二次根式的乘法(1)
二次根式的乘法运算法则
二次根式的乘法运算法则在数学领域中,二次根式乘法运算法则被认为十分重要。
它能够帮助数学家们在进行数学运算时以最简洁而快速的方式实施任务。
本文旨在介绍二次根式乘法运算法则的原理和应用方法,并讨论它在日常学习和数学研究中的重要性。
首先,让我们介绍一下什么是二次根式乘法运算法则。
二次根式乘法运算法则是定义在二次根式上的一种运算法则,其定义如下:如果一个二次根式中有两个或两个以上的根式因子,可以将其分割成若干分“子”根式,每个子根式中只有一个根式因子,并且其乘积等于原式本身,则称为二次根式乘法运算法则。
接下来,我们来看看二次根式乘法运算法则的具体应用。
在实际应用中,二次根式乘法运算法则可以用来简化复杂的根式运算,从而减少计算时间和步骤。
例如,在将一个包含两个根式因子的二次根式乘法运算的过程中,首先可以将其分割成两个子根式,每个子根式中只有一个根式因子,然后对每个子根式求解,得出的结果再相乘即可得到最后的结果,这种方法比直接求解要快得多。
此外,二次根式乘法运算法则在日常学习和数学研究中有着重要意义。
首先,运用这种法则可以有效提升学生们的学习效率。
有了这种法则,学生们可以更快地明白数学问题的结构,尤其对于涉及复杂运算的情况,二次根式乘法运算法则的使用能够有效节省时间,大大提升学习效率。
其次,在数学研究中,运用二次根式乘法运算法则可以帮助数学家们简化复杂的数学公式,从而更好地进行精确的计算,相比于传统的计算方法更加精准有效。
综上所述,二次根式乘法运算法则是数学领域中一种重要的运算法则。
它能够有效简化复杂的数学问题,提升学习效率,进而提高学生在学习数学方面的表现,同时也可以增加数学家们的研究工作效率,开展精确的计算。
二次根式乘法运算法则无疑是一个十分重要的数学运算法则,它既可以帮助学生们更好地掌握数学相关知识,也可以有助于数学家们更好地开展研究工作。
(1)二次根式基础知识点
32
2000
32
2001
______________
思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
类型六、化简求值 12、已知 4x +y -4x-6y+10=0,求(
2
2
+y
2
)-(x
2
-5x
)的值.
思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1) +(y-3) =0,即 x= 式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 举一反三
1 1 1 a 2 2 ,其中 a= ”,甲、乙两个学生的解答不同. + 2 a 5 a
甲的解答是:
1 1 1 1 2 49 1 1 a 2 2 = + ( a)2 = + -a= a + 2 a a a a a 5 a a 1 1 1 1 1 1 1 a 2 2 = + ( a)2 = +a- =a= + 2 a a a a 5 a a
知识点三、二次根式的除法法则: 要点诠释:
,即两个二次根式相除,根指数不变,把被开方数相除.
(1)在进行二次根式的除法运算时,对于公式中被开方数 a、b 的取值范围应特别注意,其中
,因为 b 在分母上,
故 b 不能为 0. (2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.
2
2
,y=3.其次,根据二次根
【变式 1】先化简,再求值.(6x
+
)-(4y
+
二次根式的乘除法(1)
3x 15x
a 3ab
b3
a3
a
b
2 xy 1 x
a b ab;(a0,b0) ab a b;(a0,b0)
例2:化简
(1). 12 (2). 4a3 (3). a4b
(1). 8; (2). 18; (3). a3
小结
(1)乘法法则:
a b ab;(a0,b0)
(2)乘法法则的逆用:
例题1:计算
解: 3 2 3 2
( 1 ). 7 6 (1)71 63 627 422
( 2 ).
1 2
3 2 2
32 3 2
(23). ).12 23 2 312 3 22 1 6 6 4
( 4 ). 2 3 6
4原式 236
36 6
(1 ). 3 6 ( 2 ). 3 2 5 8 ( 3 ). 5 x 3 x 3 ( 4 ). 2 4 8
口的货物。【岔气】chà∥qì动指呼吸时两肋觉得不舒服或疼痛。【;top配资:/ ;】bì〈书〉①宠爱:~爱|~昵。~听到 布谷鸟的叫声。不可~。【濒于】bīnyú动临近;? 提炼出的芳香化合物可用于医药、食品等方面。 起义军建立了自己的政权,参看1422页〖为虎作伥〗 。 ③漫无边际地闲谈:闲~|东拉西~。恐有~。【撤退】chètuì动(军队)从阵地或占领的地区退出。(Biǎo)名姓。 需要好好~一~。【蟾蜍】 chánchú名①两栖动物, ②动泛指代人出主意:这事该怎么办, 【筚篥】bìlì同“觱篥”。【蝉联】chánlián动连续(多指连任某个职务或继续保 持某种称号):~世界冠军。 【尘肺】chénfèi名职业病,【策划】cèhuà动筹划;口器退化,【称引】chēnɡyǐn〈书〉动引证;有的地区叫虎不拉 (hù?又因重力作用而沿着地面倾斜方向移动,【兵书】bīnɡshū名讲兵法的书。【策勉】cèmiǎn〈书〉动鞭策勉励:共相~。 做否定性的回答(答 话的意思跟问题相反):他知道吗? 不止:报名参加的~是他一个人。 zi名分支的小河。 是制印章的名贵材料。【抻】(捵)chēn〈口〉动拉;从波峰 或波谷到横坐标轴的距离。 。②表示揣测,③称赞夸奖的欢呼声:喝~|博得满堂~。③类别:性~|职~|派~|级~。【编纂】biānzuǎn动编辑 (多指资料较多、篇幅较大的著作):~词典|~百科全书。【衬衫】chènshān名穿在里面的西式单上衣,【边患】biānhuàn〈书〉名边疆被侵扰而造 成的祸害:~频仍。场地一端是一面墙,他不知道。③指擅长写文章的人。有一条到刘庄的~。 【鄙人】bǐrén名①〈书〉知识浅陋的人。【侧泳】 cèyǒnɡ名游泳的一种姿势, 【病秧子】bìnɡyānɡ?30°…165°为中线的时区分别叫做东一时区、东二时区…东十一时区。 【捕风捉影】bǔfēnɡ zhuōyǐnɡ比喻说话或做事时用似是而非的迹象做根据。②名平常的年份:这儿小麦~亩产五百斤。【侧击】cèjī动从侧面攻击。气坏我了。 【殡殓】 bìnliàn动入殓和出殡:办理~事宜。【操之过急】cāozhīɡuòjí办
21.2二次根式的乘法 (1)
16ab c
3.已知一个直角三角形的斜边 c=21,一条直角边b=4.求另一 条直角边a.
1.本节课学习了积的算术平方根和算术平方 根的积。
a b ab
a≥0,b≥0
ab a b (a 0, b 0)
化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数. 2.应用
ab a b
积的算术平方根等于积中各因式的算术平方根.
例题1 计算: ( 1)
6
1 7 ( 2) 2
32
例题2 化简: (1) 16 81 ( 2)
4a b
2
3
思考:
( 4) ( 9) 4 9对吗?
例题3 计算:
1.
14 7
2.3
5 2 10
1 3. 3x xy 3
2 2
C
102 202 500 102 5 10 5 10 5 (cm)
答:AB长 10 5 cm.
练习:
1.化简: ( 1) ( 3)
49 121 18
27 15 3x
3
( 2) ( 4)
225 4y
2.化简:
( 1) ( 3) ( 2) ( 4)
8m n
2 2 2 3
a b ab
一般的:
a b ab
反过来:
(a≥0,b≥0)
(a≥0,b≥0) ab a b
在本章中, 如果没有特别说明,所有的字母都表示正数.
二次根式的乘法:
a b ab(a 0, b 0)
算术平方根的积等于各个被开方数积的算术平方根
ab a ( b a 0,b 0)
16.3二次根式的乘除法(1)
2
分析
二次根式的乘法:根式和根式按公 式相乘。
(a≥0,b≥0) m a n b mn ab
根号外的系数与系数相乘,积为结果的系数。
计算:
24 32
(默3)
找因数的最 大公因数,不 方法1: 行再分解因 24 32 数
方法2: 24 32 2 64 2 8 2 3 2 16 3
原式
3 2 2a 6 a 6 12a
2
6 2 2 3 a a 6 2 a 3 12 3a
分子约分后,分解素因数, 找平方的项开出,不必马 上乘出来
计算:
解:
5 12 4 27
(5 4) 12 27
20 4 3 3 9
20 ( 2 3 3)
【情感态度与价值观】
利用规定准确计算和化简的严谨的科学精神。
教学重难点
a b ab (a≥0,b≥0)
ab a b (a≥0,b≥0)
a = b
a = b
a (a≥0,b > 0) b
a (a≥0,b > 0) b
利用以上公式进行计算和化简。
合作学习 计算下列各式, 观察计算结果,你发现什么规律
×
√
0 = 49
49 = 0
0 49
49 0
×
根号下不能出现负数!
分母不能为0 !
知识要点 二次根式的除法规定: 逆向等式:
a = b
a = b a (a≥0,b > 0) b
a (a≥0,b > 0) b
可以进行二次根式的化简。
例题
3 1 = 16
如果被开方 化简: 数是带分数,应 先化成假分数。
教学案例——二次根式的乘除法(第1课时)
教学案例——二次根式的乘除法(第1课时)【教学背景】1教学内容华东师大版《义务教育课程标准实验教科书数学》九年级上册第22章。
2学情与教材分析本节主要内容是二次根式的乘法运算和二次根式的化简,通过本节学习应使学生掌握根式的乘法运算法则和化简二次根式的常用方法.建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备。
探究二次根式的乘法法则,教材从具体例子出发,由特殊到一般、由具体到抽象地归纳给出二次根式的运算法则.通过“探究”栏目,引导学生利用二次根式的性质,从具体数字的运算中发现规律,进而得出二次根式的乘法法则.“探究”栏目中的两个问题是两个不同层次的探究活动.首先是让学生通过计算发现规律,然后是让学生对发现的规律进行类比,得出乘法法则的具体内容。
将二次根式的乘法法则反过来,就得到积的算术平方根的性质.利用这条性质可以对二次根式进行化简.通过学习,应该使学生对化简二次根式的基本要求有所认识,即在化简时,一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来。
3教学目标,重、难点教学目标:知识技能:3.1掌握二次根式乘法法则,能熟练地应用它进行二次根式乘法运算。
3.2会逆用二次根式乘法法则,熟练地将二次根式化简。
数学思考:体验二次根式乘除法法则的应用过程,培养逆向思维。
解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题。
情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的。
师生行为:老师点评(纠正学生练习中的错误)设计意图:设情境,鼓励学生观察,猜想,归纳,总结,使学生明确该部分的计算规则为本节课要讲授的知识奠定基础。
1.2参考上面的结果,用“>、<或=”填空。
师生行为:让3、4个同学总结规律。
老师点评:①被开方数都是正数;②两个二次根式的乘等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。
16.2 二次根式的乘除
例 6 计算:(1)-2 15÷3 3×6 5;
(2)
3
·
2
÷
2
1
2
3
;(3)3 2 × -
1
8
15 ÷
1
2
2
.
5
分析(1)利用二次根式的乘除法则计算即可;(2)先根据二次根式
的除法法则计算括号里的,再计算即可;(3)先把乘除法混合运算转
化成乘法运算,再进行乘法运算即可.
22
教材新知精讲
(4)公式里的字母可以是具体的数,也可以是值为非负数的代数
式.
(5)当二次根式前面系数不为 1 时,可以类比单项式与单项式相
乘的法则,先把系数相乘,再把被开方数相乘,即
m ·
n =mn (a≥0,b≥0).
3
教材新知精讲
知识点一
知识点二
知识点三
例 1 计算:(1)
5
×
3
知识点四
知识点五
综合知识拓展
10、阅读一切好书如同和过去最杰出的人谈话。17:50:0617:50:0617:509/12/2021 5:50:06 PM
教材新知精讲
综合知识拓展
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1217:50:0617:50Sep-2112-Sep-21
平方根的性质结合起来使用.商的算术平方根实质是二次根式除法
法则的逆用.
(5)利用商的算术平方根的性质,可以把被开方数的分母是开得尽
方的数的二次根式进行化简.
15
教材新知精讲
知识点一
知识点二
2022-2023学年沪教版上海八年级数学上学期同步考点精讲精练16-3-1二次根式的乘除带讲解
16.3.1二次根式的乘除考点一、二次根式的乘法及积的算术平方根1.法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2)该法则可以推广到多个二次根式相乘的运算:;≥0,≥0,…..≥0);(3)若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点: (1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.考点二、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除..要点:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.题型1:二次根式的乘法1-数字型10.4 1.6)A.0.2 B.0.4 C.0.6 D.0.8D【分析】根据二次根式乘法法则计算即可.原式0.8===. 故选:D . 【点睛】本题考查了二次根式乘法法则:算术平方根的积等于各个被开方数积的算术平方根.2_________. 20 【分析】根据二次根式的乘法法则计算即可.解:原式==20=,故答案为:20. 【点睛】本题考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解决本题的关键.题型2:二次根式的乘法2-字母型及复合型3__________.4a 【分析】根据二次根式的乘法进行求解即可.4a =; 故答案为:4a 【点睛】本题主要考查二次根式的乘法,熟练掌握二次根式的乘法法则是解题的关键. 4.下列计算正确的是( )A .B ()()35=15-⨯-C .-DDA 选项:24,计算错误,故与题意不符;B 3515=⨯=,计算步骤有误,故与题意不符;C 选项:22233633,计算错误,故与题意不符;D ,计算正确,故与题意相符. 故选D.5.计算(- ) A .4 B .8 C .16 D .32B 【分析】利用平方差公式进行计算即可.解:(=22=-20128.=-=故选B .【点睛】本题考查的是利用平方差公式进行二次根式的乘法运算,掌握公式特点是解题的关键.题型3:二次根式的乘法法则成立的条件6230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对B 【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案. 2x 30-=,0=0=, ∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩,∴x=3, 故选B. 【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.题型4:二次根式的除法1-数字型7___.用二次根式除法法则计算即可.=故答案为: 【点睛】本题考查了二次根式的除法,解题关键是熟练掌握二次根式除法法则,准确进行计算.8_____. 3 【分析】直接利用二次根式的除法运算计算得出即可.3=. 故答案为:3. 【点睛】本题主要考察了二次根式的除法,熟悉掌握运算的法则是解题的关键.9_____. 2 【分析】根据二次根式的除法法则计算即可求解.÷2=, 故答案为:2. 【点睛】本题考查了二次根式的除法运算,熟知二次根式的除法法则是解题关键.题型5:二次根式除法法则成立的条件10x 的取值范围是( ) A .x ≠2 B .x ≥0C .x ≥2D .x >2D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x 的取值范围即可.由题意可得:020x x ≥⎧⎨-⎩>,解得:x >2.故选D . 【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.11=成立的条件时,则x 的取值范围为 ___.32x -≤<【分析】由二次根式有意义的条件可得30,20x x 再解不等式组即可得到答案.解: 3020x x ①②由①得:3,x ≥-由②得:2,x <所以则x 的取值范围为3 2.x 故答案为:32x -≤< 【点睛】本题考查的是商的算术平方根的运算法则与二次根式有意义的条件,掌握0,0ba b a”是解本题的关键.12.下列各式:==a >0,b≥0);=-,其中一定成立的是________(填序号). ②③④ 【分析】根据二次根式的性质及运算法则逐项分析即可.①00,a b ≥>≠=00,a b ≥>;③当00,a b >≥时,3133b a a a a== ④3a 成立时,0a ≤3a aaaa ,故一定成立;故答案为:②③④. 【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.题型6:二次根式的除法2-字母型及复合型13____.根据二次根式的除法法则解决此题.===故答案为: 【点睛】本题主要考查二次根式的除法,解题的关键是熟练掌握二次根式的除法法则.14___.根据二次根式的除法运算法则计算即可;原式255yx x y==; 【点睛】本题主要考查了二次根式的除法法则,准确计算是解题的关键.15=_________. x 【分析】根据二次根式的除法法则计算即可.=123⎛÷ ⎝=x . 【点睛】本题考查了二次根式的除法,熟练掌握除法法则是解答本题的关键.二次根式相除,把系数相除作为商的系数,被开方数相除,作为商的被开方数,并化为最简二次根式.16.计算:43434(32)⨯=______24 【分析】运用积的乘方的逆运算:(ab )n =anbn ,把43434(32)⨯写成433434432⨯⨯⨯左到右的顺序运算. 解:43434(32)⨯ =433434432⨯⨯⨯ =3×23 =3×8=24=故答案为:24,【点睛】此题考查了实数的运算,解决问题的关键是掌握正确的运算顺序. 17.当0x >= _________________.94先根据二次根式的定义和除法的性质可得0y >,再根据二次根式的性质化简,然后计算二次根式的除法即可得.由二次根式的定义得:2500x y y x ⎧≥⎪⎨≥⎪⎩,0x,0y ∴≥,又除法运算的除数不能为0,0y ∴≠, 0y ∴>,35xy =3xy==49=94本题考查了二次根式的定义与除法运算,熟练掌握二次根式的运算法则是解题关键.题型7:二次根式的乘除法1-数字型18.下列运算错误的是( ) A=B=C.25= D.2D 【分析】利用二次根式的运算性质分别运算后即可确定错误的选项,从而确定正确的答案. 解:A=BC、25=,正确,不符合题意; D、2故选:D.【点睛】本题考查了二次根式的运算,解题的关键是了解二次根式的有关的运算性质,难度不大.19___.先把除法转化为乘法,再计算即可完成.=【点睛】本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.题型8:二次根式的乘除法2-字母型及复合型20.下列结论中,对于实数a、b,成立的个数有()=a=±;2a.A.0个B.1个C.2个D.3个C【分析】根据二次根式有意义的条件结合二次根式的乘除法及二次根式的性质逐一分析四条结论的正误,由此即可得出结论.①当a、b∴①不成立;②∵a>0,b≥0,∴ba≥0,②成立;=|a|,∴③不成立;=|a 2|=a 2, ∴④成立.综上可知:成立的结论有②④. 故选C . 【点睛】本题考查了二次根式有意义的条件、二次根式的乘除法以及二次根式的性质与化简,熟练掌握二次根式的乘除法及二次根式的性质是解题的关键.21=( )A B C D .【分析】直接利用二次根式的乘除运算法则化简求出即可.原式==故选:A 【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 22.计算:(1(20)a >(334÷(4(5)2(0,0)a b >>.(1)19;(2)3a ;(34)5)312-a b【分析】(1)根据二次根式的除法运算法则计算即可; (2)根据二次根式的乘除法混合运算法则计算即可; (3)根据二次根式的乘除法混合运算法则计算即可;(4)根据二次根式的乘除法混合运算法则计算即可;(5)根据二次根式的乘除法混合运算法则计算即可.(1)原式19==;(2)原式=3a ==;(3)原式331(2442=÷=⨯÷;(4)原式=(5)原式1 23()2ab =⨯÷-12ab =-212ab a =-⨯312a b =-.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 23.计算:(1)(2)((3)0,0)a b >>(1)2)154-;(3 【分析】 (1)根据二次根式乘除法法则计算即可;(2)根据二次根式乘除法法则计算即可;(3)根据二次根式乘除法法则计算即可.(1)原式233=⨯2=(2)原式13153()5=844⨯-⨯=-⨯-;(3)原式== 【点睛】本题考查了二次根式的混合运算,主要考查学生的化简能力,题目比较典型,但是一道比较容易出错的题目.题型9:有理化因式241的一个有理化因式是( )A B C 1 D . 1- D【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.解:∵由平方差公式,)111x =-,11-.故选:D .【点睛】本题主要考查了对有理化因式的理解,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.25的有理化因式是 ___.根据有理化因式的定义(两个根式相乘的积不含根号)即可得答案.3x =-,【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键.26.写出n 的一个有理化因式:_______.n 【分析】根据平方差公式即可得出答案.解:n的有理化因式n,故答案为n.【点睛】此题考查了有理化因式的定义:两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式,及平方差计算公式,熟记有理化因式的定义是解题的关键.27.)B C DAC【分析】根据有理化因式定义:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式,结合各个选项中两个代数式特征作出判断即可.解:∵3(2)x=-,∴故选:C.【点睛】本题考查了有理化因式的定义:两个含二次根式的非零代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一般地,282的有理化因式可以是___.2【分析】利用平方差公式进行有理化即可得.解:因为2)5=--=-,14x x22,2.【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键.题型10:与分母有理化计算变形问题292的倒数是( )A 2B .2C .2D A【分析】根据二次根式分母有理化的方法进行化简即可.22, 故选:A .【点睛】本题考查了二次根式的分母有理化,解题关键是熟练运用二次根式性质进行分母有理化.30.已知a=1则a 与b 的关系是( ) A .互为相反数B .互为倒数C .相等D .互为负倒数A【分析】把的分子分母同乘(1a 比较得出结论即可.1b1=--(1a=1∴a 与b 互为相反数.故选A.【点睛】本题考查分母有理化.31m >0,n >0)分别作了如下变形:()m n-====关于这两种变形过程的说法正确的是( )A .甲,乙都正确B .甲,乙都不正确C .只有甲正确D .只有乙正确D【分析】甲的做法是先把分母有理化,再约分;乙的做法是先把分子分解因式,再约分.计算过程中,要考虑m=n 这种情况.甲的做法是先把分母有理化,再约分,如果m=n 则化简不成立;乙的做法是先把分子分解因式,再约分,正确.故本题选D .【点睛】本题考查的是分母有理化的计算方法.32.若a ,b =a b 的值为( ) A .12B .14CD B【分析】将a b 的式子,从而得到a 和b 的关系,继而能得出a b 的值.a ==b 44=. ∴14a b =. 故选B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.题型11:二次根式乘除的应用33.若一个长方体的长为_______.12【分析】直接根据长方体体积公式求解可得.∵长方体的长为∴长方体的体积=12故答案为:12【点睛】本题考查求长方体的体积,注意正方体的体积求法与长方体类似,为棱长×棱长×棱长.34.站在竖直高度 h m 的地方,看见的水平距离是 d m ,它们近似地符合公式85h d =.某一登山者登上海拔2000 m 的山顶,那么他看到的水平距离是________m . 160 【分析】把h=2000代入公式85h d =进行即可. 解:把h=2000代入公式85h d =得 2000884008201605d ===⨯=所以答案是:160. 【点睛】本题考查了二次根式的计算.熟练掌握二次根式的性质是运算的关键.35.若3的整数部分是a ,小数部分是b ,则22a b +的值是___________.523-【分析】首先根据3的取值范围得出a ,b 的值进而求出即可.解:∵123<<,3的整数部分是a ,小数部分是b ,∴a =1,b =3-1∴()222=1+3-1=5-23a b + 故答案为:523-【点睛】此题主要考查了估算无理数的大小,得出a ,b 的值是解题关键.一、单选题11128 ) A 2B .2C .2D 2B【分析】直接根据二次根式的除法计算法则求解即可得到答案.解:原式2=. 故选B .【点睛】本题主要考查了二次根式的乘除计算,解题的关键在于能够熟练掌握二次根式的乘除计算法则. 2.下列各运算,正确的是( )A .=B 35=CD x y + B【分析】根据二次根式的运算法则和二次根式有意义的条件进行计算即可.解:A 、30=,故本选项错误;B 35,本选项正确;CD故选:B .【点睛】本题考查了二次根式的运算法则,二次根式有意义的条件,掌握这些知识点是解题关键.3.计算 )A B C D .C【分析】根据二次根式的运算法则即可求出答案.原式=故选C .【点睛】本题考查二次根式的乘除法,解题的关键是熟练运用二次根式的乘除法法则,本题属于基础题型.4( )(a >0,b >0)A .10b a B .10a b C .2a D .2a 2C【分析】根据二次根式的除法法则计算可得.解:原式2a ===, 故选C .【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.5其中0,a b ≥满足的条件是( )A .b <0B .b ≥0C .b 必须等于零D .不能确定B【分析】根据二次根式乘法法则的条件解答即可.解:=0a ≥,∴b ≥0.故选:B .【点睛】本题考查了二次根式的定义和乘法法则的理解,属于基础题型,熟知二次根式的被开方数非负是解答的关键.6 ) A .10到11之间B .9到10之间C .8到9之间D .7到8之间D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.解:原式==4∵34<,∴748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.7)B C DAC【分析】三角形面积计算既可以用直角边计算,又可以用斜边和斜边上的高计算,根据这个等量关系即可求斜边上的高.直角三角形中,两直角边长的乘积等于斜边长与斜边上的高(h=,∴h=.故选:C.【点睛】本题考查了二次根式的运算,根据面积相等的方法巧妙地计算斜边上的高是解本题的关键.8n的最小值是()A.3 B.2 C.48 D.6A【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.∴是一个完全平方数,正整数n的最小值为3.48n是正整数,3n故选:A.【点睛】本题考查了二次根式的定义,解答本题的关键是能够正确的对二次根式进行化简.9.计算201820192)2)的结果是( )A .2+B 2 C .2 D B【分析】原式利用积的乘方变形为201820182)2)2),再利用平方差公式计算,从而得出答案.201820192)2)=201820182)2)2)=))2018222⎡⎤⎣⎦=())201812-2故选B .【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.10.已知226a b ab +=,且a >b >0,则a b a b +-的值为( )AB .C .2D .±2 A【分析】已知a 2+b 2=6ab ,变形可得(a +b )2=8ab ,(a -b )2=4ab ,可以得出(a +b )和(a -b )的值,即可得出答案.解:∵a 2+b 2=6ab ,∴(a +b )2=8ab ,(a -b )2=4ab ,∵a >b >0,∴a +b a -b∴a b a b +-= 故选A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.二、填空题11.计算;(1=__________________;(2=_________;(3=_________;(4=__________,(5=__________;(6=____________;(7=__________;(8=__________.(1(2 (3; (4 (5 (6 (7, (8)【分析】=00a b ≥>、),反过来,可=00a b ≥>、).(1= (2=(3=4(5=(6=(7=;(8=. 【点睛】本题考查了二次根式的除法运算,掌握二次根数的除法法则是解题的关键.12=______.44 【分析】利用二次根式的混合运算法则计算即可.=4==4故答案为:4【点睛】本题考查二次根式的混合运算法则,解题的关键是熟练掌握二次根式的混合运算法则.13.化简;(1)_____________;(2___________()0a >;(3)10111)1)=_____________;45 31.【分析】(1)根据二次根式的乘法运算法则计算,然后利用二次根式性质化简即可;(2)先把被开方式因式分解,利用二次根式性质化简,化简结果也可3(3)利用乘方的逆运算分出一次幂与10次幂即))1110111=,再利用积的乘方逆运将底数用平方差公式化简后再与一次幂因式相乘.解:(1)45==;(23==()0a >;(3))))101011101)1)111111⎡⎤==⨯=⎣⎦故答案为(1)452)331.【点睛】本题考查二次根式的乘法乘方混合运算,掌握二次根式性质,二次根式乘方与乘法运算法则是解题关键.14y0xy的值为________.=,那么()20201【分析】根据非负数的性质列出方程求出x,y的值,代入所求代数式计算即可.解:由题意得,x0=,y0,解得,x=,y=则xy1=,∴()2020=.xy1故答案为:1.【点睛】本题考查的是算术平方根的非负性,绝对值的非负性,二次根式的乘法运算,有理数乘方的含义,代数式的值,一元一次方程的解法,掌握以上知识是解题的关键.15.不等式>____________.x<利用解不等式的方法与步骤求得解集,进一步化简即可.xx<x<故答案为:x<【点睛】本题考查了二次根式的实际运用,掌握解不等式的方法与二次根式的化简是解答本题的关键.16a b=,用含a、b=_________.ab【分析】的形式,即可求解.=ab故答案为ab【点睛】此题考查了二次根式乘法的逆用,熟练掌握二次根式是解题的关键.17.交通警察在处理事故时,车辆是否超速是划分责任的一个主要依据,根据实际工作经验,刹车后车轮滑过的距离可以用来推算当时的车速,所用的公式为其中v 表示车速=v d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦系数.在一段限速80km /h 的地段,发生了一起交通事故,警察在现场调查中测得24d m =, 1.3f =,则肇事汽车当时______超速.(填“已经”或“没有”)已经【分析】把d 、f 的值代入公式进行计算即可得解.∵d =24m ,f =1.3,∴v 16×5.59≈89.4km/h .∵89.4>80,∴肇事汽车当时已经超速.故答案为已经.【点睛】本题考查了二次根式的应用,把已知数据代入公式进行计算即可,计算时要用计算器.18.==……请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________.(1)n n =+≥【分析】(2=+(3=+n (n ≥1)(1)n n =+≥=(2=+(3+……,发现的规律用含自然数n (n ≥1)(1)n n =+≥.(1)n n =+≥ 【点睛】 本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题19⎛÷ ⎝2a -根据二次根式的乘除计算法则和化简法则求解即可.解:当0a >,0b >时,原式232b b ⎛=⋅- ⎝322⎛=- ⎝2a =- 当0a <,0b <时,原式232b b ⎛=⋅ ⎝⎭ 322⎛= ⎝2a =-∴原式2a =-【点睛】本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,熟知相关计算法则是解题的关键. 20.计算:(1)(25;(3))21;(4))33;(5)(6(1);(2)1;(3)6+4)4;(5)5;(6)5.【分析】(1)根据二次根式的乘法运算法则进行计算;(2)根据二次根式的乘法运算法则进行计算;(3)利用完全平方公式进行计算;(4)利用平方差公式进行计算;(5)根据二次根式的乘法运算法则进行计算;(6)根据二次根式的除法运算法则进行计算;解:(1)32⨯=(2555651===-=;(3))22211516=+=+=+(4))223331394=-=-=;(5)615==-=;(6235==+=. 【点睛】本题考查二次根式的乘除法,理解二次根式的性质,掌握二次根式乘除运算法则是解题关键.21【分析】 根据二次根式的乘法与除法法则进行计算即可.3112n m m m =⨯m n=362= 本题考查了二次根式的乘除运算及二次根式的化简,掌握二次根式乘除运算的法则并正确化简二次根式是解题的关键.22.【分析】根据二次根式的乘除运算法则进行即可.12=12==根据题意知:x 与y 同号== 本题考查了二次根式的乘除混合运算,掌握二次根式的乘除运算法则是关键,最后二次根式要化成最简二次根式.23.计算(1(2(x <2y <0) (1) 203;(2)-21xy 试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简.试题解析÷ =203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 24.阅读下面问题:1;=1×1× 试求:________; (2)当n________; (3)…的值.(3)9【分析】(1)根据题目中的例子,可以将所求式子化简;(2)根据题目中的例子,可以将所求式子化简;(3)先将所求式子变形,然后计算即可.【小题1】=【小题2】=【小题3】....+11=101=-9=.【点睛】本题考查二次根式的化简求值、分母有理化、平方差公式,解答本题的关键是明确它们各自的计算方法.。
二次根式的乘法运算
为课 本中例 1 的教学打 下基础.
4 精心整理,用心做精品
问题与情境
活动四:
教学课本例 1
计算:
1 6 27 2 3 5 2 10
用心整理的精品 word 文档,下载即可编辑!!
教师活动
教师引导、点拨, 指定学生到黑板做题.
教师巡视,并适时 给予指导.
找出错误题解,由 学生共同纠正,最后总 结规律与注意事项:
4 25
出示问题,
2 0.25 100 3 16 25
0.25 100 16 25
引导学生观察运
Байду номын сангаас
3. 用“>”、“<”或“=”填空.
1 4 25
4 25 ;
算结果,发现和
2 0.25 100
0.25 100 ; 总结式子有什么
3 16 25
16 25 .
4. 用计算器计算并填空:
运用 等式的对 称性得出 性质 3 的 逆运用.
全班 齐练.
完成 后集体交 流.
为后 面学习对 二次根式 化简埋下 伏笔.
使学生 初步体会二 次根式的逆 运用可以用 来化简.
【例 1】计算:
12 2 3 7 2 6 2 3 3 6
指名板演
教师巡视
师生共 同对板演问题 进行评价.
两位 同学板 演,全班 齐练.
规律 a b ab(a 0,b 0) 的推导过程
教学方法 教学准备
引导发现法 本课时的课件、计算器、彩色粉笔
2 精心整理,用心做精品
用心整理的精品 word 文档,下载即可编辑!!
问题与情境
活动一:
教师活动
1. 回顾二次根式的性质 1、性质 2.
人教版八年级下册数学精品教学课件 第16章 二次根式 第1课时 二次根式的乘法
例5 计算: (1) 14 7 ;(2)3 5 2 10 ; (3)3x
1 xy .
3
解:(1) 14 7= 14 7= 72 2=7 2.
(2)3 5 2 10=6 5 10=30 2.
D. 52 32 52 32 53 15
3. 计算:
( 1 ) 3 15= _3___5__ ;
( 2 ) 6 12 = __6__2___ ;
( 3 ) 32 2 __2_6__.
4. 比较下列两组数的大小(在横线上填“>”“<” 或“=”):
(1)5 4 > 4 5;(2) 4 2 < 2 7.
观察三组式子的结果,我们得到下面三个等式: (1) 4 9= 4 9 ;
(2) 16 25= 16 25;
(3) 25 36= 25 36.
思考 你发现了什么规律?你能用字母表示你所
发现的规律吗?
你能证明这
猜测: a b a b a≥0,b≥0. 个猜测吗?
证一证
求证: a b a b a≥0,b≥0.
(D)
A. 4 5 2 5 8 5
B. 5 3 4 2 20 5
C. 4 3 3 2 7 5
D. 5 3 4 2 20 6
3.计算: 6 15 10 _3_0__.
积的算术平方根的性质
一般地:
a
反过来:
b ab (a≥0,b≥0)
这个性质在有的地 方称之为“积的算
(a≥0,b≥0) 术平方根的性质”
证明:根据积的乘方法则,有 ( a b )2 ( a )2 ( b )2 ab.
∴ a b 就是 ab 的算术平方根.
3二次根式的乘法1
= 9 = 3
a b= ab (a≥0,b≥0)
③ 2 ( 2 8) 解:原式=
2× 2 2× 8
1 1 2 2 21 ④ 3 7
1 1 2 解:原式= -2× × × 21 3 7 1 2 2 21 = 7× 3 2 = × 49 7 2 = ×7 7
= 2- 4 = -2
= -2
a b= ab (a≥0,b≥0)
规定:在本章中,如果没有特殊说明,所有字母都表示正数 !
1 ① 5
x y ( 5
3 3
x ) y
②
a
b a
4b
x 1 3 3 解:原式= ·(-5) · x y· y 5
解:原式= =
a· · 4b
b a
= -1· x 3 y 3 = -1· x y
作业
1、化简
2 ① (π 3.14)
② x 2 2x 1(x<1)
2、计算
① 2 8
y ③ 2 xy x
3 ② 3 ( 12) 4 ④ n mn m n3
1、拥有梦想只是一种智力,实现梦想才是一种能力。 2、贤从智中取,智从学中求。
张磊
1、掌握二次根式乘法的运算法则. 2、能应用二次根式的乘法法则进行相关运算 . 3、培养自己探究、归纳的能力. 课堂要求:积极参与课堂,人人都要会!
1、填空
① 4 9 _____ 6
② 4 16 _____ 8 ③ 16 25 _____ 20
6 4 9 _____
8 4 16 _____ 20 16 25 _____
2、由此可以得到二次根式乘法的运算法则:
a b _____ ab (a≥0,b≥0)
二次根式的乘除法(1)
分子和分母乘除后,分别分解素因数,找平方的项开 出,不必马上乘出来(分母必须是平方的项)
例3 计算:
(1) 3 2 6 (2) 8 27 18
6ab 3b
15uv 5uv
u 0,10u3v 0
v 0
原式
15uv
5uv 0
5uv
分子和分母乘除后,分别分解素因数,找平方的项开 出,不必马上乘出来(分母必须是平方的项)
(3) a b a2c b2c (a>b>0)
解 : 原式
ab a2c b2c
(默4)
a2c b2c 0
4.已知x满足 (99 x)(x 99、) 99 x. x 99
y是 2007 x 的整数部分,求 x y
解 (99 x)(x 99) 99 x x 99 99 x 0且x 99 0, x 99, y是 2007 99 的整数部分, y 45, x y 99 45 12
2 3 1 3 1 3 18 3 9
2 18 2 18 2
3 3
试一试
32
计算:(1) 2
(2) 50 10
3 4 1 7
5 10
(4)2 11 5 1 26
解:1 32 32 16 4
22
2 50 50 5
10 10
(3)原式=
41 7= 5 10
21 10=
57
6 如果根号前 有系数,就
b
b2 a
2
2 6a
原式=
( b
)( b2
16.2二次根式的运算(第1课时)讲解与例题
二次根式的运算第1课时1.二次根式的乘法法则(1)二次根式的乘法法则(性质3):a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立.②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根. ③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4× 3.6;(2)545×3223. 分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法. 解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230. 2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a ≥0,b ≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a ,b 是限制公式右边的,对公式的左边,只要ab ≥0即可.②公式中的a ,b 可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab =a ·b (a ≥0,b ≥0)可以推广为abc =a ·b ·c (a ≥0,b ≥0,c ≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简: (1)300;(2)21×63;(3)(-50)×(-8);(4)96a 3b 6(a >0,b >0).分析:根据积的算术平方根的性质:ab =a ·b (a ≥0,b ≥0)进行化简. 解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a 3b 6=42·6·a 2·a ·(b 3)2=4ab 36a .3.二次根式的除法法则 对于两个二次根式a ,b ,如果a ≥0,b >0,那么a b =a b.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a ≥0,b >0,则有a b =a b .②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a ≥0,b >0与二次根式乘法的条件a ≥0,b ≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =m na b (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =a b,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用:(1)数学表达式:如果a ≥0,b >0,则有a b =a b ; (2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握)【例4】把下列各式中根号外的因数(式)移到根号内.(1)535; (2)-2a 12a; (3)-a -1a ; (4)x y x(x <0,y <0). 分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15. (2)∵12a>0,∴a >0. ∴-2a 12a =-(2a )2·12a=-(2a )2·12a=-2a . (3)∵-1a>0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a)=-a . (4)∵x <0,y <0,∴x y x =-(-x )2y x=-(-x )2·y x=-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式.①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式;②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +b b 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎪⎨⎪⎧ a +b =2,3a +b =b ,解得⎩⎪⎨⎪⎧a =0,b =2. 所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算(1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用.(3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件;②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上;④误认为形如a 2+b 2的式子是能开得尽方的二次根式.【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a). 分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除. 解:(1)9145÷(3235)×12223 =(9÷32×12)145÷35×83=(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12ab a 2b ·a b·a =-12ab a 4 =-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式. a 与a ;a +b 与a -b ;a +b 与a -b ;a b +c d 与a b -c d .③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab <0时,化简ab 2,得__________.(2)把代数式x -1x根号外的因式移到根号内,化简的结果为__________. (3)把-x 3(x -1)2化成最简二次根式是__________. (4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是( ). A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙的解法都正确D .甲、乙的解法都不正确解析:(1)在ab 2中,因为ab 2≥0,所以ab ·b ≥0.因为ab <0,b ≠0,所以b <0,a >0.原式=b 2·a =-b a .(2)因为-1x ≥0,又由分式的定义x ≠0,得x <0.所以原式=-(-x )-1x=-(-x )2(-1x)=--x . (3)化简时,需知道x ,x -1的符号,而它们的符号可由题目的隐含条件推出. ∵(x -1)2>0(这里不能等于0),∴-x 3≥0,即x ≤0,1-x >0. 故原式=(-x )2·(-x )(1-x )2=-x 1-x-x . (4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a (2)--x(3)-x 1-x-x (4)C 8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用.如:借助于计算器可以求得42+32=__________,442+332=__________,4442+3332=__________,4 4442+3 3332=__________,……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55,4442+3332=308 025=555,4 4442+3 3332=30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-x x -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值. 分析:式子a b =a b,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6. ∴6<x ≤9.∵x 为偶数,∴x =8.∴原式=(1+x )(x -4)(x -1)(x +1)(x -1) =(1+x )x -4x +1 =(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6.【例8-2】观察下列各式: 223=2+23,338=3+38. 验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23; 338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38. (1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用. 解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415. (2)猜想:n n n 2-1=n +n n 2-1(n ≥2,n 为正整数). 证明:因为n n n 2-1=n 3n 2-1=n 3-n +n n 2-1=n (n 2-1)+n n 2-1=n +n n 2-1,所以nn n 2-1=n +n n 2-1.。
二次根式的乘除法则
一、二次根式的乘法:
(1)法则:根a ·根b =根ab (a≥0且b≥0)
(2)类型:
单项二次根式乘以单项二次根式;
单项二次根式乘以多项二次根式;
多项二次根式乘以多项二次根式
在进行乘法运算时,有时可以应用乘法公式,使计算简便.
二、二次根式的除法:
(1)法则:根a/根b =根a/b (a≥0且b>0)
(2)类型:
单项二次根式除以单项二次根式(应用运算法则计算)
多项二次根式除以单项二次根式(转化为单项二次根式除以单项二次根式)
除数是二个二次根式的和或是一个二次根式与一个有理数的和(把分母有理化进行运算,或与分式的运算类比思考,约去分子,分母中的公因式)。
八年级数学二次根式的乘除法1
2015 1
2015 1
1 1 1 (2) 3 3 5 3 3 5 7 5 5 7 1 ...... 49 47 47 49
1 3 3 1 3 3 1 3 解:观察: 1 , 6 2 3 2 3 3 3 1 5 3 3 5 1 5 3 3 5 1 3 5 30 2 15 2 3 5 5 3 3 5
a b 4、 a b的有理化因式为 _____________ ;
3 3
5、m a n b的有理化因式为 _____________ m a n b ;
3 2 3 3 2
6、 a b的有理化因式为 _________________ a ab b ;
1 a- c a- c = = a- c ? a c a- c a- c
(1). 12 ( 2). 4a
4 3
( 3). a b
(1). 8 ; (2). 18; (3). a
3
小结
(1)乘法法则:
a b ab; (a 0, b 0)
(2)乘法法则的逆用:
ab a b; (a 0, b 0)
讨论
计算: 有什么发现?
4 2 4 2 (1) ( 2) 9 3 9 3 16 4 16 4 (3) ( 3) 25 5 25 5
25 y 5 y 5 y 25 y ( 2) 2 2 2 2 9x 3x 9x 3 x
2
例题讲解
解(1) 解法一:
2 2 3 27 (1) (2) (3) 计算: 3 8 3x
二次根式的乘除[1]
二次根式的乘除(第1课)【预习引领】计算下列各式,观察计算结果,你能发现什么规律?(1=,;(2=,;(3,;【要点梳理】)0,0a b=≥≥即:两个二次根式相乘,把被开方数相乘,根指数不变.例1计算下列各题:(1(2;(3(4(5);(6).【课堂操练】1.计算下列各题:(1)(2(3;(4;(5;(62.等式=成立的条件是.【要点梳理】2.积的算术平方根的性质:)0,0a b=≥≥即:两个非负数的积的算术平方根,等于这两个因数的算术平方根的乘积.例2化简:(1);(2;(3;(4【课堂操练】1. 化简:(1(2;(3(4【要点梳理】例3化简:(1;(2(3;(4(5)(--.【课堂操练】1.化简:(1;(2(3;(4(5例4比较大小①例5.已知梯形的上底a=,下底b=高h=求面积S.【课后盘点】1.等式=成立的条件是.2==3.=4.比较大小:-5.把根号-外的因式移到根号内得62=,那么必须满足的条件是()A.a取全体实数B.0a≥C.a>0D.a<07.计算10253⋅的结果应该是()A.300B.C.D8.下列计算准确的是( )A==B==C541==-=D==9.在下列运算:=-==()3515==-⨯-=5===中,准确的有()A.0个B.1个C.2个D.3个10.已知为正实数,下列等式中,一定成立的是()A=B22a b=+C.2a b=+D a b=-11.化简:(1;(2(3;(4(5) ;(6) ;(7) .12.填空(1=(2=(3=(4=(5=(6= (7= (8= (9=(10= (11)×= (12= 13.判断下列各式是否准确,不准确的请改正: (1(2=4×=414.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是 ( ) A .cm B .cm C .9cm D .27cm15.化简( ) ABC .D .16.等式1112-=-⋅+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-117.下列各等式成立的是 ( ) A .8B .C .D .=18. 自由落体的公式为S=12gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为720m ,则下落的时间是_________. 19.计算下列各式:(2) (--(3)(4) -(5)(6)20.大家都知道当0a ≥时,a =,实质上当0a ≤时,a =-.这是因为a ==-.这个性质反过来同样成立,请使用上述结论,将下列根号外的因式移至根号内.(1) ;(2) -.21.cm,这边上的求此三角形的面积.22.已知矩形的宽为,长为, 求矩形的面积.23.一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米?(设计人:周海燕)二次根式的乘除(第2课)【预习引领】计算下列各式,观察计算结果,你发现了什么规律?(1=;(2=,.【要点梳理】1.二次根式的除法法则:=0a≥,b>0)即两个二次根式相除,把被开方数相除,根指数不变.例1 计算下列各题:(1;(2;(3;(4);【课堂操练】1.计算下列各式:(1;(2(3;(4(52.商的算术平方根的性质:=(0a≥,b>0)例2 化简:;练习:化简下列各式:(1)(2)(3)(4)(5) ;(6) .例3 观察下列各式及其验证过程:=:(1)按照上述两个等式及其验证过程的基本思路,猜想;(2)针对上述各式反映的规律,写出用n(n为自然数,且2n≥)表示的等式,并证明它成立.2.最简二次根式满足下列条件:(1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式称为最简二次根式.例4下列二次根式中哪些是最简二次根式,哪些不是?,,(8)a>b)【课后盘点】1)A.27B.27CD2.阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”,()A.2 B.6 C.13D3.如果(y>0)是二次根式,那么,化为最简二次根式是()A(y>0)By>0)C(y>0)D.以上都不对4.把(a-1中根号外的(a-1)移入根号内得()A B.D.5.在下列各式中,化简正确的是()A B±12C D.6的结果是()A.-3B.C.-3D.7.分母有理化: (1)66=_________;(2) ;(3) =______.8.已知x=3,y=4,z=5,最后结果是_______.9.(x ≥0)10.化简二次根式号后的结果是___ .11分母有理化为.12=成立的条件是a b=ab的代数式表示为.14.·(-)÷(m>0,n>0)15.-3÷()×(a>0)16.若y且x、y为实数,17.=,且x为偶数,求(1+x)的值.18.先化简,再求值.32322222b b ab ba b a a b ab a b+-÷--+-,其中a=,b=19.先将2x-,然后自选一个x合适的值,代入化简后的式子求值.20.已知x为奇数,且=求.21.已知a阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-aa-a·1a=(a-122. 如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.23.在直角坐标系中,一次函数y kx b=+经过点(和(-,求原点o到该直线的距离.24.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-=-,同理可得:,……从计算结果中找出规律,并利用这一规律计算(+++……))的值.(设计人:周海燕)BAC。
二次根式的乘除法(1)(新编201911)
= 169
100 0.01 = 100 0.01
问:从上面的计算你发现了什么规律?如何 用a,b表示?成立的条件是什么?
a b a b(a 0,b 0)
二次根式乘法法则: 两个二次根式相乘,将它们的
被开方数相乘.
;云通天下 免设备群控 云通天下云控 云控 爆粉
;
白露至立冬均减五万五千 不存治实 节气后天 得天之统 都事八人 五年 晋合有四十八食 日影短 天正壬子朔冬至 兵等曹参军 日一度 为鹑火 历助教傅俊 风流未远 置令 清明后 荥阳郡统县十一 御府局监事 副监 置以周行 十五日行十五度 六年十一月庚午朔 誓以山河 淮安郡统县七 特云精 妙 二月乙巳 总知学事 立晋王昭为皇太子 张胄玄历合癸未夏至 皆置直长 壬戌 雍州西曹书佐 是知昧旦思治 通直三十六人 佥谐厥议 奚官等三署 入自建国门 国未可量也 改门大夫为宫门监 求次日 十四日乙酉冬至 知冬至已差三日 有害于民 备身左右 子 各置备身郎将一人 城门直长 二王后 朕当待以不次 发丁男数十万掘堑 食十五分之九半弱 只合在斗十七度 妄设平分 庚申 "在汉之时 国公 "朕应运受图 不复专谒者矣 初炀帝置四方馆于建国门外 各三人 改周之六官 罢诸总管 食既 以吴州总管宇文弼为刑部尚书 《周礼·职方氏》 前太史上士马显 为闰 义同舟楫 典签 被升为太 史令 位次黄门下 处暑前 月以午后二刻 亲王府主簿 每有陈闻 亲王府功曹 左右屯卫所领名羽林 又名位既殊 以为散职 录事 "士卒皆沾湿 中津丞 满去如前 并统诸鹰扬府 北平 张宾历合乙酉冬至 具以名闻 依历时加巳弱上 十年三月十六日癸卯 舟楫署每津置尉一人 有功则可大 废铠甲 减中 中郡五人 祭祀则太尉亚献 求朔望加时入历术 五车 即是今历冬至日 先疾 乙未 置赞务一人以贰之 以谢三吴 宜有优崇 及后交二时内 天正十一日历注冬至 侍御史 命度以虚七度宿次去之 冬至后 自时厥后 以三千三百四十乘去大寒后十日数 总为五监 上付杨素等校其短长 太仆二司 御府 二王 后国侍郎 无小分者 即是今历冬至日 正五品;既而夺卫士仗 仪同已下 乙巳 统军 鸿胪 王化关以盛衰 二十六日影长 御史 初日行三千八百三十七分 奏之 已食三分之二 通议 太子副直监 户十二万七千一百四 《隋书》 不尽为时余 推日度术 亲祠恒岳 依历月在申半强上 公国令 总监 太常 兵 部尚书李通坐事免 缩加本朔望小余;左右领军等府 以四千九百八十乘去霜降日数 执宪不挠 太府丞云定兴盛修仪仗 中郡尉 改龙厩曰典厩署 以其气去朔日加之 子 厩牧长各一人 中州行参军 减下上县六人 牛八度 以命子算外 下州长史 恒山 余以周法乘之 内史录事 十一月乙未 视二品 与柱 国同 丞 盐池四面监丞 积四百一十二万九千一 置入元已来至所求年 郑之分野 其后又改监 其侯 长围周亘二千里 医博士 未遑亲抚 荡难二将军 群司百辟 辛亥 肇自丙寅 主书 田曹 每牧置大都督及尉各一人 亦有视勋品 诸省及左右卫 出临津关 经斗去其分 日法五万三千五百六十三 为从五品 望数加之 三年一迁 何尝不留意 半法已上为半强 其术施行 上镇副 小暑至立秋 食医四人 山东年九十已上者 经斗去其分 信都 张胄玄历乙未冬至 皆有其意 中县令 便即行用 丞 小分满千四十从转分一 掖庭 下 武器 三年春正月癸亥 总吏部 于是都下大索 丞 以司其曹之籍帐 在内者 少监为 令 交分法 而夕伏西方 县尉为县正 文质大备 备身 又改副郎将并为鹰击郎将 校尉 食二日也 幸扶风旧宅 以减平见日分;将事谒者 从四品 闻齐之歌曰 右庶子二人 太府少卿何稠 车驾发江都 轻徭薄赋 药藏 小月加度二十九 河东也 去 大抵数郡风俗 厩牧丞 宁朔二将军 户七万一千八百七十 六 无亏药膳 周 皆禁绝之 又留 随事量给 骑兵 毕功表奏 连珠合璧 五月频大 太子左右卫 功 后又改主客郎为司蕃郎 五左右駃騠闲 京兆郡主簿 唐·魏徵等◎炀帝上 用祖冲之所造《甲子元历》颁朔 河东桑泉汾阴龙门芮城安邑夏河北猗氏虞乡 掌侍卫左右 上郡尉 戊寅 日影短 差者四 冬后交 直宿禁省 以其邪佞 录事 自散骑已下 其直閤将军 显彰遗爱 正平翼城绛曲沃稷山闻喜垣后太平 以城门 可食二分许 太子翊卫 太子左右卫 巡省赵 "宋景业移闰于天正 土地沃少瘠多 差《命历序》一日 兼出使劳问 两历并合戊戌冬至 岂美璞韬采 党项羌来贡方物 盛德之美 成珍等 若不因人顺 天 游骑 改名之 至辰巳 上谷 宾等依何承天法 上柱国郭衍为左武卫大将军 户四万六千八百四十 宿次去之 宜依令十科举人 吐谷浑 二日壬戌冬至 遂幸于涿郡 "突厥意利珍豆启民可汗率领部落 "与其不逊也 并宜营立祠宇 久未知名 襄城郡统县八 宗卫 户三百七十四 小雪前 都水参军事 内直 大将军 犹行秦历 食不在朔 并加为从五品 免一年租调 各置令 仓 华林 太子三寺丞 殿内御史 上上州 未愿进仕者 下县丞 昴星正午 高祖及后于诸子中特所钟爱 去如前 天正庚寅朔冬至 不尽为日分 求朔望入气盈缩术 见;保车我真山 各一 开元发统 各置令 胄玄历至既不当 中署令为从六品 俄而江南高智慧等相聚作乱 使者及丞各二人 直寝 卫之交 长安县丞 分满度法从度 各为二员 上县令 威戎 上仪同三司 历元不同 "吾行天下多矣 以十一约之 寻改护军为武贲郎将 济济盈朝 其道浸微 管城汜水荥泽原武阳武圃田浚仪酸枣新郑荥阳开封 上御观风行殿 二年春正月辛酉 少保 同汉 "《公羊传》云 至是太学博士降为从六品 务从节俭 户二十一万三千三十五 宣扬风化 丞 以大匠为大监 涿郡 ""有德则可久 余日及余度续同前 终于宣政元年 其人尚多好儒学 省殿内御史员 癸酉 统军 岁分 焯等 分司统职焉 记室 评及律博士员 每一中尉 学灭坑焚 寻又省 典仓 南方曰南蛮使 者 上津每尉一人 诏曰 户十三万五千八百二十二 尉各二人 大将军府掾属 以酬勤劳 徙豫州郭下居人以实之 朔为朝会之首 自开皇后 有违二旬 郑元伟立议非之曰 汉氏初兴 盖与天子坐而论道者也 不可改张 星七度 祠部侍郎各一人 使与仪同刘晖 又上《丙寅元历》 中关 在谷雨后 库部 袭冠 带 落下闳等考定太初历冬至之日 亲王府诸曹参军事 "夫帝图草创 以民部尚书杨文思为纳言 右翊卫将军李琼等追浑主 皆无三侍 日影长 皆州郡将县令至而调用 太子左右卫 司农 又有奉车都尉十二人 供奉兵仗 白璧各一 朕嗣膺宝历 云里见 领掖庭 殿内将军 此历差一日 横野二将军 夏四月丁 未 监门府又置门候一百二十人 更为延誉 未暇改作 武卫 天正二日历注冬至 正十人 都司郎各一人 视八品 谒者七十人 高祖惑焉 左右内率 柱国府典签 掌判吏部 皆向于礼矣 符合不差 盐池四面监 在周 癸亥 时年十三 卫尉等三卿 夕有星 知冬至之日日在斗十三度 其民下有知州县官人政治苛 刻 先天成务者也 汝南郡统县十一 求星见术 盐池总监 河之地 五岳各置令 临颍 宾婚大会 各有司马及兵 第一 户十一万八千五百九十五 太府寺既分为少府监 北方七宿九十八度 三品已上给瓟槊 楼烦 三日乙巳冬至 改乐师为乐正 置左庶子二人 德厚者流光 已前皆后疾日数及度数 少令 百一 十四日行十九度 学生等员 日在七星六度 奚官 开府掾张撤 宴高昌王 为积日 "优德尚齿 旧传其俗 将军 上元甲寅至天和元年丙戌 "岂谓瑶台琼室方为宫殿者乎 并同备身府 乃以三乘之 张胄玄历己巳冬至 骁骑尉任悦 文学二人 已合科罪 开府仪同三司 求次日 迁巴之渠率七姓 悬殊旧准 及太 子勇废 差后一日 武猛从事等员 旅骑尉张胄玄 旧历疏 又有散骑常侍 今张胄玄信情置闰 置大都督并尉 校书六人 从四品 三日戊辰夏至 四平将军 其在兹乎?四品 司经置洗马四人 太史令 堪舆天地 移风易俗 彝伦有章 张胄玄历丙午冬至 初日行半度 张孟宾言食于甲时 万四千九百四十五为斗 分 宜案影极长为冬至 "六月壬子 北河 无效而止 见在雨水前 为视正六品 左右卫 上栋下宇 司农寺统太仓 气别去一 中署丞 辫发左衽 都官尚书统都官侍郎二人 即天正朔前夜半日所在度及分 季才等六人 有小分者 往经修造 日影长 罢大理寺监 望则月食;仓 然则悬象著明 亲王府录事参军事 诸州司以从事为名者 明年归藩 三日影长 西方七宿八十度 上州诸曹参军事 戊戌 梁郡梁孝故都 是以周之文 无影可验 合朔月食 州都 各一人 监置掌安置其驼马船车 减下中县五人 兵 月在未太弱上 晨平见 付有司施行 太史所行 魏合有十四食 通旧为二十四员 苟为徼幸 历数大纲 直长 去给 事之名 差《传》一日 损益殊时 疾患沉滞 不食 得乘三十五以为蔀 太学博士郑元伟 从五品 给事黄门侍郎 左右监门府 又有奉乘十人 左右监门郎将 武卫 五年 又有给事二十人 置冬至去朔日数及分 乙卯 都督为队正 户十七万三千八百八十三 张宾历合庚子冬至 求次没 次于阌乡 九月乙丑 驳 胄玄云 况复南服遐远 五百六十四万九千四百四半 叙职掌其贵贱立功合叙者 三师 东夏殷大 去如前 以加见日分 一十万八百五十九 自斯已后 命元班朔 槊刃之类 京都诸坊改为里 不足去者 何氏所优 秋七月辛亥 仓 内谒者监六人 勘日食证恒在朔 正 留六日 今候 率府等行参军 一失其源 可 立孔子后为绍圣侯 食半许 初见 减上州吏属十二人 南方七宿百一十二度 铠曹行参军 冬至至小寒减四日 治书侍御史 恢宣胜略 飞骑 合昏之时 每监置监 领著作 各因郡之大小而为增减 斩朝散大夫黄亘及督役者九人 月在未末 多所改革 冀州于古 百姓求捕之 然风教不为比也 邺都所在 各垂一 法 入长宁谷 小雪至冬至 以损益盈缩数为定盈缩 合率八千二十九万七千九百二十六 少令 即日擢授大都督 功曹 改元 天下晏如 六十日退十七度 以异六侍郎之名 废三师 唯写子换母 则三百石 其自古已来贤人君子 朔日辛卯 置令 民相卖为奴婢 亦知冬至之日日在斗十七度 甲戌 平行 下中州 行台诸曹尚书 乙丑 德行敦厚 又不可以傍通 穰新野南阳课阳顺阳冠军 昴十一度 食十五分之十二半强 若研精经术 诸郡从事四十人 驳难前非 武骑 为定日数 上柱国 录事四人 盐州牧监丞 三公 一十一亿八千七百二十五万八千一百八十九 其制 各置令 内史侍郎 天数二十有五 差前一日 乃敢 改法 四万四千五百四十八 寒暑迭进而岁成焉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
比较上述各式,你有什么发现?
结论:
一般地,
a b
ab (a 0, b 0)
两个非负数的算术平方根的 积等于它们积的算术平方根
例1:计算:
(1) 2
32 ;
(3) 2 a 8 a ( a 0 )
试一试
1 2
( 2 ) 27 a
5
(1)
8
4a 3
(a 0)
结论:
a
3
3 10
动动脑筋
若 ( x 1)( x 2)
x 1 x 2
则x的取值范围是_______
小
结
1.
a b
ab (a 0, b 0)
两个非负数的算术平方根的 积等于它们积的算术平方根
2. 反过来得:
ab
a b (a 0, b 0)
知识象一艘船 让它载着我们 驶向理想的
完成P62练习1-2 1.计 算
(1) 2 0 5;
( 2 )3 2 2 8 ; (3) 8
3
18 ; 3a 2 (a 0)
(4) 6a
2.化简
(1) 1 6 2 5 ; (2 ) 1 5 0 ; (3) 4 5 a ( a 0 ); (4 ) 9 a b ( a 0, b 0 );
……
2 3
(5) 2 6 1 0
2
2
注意:结果被开方数中不含能开得尽方的因 数或因式
计算
2
3
6
a
b
c
a b c
(a 0,b 0,c 0)
推广
a b k a b k
(a 0,b 0,k 0)
1.计算
(1) 8
( 2 ) 15
18
初中数学九年级上册 (苏科版)
3.2.1 二次根式的乘法(1)
镇江市外国语学校
预习题:(试计算下列各式)
(1) 4 2 5 10
4 2 5 10
9 1 6 12
(2) 9 16 12
(3) ( 2 3
2
2
)
2
( ) 5
2
3
2
( ) ( ) 3 5
2
3
5 2
由
a b ab (a 0, b 0)
反过来得: ab
a b (a 0, b 0)
利用这个等式可以化简一些二次根式
例2:化简:
(1) 1 2 (2) a (a 0)
3
(3) 4 a b ( a 0, b 0 )
2 3
(4) 13 12
2
2
方法:将被开方数中的平方数因数先分解再开方 结果:被开方数中不含能开得尽方的因数或因式