学教材第92页的第17题.一块直角三角形木板,它的一条直角边AC长为1.5m,面积为1.5m2.甲乙两人分别按图1、图2把它加工成一个正方形的桌面,请说明哪个正方形的面积较大.【解决问题】(1)记图1、图2中的正方形面积分别为S1,S2,则S1S2.(填“>”、“<”或“=”).【问题变式】若木板形状是锐角三角形A1B1C1.某数学兴趣小组继续思考:按图3、图4、图5三种方式加工,分别记所得的正方形面积为S3、S4、S5,哪一个正方形的面积最大呢?(2)若木板的面积S仍为1.5m2.小明:记图3中的正方形为“沿B1C1边的内接正方形”,图4中的正方形为“沿A1C1边的内接正方形”,依此类推.以图3为例,求“沿B1C1边的内接正方形DEFG”的面积.设EF =x ,B 1C 1=a ,B 1C 1边上的高A 1H =h ,则S =ah .由“相似三角形对应高的比等于相似比”易得x =;同理可得图4、图5中正方形边长,再比较大小即可.小红:若要内接正方形面积最大,则x 最大即可;小莉:同一块木板,面积相同,即S 为定值,本题中S =1.5,因此,只需要a +h 最小即可.我们可以借鉴以前研究函数的经验,令y =a +h =a +=a +(a >0).下面来探索函数y =a +(a >0)的图象和性质.①根据如表,画出函数的图象:(如图6)a… 1 2 3 4 … y … 12 9 6 4 3 3 4 4…②观察图象,发现该函数有最小值,此时a 的取值 ;A .等于2;B .在1~之间;C .在~之间;D .在~2之间.(3)若在△A 1B 1C 1中(如图7),A 1B 1=5,A 1C 1=,高A 1H =4.①结合你的发现,得到S 3、S 4、S 5的大小关系是 (用“<”连接). ②小明不小心打翻了墨水瓶,已画出最大面积的内接正方形的△A 1B 1C 1原图遭到了污损,请用直尺和圆规帮他复原△A 1B 1C 1.(保留作图痕迹,不写作法)参考答案1.解:(1)∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,在△ABF中,∠AFB=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠CBF+∠ABC)=180°﹣(∠BAC+∠ABC)=180°﹣(60°+60°)=60°,∴∠AFB=60°,故答案为:∠AFB=60°,AE=BD;(2)(1)中结论仍成立,证明:∵△ABC是等边三角形,∴AC=BC,∠BAC=∠ACB=60°,∵△ECD是等边三角形,∴CE=CD,∠DCE=60°,∴∠ACB=∠DCE=60°,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠AFB+∠CBD=∠ACB+∠CAE,∴∠AFB=∠ACB,∵∠ACB=60°,∴∠AFB=60°;(3)在△BCD中,BC+CD>BD,BC﹣CD<BD,∴点D在BC的延长线上时,BD最大,最大为4+3=7,当点D在线段BC上时,BD最小,最小为4﹣3=1,∴1≤BD≤7,即BD长的取值范围为1≤BD≤7.2.解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3﹣1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;由(2)知,=.故AD=.②如图3﹣2,当点E在线段BA上时,AE===3,∴BE=BA﹣AE=4﹣3=1,由(2)知,=.故AD=.综上所述,AD的长为或,故答案为:或.3.解:(1)如图2中,∵AB=10,AD=5,∴AD=DB,∵CA=CB,AD=DB,∴CD⊥AB.(2)如图1中,当AB<AD时,BC=BD.设AB=10k,则AC=BC=6k,∵AD=5,∴10k+6k=5,∴k=,∴BC=6k=.如图1﹣1中,当AB>AD时,BC=BD,同法可得10k﹣6k=5,解得k=,∴BC=6k=,综上所述,BC的值为或.(3)如图3﹣1中,当△ADC≌△BED时,BD=AC=BC,由(2)可知,BC=.如图3﹣2中,当△ADC≌△BCE时,点E与C重合,此时AB=10k=10,∴k=1,BC=6k=6.综上所述,BC的值为或6.(4)如图3中,当CA′∥AB时,∵CA′∥AB,∴∠ADC=∠A′CD,由翻折可知,∠A′CD=∠ACD,∴∠ACD=∠ADC,∴AC=AD=5,∴CA′=CA=5.故答案为5.4.解:(1)结论:BD=AC,BD⊥AC.理由:延长BD交AC于F.∵AE⊥CB,∴∠AEC=∠BED=90°.在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∠CAE=∠EBD,∵∠AEC=90°,∴∠ACB+∠CAE=90°,∴∠CBF+∠ACB=90°,∴∠BFC=90°,∴AC⊥BD,故答案为:BD⊥AC,BD=AC.(2)如图2中,不发生变化,设DE与AC交于点O,BD与AC交于点F.理由是:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,故答案为:BD=AC.②能;设BD与AC交于点F,由①知,△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC的夹角中的锐角的度数为60°.5.解:(1)∵B、C两点关于y轴对称,且C(﹣8,0),∴点B(8,0),BO=CO,又∵AO⊥BC,∴AC=AB,∵∠CAB=90°,AC=AB,CO=BO,∴AO=CO=BO=8,∴点A(0,8);(2)如图1,过点P作PM⊥OB于M,∵点P的横坐标为t,∴OM=t,∴MB=8﹣t,∵∠CAB=90°,AC=AB,∴∠ABO=45°,∴∠BPM=∠ABO=45°,∴PM=MB=8﹣t,∴S△POB=×OB×PM=×8×(8﹣t)=32﹣4t;(3)∵△POB的面积为24,∴32﹣4t=24,∴t=2,∴点P(2,6),如图2,当点Q为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,∵PQ=OP,点P(2,6),∴点Q(4,12),∵∠OQD=90°=∠OHQ=∠QGD,∴∠OQH+∠DQG=90°=∠OQH+∠HOQ,∴∠HOQ=∠GQD,又∵OQ=QD,∴△OHQ≌△QGD(AAS),∴OH=QG=12,HQ=GD=4,∴HG=16,∴点D(16,8);当点D为直角顶点时,过点Q作HG⊥y轴,过点D作DG⊥HG于点G,过点D作DN ⊥y轴于N,同理可求△QDG≌△ODN,∴ON=QG,DN=DG,∵DN=QG+HQ=4+QG,DG=HN=12﹣ON,∴ON=QG=4,DN=DG=8,∴点D(8,4),综上所述:点D(16,8)或(8,4).6.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.7.解:(Ⅰ)∵点A(0,+1),点B(+1,0),点C(0,1),点D(1,0),∴OA=+1,OB=+1,OC=1,OD=1,∴AC=OA﹣OC=+1﹣1=,BD=+1﹣1=,∴AC=BD;(Ⅱ)由题意知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠AOC=∠AOB﹣∠COB=90°﹣∠COB,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,如图1(注:点C在x轴上,为了不要出现误解,点C没画在x轴上),延长AC交BD 于D,连接BC,在Rt△AOB中,OA=OB,∴∠OAB=∠OBA=45°,∴∠CAB+∠ABD=∠OAB﹣∠OAC+∠ABO+∠BOD=∠OAB+∠OBA=90°,∴AC⊥BD,∵AC垂直平分BD,∴CD=BC,设点C的坐标为(m,n),∴m2+n2=1①,由旋转知,CD==,∵B(+1,0),[m﹣(+1)]2+n2=2②,联立①②解得,m=1,n=0,∴点C在x轴上,∴旋转角为∠AOC=90°,故答案为:90°;(Ⅲ)如图2,∵OA=OB=+1,∴AB=OA=2+,过点O作OH⊥AB于H,∴S△AOB=OA•OB=AB•OH,∴OH====,过点D作DG⊥AB于G,S△ABD=AB•DG=(2+)DG,要使△ABD的面积最大,则DG最大,由旋转知,点D是以O为圆心,1为半径的圆上,∴点D在HO的延长线上时,DG最大,即DG的最大值为D'H=OD'+OH=1+=,∴S△ABD最大=AB•D'H=(2+)×=,在Rt△AOB中,OA=OB,OH⊥AB,∴∠BOH=45°,∴旋转角∠BOD'=180°﹣45°=135°.8.解:(1)AC=AE+AD.证明:连接CE,∵线段DC绕点D顺时针旋转α交直线AB于点E,α=60°,∵AB=AC,∠BAC=60°,∴CB=CA=AB,∠ACB=60°,∵AD∥BC,∴∠DAF=∠ACB=60°,∵∠FDC=∠EAF=60°,∠AFE=∠DFC,∴△AFE∽△DFC,∴,∴,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴∠DAF=∠FEC=60°,∴△DEC是等边三角形,∴CD=CE,∠ECD=60°,∴∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴BE=AD,∴AB=AE+BE=AE+AD,∴AC=AE+AD;(2)不成立,AD=AC+AE.理由如下:在AC的延长线上取点F,使AF=AD,连接DF,当α=60°时,∠BAC=∠EDC=60°,∵AB=AC,∴△ABC是等边三角形,∴AB=AC=BC∠BCA=60°,∵l∥BC,∴∠DAC=∠BCA=60°,∠EAD=∠ABC=60°,∵AF=AD,∴∠ADF=∠AFD=60°,AD=FD=AF,∴∠EDC=∠ADF=60°,∴∠EDC﹣∠ADC=∠ADF﹣∠ADC,即∠EDA=∠CDF,∵AD=FD,∠EAD=∠AFD=60°,∴△EAD≌△CFD(ASA),∴AE=CF,∴AD=AF=AC+CF=AC+AE;(3)AE的长为或.当点E在线段AB上,过点D作直线l的垂线,交AC于点F,如图3所示.∵△ABC中,∠BAC=90°,AC=AB,∴∠ACB=∠B=45°.∵直线l∥BC,∴∠DAF=∠ACB=45°.∵FD⊥直线l,∴∠DAF=∠DF A=45°.∴AD=FD.∵∠EDC=∠ADF=90°,∴∠ADE=∠FDC.由(1)可知DC=DE,∴△ADE≌△FDC(SAS),∴AE=CF.∵AD=,∴AF=2,∵BC=6,∴AC=AB=3,∴AE=AC﹣AF=3﹣2.当点E在线段AB的延长线上时,如图4所示.过点D作直线l的垂线,交AB于点M,同理可证得△ADC≌△MDE(SAS),∴AC=EM=3,∵AD=,∴AM=2,∴EM+AM=3+2.综合以上可得AE的长为3+2或3﹣2.9.解:(1)当x=0cm时,S=4×4÷2=8cm2;当x=12cm时,S=4×4÷2=8cm2.故答案为:8cm2;8cm2.(2)①当0<x<4时,∵△CAB为等腰直角三角形,∴∠CAB=45°,∴△ADG和△AEF都是等腰直角三角形,∴AD=DG=x,AE=EF=x+4,∴梯形GDEF的面积=×(GD+EF)×DE=×(x+x+4)×4=4x+8.②如图所示:过点C作CM⊥AB于点M.当4<x<8时,梯形GDMC的面积=(GD+CM)×DM=(x+8)(8﹣x)=﹣x2+32,梯形CMEF的面积=(EF+CM)×ME=[16﹣(x+4)+8][(x+4)﹣8]=(20﹣x)(x﹣4)=﹣x2+12x﹣40,S=梯形GDMC的面积+梯形CMEF的面积=(﹣x2+32)+(﹣x2+12x﹣40)=﹣x2+12x ﹣8.综合以上可得,S=.(3)当0<x<4时s最大值小于24,当x=4时,S=24cm2,所以当S=28cm2时,x必然大于4,即﹣x2+12x﹣8=28,解得x1=x2=6,当x=6cm时,阴影部分面积为28cm2.当8<≤12时,由对称性可知s的最大值也是小于24,不合题意舍去.∴当x=6cm时,阴影部分面积为28cm2.10.解:(1)∵△ABC和△CDE都是等边三角形,∴∠B=∠DCE=60°,AB=BC,CE=CD,∴CE∥AB,∵BC≠CD,∴CE≠AB,∴四边形ABCE是梯形,∵点F,G分别是BC,AE的中点,∴FG是梯形ABCE的中位线,∴FG∥AB,∴∠GFC=60°,同理:∠GHB=60°,∴∠FGH=180°﹣∠GFC﹣∠GHB=60°=∠GFC=∠GHB,∴△FGH是等边三角形,故答案为:等边三角形;(2)成立,理由如下:如图1,取AC的中点P,连接PF,PG,∵△ABC和△CDE都是等边三角形,∴AB=BC,CE=CD,∠BAC=∠ACB=∠ECD=∠B=60°,又F,G,H分别是BC,AE,CD的中点,∴FP=AB,FC=BC,CH=CD,PG=CE,PG∥CE,PF∥AB,∴FP=FC,PG=CH,∠GPC+∠PCE=180°,∠FPC=∠BAC=60°,∠PFC=∠B=60°,∴∠FPG=∠FPC+∠GPC=60°+∠GPC,∠GPC=180°﹣∠PCE,∴∠FCH=360°﹣∠ACB﹣∠ECD﹣∠PCE=360°﹣60°﹣60°﹣(180°﹣∠GPC)=60°+∠GPC,∴∠FPG=∠FCH,∴△FPG≌△FCH(SAS),∴FG=FH,∠PFG=∠CFH,∴∠GFH=∠GFC+∠CFH=∠GFC+∠PFG=∠PFC=60°,∴△FGH为等边三角形;(3)①当点D在AE上时,如图2,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC=2,∵△CDE是等边三角形,∴∠CED=∠CDE=60°,CE=CD=DE=4,过点C作CM⊥AE于M,∴DM=EM=DE=2,在Rt△CME中,根据勾股定理得,CM===2,在Rt△AMC中,根据勾股定理得,AM===4,∴AD=AM﹣DM=4﹣2=2,∵∠ACB=∠DCE=60°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,∴∠ACD=∠BCE,连接BE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD=2,∠ADC=∠BEC,∵∠ADC=180°﹣∠CDE=120°,∴∠BEC=120°,∴∠BEA=∠BEC﹣∠CED=60°,过点B作BN⊥AE于N,∴∠BNE=90°,在Rt△BNE中,∠EBN=90°﹣∠BEA=30°,∴EN=BE=1,∴BN=EN=,DN=DE﹣EN=3,连接BD,根据勾股定理得,BD===2,∵点H是CD的中点,点F是BC的中点,∴FH是△BCD的中位线,∴FH=BD=,由(2)知,△FGH是等边三角形,∴△FGH的周长为3FH=3,②当点D在AE的延长线上时,如图3,同①的方法得,FH=,∴△FGH的周长为3FH=3,即满足条件的△FGH的周长为3或3.11.(1)证明:如图1中,过点P作PT∥AB.∵AB∥CD,AB∥PT,∴AB∥PT∥CD,∴∠1=∠APT,∠2=∠CPT,∴∠APC=∠APT+∠CPT=∠1+∠2.(2)证明:如图2中,连接PP′.∵∠3=∠MPP′+∠MP′P,∠4=∠NPP′+∠NP′P,∠APC=∠MP′N,∴∠3+∠4=2∠APC,∵∠APC=∠1+∠2,∴∠3+∠4=2(∠1+∠2).(3)结论不成立.结论是:∠P=∠2﹣∠1,∠4﹣∠3=2(∠2﹣∠1).理由:如图3中,设PC交AB于E,AP交NP′于F.∵AB∥CD,∴∠PEB=∠2,∵∠PEB=∠1+∠P,∴∠2=∠P+∠1,∴∠P=∠2﹣∠1.∵∠4=∠P+∠PFN,∠PFN=∠3+∠P′,∠P=∠P′,∴∠4=∠P+∠3+∠P,∴∠4﹣∠3=2∠P=2(∠2﹣∠1),∴∠4﹣∠3=2(∠2﹣∠1).12.解:(1)∵A(0,a),B(a,0)(a>0),∴OA=a,OB=a,∵△AOB的面积为2,∴S△AOB=×a×a=2,∴a=2(负值舍去),∴A(0,2),B(2,0),∵C为线段AB的中点,∴C(1,1),∴OD=BD=CD=1,∴S△CDB=×1×1=.故答案为:.(2)连AC,过点D作DM⊥BC于M,∵△AOB是等腰直角三角形,∴AO⊥BO,AO=BO,∠B=∠OAB=45°,又CO=EO,∴AO是CE的垂直平分线,∴AE=AC,不妨设AE、CD交于F,AO、CD交于G,∴∠CGA=∠OAE+∠AFC=∠OCD+∠COA,∵∠AFC=∠COA=90°,∴∠OAE=∠OCD=∠OAC,又∵∠CAD=∠CAO+∠OAB=∠OCD+∠B=∠CDA,∴CD=CA=EA,∴△AOE≌△CMD(AAS),∴OE=DM,∴===3,∴=2;(3)=2,理由如下:作点C关于y轴的对称点N,连接BN,作DM∥BC交y轴于M,∵OB=OC=ON,∠BON=90°,∴△BON等腰直角三角形,∴∠BNO=∠BMD=45°,∴∠MBD=∠OBE+∠DBE=∠OBE+∠BOE=∠BEN,又∵BD=BE,∴△BMD≌△ENB(AAS),∴EN=BM,BN=DM=BC,又∵∠BFC=∠DFM,∠BCF=∠FDM,∴△BCF≌△MDF(AAS),∴BF=MF,∴CO﹣EO=NO﹣EO=NE=BM=2BF,即=2.13.解:(1)∵在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠APQ是△ABC的一个外角,∴∠APQ=∠B+∠BAP,∵∠BAP=15°,∴∠APQ=60°,∵AP=AQ,∴∠APQ=∠AQB=60°.(2)①图形如图2所示.②解:结论:PC2+BP2=2AP2.理由:连接MC.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AP=AQ,∴∠APQ=∠AQP,∴∠BAP=∠CAQ,∴△ABP≌△ACQ(SAS),∴BP=CQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,CQ=CM,∠CAM=∠CAQ,∠ACM=∠ACQ=45°,∴AP=AM,∠B=∠ACM=45°,∠BAP=∠CAM,BP=CM,∴∠BAC=∠P AM=90°,在Rt△APM中,AP=AM,∠P AM=90°,∴PM=,∵∠ACQ=∠ACM=45°,∴∠PCM=90°,在Rt△PCM中,∠PCM=90°,∴PC2+CM2=PM2,∴PC2+BP2=2AP2.14.【问题背景】证明:如图1,∵∠BAC=∠DAE=90°,∴∠DAB=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).【尝试应用】证明:如图2,过点D作DK⊥DC交FB的延长线于K.∵DK⊥CD,BF⊥AB,∴∠BDK=∠ABK=90°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBK=∠K=45°,∴DK=DB,∵△ABD≌△ACE,∴∠ABD=∠ACE=135°,DB=EC=DK,∴∠ECG=45°,∵BF⊥AB,CA⊥AB,∴AG∥BF,∴∠G=∠DFK,在△ECG和△DKF中,,∴△ECG≌△DKF(AAS),∴DF=EG,∵DE=AE,∴DF+EF=AE,∴EG+EF=AE,即FG=AE.【拓展创新】解:如图3中,过点A作AE⊥AD交BD于E,连接CE..∵∠ADB=45°,∠DAE=90°,∴△ADE与△ABC都是等腰直角三角形,同法可证△ABD≌△ACE,∴CE=BD=2,∵∠AEC=∠ADB=45°,∴∠CED=∠CEB=90°,∴S△BDC=•BD•CE=×2×2=6.故答案为:6.15.解:(1)∵2a2+4ab+4b2+2a+1=0,∴(a+2b)2+(a+1)2=0,∵(a+2b)2≥0 (a+1)2≥0,∴a+2b=0,a+1=0,∴a=﹣1,b=,∴A(﹣1,0)B(0,).(2)①证明:如图1中,∵a+b=0,∴a=﹣b,∴OA=OB,又∵∠AOB=90°,∴∠BAO=∠ABO=45°,∵D与P关于y轴对称,∴BD=BP,∴∠BDP=∠BPD,设∠BDP=∠BPD=α,则∠PBF=∠BAP+∠BP A=45°+α,∵PE⊥DB,∴∠BEF=90°,∴∠F=90o﹣∠EBF,又∠EBF=∠ABD=∠BAO﹣∠BDP=45°﹣α,∴∠F=45o+α,∴∠PBF=∠F,∴PB=PF.②解:如图2中,过点Q作QF⊥QB交PB于F,过点F作FH⊥x轴于H.可得等腰直角△BQF,∵∠BOQ=∠BQF=∠FHQ=90°,∴∠BQO+∠FQH=90°,∠FQH+∠QFH=90°,∴∠BQO=∠QFH,∵QB=QF,∴△FQH≌△QBO(AAS),∴HQ=OB=OA,∴HO=AQ=PC,∴PH=OC=OB=QH,∴FQ=FP,又∠BFQ=45°∴∠APB=22.5°.16.解:(1)在Rt△ABC中,∠C=90°,∠B=30°,BC=6,∴AC=2,∠A=60°,∵△DEF是等边三角形,∴∠DCE=60°,∴∠ACD=30°,∴∠ADC=90°,∴CD=AC=3,∴△DEF的周长=9;(2)解:结论:CF=DG.理由:∵BC=6,EF=DF=DE=3,∴CF+BE=BC﹣EF=6﹣3=3,∵△DEF是等边三角形,∴∠DEF=60°,∵∠DEF=∠B+∠EGB,∴∠B=∠EGB=∠DGE=30°,∴EG=BE,∵EG+DG=CF+BE=3,∴CF=DG;(3)∵S△DEF=×32=,S△DGH=•GH•DH=•x•x=x2,y=S△DFE﹣S△DHG=﹣x2(0≤x≤3).17.解:(1)在Rt△ABC中,AC=2,BC=2,根据勾股定理得,AB===4,∴=,∵BQ=BP,∴=,∴,∵∠QBP=∠CBA,∴△BPQ∽△BAC,∴∠BQP=∠ACB=90°,∴PQ⊥AB;(2)∵点D是AC的中点,∴AD=CD=AC=1,由(1)知,PQ⊥AB,∴∠AQP=90°,∴∠PQD<90°,∵△PQD是直角三角形,∴①当∠DPQ=90°时,如图1,在Rt△ABC中,AC=2,AB=4,∴sin∠ABC==,∴∠ABC=30°,∴∠QPB=90°﹣∠ABC=60°,∴∠DPC=90°﹣∠BPQ=30°,∴CP===,∴BP=BC﹣CP=,②当∠PDQ=90°时,∴∠ADQ+∠PDC=90°,如图2,过Q作QE⊥AC于E,∴∠DEQ=90°=∠ACB,∴∠ADQ+∠DQE=90°,∴∠DQE=∠PDC,∴△EQD∽△CDP,∴,∴,设BP=t,则CP=BC﹣BP=2﹣t,在Rt△BQP中,BQ=BP cos30°=t,∴AQ=AB﹣BQ=4﹣t,在Rt△AEQ中,QE=AQ cos30°=(4﹣t)•=2﹣t,AE=AQ=2﹣t,∴DE=AD﹣AE=t﹣1,∴,∴t=或t=(大于2,舍去)∴BP=;即BP=或;(3);理由:如图3,①当点D'恰好落在边BC上时,由折叠知,PD'=PD,PQ⊥DD',由(1)知,PQ⊥AB,∴DD'∥AB,∴∠DD'C=∠ABC=30°,∴CD'=CD=,设BP=m,则CP=BC﹣BP=2﹣m,∴DP=D'P=CD'﹣CP=m﹣,在Rt△CDP中,根据勾股定理得,DP2=CP2+CD2,∴(m﹣)2=(2﹣m)2+1,∴m=,②当点D'落在D时,即PQ过点D,在Rt△CDP'中,∠P'=90°﹣∠DD'P'=30°,∴CP'===,∴BP'=BC+CP'=,综上:.18.(1)解:当MN最长时,BN===;当BN最长时,BN===,综合以上可得BN的长为或;(2)证明:如图,把△CBN绕点C逆时针旋转90°,得到△CAN',连接MN',∴△AN'C≌△BNC,∴CN'=CN,∠ACN'=∠BCN,∠CBN=∠CAN',∵∠MCN=45°,∴∠N'CA+∠ACM=∠ACM+∠BCN=45°,∴∠MCN'=∠BCM,∴△MN'C≌△MNC(SAS),∴MN'=MN,∵AC=BC,∠ACB=90°,∴∠B=∠CAM=45°,∴∠CAN'=45°,∴∠MAN'=∠CAN'+∠CAM=45°+45°=90°,在Rt△MN'A中,AN'2+AM2=N'M2,∴BN2+AM2=MN2,∴点M,N是线段AB的勾股分割点.19.问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.20.解:(1)由AC长为1.5m,△ABC的面积为1.5m2,可得BC=2m,如图①,设加工桌面的边长为xcm,∵DE∥CB,∴△ADE∽△ACB,∴=,即=,解得:x=;如图②,设加工桌面的边长为ym,过点C作CM⊥AB,分别交DE、AB于点N、M,∵AC=1.5m,BC=2m,∴AB===2.5(m),∵△ABC的面积为1.5m2,∴CM=m,∵DE∥AB,∴△CDE∽△CAB,∴=,即=,解得:y=,∴x>y,即S1>S2,故答案为:>.(2)①函数图象如图6所示:②观察图象,发现该函数有最小值,此时a的取值~2之间.故选D.(3)①由(2)可知,S5<S4<S3.故答案为:S5<S4<S3.②如图7,△A1B1C1即为所求作.。

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)

中考平面几何压轴(三角形与四边形)训练15题(精选)1.如图,四边形ABCD 是平行四边形,且对角线AC , BD 交于点O ,点M , N 分别在AD , BC 上,且AM = CN ,点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE = OF ;(2)连接BM 交AC 于点H ,连接HE ,HF ;(i)如图2,若HE ∥AB ,求证: FH ∥AD ;(ii)如图3,若四边形ABCD 为菱形且DM = 2AM ,∠EHF=60°,求AC BD 的值.2.(1)如图①,在矩形ABCD 的AB 边上取一点E ,将ΔADE 沿DE 翻折,使点A 落在BC 上的A′处,若AB =6,BC =10,求AEEB 的值;(2)如图②,在矩形ABCD 的BC 上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B′处,若BC ·CE =24,AB =6,求BE 的值;(3)如图③,在ΔABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD+53EF 的值.3. 在正方形ABCD 中,AB =10, AC 是对角线,点O 是AC 的中点,点E 在AC 上,连接DE ,点C 关于DE 的对称点是C',连接DC' ,EC'.(1) 如图1,若DC'经过点O ,求证:OC ′CE = √22. (2) 如图2,连接CC',BC',若∠ADC' = 2∠CBC',求CC'的长;(3) 当点B , C', E 三点共线时,直接写出CE 的长.4.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED= EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C 重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB= 1,当∠DEB′=45°时,求BM的长.5.如图,在正方形ABCD中,点M、N在直线BD上,连接AM,AN并延长交BC、CD于点E、F,连接EN.(1)如图1,若M,N都在线段BD上,且AN = NE,求∠MAN;(2)如图2.当点M在线段DB 延长线上时,AN = NE,(1)中∠MAN的度数不变,判断BM,DN,MN之间的数量关系并证明;(3)如图3,若点M在DB的延长线上,N在BD的延长线上,且∠MAN=135°(i)AB=√6,MB=√3,求DN.(ii)求证:2AM2 - MB 2= MN2 - BN2.6.如图,在RtΔABC与RtΔBDE中,∠BAC=∠BDE=90°,∠ABC=∠DBE=α.(1)如图1,当α= 60°,且点E为BC的中点时,若AB=2,连接AD.求AD的长度;(2)如图2,若α≠ 60°,且点E为BC中点时,取CE中点F,连接AF、DF。

中考数学大几何专题训练

中考数学大几何专题训练

【中考大几何专题训练】一.解答题(共60小题)1.(2021•重庆)在等边△ABC中,AB=6,BD⊥AC,垂足为D,点E为AB边上一点,点F为直线BD上一点,连接EF.(1)将线段EF绕点E逆时针旋转60°得到线段EG,连接FG.①如图1,当点E与点B重合,且GF的延长线过点C时,连接DG,求线段DG的长;②如图2,点E不与点A,B重合,GF的延长线交BC边于点H,连接EH,求证:BE+BH =BF;(2)如图3,当点E为AB中点时,点M为BE中点,点N在边AC上,且DN=2NC,点F从BD中点Q沿射线QD运动,将线段EF绕点E顺时针旋转60°得到线段EP,连接FP,当NP +MP最小时,直接写出△DPN的面积.第1页(共59页)2.(2021•重庆)在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;的值.(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC=150°时,请直接写出第2页(共59页)3.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF =AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.第3页(共59页)4.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.第4页(共59页)5.(2021•渝中区校级开学)在△ABC中,AB=AC=6,∠BAC=90°,AD⊥BC于点D,E为线段AD上的一点,AE:DE=2:1,以AE为直角边在直线AD右侧构造等腰Rt△AEF,使∠EAF=90°,连接CE,G为CE的中点.(1)如图1,EF与AC交于点H,连接GH,求线段GH的长度.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α且45°<α<135°,H为线段EF的中点,连接DG,HG,猜想∠DGH的大小是否为定值,并证明你的结论;(3)如图3,连接BG,将△AEF绕点A逆时针旋转,在旋转过程中,请直接写出BG长度的最大值.第5页(共59页)6.(2021春•沙坪坝区校级月考)如图1,在等腰Rt△ABC中,∠ACB=90°,AC=BC,D为BC上一点,DE⊥AB于点E,连接AD,F为AD中点,连接CF并延长交AB于点G,连接EF.(1)当∠DAB=30°,BE=2时,求DC的值;(2)如图2,当BE:AG=3:4时,试判断AG2、GE2、CD2之间的数量关系,并说明理由;(3)如图3,在等腰Rt△ABC中,∠ACB=90°,若AB=4,M是AB中点,连接CM,三角形内有一点P到点M的距离是1,连接BP,将BP绕点P逆时针旋转90°得到PN,当线段AN长度取最大值时,设直线PN与直线BC的交点为H ,请直接写出的值.第6页(共59页)7.(2021•北碚区校级模拟)如图,Rt△ABC中,AB=BC=2,将△ABC绕点C顺时针旋转,旋转角为α,A、B的对应点分别为D、E.连接BE并延长,与AD交于点F.(1)如图1,若α=60°,连接AE,求AE长度;(2)如图2,求证:BF=DF+CF;(3)如图3,在射线AB上分别取点H、G(H、G不重合),使得BG=BH=1,在△ABC 旋转过程中,当FG﹣FH的值最大时,直接写出△AFG 的面积.第7页(共59页)8.(2020秋•九龙坡区校级期末)△ABC为等边三角形,CD⊥AB于点D,点E为边BC上一点,点F为线段CD上一点,连接EF,且CE=EF.(1)如图1,若AB=4,CE =,连接BF,G为BF的中点,连接DG,求线段DG的长;(2)如图2,将△CEF绕点C逆时针方向旋转一定的角度得到△CMN,连接BN,点H为BN的中点,连接AH、HM,求证:AH =HM;(3)如图3,在(2)问的条件下,线段HM与线段CN交于点P,连接AM,交线段CN于点Q,当CQ=2PN=a时,请直接用含a的式子表示PQ 的长.第8页(共59页)9.(2021春•渝中区校级月考)如图,在正方形ABCD中,点P为CB延长线上一点,连接AP.(1)如图1,以CD为边向内作等边△CDF,延长DF恰好交CB延长线于点P,若AB=4,求tan∠PAB的值;(2)如图2,若∠APB=60°,以CD为边向外作等边△CDF,连接AF,DE平分∠ADC交AF于点E,连接PE、CE.证明:PA+PC =PE;(3)如图3,若∠APB=45°,AB=2,点E为正方形内一点,连接AE,CE,DE,PE,当AE+DE+EC取最小值时,直接写出PE2的值.第9页(共59页)10.(2021春•江北区期中)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).在AD右侧,以AD为边作菱形ADEF,使∠.DAF=60°,连接CF(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出∠AFC,∠DAC,∠ABC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A,F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC,∠DAC,∠ABC 之间存在的等量关系.第10页(共59页)11.(2021春•沙坪坝区校级月考)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC中点,点E是AC边上一动点,连接DE,在DE左侧作Rt△DEF,满足∠DFE=90°,DF=EF,连接AF并延长,交BC于点G.(1)如图1,若AB=4,AE=1,求DE的长;(2)如图2,在点E的运动过程中,猜想AF与FG存在的数量关系,并证明你的结论;(3)如图3,在点E的运动过程中,将AF绕点F逆时针旋转90°,得到A′F,连接A'B,A'D,若AB=4,请直接写出当A'B +A′D取得最小值时,△A′DF的面积.第11页(共59页)12.在Rt△ABC中,∠ABC=90°,BA=BC,点D为边AC上一动点.(1)如图1,若DC=6,∠ABD=15°,求BD的长;(2)如图2,以BD直角边作Rt△BDE,使得BD=BE,连接AE,点F为AE中点,请猜想BF、AD、DE之间的关系,并说明理由;的最小值.(3)如图3,若AB=4,当点D在运动过程中,点G为射线BC上一点,满足CD =BG,求AG +DG第12页(共59页)13.(2020秋•沙坪坝区校级期末)如图,在菱形ABCD中,分别过点B作BC的垂线,过点D作CD的垂线交于点E.(1)如图1,若∠ABC=45°,连接AE,BD,求证:AE=BD;(2)如图2,若∠ABC=60°,点F是DE延长线上的一点,点G为EB延长线上的一点,且EF=BG.连接BF、DG,DG交FB的延长线于点H,连接AH.试猜想线段AH、BH、HD的数量关系并证明你的结论.(3)如图3,在(2)的条件下,在AH上取一点P,使得HP=2AP,已知Q为直线ED上一点,连接BQ,连接QP,当BQ+QP最小时,直接写出的值.第13页(共59页)14.(2021春•霞浦县期末)已知等腰Rt△ABC和等腰Rt△AEF中,∠ACB=∠AFE=90°,AC=BC,AF=EF,连接BE,点Q为线段BE的中点.(1)如图1,当点E在线段AC上,点F在线段AB上时,连接CQ,若AC=8,EF=2,求线段CQ的长度.(2)如图2,B、A、E三点不在同一条直线上,连接CE,且点F正好落在线段CE上时,连接CQ、FQ,求证:CQ=FQ.(3)如图3,AC=8,AE=4,以BE为斜边,在BE的右侧作等腰Rt△BEP,在边CB上取一点M,使得MB=2,连接PM、PQ,当PM的长最大时,请直接写出此时PQ2的值.第14页(共59页)15.(2020秋•北碚区校级期末)如图1,△ABC与△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,CE的延长线与BD交点P,CP与BA相交于点F,现将△ADE绕点A旋转.(1)如图1,求证:BP⊥CP;(2)如图2,若AF=BF,猜想BP与CP的数量关系,并证明你猜想的结论;(3)若AC =DE=2,在将△ADE绕点A旋转的过程中,请直接写出点P运动路径的长度.第15页(共59页)16.(2020秋•南岸区期末)已知,矩形ABCD,点E在AB的延长线上,AG⊥CE,垂足为G.(1)如图1,若AB=AD,求证:AG=CG +BG;之间又存在怎样的数量关系?请写出你的结论,并证明你的结论.(2)如图2,若AB:AD =,则AG,CG,BG第16页(共59页)17.(2021•禹州市一模)(1)如图1.在Rt△ACB中,∠ACB=90°,CA=8,BC=6,点D、E分别在边CA,CB上,且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.第17页(共59页)18.(2021•大渡口区模拟)将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.第18页(共59页)19.在△ABC和△BDE中,∠BDE=∠BAC=90°,AB=AC,DB=DE,BC=2BE,点F为EC中点,连接DF、AF,△DBE绕着点B顺时针旋转.(1)如图1,BE旋转到BC边上时,若BD=,求AF的长;(2)当△DBE旋转到图2位置时,求证:AF=DF;(3)如图3,△DBE绕着点B顺时针旋转,其中BD =,当AF最小时,直接写出△ADE的面积.第19页(共59页)20.(2021•九龙坡区校级模拟)在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE =AC,连接EC,点G是EC中点,将△AEF 绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=AB+GC;(3)如图3,若AB=3,在△AEF旋转过程中,当GB ﹣GC最大时,直接写出直线AB,AC,BG所围成三角形的面积.第20页(共59页)21.(2021春•北碚区校级月考)在等腰Rt△ABC中,∠BAC=90°,AB=AC,延长BA至点D,延长AC至点E,使得BD=AE,DH交BC于点F,过点B作BH⊥BA交DF延长线于点H,连接DE、EH.(1)如图1,若AD=BH,EH=2,DH=2,求点H到DE的距离;(2)如图2,若点F为BC的中点,连接EF,求证:EH=EC+HB;(3)如图3,若AB=2,点N、F分别为线段AC、BC上的点,满足BF =CN,连接FN,将△CFN绕点F顺时针旋转90°,点N旋转后的对应点为点M,连接AM,直接写出AM的最小值.第21页(共59页)22.(2021•渝中区校级自主招生)如图,在△ABC与△DEF中,∠ACB=∠EDF=90°,BC=AC,ED=FD,点D在AB上.(1)如图1,若点F在AC的延长线上,连接AE,探究线段AF、AE、AD之间的数量关系,并证明你的结论;(2)如图2,若点D与点A重合,且AC=3,DE=4,将△DEF绕点D旋转,连接BF,点G为BF的中点,连接CG,在旋转的过程中,求CG+BG的最小值;(3)如图3,若点D为AB的中点,连接BF、CE交于点M,CE交AB于点N,且BC:DE:ME=7:9:10,请直接写出的值.第22页(共59页)23.(2021春•渝中区校级月考)已知△ABC和△DCE中,AB=AC,DC=DE,BF=EF,点B,C,E都在同一直线上,且△ABC和△DCE在该直线同侧.(1)如图①,若∠BAC=∠CDE=90°,请猜想线段AF与DF之间的数量关系和位置关系,并证明你的猜想;(2)如图②,若∠BAC=60°,∠CDE=120°,请直接写出线段AF与DF之间的数量关系和位置关系;(3)如图③,若∠BAC=α,∠CDE=180°﹣α,且BC>CE,请直接写出线段AF与DF之间的数量关系和位置关系(用含α的式子表示).第23页(共59页)24.(2019春•成都期末)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,.连接AM、CM,如图①(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.第24页(共59页)25.(2021春•渝北区校级月考)在平行四边形ABCD中,对角线AC,BD交于点O,将过点A的直线l绕点A旋转,交射线CD于点E,BF⊥l于点F,DG⊥l于点G,连接OF,OG(1)如图①,当点E与点C重合时,请直接写出线段OF、OG的数量关系;(2)如图②,当点E在线段CD上时,OF与OG有什么数量关系?请说明你的结论;(3)如图③,当点E在线段CD的延长线上时,OF与OG有什么数量关系?请说明你的结论.第25页(共59页)26.(2021•万州区模拟)如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE =CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP长度的最大值.第26页(共59页)27.(2020春•沙坪坝区校级月考)在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF =DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.第27页(共59页)28.(2021•九龙坡区校级开学)在菱形ABCD中,以点A为顶点作等腰△AEF,然后将等腰△AEF绕着点A顺时针转动,已知∠EAF+∠BAD=180°.(1)如图1,若点E落在线段CD上,当∠BAD=90°时,连接BF交AD于点G,当AG=1,AE=3,求AB的长;(2)如图2,连接DE,BF,取BF的中点G,连接AG.猜想AG与DE存在的数量关系,并证明你的猜想;(3)如图3,在等腰△AEF绕着点A顺时针转动时,设AE交BD于点M,AF交BD于点N.若∠BAD=120°,∠AMD=45°,AB=2时,请直接写出MN的值.第28页(共59页)29.(2021•渝中区校级自主招生)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)如图1,在四边形ABCD中,∠A=60°,∠C=30°,AB=AD,求证:四边形ABCD是勾股四边形;的最小值.(2)如图2,在四边形ABCD中,∠DAB=60°,∠DCB=60°,AB=AD,且BC+DC=8,连接AC,求AC第29页(共59页)30.(2020秋•万州区期末)在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.(3)如图3,若E是线段AC延长线上的一点,CE=AC,将菱形ABCD绕着点B顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.第30页(共59页)31.(2020秋•开州区期末)如图,在正方形ABCD中,E为边BC上一点,过点C作CF⊥AE交AE的延长线于点F,连接DF,BF,过点D作线段AF 的垂线交AF于点H,交AB于点G.(1)如图1,若CF=1,BF=,求AC;(2)如图1,求证:HG+EF=AH;(3)如图2,若正方形的边长为2,点E在BC边所在直线上运动时,过点C作CM⊥DF交DF于点M,取AD的中点N,请直接写出线段MN的取值范围.第31页(共59页)32.(2020秋•江北区期末)【问题背景】如图1,P是等边三角形ABC外一点,∠APB=30°,则PA2+PB2=PC2.小明为了证明这个结论,将△PAB绕点A逆时针旋转60°,请根据此思路完成其证明.【迁移应用】如图2,在等腰直角三角形ABC中,BA=BC,∠ABC=90°,点P在△ABC外部,且∠BPC=45°,若△APC的面积为5.5,求PC;【拓展创新】如图3,在四边形ABCD中,AD∥BC,点E在四边形ABCD内部,且DE=EC,∠DEC=90°,∠AEB=135°,AD =,BC =,直接写出AB的长.第32页(共59页)33.(2021•巴南区自主招生)如图①,在矩形ABCD中,∠ACB=60°,矩形A1B1CD1是由矩形ABCD绕点C顺时针旋转一个角度得到的,点A1、B1、D1分别是点A、B、D的对应点.在旋转过程中,直线BB1与直线AA1相交于点M.(1)当∠BCB1=100°时,求∠A1B1M的度数;(2)在旋转过程中,请你猜想AM与A1M之间存在的数量关系,并根据所给图形证明你猜想的结论;之间的距离.(3)如图②,设点N在边AB上,且∠BCN=30°,BC=1,在旋转过程中,当NC+NB1的值取最小值时,请直接写出点B1与点M第33页(共59页)34.(2021•北碚区校级模拟)如图,在正方形ABCD中,E,F分别是边BC,AB上一动点,且AF=BE,连接DF,AE交于点G,连接CG.(1)如图1,若CG=AD,求证:CE=AD;(2)如图2,当点E,F分别在边BC,AB上运动时,在以GC为斜边构造等腰直角△CGH,连接DH,猜想∠HDG的大小是否为定值,并证明你的结论;(3)如图3,在(2)的条件下,连接BH,当BH取得最小值时,请直接写出的值.第34页(共59页)35.(2021春•沙坪坝区校级期中)在平行四边形ABCD中,以AB为腰向右作等腰△ABE,AB=AE,以AB为斜边向左作Rt△AFB,∠AFB=90°,(1)如图1,若F,A,D三点在同一直线上,点E与点D重合,连接BD,∠ADC=60°,AD=2,求△BFD的周长;(2)如图2,若F,A,D三点在同一直线上,点E落在CD边上,点P为BE上一点,连接FP,点Q为FP上一点,连接AQ,且∠AQF+∠BFQ=90°,∠QAE+∠C=180°,求证BP=EP;(3)如图3,若F,A,C三点在同一直线上,点E与点C重合,∠D=30°,AB=8,点M为△ABC内部一动点,连接AM,BM,CM,满足∠AMB =120°,点N为CM的中点,连接AN,过点N作NP⊥AN交BC于点P,当PM最小时,将△MNP绕点P旋转,旋转中的△MNP记为△M′N′P,请直接写出点M′到AN距离的最大值.第35页(共59页)36.(2021春•铜梁区校级期末)已知四边形ABCD是平行四边形,在△AEF中,点E、F是动点,AE=EF,∠AEF=90°.(1)如图1,当点F于点B重合时,连接CE交AB于点G,连接AC,若AB=BC,∠BAD=120°,BE=2,求点E到BC的距离;(2)如图2,当点F在AB延长线上时,将△AEF绕着点A逆时针旋转得到△AE′F′,使点F′落在CD边上,点E′在平行四边形ABCD的内部,过点C作CH⊥CD,连接CH、DH,若AF′=DH,∠AF′D=∠H,求证:2BE′+CH =CD;(3)如图3,AB=BC,∠BAD=120°,AB=2,点F从B点出发沿射线BC 运动,求运动过程中(DE+AE)2的最小值.第36页(共59页)37.(2021春•沙坪坝区校级月考)在平行四边形ABCD中,AE⊥EC于点E,AE=EC.(1)如图1,连接BD,若tan∠ADC=3,BE=1,求BD的值;(2)如图2,连接AC,F是AC的中点,过点E作EG⊥AB于点G,延长GE交DC的延长线于点H,连接FH.请猜想CH、AG、FH的关系,并证明你的结论;(3)如图3,在(1)的条件下,将△ABE绕点E顺时针旋转一定的角度α(0°<a<90°),得到△A'B'E,当∠A'=∠A'EA时,停止旋转,此时边A'B'与边AE交于点P.点M是边BC上一动点,点N是平面内一点,△DMN是等边三角形,直接写出PN的最小值.第37页(共59页)38.(2021•北碚区校级模拟)如图,在平行四边形ABCD中,E为平行四边形内部一点,连接AE,BE,CE.(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB =,EF=1,求AD的长.(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP,EH,求证:EP =EH.(3)在(2)的条件下,将△BHG绕着点B旋转,如图3,连接CG,M为CG的中点,若BG=4,BC=8,直接写出2EM+CM的最小值.第38页(共59页)39.(2021•九龙坡区模拟)如图,四边形ABCD是矩形,点E在AB边上,且BC=BE,连接EC、AC,过点B作BG⊥AC,垂足为G,BG分别交EC、DC于F、H两点.(1)如图1,若BC=2,∠ECA=15°,求线段EF的长.(2)如图2,延长AB到M,连接MF,使得∠BMF=∠FBC,求证:BF+FM=AC.(3)如图3,在(1)的条件下,点N是线段DC的三等分点,且DN<CN,点P是线段AD的中点,连接AN,将△ADN绕点D逆时针旋转α°(0≤α≤360)到△A'DN',连接PA',NA',当3NA'﹣PA'取最大值时,请直接写出△A'DH的面积.第39页(共59页)40.(2021•北碚区校级模拟)如图1,在▱ABCD中,对角线BD平分∠ABC,过点B作BE⊥AD交DA的延长线于点E,F是AE的中点,连接EF.(1)若BD=5,BE=3,求EF的长.(2)如图2,G是BD的中点,N,M分别是EF,AD上一点,连接GN,GM.若∠BAD=∠NGM,求证:BC=EN+AM.(3)如图3,K是BC上一点,P是边AB上一动点,连接EP.将△BEP沿EP翻折,使点B落在平面内点Q处,连接DQ,KQ.若AD=6,CK=2,∠C=120°,请直接写出当3KQ+DQ取最小值时,点B到QK的距离.第40页(共59页)41.(2021•渝中区校级模拟)如图,Rt△ABC中,∠ABC=90°,AB=BC,点E是边BC上的一个动点,点D是射线AC上的一个动点;连接DE,以DE为斜边,在DE右侧作等腰Rt△DFE,再过点D作DH⊥BC,交射线BC于点H.(1)如图1,若点F恰好落在线段AE上,且∠DEH=60°,CD=3,求出DF的长;(2)如图2,若点D在AC延长线上,此时,过F作FG⊥BC于点G,FG与AC边的交点记为M,当AE=DE时,求证:FM +MD=AB;(3)如图3,若AB=4,点D在AC延长线上运动,点E也随之运动,且始终满足AE=DE,作点E关于DF的对称点E′,连接CF、FE′、DE′,当CF取得最小值时,请直接写出此时四边形CFE′D的面积.第41页(共59页)42.(2021春•南岸区期中)如图所示,在▱ABCD中,连接对角线AC.把AB绕着点A逆时针旋转60°,得到线段AE,点E在边BC上.点F在线段AE上,且AF=CE.连接BF,DF,G是BF的中点,连接AG,CG.(1)求证:∠BAG=∠EAC;(2)猜想AG与CG存在的数量关系,并证明你猜想的结论;(3)当∠BAG=15°时,请直接写出DF与AB存在的数量关系.第42页(共59页)43.(2021•渝中区模拟)如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF.(1)求证:AE=CF;(2)若AE平分∠BAD,BE=3,求CD的长.44.(2021春•渝中区校级月考)如图,在矩形ABCD中,AC,BD交于点O,点E,F分别在AO,DO上,且AE=DF.(1)求证:∠EBO=∠FCO.(2)若∠EBO=30°,CF⊥BD,BC=4,求△COF的面积.第43页(共59页)45.(2021•九龙坡区校级模拟)在平行四边形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,过点C作CF⊥CD交AE于点F,连接OF.以OF为直角边作Rt△OFG,其中∠OFG=90°,连接AG.(1)如图1,若∠EAB=30°,OA=2,AB=6,则求CE的长度;(2)如图2,若CF=CD,∠FGO=45°,求证:EC =AG+2EF;(3)如图3,动点P从点A运动到点D(不与点A、点D重合),连接FP,过点P作FP的垂线,又过点D作AD的垂线交FP的垂线于点Q,点A'是点A关于FP的对称点,连接A'Q.若AE=2EC,FG=2OF,EF=1,AG =,则在动点P的运动过程中,直接写出A'Q的最小值.第44页(共59页)46.(2021•铜梁区校级模拟)已知,△ABC和△DEC都是等腰直角三角形,∠BAC=∠CED=90°,AB=AC,ED=EC,分别过点B、D作BF∥AD、DF∥AB,两平行线交于点F,连接AF.(1)如图1,若点E在AC上,AB=6,tan∠DAC =,求AF的长;(2)如图2,将△DEC绕点C逆时针旋转,使点E落在BC上,若AD=CD,AF交BC于点G,DF交BC于点H ,求的值;(3)如图3,若AB=6,DE=2,将△DEC绕点C旋转一周,当AF的长最大时,直接写出四边形ABFD的面积.第45页(共59页)47.(2021•渝中区校级模拟)如图,在菱形ABCD中,∠ABC=60°,分别过点B作BC的垂线,过点D作CD的垂线,两垂线相交于点E.(1)如图1,若AD=4,连接AE,BD,求三角形ADE的面积;(2)如图2,点F是DE延长线上的一点,点G为EB延长线上的一点,且EF=BG,连接BF,DG,DG交FB的延长线于点H,连接AH,试猜想线段AH,BH,HD的数量关系并证明你的结论;(3)如图3,在(2)的条件下,在AH上取得一点P,使得HP=3AP,已知Q为直线ED上一点,连接BQ,连接QP,当BQ+QP最小时,直接写出的值.第46页(共59页)48.(2021春•合川区校级月考)如图所示,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD.上的两个动点(点E,F始终在▱ABCD的外面),此时DE =OD,BF=OB,连接AE,CE,CF,AF.(1)求证:四边形AFCE为平行四边形.(2)若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(3)若DE =OD,BF =OB,四边形AFCE还是平行四边形吗?若DE =OD,BF =OB呢?简单说明理由.第47页(共59页)49.(2021春•沙坪坝区校级期末)如图1,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.(1)若BE=4,CE =,求AD的长;(2)如图2,点F是BC上一点,且EF=EC,过点C作CG⊥EF于点G,交BE于点H,求证:BH =DE;的值.(3)如图3,在(2)的条件下,连接DG,当BE=BC 时,请直接写出第48页(共59页)50.(2021春•沙坪坝区校级期中)已知,在▱ABCD中,E为AB上一点,且DE=2AD,作∠ADE的平分线交AB于点F.(1)如图1,当E与B重合时,连接FC交BD于点G,若FC⊥CD,AF=3,求线段CF的长.(2)如图2,当CE⊥AB时,过点F作FH⊥BC于点H,交EC于点M.若G为FD中点,CE=2AF,求证:CD﹣3AG=EM.(3)如图3,在(1)的条件下,M为线段FC上一点,且CM =,P为线段CD上的一个动点,将线段MP绕着点M逆时针旋转30°得到线段MP′,连接FP′,直接写出FP′的最小值.第49页(共59页)51.(2021春•九龙坡区校级期末)在正方形ABCD中,点E是对角线BD上一点,连接AE.(1)如图1,若AB=7,BE=10.求AE的长.(2)如图2,对角线AC与BD相交于点O,点F在AB上,且EF=AE,连接CF.点G在EF上,EG=BG,延长BG交AC于点H.求证:CF =BH;(3)如图3,在(1)的条件下,过点E作EM∥CD交OC于点M,把△OEM绕点O逆时针旋转α(0°≤α≤360°)得△OE′M′,取E′M′的中点K,连接CK,将CK顺时针旋转90°得到CN,连接KN.过点N作NR⊥BC于点R,当NR最大时,求线段KR的长.第50页(共59页)。

几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。

2024陕西中考数学二轮专题训练 题型八 几何测量问题 (含答案)

2024陕西中考数学二轮专题训练 题型八 几何测量问题 (含答案)

2024陕西中考数学二轮专题训练题型八几何测量问题类型一与锐角三角函数有关的几何测量【类型解答】与锐角三角函数有关的几何测量应用题近10年解答题中考查3次,分值为6分或7分.考查特点:设问均为底部不可及的测量问题,且都是通过在两个直角三角形中解决问题.1.西安奥体中心体育馆是第十四届全运会的主场馆之一,其顶部有16个角舒展绽放,像盛开的花瓣.某日,家住附近的小华和小明想测量其中一个角顶部距离地面的高度AB,由于施工,点B周围设有20米宽的禁行区域MN.如图所示,小明先在距离点M60米远的D处用测倾器CD测得顶部A的仰角为30°,然后小华在距离点N30米远的F处用测倾器EF测得顶部A的仰角为45°,已知测倾器的高CD=EF=1.5米,点D、M、B、N、F在同一条直线上,CD、EF均垂直于DF,求角顶部距离地面的高度A B.(结果用根号表示)第1题图2.某广场的平面示意图大致如图所示,小明和小凯想用测量知识测量广场的南北长度.首先,他们在广场最北边选取一点A,测得建筑物最西端M位于点A南偏东37°方向,然后沿着广场边缘向东行走10m,到达点B,测得该建筑物最东端N位于点B南偏东45°方向.已知建筑物东西长度MN为60m,且点M、N在广场的最南端边上,求该广场的南北长度.(结果精确到1m.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)第2题图3.[真实问题情境]如图①,是一个手动饸饹机的实物图,图②是其示意图,已知手柄的长度AB=36cm,BD=4cm,支架的高度EF=33cm.抬至最高时与水平方向的夹角∠ABC约为52°,A、C、E、F四点共线.(结果精确到0.1cm,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)(1)求饸饹机手柄上的点A到水平面GF的距离;(2)李师傅压制饸饹时,某一时刻AB与水平方向的夹角为30°,则手柄AB上点A的高度降低了多少?第3题图类型二与相似三角形有关的几何测量【类型解读】与相似三角形有关的几何测量应用题近10年解答题考查6次.考查特点:以利用“标杆”测高、中心投影、平行投影、镜面反射或固定视角等问题为背景,设问多为测量高度.1.大约公元前600年,几何学家泰勒斯第一个测量出了金字塔的高度.如图①,他首先测量了金字塔正方形底座的边长为230米,然后他站立在沙地上的点B′处,请人不断测量他的影子B′C′,当他的影子B′C′和身高A′B′相等时,立刻测量出该金字塔塔尖P的影子A与相应底棱中点B的距离约为22.2米,此时点A与点B的连线恰好与相应的底棱垂直,即正方形底座中心O与A和B在一条直线上,聪明的小明根据老师的讲述,迅速画出图②所示的测量金字塔高度的平面图形,请你根据这个平面图形计算出该金字塔的高度.第1题图2.小唯想利用所学的知识测量学校旗杆的高度,一天下午,她和学习小组来到旗杆前,由于旗杆下面有旗杆台,到旗杆底部的距离无法测量到,于是她们先在旗杆周围的空地上选择一点E并放置小平面镜,小唯沿着BE方向移动到点D处,她恰好在小平面镜内看到旗杆顶端A的像,此时测得DE=0.8m,然后小唯拿着自制的直角三角板FMN在BE方向移动,在点G处用眼睛观察到斜边FM与点A在同一条直线上,测得DG=7.4m.已知直角三角板的直角边MN=9cm,FN=12cm,小唯的眼睛与地面的距离CD=FG=1.6m,AB、CD、FG、MN均垂直于BG,求旗杆的高度A B.(平面镜大小忽略不计)第2题图3.如图,河岸旁种植了两排平行的树,且每排每两棵树之间的距离为3m,为测量这两排树之间的距离PQ,小明先在中间两棵树QP的延长线上选取一点A,恰好发现点A、树B、树C在一条直线上,然后小明后退10m到达点D处,发现点D、树E、树F在一条直线上.已知PQ所在的直线垂直于两岸的树,且两排树均用图中的黑点表示,求河岸旁两排树之间的距离PQ.第3题图类型三与全等三角形有关的几何测量1.如图所示,物体从一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和物体在荡绳索过程中离地面的最低点的高度MN.第1题图2.(北师九下P22活动二改编)如图所示,小明与小华计划测量学校春晖楼的高度A B.小明先站在点E处,用测倾器EF测得求实楼CD的顶端D的仰角为α,然后走到点C处,用测倾器CG测得春晖楼AB的顶端B的仰角为β,发现α+β=90°.已知AB、EF、CD均垂直于AC,EF=CG=1.6m,CE=25.2m,求实楼的高CD=31.6m,两栋楼之间的距离AC=30m,求春晖楼的高度A B.第2题图类型四与勾股定理有关的几何测量1.[数学文化](北师八上P15习题1.4T5改编)《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′(如图).水深和芦苇长各多少尺?第1题图2.一天,小明带着弟弟去图书大厦买书,已知该图书大厦装有一个自动感应门,当人体进入感应范围内,感应门会自动打开,小明发现门打开时,自己和弟弟距离门的位置不相同,于是小明利用所学的知识计划测量该感应门的最大感应范围.小明先站在D处,门恰好自动打开,然后小明后退,让弟弟去打开门,发现当弟弟站在点F处时,门恰好自动打开,且小明发现自己与弟弟所站的位置中间相隔2个地砖.已知小明的身高CD=1.6m,弟弟的身高EF=1.3m,感应器距离地面的高度AB=2.5m,每个地砖的宽度为15cm,AB、CD、EF 均垂直于BD,求该感应门的最大感应距离AC(或AE).第2题图参考答案类型一与锐角三角函数有关的几何测量1.解:如解图,连接CE 交AB 于点G ,由题知,CD 、EF 均垂直于DF ,且CD =EF ,第1题解图∴四边形CDFE 为矩形,∴CE =DF =60+20+30=110.在Rt △AGE 中,∵∠AEG =45°,∴AG =EG .设AG =EG =x ,∵在Rt △ACG 中,∠ACG =30°,∴CG =AG tan30°=3x ,∴3x +x =110,解得x =553-55,∵CD =EF =1.5,∴BG =1.5,∴AB =AG +BG =553-55+1.5=(553-53.5)米.答:该角顶部距离地面的高度AB 为(553-53.5)米.2.解:如解图,过点A 作AE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F ,则四边形ABFE 是矩形,由题意可知∠EAM =37°,∠FBN =45°,设FM =x ,则EM =10+x ,FN =60+x ,在Rt △BFN 中,∵∠FBN =45°,∴BF =FN =60+x .∴AE =BF =60+x .在Rt △AEM 中,∵∠EAM =37°,∴tan ∠EAM =EM AE =10+x 60+x≈0.75,解得x =140,∴AE =60+140=200m ,答:该广场的南北长度约为200m.第2题解图3.(1)解:在Rt △ABC 中,∵∠ACB =90°,∠ABC =52°,AB =36cm ,∴AC =AB ·sin52°≈36×0.79=28.44cm.∵BD ⊥DE ,BD ⊥BC ,BC ⊥AF ,∴四边形BDEC 是矩形.∴CE =BD =4cm.又∵EF =33cm ,∴AF =AC +CE +EF =28.44+4+33=65.44≈65.4cm.答:饸饹机手柄上的点A 到水平面GF 的距离约为65.4cm ;(2)由(1)知,AC =28.44cm ,当∠ABC =30°时,AC =AB ·sin ∠ABC =36×12=18cm ,∴手柄AB 上点A 的高度降低了28.44-18≈10.4cm.类型二与相似三角形有关的几何测量1.解:由题意可知,△POA ∽△A ′B ′C ′,∴PO OA =A ′B ′B ′C ′.∵A ′B ′=B ′C ′,∴OP =OA.∵金字塔正方形底座的边长为230,点O 为正方形的对称中心,点B 为正方形边上的中点,∴OB =115,∴OA =OB +AB =115+22.2=137.2,∴OP =137.2.答:金字塔的高度约为137.2米.2.解:如解图,延长FN 交AB 于点H ,则FH ⊥AB ,∴四边形FGBH 是矩形,由题意可知△ABE ∽△CDE ,△MFN ∽△AFH ,∴AB CD =BE DE ,AH FH =MN FN =912=34.设AB =x ,则AH =x -1.6,则x 1.6=BE 0.8,∴BE =0.5x ,∴FH =BG =GD +DE +BE =7.4+0.8+0.5x =8.2+0.5x ,∴x -1.68.2+0.5x =34,解得x =12.4,答:旗杆的高度AB 为12.4m.第2题解图3.解:设AP =x ,由题意可知,BP =3,PE =6,CQ =6,FQ =9,EP ∥FQ ,∴△APB ∽△AQC ,△DPE ∽△DQF ,∴AP AQ =BP CQ =36=12,∴AQ =2AP =2x ,∴DP =x +10,DQ =2x +10,∴DP DQ =PE FQ ,即x +102x +10=69=23,解得x =10,∴PQ =10,答:河岸旁两排树之间的距离PQ 为10m.类型三与全等三角形有关的几何测量1.解:如解图,过点A作AE⊥OM于点E,过点B作BF⊥OM于点F,∵∠AOE+∠BOF=∠BOF+∠OBF=90°,∴∠AOE=∠OBF.在△AOE和△OBF中,OEA=∠BFOAOE=∠OBF,=OB∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17,∴2EO+EF=17.∵EF=EM-FM=AC-BD=10-3=7,∴EO=5,∴AE=12,∴在Rt△AOE中,OA=OE2+AE2=13.∵OM=OE+EM=15,∴MN=15-13=2.答:旗杆的高度OM为15米,物体在荡绳索过程中离地面的最低点的高度MN为2米.第1题解图2.解:如解图,延长GF交AB于点H,∵AB⊥AC,EF⊥AC,CD⊥AC,EF=CG,∴四边形AEFH、四边形EFGC、四边形ACGH均为矩形.∴HG=AC,∠BHG=∠FGD=90°.∴α+∠FDG=90°.∵α+β=90°,∴∠FDG=β.即∠D=∠BGH.又∵EF=CG=1.6m,CD=31.6m,AC=30m,∴HG=30m,GD=CD-CG=30m,在△BHG和△FGD中,BHG=∠FGD,=GDBGH=∠D∴△BHG≌△FGD(ASA).∴BH=FG=CE=25.2m.∴AB=BH+AH=BH+EF=26.8m.答:春晖楼的高度AB为26.8m.第2题解图类型四与勾股定理有关的几何测量1.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺,芦苇长13尺.2.解:如解图,过点C作CG⊥AB于点G,过点E作EH⊥AB于点H,则四边形EFBH和四边形CDBG是矩形,由题意可知DF=30cm=0.3m,GH=CD-EF=0.3m,AC=AE,设BF=x,则BD=CG=0.3+x,在Rt△AEH中,∵AH=2.5-1.3=1.2m,∴AE2=x2+1.22,在Rt△ACG中,∵AG=2.5-1.6=0.9m,∴AC2=(0.3+x)2+0.92.∵AC=AE,∴(0.3+x)2+0.92=x2+1.22,∴AC=1.5m,答:该感应门的最大感应距离AC(或AE)为1.5m.第2题解图。

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习训练——几何图形初步与相交线、平行线(含答案)

2023年中考数学二轮专题复习——几何图形初步与相交线、平行线(测试时间:60分钟分数:100分)一、选择题(本题共8小题,共40分)1.(2021·四川巴中)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.2.(2022·浙江金华)如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A.B.C.D.3.(2022·广西柳州)如图,直线a,b被直线c所截,若,∠1=70°,则∠2的度数是( )A.50°B.60°C.70°D.110°4.如图,直线相交于点射线平分若,则等于()A.B.C.D.5.(2022·辽宁营口)如图,直线的顶点B,C分别在上,若,则的大小为( )A.B.C.D.6.两个直角三角板如图摆放,其中,,,AB 与DF交于点M.若,则的大小为()A.B.C.D.7.如图,点D、E分别在线段、上,连接、.若,,,则的大小为()A.60°B.70°C.75°D.85°8.(2021·四川德阳)如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=( )A.30°B.60°C.120°D.150°二、填空题(本题共5小题,每空3分,共15分)9.(2022·广西玉林)已知∠α=60°,则∠α的余角等于____度.10.如图,两直线交于点O,若∠1+∠2=76°,则∠1= 度.11.如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A = .12.(2021·湖南益阳)如图,与相交于点O,是的平分线,且恰好平分,则_______度.13.(2021·辽宁阜新)如图,直线,一块含有30°角的直角三角尺顶点E位于直线CD 上,EG平分,则的度数为_________°.三、解答题(本题共3小题,共45分)14.(2021·湖北武汉)如图,,,直线与,的延长线分别交于点,.求证:.15.如图,,AD是内部一条射线,若,于点E,于点F.求证:.16.(2020·江苏镇江)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.参考答案:1.A2.C3.C4.A5.C6.C7.B8.D9.3010.3811.20°12.6013.6014.证明:∵,∴.∵,∴.∴.∴.15.证明:∵,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF,∴.16.证明:(1)在△BEF和△CD A中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.。

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题(含答案)

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。

中考数学模拟题汇总《几何》专项练习题

中考数学模拟题汇总《几何》专项练习题

中考数学模拟题汇总《几何》专项练习题(含答案解析)1、如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10B.16C.18D.20【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D 之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选:A.2、如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为()A.逐渐增大B.逐渐减小C.始终不变D.先增大后变小【分析】易得此四边形为直角梯形,AB的长度一定,那么直角梯形的高为AB的长度的一半,上下底的和也一定,所以面积不变.【解答】解:当点C在线段AB上沿着从点A向点B的方向移动时,根据等边三角形的性质,等边△ACD和△BCE的高DM和EN的和不会改变,即DM+EN=MC+CN=AC+CB=AB,而且MN的长度也不会改变,即MN=AC+CB=AB.∴四边形DMNE面积=AB2,∴面积不会改变.故选:C.3、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2﹣0.3+AE=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1.3(m).故答案为:1.3.4、在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是cm.【分析】作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D 为直径,从而得解.【解答】解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.5、如图,一只蚂蚁沿着棱长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.【分析】将正方体展开,右边与后面的正方形与前面正方形放在一个面上,此时AB最短,根据三角形MCB与三角形ACN相似,由相似得比例得到MC=2NC,求出CN的长,利用勾股定理求出AC的长即可.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.6、在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解即可求得答案.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);方法二:过M点做x轴垂线和AA'交于一点E(x,﹣x+4),把△AMA'分成两个共底三角形,然后以ME为底,可以得出ME的长就是M点纵坐标减去E点纵坐标,即题目当中的﹣x2+3x+4﹣(﹣x+4),另外两个三角形的高之和就等于4,这是一种面积问题的常用方法.(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x4=,∴P3(,﹣4),P4(,﹣4);②当BQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,﹣4),P4(,﹣4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).7、某学校数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解。

2023年中考数学真题汇编几何综合压轴问题专项练习(共40题)(解析版)

2023年中考数学真题汇编几何综合压轴问题专项练习(共40题)(解析版)

几何综合压轴问题专项练习答案(40题)(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出,CM CN 解;(2)过点N 作NP MC ⊥,交MC 的延长线于点P ,根据旋转的性质求得进而可得1CP =,勾股定理解Rt ,Rt NCP MCP ,即可求解.【详解】(1)解:依题意,112CM DE ==,12CN AB =当M 在NC 的延长线上时,,M N 的距离最大,最大值为(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴MCN BCM ECM ∠=∠-∠=∴60NCP ∠=︒,∴30CNP ∠=︒,∴112CP CN ==,在Rt CNP 中,2NP NC =-在Rt MNP △中,MP MC CP =+∴2234MN NP MP =+=+【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点【答案】(1)见解析(2)22BE =+△∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,【答案】(1)①见解析;②AD DF BD =+,理由见解析;【分析】(1)①证明:ABE CBD ∠=∠,再证明ABE ≅△可得DF DC =.证明AE DF =,从而可得结论;(2)如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒,证明2DE BD =,证明2AB BC =,ABE CBD ∠=∠,可得②AD DF BD=+.理由如下:∵DF和DC关于AD对称,=.∴DF DC=,∵AE CD∴AE DF=.∴AD AE DE DF BD=+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF (2)知识应用:如图2Y是菱形;①求证:ABCD②延长BC至点E,连接OE交【答案】(1)见解析5∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .处从由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图2,最小值为(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km 23km AC BC ==,,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________用含的式子表示)∵ACP A CP ''∠=∠,∴ACP BCP A CP BCP ∠+∠=∠+∠''又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.【答案】(1)①见解析;②不变化,(2)AQ CP =,理由见解析【分析】(1)①根据正方形的性质证明②作,PM AB PN AD ⊥⊥,垂足分别为点∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)1MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=︒;(2)CD∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,2∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=-∴()()1802BAE BAC EAC θαθ∠=∠-∠=︒---180αθ=︒--∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒;如图所示,当F 在EC 上时,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF θ∠=∠=,EFB FBC FCB∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =∴EAB ECB θβ∠=∠=-∴BAE ∠ABF=∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.10.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形,90,,ACB DCE CB mCA CE mCD ∠=∠=︒==,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;∵PM 平分A MA '∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽∴DN DM MN DB DA BA ==∵8,6,90AB DA A ==∠=︒,∴2226BD AB AD =+=+∴2103sin 3BQ BP DBA ===∠,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.∵EF BC ∥,∴2CDF DFE ∠=∠=∴CDH FDH ∠=∠,又∵DH DH =,CHD ∠∴(ASA CHD FHD ≌【点睛】本题考查矩形的性质、翻折性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、锐角三角函数等知识,综合性强,较难,属于中考压轴题,熟练掌握相关知识的联系与运用,添加辅助线求解是解答的关键.13.(2023·湖南郴州·=,连接点E,使CE AD(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;(2)如图2,当点D在线段AB的延长线上时,①线段CF与BD的数量关系是否仍然成立?请说明理由;②如图3,连接AE.设4AB=,若AEB DEB∠=∠,求四边形BDFC的面积.【答案】(1)1CF BD=,理由见解析∴60,ADG ABC AGD ∠=∠=︒∠=∠∴ADG △为等边三角形,∴AD AG DG ==,∵AD CE =,AD AB AG AC -=-∴DG CE =,BD CG =,于点由①知:ADG △为等边三角形,∵ABC 为等边三角形,∴4,AB AC BC BH CH =====∴2223AH AB BH =-=,(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:,可得结论;正方形ABCD 中,①ADC BAD ∠=∠ ∴AEF CED ∠+∠=AEF ECD ∴∠=∠,延长DA ,CF 交于点G ,作GH CE ⊥,垂足为H ,90EDC EHG ∠=∠=︒ 且∠问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.故答案为:45︒.(2)解:在AB上截取ANABC BAE AEB∠+∠+∠=∠=∠,ABC AEF22⎝⎭(3)解:过点A作CD的垂线交CD的延长线于点【点睛】此题考查菱形性质、三角形全等、三角形相似,解题的关键是熟悉菱形性质、三角形全等、三角形相似.16.(2023·山西·统考中考真题)问题情境:“综合与实践沿对角线剪开,得到两个全等的三角形纸片,表示为∠=∠=︒∠=∠.将ABCACB DEF A D90,和DFE△(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE绕点B逆时针方向旋转,使点问题.∠①“善思小组”提出问题:如图3,当ABE②“智慧小组”提出问题:如图AH的长.请你思考此问题,直接写出结果.【答案】(1)正方形,见解析(2)①AM BE=,见解析;【分析】(1)先证明四边形形;∠(2)①由已知ABE【点睛】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.17.(2023·湖北十堰·统考中考真题)过正方形E ,连接AE ,直线AE 交直线(1)如图1,若25CDP ∠=︒,则DAF ∠=___________(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF 【答案】(1)20︒。

备战中考数学专题练习(全国通用)几何体的展开图(含答案)

备战中考数学专题练习(全国通用)几何体的展开图(含答案)

备战中考数学专题练习(全国通用)几何体的展开图(含答案)一、单项选择题1.下面图形中,不能折成无盖的正方体盒子的是〔〕A. B. C. D.2.如图是从不同方向看某个几何体失掉的图形,那么这个几何体是〔〕A.正方体B.长方体C.圆柱D.球3.如图,下面三个正方体的六个面都按相反规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、白色的对面区分是〔〕A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色4.如图是一个立方体图形的展开图,那么这个平面图形是〔〕A.四棱柱B.四棱锥C.三棱柱D.三棱锥5.如图,把图形折叠起来,变成的正方体是〔〕A. B. C. D.6.下面图形中,三棱柱的平面展开图为〔〕A. B. C. D.7.如图是一个小正方形的展开图,把展开图折叠成小正方形后,相对两个面上的数字之和的最大值是〔〕A.11B.9C.7D.58.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的外表,与〝友〞相对的面上的汉字是〔〕A.爱B.国C.善D.诚二、填空题9.如图是某几何体的展开图,那么这个几何体是________10.如图,圆柱体的高为4cm,底面周长为6cm,小蚂蚁在圆柱外表匍匐,从A点到B点,路途如下图,那么最短路程为________.11.在市委、市政府的指导下,全市人民齐心协力,努力将我市创立为〝全国文明城市〞,为此先生小红特制了一个正方体玩具,其展开图如下图,那么原正方体中与〝文〞字所对的面上标的字应是________.12.如下图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,那么x-2y=________.13.假定要使如下图的平面展开图按虚线折叠成正方体后,相对的面上的两个数之和为6,那么x=________,y=________.三、解答题14.如图是一个正方形的平面展开图,假定要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x、y、z的值.15.Rt△DEF与等腰△ABC如图放置〔点A与F重合,点D,A,B在同不时线上〕,AD=3,AB=BC=4,△EDF=30°,△ABC=120°.〔1〕求证:ED△AC;〔2〕Rt△DEF沿射线AB方向平移,平移距离为a,当点D与点B重合时中止移动:①当E在BC上时,求a;②设△DEF与△ABC堆叠局部的面积为S,请直接写出S与平移距离a之间的函数关系式,并写出相应的自变量a的取值范围.四、综合题16.如图,小华用假定干个正方形和长方形预备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在效果.〔1〕请你帮小华剖析一下拼图能否存在效果:假定有多余块,那么把图中多余局部涂黑;假定还缺少,那么直接在原图中补全;〔2〕假定图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是________cm3.17.如图,李明用假定干个正方形和长方形预备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在效果.〔1〕请你帮李明剖析一下拼图能否存在效果.假定有多余块,那么把图中多余局部涂黑;假定还缺少,那么直接在原图中补全.〔2〕假定图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为多少cm3.答案解析局部一、单项选择题1.【答案】A【考点】几何体的展开图【解析】【解答】解:A、折叠后缺少一个正面,故不能折叠成无盖的正方体盒子;B、C、D都可以折叠成一个无盖的正方体盒子.应选A.【剖析】由平面图形的折叠及正方体的展开图解题.2.【答案】C【考点】几何体的展开图【解析】【解答】依据几何体的三视图,可知这个几何体是圆柱.故答案为:C.【剖析】圆柱底面为圆,正面为长方形,所以此三视图为圆柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八圆8.正多边形的有关计算:(1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例:(1) n =n360;(2)有关计算在Rt ΔAOC 中进行. (2)n1802n ︒=α 二 定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算:(1)圆的周长C=2πR ;(2)弧长L=180R n π;(3)圆的面积S=πR 2. (4)扇形面积S 扇形 =LR 21360R n 2=π;(5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S 圆柱侧 =2πrh ; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S 圆锥侧 =LR 21=πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径)四 常识:1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心两内角平分线的交点 三角形的内切圆的圆心.ABC第5AB C 第6O DE4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径)直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r.5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r )两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ;两圆内切 d=R-r ; 两圆内含 d <R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.圆中考专题练习一:选择题。

1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为( )° ° ° °2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )533、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( )A 1个B 2个C 3个D 4个4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .205、(11·浙江湖州)如图,已知在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于( )第9题图A .6πB .9πC .12πD .15π6、(2010·浙江湖州).如图,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一.定.正确的是( ) A .AE =OE B .CE =DE C .OE =12CE D .∠AOC =60°7、(上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )A.相交或相切B.相切或相离C.相交或内含D.相切或内含8. (莱芜)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .B .5C .10D .159、(10·绵阳).如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,则OA =( ).A .B .C .D .10、(2010昆明)如图,在△ABC 中,AB = AC ,AB = 8AB 、AC 为直径作半圆,则图中阴影部分的面积是( A .64π- B .1632π- C .16π-D .16π-11、(10年兰州)9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为A .B .C .D . 二:填空1、(11怀化)如图6,已知直线AB 是⊙O 的切线,A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°,则∠ADC=______.2、(10年安徽)如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点,则∠D =______ABCDOE(第15题)3、(2011台州市)如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于E .则直线CD 与⊙O 的位置关系是 ,阴影部分面积为(结果保留π) .4、(10株洲市)15.两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是 . 5、(10成都)如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_______度.6、(苏州2011中考题18).如图,已知A 、B 两点的坐标分别为()、(0,2),P 是△AOB 外接圆上的一点,且∠AOP=45°,则点P 的坐标为 .7、(2010年成都).若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 三:解答题1、(10珠海)如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=,求PA 的长.2、(10镇江市).如图,已知△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连结OE ,CD=3,∠ACB=30°.(1)求证:DE 是⊙O 的切线;(2)分别求AB ,OE 的长;3、(2010宁波市)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE =23,∠DPA =45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.4、(桂林2011)25.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.5、(10年兰州)26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.6、(11绵阳)如图,△ABC内接于⊙O,且∠B = 60.过点C作圆的切线l与直径AD的延长线交于点E,AF ⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF = 4,求图中阴影部分的面积.HB DFAO G EC l7、(苏州11、27).(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F(1)求证:OE∥AB;(2)求证:EH=12AB;(3)若14BHBE,求BHCE的值.近年广州中考题20.(本小题满分10分)如图10,在中,,.(1)求的度数;(2)求的周长.图1023、(2008广州)(12分)如图9,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且BC DE(1)求证:AC=AE(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法)求证:EF平分∠CEN24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B 作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB 是否为定值,若是,求出∠ACB 的大小;否则,请说明理由; (3)记△ABC 的面积为S ,若2SDE =ABC 的周长.25. (2011广东广州市,25,14分)如图7,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中 ∠DCE 是直角,点D 在线段AC 上.C P DOBAE图9(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN=2OM ;(3)将△DCE 绕点C 逆时针旋转α(0°<α<90°)后,记为△D 1CE 1(图8),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若是,请证明;若不是,说明理由.部分答案:一:选择题1、A2、B3、D4、 D5、D6、B7、A8、C9、A 10、D 11、CB1图8图7二:填空1、25 2、40 3、相切、-6π 4、外切 5、100 6、)13,13(++ 7、 3 三:解答题:1、解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC ∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA ∴PA=PD 即△PAD 是以AD 为底边的等腰三角形 (2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB= ∴PA= 2、(1)∵AB 是直径,∴∠ADB=90°,)2(.//,.,BC DE BC OD BO AO CD AD BC AB ⊥∴==∴= 分又又 ∴OD ⊥DE ,∴DE 是⊙O 的切线. (2)在 30,3,=∠=∆ACB CD CBD Rt 中,.2,223330cos =∴===∴AB CDBC)6(.27)23(1,)5(.2332121,30,3,2222分中在分中在=+=+=∆=⨯==∴=∠=∆OE OD OE ODE Rt CD DE ACB CD CDE Rt5、解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ∵AB 是⊙O 的直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC ⊥CP∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB∴∠CBO=∠COB ∴BC=OC ∴BC=AB(3)连接MA,MB ∵点M 是弧AB 的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN ∽△MCB∴∴BM2=MC·MN ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM∵AB=4 ∴BM= ∴MC·MN=BM2=86:(1)如图,连结CD,OC,则∠ADC =∠B = 60.∵AC⊥CD,CG⊥AD,∴∠ACG =∠ADC = 60.由于∠ODC = 60,OC = OD,∴△OCD为正三角形,得∠DCO = 60.由OC⊥l,得∠ECD = 30,∴∠ECG = 30 + 30 = 60.进而∠ACF = 180-2×60 = 60,∴△ACF≌△ACG.(2)在Rt△ACF中,∠ACF = 60,AF = 4,得CF = 4.在Rt△OCG中,∠COG = 60,CG = CF = 4,得OC =.在Rt△CEO中,OE =.于是S阴影= S△CEO-S扇形COD==.25、【答案】(1)∵AB为⊙O直径∴∠ACB=90°∵△DCE为等腰直角三角形∴∠ACE=90°∴∠BCE=90°+90°=180°∴B、C、E三点共线.(2)连接BD,AE,ON.∵∠ACB=90°,∠ABC=45°∴AB=AC∵DC=DE∠ACB=∠ACE=90°∴△BCD≌△ACE∴AE=BD,∠DBE=∠EAC∴∠DBE+∠BEA=90°∴BD⊥AE∵O,N为中点∴ON∥BD,ON=1 2 BD同理OM∥AE,OM=12AE ∴OM⊥ON,OM=ON ∴MN=2OM(3)成立证明:同(2)旋转后∠BCD1=∠BCE1=90°-∠ACD1所以仍有△BCD1≌△ACE1,所以△ACE1是由△BCD1绕点C顺时针旋转90°而得到的,故BD1⊥AE1其余证明过程与(2)完全相同.BDFAO G EC l。

相关文档
最新文档