初三数学中考复习 正方形 专题练习题 含答案

合集下载

九年级数学正方形练习题(含答案)

九年级数学正方形练习题(含答案)
B

A
D F E
7.如图,E 为正方形 ABCD 边 BC 延长线上一点,且 CE=BD,AE 交 DC 于 F, 则∠AFC=________.
C
8.矩形 ABCD 中,AC、BD 交于点 O,下列各条件中不能判定它是正方形的是( ) A.AB=AD B.AC⊥BD C.CA 平分∠BCD D.∠BAD+∠ADC=180° 9.如图,E 是边长为 1 的正方形 ABCD 对角线 BD 上一点,且 BE=BC,P 为 CE 上任意一 点,PQ⊥BC 于点 Q,PR⊥BE 于点 R,则 PQ+PR 的值为 。 10.在正方形 ABCD 中,E 为 BC 延长线上一点,EB= 1 BC,若 F 为 AB 中点,请 2
13.如图,△ABC 中,AD 是高,CE 为中线,CD=BE,DG⊥CE 于点 G, 求证:⑴G 为 CE 的中点;⑵∠B=2∠BCE
14.⑴如图,已知正方形 ABCD 的对角线 AC、BD 交于点 O,E 是 AC 上一点,过点 A 作 AG⊥BE 于点 G,AG 交 BD 于点 F。求证:OE=OF
在正方形 ABCD 上找一点,与点 F 连成线段,使它与 AE 相等,这样的点有几 个,请画出图形说明。
11.已知,Rt△ABC 中,∠C=90°,∠BAC 与∠ABC 的平分线交于点 D,DE⊥BC 于点 E,DF⊥AC 于点 F。 求证:四边形 CEDF 为正方形。
12.已知,正方形 ABCD 的对角线 BP 上有一点 P,过点 P 作 PE⊥BA 于点 E,PF⊥BC 于点 F。 求证:PD=EF
E F
A D
G B C
答案: 1.D 2.D 3. D 4.D 5.C 6.C 7.22.5° 8.C 1 9. 2 2

2019年中考数学专题复习27——正方形(含答案解析)

2019年中考数学专题复习27——正方形(含答案解析)

2019年中考数学专题复习27——正方形(含答案解析)一、选择题1. 如图,将正方形放在平面直角坐标系中,是原点,若点的坐标为,则点的坐标为2. 若正方形的周长为A. B. C. D.3.C. D.4. 如图,正方形和正方形中,点在上,,,于点,那么A. B. C. D.5. 如图,在正方形外侧,作等边三角形,,相交于点,则A. B. C. D.6. 如图,正方形的边长为,点在对角线上,且,,垂足为,则A. B. C. D.7. 如图,在边长为的正方形中,为上一点,连接.过点作,交于点,若,则A. B. C. D.8. 如图,正方形的边长为,在的延长线上,四边形也为正方形,则A. B. C. D.9. 如图所示,正方形的面积为,是等边三角形,点在正方形内,在对角线上有一点,使A. B. C. D.10. 如图,将个边长都为的正方形按如图所示摆放,点,,,分别是正方形的中心,则这A. B. C. D.二、填空题11. 如图,已知,相邻两条平行线间的距离都相等,如果正方形的四个顶点分别在四条直线上,与交于点,则与正方形的面积之比为.12. 如图,在正方形中,为对角线,点在边上,于点,连接,,的周长为,则的长为.13. 如图,边长为的正方形的对角线相交于点,过点的直线分别交,于,,则阴影部分的面积是.14. 如图,将边长为的正方形绕点顺时针旋转得到正方形,则点的旋转路径长为(结果保留).15. 如图,是正方形的一条对称轴,点是直线上的一个动点,当最小时,16. 处,沿角画线,将正方形纸片分成部分,则中间一块阴影部分的面积为.17. 如图,正方形的边长为,点是对角线、的交点,点是的中点,连接.过点作,垂足是,连接,则的长为.18. 正方形,,,,按如图所示的方式放置.点,,,,和点,,,,分别在直线和轴上,已知点,,则点的坐标是.19. 如图,在正方形中,点,,,分别在边,,,上,点,,都在对角线上,且四边形和均为正方形,则的值等于.20. 如图,正方形绕点逆时针旋转后得到正方形,与相交于点,延长交于点.若正方形边长为,则.三、解答题21. 如图5,正方形的边长为,是对角线,平分,.(1)求证:.(2)求的长.22. 如图,正方形中,点在对角线上,连接、.(1)求证:;(2)延长交于点,若,求的度数.23. 如图,在正方形中,等边三角形的顶点,分别在和上.(1)求证:;(2)若等边三角形的边长为,求正方形的周长.24. 如图,点是正方形对角线的延长线上任意一点,以线段为边作一个正方形,线段和相交于点.(1)求证:;(2)判断与的位置关系,并说明理由;25. 如图,在平行四边形中,对角线,交于点,是延长线上的点,且是等边三角形.(1)求证:四边形是菱形;(2)若,求证:四边形是正方形.26. 已知:如图,平行四边形中,是的中点,连接并延长,交的延长线于点.(1)求证:;(2)连接,,当时,四边形是正方形?请说明理由.27. 中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.(1)观察猜想如图1,当点在线段上时,①与的位置关系为:.②,,之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点在线段的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点在线段的延长线上时,延长交于点,连接.若已知,,请求出的长.28. 如图,已知是的角平分线,交与点,交与点.(1)求证:四边形是菱形;(2)当满足什么条件时,四边形是正方形?并说明理由.29. 如图,在中,,是边上一点,,,垂足分别是,,.(1)求证:;(2)若,求证:四边形是正方形.30. 在正方形中,对角线,交于点,点在线段上(不含点),,交于点,过点作,垂足为,交于点.(1)当点与点重合时(如图).求证:;(2)结合图,通过观察、测量、猜想:,并证明你的猜想;(3)把正方形改为菱形,其他条件不变(如图),若,,直接写出的值.答案第一部分1. C 【解析】如图,过点作于点.是正方形,易证,,,所以.2. C3. A ,边长为,面积为.4. A 【解析】提示:连接,,延长交于点.易证,,,.,.5. C【解析】,的角度可求,为的外角.6. C 【解析】连接交于.四边形为正方形,,,.又,,..7. C 【解析】.8. D 【解析】设正方形的边长为,则9. A 【解析】点关于的对称点为,连接于交于一点,即为满足条件的点,此时则.由正方形的面积为,可求出.10. B,已知两个正方形可得到一个阴影部分,则个这样的正方形重叠部分即为阴影部分的和.第二部分11.12.【解析】设,根据正方形的性质及题意知,由的周长为,得,根据勾股定理得,解得.13.14.15.【解析】连接,交于点,此时最小,.16.【解析】延长小正方形的一边,与大正方形的一边交于点,连接,为直角边长为的等腰直角三角形,,阴影正方形的边长,阴影正方形的面积为:.17.【解析】在上截取,连接.四边形是正方形,,,.中,,..在与中,.,..在中,,,..根据射影定理得:,则.解得:..,..在等腰直角中,,.18.【解析】点,且四边形,,为正方形,,,..的坐标是.【解析】连接,四边形和四边形是正方形,.由旋转的性质得:,,.在和中,.,,,,.在中,,,.第三部分21. (1)证明:,;平分故又在中,故则(2)正方形的边长为对角线由(1)得,22. (1)正方形中,为对角线上一点,,.,().(2)由全等可知,.在中,,在正方形中,,有.23. (1)四边形是正方形,,.是等边三角形,,,.,.(2)在中,.设正方形的边长为,则,解得.正方形的周长.24. (1)四边形,四边形都是正方形,,,..在和中..(2).,.,,,.25. (1)四边形是平行四边形,.是等边三角形,,即,四边形是菱形.(2)是等边三角形,.,.,,.四边形是菱形,,四边形是正方形.26. (1)四边形是平行四边形,.,.又,.(2)当时,四边形是正方形.,.又,四边形是平行四边形.,,.四边形是平行四边形,,..平行四边形是菱形.,,.菱形是正方形.27. (1)①垂直.正方形中,,,.在与中..,即.②.,.,.(2)①成立②不成立.正方形中,,,.在与中,., .,,..,即 .,.(3)过作于,过作于,于 .,,...由(2)证得,,四边形是正方形,, .,,,四边形是矩形., .,..在与中,., ., .,.是等腰直角三角形....28. (1),,,.四边形是平行四边形..又是的角平分线,..四边形是菱形.(2)由(1)知,四边形是菱形.当四边形是正方形时,,即,的时,四边形是正方形.29. (1),,,,,,,,,,垂足分别是,,,在和中,.(2),,,,是边上的高,,,,,,,,四边形是矩形,,矩形是正方形.30. (1)四边形是正方形,与重合,,.,,,...(2如图,过作交于,交于.,.,..,,.()..,,.,.又,().,即.,即.(3).【解析】如图,过作交于,交于.,,.由(2)同理可得:,.,..、为菱形对角线,,,.....。

2020年度九年级中考数学专题复习 探究正方形中的“十字架模型”含答案

2020年度九年级中考数学专题复习  探究正方形中的“十字架模型”含答案

2020年度九年级中考数学专题复习探究正方形中的“十字架模型”一、考题研究在特殊的四边形问题中翻折的问题是比较常见的,不论是期中、期末和中考中都比较常见,能否采用合适的方法求出线段长,或者是利用面积之间关系求线段之间关系,这就是我们今天重点学习的一个模型“十字架模型”二、知识回顾1、全等三角形的性质与判定2、相似三角形的性质与判定3、矩形和正方形的性质与判定4、图形的变换--轴对称三、十字架模型【十字架模型】--正方形第一种情况:过顶点在正方形ABCD中,AE⊥BF,可得AE=BF,借助于同角的余角相等,证△明BAF≌△ADE(ASA)所以AE=BF第二种情况:不过顶点在正方形ABCD中,E,F,G,H分别为AB,BC,CD,DA边上的点,其中:EG⊥FH,可得EG=FH也可以如下证明在正方形ABCD中,E,F,G,H分别AB、BC、CD、DA边上的点,其中:EG⊥FH,可得EG=FH【导入】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边C D的中点E处,折痕为FG,点F 、G 分别在边AD、BC上,则折痕FG的长度为______.【分析】过点G 作G H AD于H,根据翻折变换的性质可得G F AE ,然后求出GFH D,再利用“角角边”证明ADE和GHF全等,根据全等三角形对应边相等可得GF AE,再利用勾股定理列式求出AE,从而得解.【解答】法一:解:如图,过点G作G H A D于H,则四边形ABGH中,HG AB,由翻折变换的性质得G F A E,Q AFG DAE 90,AED DAE 90,AFG AED,Q四边形ABCD是正方形,A D AB,H G AD,在ADE和GHF中,GHF D Array AFG AED,GH ADADE GHF(A AS),G F AE,Q点E是CD的中点,1D E CD 2,2在Rt ADE中,由勾股定理得,AE AD2DE2422225,GF的长为25.故答案为:25.【点评】本题考查翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相应的直角三角形利用勾股定理求解是解决本题的关键.法二:分析:连接AE,求解FG相当于求AE。

专题25 正方形(学生版)备战2021年中考数学专题复习精讲精练

专题25  正方形(学生版)备战2021年中考数学专题复习精讲精练

专题25 正方形问题1.正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:一是先证它是矩形,再证有一组邻边相等。

即有一组邻边相等的矩形是正方形。

二是先证它是菱形,再证有一个角是直角。

即有一个角是直角的菱形是正方形。

4.正方形的面积:设正方形边长为a ,对角线长为b ,S=222b a【例题1】(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为 .(用含a ,b 的代数式表示)【对点练习】(2019·广西贺州)如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为.【例题2】(2020•青岛)如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是AE的中点,连接OF交AD于点G.若DE=2,OF=3,则点A到DF的距离为.【对点练习】(2019内蒙古包头)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.﹣1 D.【例题3】(2020•湘西州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:△BAE≌△CDE;(2)求∠AEB的度数.【对点练习】(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.一、选择题1.(2020•河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A .(32,2)B .(2,2)C .(114,2)D .(4,2)2.(2020•湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )A .1和1B .1和2C .2和1D .2和23.(2020•温州)如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为( )A .14B .15C .8√3D .6√54.(2020•南京)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若⊙P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A.(9,2)B.(9,3)C.(10,2)D.(10,3)5.(2020•天津)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)二、填空题6.(2020•连云港)如图,将5个大小相同的正方形置于平面直角坐标系中,若顶点M、N的坐标分别为(3,9)、(12,9),则顶点A的坐标为.7.(2020•绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.8.(2020•天水)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为.9.(2020•德州)如图,在矩形ABCD中,AB=√3+2,AD=√3.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是√6−2;②弧D'D″的长度是5√3π;③△A′AF≌△A′12EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是.10.(2020•攀枝花)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF⊥DE;②DG=8;③HD∥BG;④△ABG∽△DHF.5其中正确的结论有.(请填上所有正确结论的序号)11.(2020•咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)12.(2020•河南)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.三、解答题13.(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.14.(2019湖南湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.15.(2020湖北仙桃模拟)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E 作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.16.(2019•山东泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.17.(2019•四川省凉山州)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接E B.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.。

2021年九年级数学中考一轮复习正方形的判定与性质中考真题演练2(附答案)

2021年九年级数学中考一轮复习正方形的判定与性质中考真题演练2(附答案)

2021年九年级数学中考一轮复习正方形的判定与性质中考真题演练2(附答案)1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),请你直接写出BM、DN和MN的数量关系:__________.(2)当∠MAN绕点A旋转到BM≠DN时(如图2),(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请写出直接写出结论.2.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF ∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.3.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF.4.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.5.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.6.如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.7.如图,在△ABC中,点D是边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:DE=DF;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,并证明你的结论.8.如图,已知四边形ABCD为正方形,AB=22,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.9.如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.(1)求证:BF+DE=EF;(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.10.取一张正方形的纸片进行折叠,具体操作过程如下:第一步:如图1,先把正方形ABCD对折,折痕为MN.第二步:点G在线段 MD上,将△GCD沿GC翻折,点D恰好落在MN上,记为点P,连接BP.(1)判断△PBC的形状,并说明理由;(2)作点C关于直线AP的对称点C′,连接PC′、DC′.①在图2中补全图形,并求出∠APC′的度数;②猜想∠PC′D的度数,并加以证明;(温馨提示:当你遇到困难时,不妨连接AC′、CC′,研究图形中特殊的三角形)11.问题提出(1)如图1,将直角三角板的直角顶点P放在正方形ABCD的对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,线段PB和线段PE相等吗?请证明;问题探究(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;问题解决(3)继续移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.12.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD 中,AD=2AB ,E 是AB 延长线上一点,且BE=AB ,连接DE ,交BC 于点M ,以DE 为一边在DE 的左下方作正方形DEFG ,连接AM .试判断线段AM 与DE 的位置关系.探究展示:勤奋小组发现,AM 垂直平分DE ,并展示了如下的证明方法:证明:∵BE=AB ,∴AE=2AB .∵AD=2AB ,∴AD=AE .∵四边形ABCD 是矩形,∴AD ∥BC . ∴EM EB DM AB=.(依据1) ∵BE=AB ,∴1EM DM =.∴EM=DM . 即AM 是△ADE 的DE 边上的中线,又∵AD=AE ,∴AM ⊥DE .(依据2)∴AM 垂直平分DE .反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A 是否在线段GF 的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE ,以CE 为一边在CE 的左下方作正方形CEFG ,发现点G 在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE ,以CE 为一边在CE 的右上方作正方形CEFG ,可以发现点C ,点B 都在线段AE 的垂直平分线上,除此之外,请观察矩形ABCD 和正方形CEFG 的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.参考答案1.解:(1)BM+DN=MN.理由如下:如图4,把△AND绕点A顺时针旋转90°得到△ABF,则由题意可得:点C、B、F三点共线,∴由旋转的性质可得:BF=DN,AF=AN,∠BAF=∠DAN,∵∠BAD=90°,∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠BAF+∠BAM=45°=∠MAF=∠MAN,又∵AM=AM,∴△AMF≌△AMN,∴MF=MN,又∵MF=BM+BF,BF=DN,∴MN=BM+DN;(2)成立,理由如下:如图5,把△ADN绕点A顺时针旋转90°,得到△ABE,则可得E、B、M三点共线.∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,AE=AN,BE=DN,又∵∠NAM=45°,∴∠EAM=∠NAM,∴在△AEM与△ANM中,,∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(3)DN-BM=MN.理由如下:如图6,在DC上截取DE=BM,连接AE,∵∠ADE=∠ABM=90°,AD=AB,∴△ADE≌△ABM,∴AE=AM,∠DAE=∠BAM,∵∠BAM+∠BAN=∠MAN=45°,∴∠DAE+∠BAN=45°,∴∠EAN=90°-∠DAE-∠BAN=45°=∠MAN,又∵AN=AN,∴△EAN≌△MAN,∴EN=MN,又∵DN-DE=EN,∴DN-BM=MN.2.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BFA=90°=∠AED,∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.3.证明:∵四边形ABCD为正方形,∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,∴∠DOF+∠COF=90°,∵∠EOF=90°,即∠COE+∠COF=90°,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴CE=DF.4.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.5.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.6.(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.7.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,∵,∴Rt△BDF≌Rt△CDE(HL),∴DE=DF;(2)答:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.22.解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形.∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°.在△DEN和△FEM中,∵∠DNE=∠FME,EN=EM,∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,②CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°.∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG.在△ADE和△CDG中,∵AD=CD,∠ADE=∠CDG,DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×22=4,∴CE+CG=4 是定值.解:(1)如图1中,将△ADE绕点A顺时针旋转90°得到△ABH,∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠BAD=90°,∵∠EAF=45°,∴∠BAF+∠BAH=∠BAF+∠DAE=45°,∴∠FAH=∠FAE=45°,∵AF=AF,AH=AE,∴△AFH≌△AFE(SAS),∴EF=FH,∵FH=BH+BF=DE+BF,∴EF=BF+DE;(2)∵AB=BC=CD=6,BF=x,DE=y,∴EF=x+y,FC=6=﹣x,EC=6﹣y,在Rt△ECF中,∵EF2=CF2+EC2,∴(x+y)2=(6﹣x)2+(6﹣y)2,∴y=3662+6xx(0≤x≤6);(3)如图2中,将△ADE绕点A顺时针旋转90°得到△ABM.由(1)可知△AFM≌△AFH,∵AB⊥FM,AH⊥EF,∴AB=AH,设AB=BC=CD=AD=x,∵∠ABF=∠AHF=90°,∵AF=AF.AB=AH,∴Rt△AFB≌Rt△AFH(HL),∴BF=FH=2,同理可证:DE=EH=1,∴CF=x﹣2,EC=x﹣1,在Rt△ECF中,∵EF2=CF2+EC2,∴32=(x﹣2)2+(x﹣1)2,∴x=317 +或317-(舍弃),∴S△AEF=12•EF•AH=12317+9317+8.解:(1)△PBC是等边三角形,理由如下:∵四边形ABCD是正方形,∴AB=BC=CD,∠ABC=90°,由折叠的性质得:BN=NC=12BC=12PC,MN⊥BC,∴PB=PC,∠PNC=90°,在Rt△PNC中,sin∠NPC=12NCPC=,∴∠NPC=30°,∴∠PCB=60°,∴△PBC是等边三角形;(2)①补全图形如图2所示:由①得:∠PCB=∠PBC=∠BPC=60°,PB=PC=BC,∵∠ABC=90°,∴∠ABP=90°﹣60°=30°,∵AB=BC,∴AB=PB,∴∠BAP=∠BPA=12(180°-∠PBC)=75°,∴∠APC=∠BPA+∠BPC=75°+60°=135°,∵C关于直线AP的对称点为C′,∴∠APC'=∠APC=135°;②连接AC',CC',如图3所示:由对称的性质得:AC=AC',∠CAP=∠C'AP=30°,∴∠CAC'=60°,∴△CAC'是等边三角形,∴AC'=CC',∠AC'C=60°,在△AC'D 和△CC'D 中,{AC CC AD CDC D C D=='=''', ∴△AC'D ≌△CC'D (SSS ),∴∠AC'D=∠CC'D=12∠AC'C=30°, ∵∠AC'P=∠ACP=15°,∴∠PC'D=15°.9.解:(1)如图1,过点P 作PM ⊥BC ,PN ⊥CD ,垂足分别为M ,N ,∵四边形ABCD 为正方形,∴∠BCD =90°,AC 平分∠BCD ,∵PM ⊥BC ,PN ⊥CD ,∴四边形PMCN 为正方形,PM =PN ,∵∠BPE =90°,∠BCD =90°,∴∠PBC +∠CEP =180°,而∠CEP +∠PEN =180°,∴∠PBM =∠PEN ,在△PBM 和△PEN 中, { PBM PEN PMB PNE PM PN∠=∠∠=∠= ∴△PBM ≌△PEN(AAS),∴PB =PE(2)如图2,PB =PE 还成立.理由如下:过点P 作PM ⊥BC ,PN ⊥CD ,垂足分别为M ,N ,∵四边形ABCD 为正方形,∴∠BCD =90°,AC 平分∠BCD ,∵PM ⊥BC ,PN ⊥CD ,∴四边形PMCN 为正方形,PM =PN ,∴∠MPN =90°,∵∠BPE =90°,∠BCD =90°,∴∠BPM +∠MPE =90°,而∠MPE +∠EPN =90°,∴∠BPM =∠EPN ,在△PBM 和△PEN 中, { PMB PNE PM PN BPM EPN∠=∠=∠=∠∴△PBM≌△PEN(ASA),∴PB=PE (3)如图3,PB=PE还成立.理由如下:过点P作PM⊥BC交BC 的延长线于点M,PN⊥CD的延长线于点N,∵四边形ABCD为正方形,∴∠BCD=90°,AC 平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边形PMCN为正方形,PM=PN,∴∠MPN=90°,∵∠BPE=90°,∠BCD=90°,∴∠BPM+∠BPN=90°,而∠BPN+∠EPN=90°,∴∠BPM=∠EPN,在△PBM和△PEN中,{PMB PNEPM PNBPM EPN∠=∠=∠=∠∴△PBM≌△PEN(ASA),∴PB=PE12.解:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,∴四边形BENM为矩形.∴BM=EN,∠BEN=90°.∴∠1+∠2=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠2+∠3=90°.∴∠1=∠3.∵∠CBE=∠ENF=90°,∴△ENF≌△EBC.∴NE=BE.∴BM=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,AB=BE.∴BC=2BM.∴BM=MC.∴FM垂直平分BC.∴点F在BC边的垂直平分线上。

2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案

2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案

2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

2020年中考数学一轮专项复习——矩形、菱形、正方形(含解析)

第3题图A. 20 °B.302020年中考数学一轮专项复习一一矩形、菱形、正方形课时1 矩形■基础过关1. (2019重庆模拟)下列关于矩形对角线的说法中,正确的是 ( )A.对角线相互垂直B.面积等于对角线乘积的一半C.对角线平分一组对角D.对角线相等2 . (2019临沂)如图,在?ABCD 中,M, N 是BD 上两点,个条件,使四边形 AMCN 是矩形,这个条件是()B. MB= MOD. / AMB = Z CNDBM = DN,连接 AM, MC , CN, NA.添加一1A. OM =2ACC. BD± AC3 .如图,将矩形纸片 数为( )ABCD 沿BD 折叠,得到△ BCD, CD 与AB 交于点E.若/1 = 35°,则/ 2的度第2题图5.如图,矩形 ABCD 中,A (-2, 0), B (2, 0), C (2, 2),将AB 绕点A 旋转,使点 B 落在边CD 上的点E 处,则点E 的坐标为()B. (2击,2) D. (2^3-2, 2)4. (2019贵阳模拟)如图,在矩形ABCD ( ) ABCD 中,AE 平分/ BAD,交边BC 于点E,若ED=5, EC=3,则A. 11B. 14C. 22D. 28A.(a 2) C. (1 ,6.如图,在矩形ABCD 中,对角线 AC 与BD 相交于点 O,过点A 作BD 的垂线,垂足为E.已知/ EAD= 3/BAE,则/ EAO 的度数为(A . 22.5B. 67.5C. 45°D. 60°7 . (2020原创)如图,点O 是矩形 则^ BOE 的周长为()ABCD 对角线 AC 的中点,OE // AB 交AD 于点E.若AB=6, BC=8,A. 10B. 8 + 2^5C. 8+2^13D. 14E第4题图第5题图4第6题图10.(人教八下P55练习2题)如图,?ABCD的对角线AC、BD交于点O, △ OAB是等边三角形,AB =4.(1)求证:四边形ABCD是矩形;(2)求四边形ABCD的面积.8. (2018遵义)如图,点P是矩形ABCD的对角线AC上一点, 点E, F,连接PB、PD.若AE=2, PF = 8.则图中阴影部分的面积为过点P作EF // BC,分别交AB, CD于A. 10 8.12 C. 16D. 189.(2019徐州)如图,矩形ABCD中,AC、BD交于点O, M、N分别为BC、OC的中点,若MN = 4, 则AC的长为第7题图第8题图第9题图第10题图11 . (2019怀化)已知:如图,在?ABCD中,AEXBC, CFXAD, E, F分别为垂足.⑴求证:△ ABE^A CDF ;(2)求证:四边形AECF是矩形.第11题图12 . (2019连云港)如图,在^ ABC中,AB = AC>AABC沿着BC方向平移得到△ DEF ,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△ OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.第12题图1 . (2019台州)如图,有两张矩形纸片 ABCD 和EFGH, AB=EF =2 cm, BC = FG=8 cm 把纸片 ABCD 交叉叠放在纸片 EFGH 上,使重叠部分为平行四边形,且点 D 与点G 重合,当两张纸片交叉所成的角 “最 小时,tan a 等于()2 .如图,在矩形 ABCD 中,AB = 4, BC = 6, E 是矩形内部的一个动点,且 AEXBE,则线段CE 的最 小值为.A.B. 2C. 187D.8_15;1 DB EC F第1题图第2题图立满分冲关1. (2019眉山模拟)如图,在矩形ABCD中,E是AD边的中点,BEXAC,垂足为点F,连接DF ,分析下列四个结论:① CF = 3AF;②AB=DF;③DF = ^BC;④S四边形CDEF^S MBF.其中正确白结论有( )第1题图A . 1个B,2个C,3个D,4个【错误结论纠正】请将错误结论改正确.2 .如图,在矩形ABCD中,ZBAC=30°,对角线AC, BD交于点O, / BCD的平分线CE分别交AB, BD于点E, H,连接OE.(1)求/ BOE的度数;(2)若BC=1,求^ BCH的面积;(3)求S A CHO :S^BHE的值.H E第2题图课时2菱形(建议时间:40分钟)名■基础过关1. (2019玉林)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2. (2019 河北)如图,菱形ABCD 中,/ D= 150°,则/ 1 =()A.30 °B. 25 °C. 20 °D. 15 °DB第2题图3. (2019襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C, D两点,连接AC, BC, AD, BD,则四边形ADBC一定是()A.正方形B.矩形第3题图4. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2 2B. 2 . 5C. 4 2D. 2 . 105. (2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC± BDB.AB = ADC.AC= BDD./ ABD = Z CBD,4第5题图6 . (2019赤峰)如图,菱形ABCD的周长为20,对角线AC、BD相交于点O, E是CD的中点,则OE 的长是()A. 2.5B. 3第6题图7. (2019天津)如图,四边形ABCD 为菱形,A, B两点的坐标分别是(2, 0), (0, 1),点C, D在坐标轴上,则菱形ABCD的周长等于(y6D第7题图A. 5B.4 3C.4 5D. 208 . (2019永州)如图,四边形ABCD的对角线相交于点O,且点。

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析

九年级数学中考复习课题矩形、菱形、正方形AB组习题专题课后训练分层练习B组提高题含答案解析A组1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分D.对角线相等解:矩形的性质有:①矩形的对边相等且平行,①矩形的对角相等,且都是直角,①矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,①菱形的对角相等,①菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;①矩形具有而菱形不一定具有的性质是对角线相等,故选D.3.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC 和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直D.相等且互相平分解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;①原四边形对角线互相垂直,所得的四边形是矩形;①原四边形对角线既相等又垂直,所得的四边形是正方形;①原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.4.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm解:如图:①菱形ABCD中BD=8cm,AC=6cm,①OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.5.如图,菱形纸片ABCD,①A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则①DEC等于75度.解:连接BD,①四边形ABCD为菱形,①A=60°,①①ABD为等边三角形,①ADC=120°,①C=60°,①P为AB的中点,①DP为①ADB的平分线,即①ADP=①BDP=30°,①①PDC=90°,①由折叠的性质得到①CDE=①PDE=45°,在①DEC中,①DEC=180°﹣(①CDE+①C)=75°.故答案为:75.6.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是3.解:如图,连接CE,,设DE=x,则AE=8﹣x,①OE①AC,且点O是AC的中点,①OE是AC的垂直平分线,①CE=AE=8﹣x,在Rt①CDE中,x2+42=(8﹣x)2解得x=3,①DE的长是3.故答案为:3.7.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,①1=15°,则①2=30°.解:①四边形ABCD是矩形,①①ABC=①BAD=90°,OB=OD,OA=OC,AC=BD,①OB=OC,OB=OA,①①OCB=①OBC,①AB=BE,①ABE=90°,①①BAE=①AEB=45°,①①1=15°,①①OCB=①AEB﹣①EAC=45°﹣15°=30°,①①OBC=①OCB=30°,①①AOB=30°+30°=60°,①OA=OB,①①AOB是等边三角形,①AB=OB,①①BAE=①AEB=45°,①AB=BE,①OB=BE,①①OEB=①EOB,①①OBE=30°,①OBE+①OEB+①BEO=180°,①①OEB=75°,①①AEB=45°,①①2=①OEB﹣①AEB=30°,故答案为:30°.8.如图,在Rt①ABC中,①ACB=90°,D为AB的中点,AE①CD,CE①AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.证明:(1)①在Rt①ABC中,①ACB=90°,D为AB中点,①CD=AB=AD,又①AE①CD,CE①AB①四边形ADCE是平行四边形,①平行四边形ADCE是菱形;(2)在Rt①ABC中,AC===8.①平行四边形ADCE是菱形,①CO=OA,又①BD=DA,①DO是①ABC的中位线,①BC=2DO.又①DE=2DO,①BC=DE=6,①S菱形ADCE===24.B组9.如图:点P是Rt①ABC斜边AB上的一点,PE①AC于E,PF①BC于F,BC=15,AC=20,则线段EF的最小值为()A.12B.6C.12.5D.25解:如图,连接CP.①①C=90°,AC=3,BC=4,①AB===25,①PE①AC,PF①BC,①C=90°,①四边形CFPE是矩形,①EF=CP,由垂线段最短可得CP①AB时,线段EF的值最小,此时,S①ABC=BC•AC=AB•CP,即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,①BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则①CDF为()A.80°B.70°C.65°D.60°解:如图,连接BF,在①BCF和①DCF中,①CD=CB,①DCF=①BCF,CF=CF①①BCF①①DCF①①CBF=①CDF①FE垂直平分AB,①BAF=×80°=40°①①ABF=①BAF=40°①①ABC=180°﹣80°=100°,①CBF=100°﹣40°=60°①①CDF=60°.故选D.11.如图,在菱形ABCD中,①A=110°,E,F分别是边AB和BC的中点,EP①CD于点P,则①FPC的度数为()A.55°B.50°C.45°D.35°解:延长PF交AB的延长线于点G.如图所示:在①BGF与①CPF中,,①①BGF①①CPF(ASA),①GF=PF,①F为PG中点.又①由题可知,①BEP=90°,①EF=PG,①PF=PG,①EF=PF,①①FEP=①EPF,①①BEP=①EPC=90°,①①BEP﹣①FEP=①EPC﹣①EPF,即①BEF=①FPC,①四边形ABCD为菱形,①AB=BC,①ABC=180°﹣①A=70°,①E,F分别为AB,BC的中点,①BE=BF,①BEF=①BFE=(180°﹣70°)=55°,①①FPC=55°;故选:A.12.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,①1=15°,则①2=30°.解:①四边形ABCD是矩形,①①ABC=①BAD=90°,OB=OD,OA=OC,AC=BD,①OB=OC,OB=OA,①①OCB=①OBC,①AB=BE,①ABE=90°,①①BAE=①AEB=45°,①①1=15°,①①OCB=①AEB﹣①EAC=45°﹣15°=30°,①①OBC=①OCB=30°,①①AOB=30°+30°=60°,①OA=OB,①①AOB是等边三角形,①AB=OB,①①BAE=①AEB=45°,①AB=BE,①OB=BE,①①OEB=①EOB,①①OBE=30°,①OBE+①OEB+①BEO=180°,①①OEB=75°,①①AEB=45°,①①2=①OEB﹣①AEB=30°,故答案为:30°.13.(2019•绍兴)如图,在直线AP上方有一个正方形ABCD,①P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则①ADE的度数为15°或45°.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.解:①四边形ABCD是正方形,①AD=AE,①DAE=90°,①①BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,①①ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,①①AE′M为等边三角形,①①E′AM=60°,①①DAE′=360°﹣120°﹣90°=150°,①AD=AE′,①①ADE′=15°,故答案为:15°或45°.14.如图:在①ABC中,CE、CF分别平分①ACB与它的邻补角①ACD,AE①CE于E,AF①CF 于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断①ABC的形状,直接写出结果,不用说明理由.(1)证明:①AE①CE于E,AF①CF于F,①①AEC=①AFC=90°,又①CE、CF分别平分①ACB与它的邻补角①ACD,①①BCE=①ACE,①ACF=①DCF,①①ACE+①ACF=(①BCE+①ACE+①ACF+①DCF)=×180°=90°,①三个角为直角的四边形AECF为矩形.(2)结论:MN①BC且MN=BC.证明:①四边形AECF为矩形,①对角线相等且互相平分,①NE=NC,①①NEC=①ACE=①BCE,①MN①BC,又①AN=CN(矩形的对角线相等且互相平分),①N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则M1N是①ABC的中位线,MN①BC,而MN①BC,M1即为点M,所以MN是①ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)①MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC①MA,KC=AM因为MN①BC,所以MBCK是平行四边形,MK=BC,所以MN=BC(3)解:①ABC是直角三角形(①ACB=90°).理由:①四边形AECF是菱形,①AC①EF,①EF①AC,①AC①CB,①①ACB=90°.即①ABC是直角三角形.15.如图,在①ABC中,①ABC=90°,BD为AC的中线,过点C作CE①BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.(1)证明:①①ABC=90°,BD为AC的中线,①BD=AC,①AG①BD,BD=FG,①四边形BGFD是平行四边形,①CF①BD,①CF①AG,又①点D是AC中点,①DF=AC,①BD=DF;(2)证明:①BD=DF,①四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,①在Rt①ACF中,①CFA=90°,①AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,①四边形BDFG的周长=4GF=20.。

人教版数学中考复习《正方形的计算和证明问题》专项练习(含答案)

人教版数学中考复习《正方形的计算和证明问题》专项练习(含答案)

正方形的计算和证明问题专项练习1. 提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在边AB,BC,CD,DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积。

2. 如图1,点O 为正方形ABCD 的中心。

(1)将线段OE 绕点O 逆时针方向旋转︒90,点E 的对应点为点F ,连接EF ,AE ,BF ,请依题意补全图1;(2)根据图1中补全的图形,猜想并证明AE 与BF 的关系;(3)如图2,点G 是OA 中点,△EGF 是等腰直角三角形,H 是EF 的中点,︒=∠90EGF ,AB =2=GE ,△EGF 绕G 点逆时针方向旋转α角度,请直接写出旋转过程中BH 的最大值。

3. 如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4)。

点P从点A 出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动。

连接BP,过P点作BP 的垂线,与过点Q平行于y轴的直线l相交于点D。

BD与y轴交于点E,连接PE。

设点P 运动的时间为t(s)。

(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE的周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值。

正方形的计算和证明问题专项练习参考答案1.(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAH。

∴∠HAO+∠OAD=90°。

∵AE⊥DH,∴∠ADO+∠OAD=90°。

∴∠HAO=∠ADO。

初中数学 正方形 练习题(含答案)

初中数学  正方形  练习题(含答案)

第五章四边形第29课时正方形1.阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1.第1题图按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.请解决以下问题:(1)完成表格中的填空:①;②;③;④.(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).数学文化专练2. (2019绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()第2题图A. 15 B.55 C.355 D.95七巧板3. (2019苏州)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10 cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为cm(结果保留根号).第3题图参考答案中考试题中的核心素养核心素养提升1. 解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;②(2-1)a1;③(2-1)2a1;④(2-1)n-1a1.(2)所画正方形CHIJ见解图.第1题解图数学文化专练2. A【解析】∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为55,小正方形的边长为5,∴55cos θ-55sin θ=5,∴cos θ-sin θ=55,∴(sin θ-cos θ)2=[-(cos θ-sin θ)]2=15.3. 522【解析】如解图,由题意可知正方形ABCD的边长AB=10 cm,∵△AOB是等腰直角三角形,∴AO=BO=52.∵△BEF是等腰直角三角形,∴BE=EF.∵四边形OEFG是正方形,∴OE=EF=BE,∴OE=52 2.第3题解图。

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021年九年级中考数学 三轮复习专题:正方形及四边形综合问题(含答案)

2021中考数学三轮复习专题:正方形及四边形综合问题一、选择题1. 下列条件不能判断▱ABCD是正方形的是()A.∠ABC=90°且AB=ADB.AB=BC且AC⊥BDC.AC⊥BD且AC=BDD.AC=BD且AB=BC2. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形3. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.24. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.5. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.6. 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A. 2B. 3C. 2D. 17. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.83D.658. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118C.3+36 D.3+16二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.11. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.12. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.13. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.14. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.三、解答题17. 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC 于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.18. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C 作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.19. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.20. 已知,在Rt△ABC中,∠ACB=90°,BC=AC,AB=6,D是AB的中点,动点E从点D出发,在AB边上向左或右运动,以CE为边向左侧作正方形CEFG,直线BG,FE相交于点N(点E向左运动时如图①,点E向右运动时如图②).(1)在点E的运动过程中,直线BG与CD的位置关系为________;(2)设DE=x,NB=y,求y与x之间的函数关系式,并求出y的最大值;(3)如图②,当DE的长度为3时,求∠BFE的度数.21. 在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一点,连接EM并延长交线段CD的延长线于点F.(1)如图①,求证:△AEM ≌△DFM;(2)如图②,若AB=2,过点M作MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形;(3)如图③,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G,若MG=nME,求n的值.2021中考数学三轮复习专题:正方形及四边形综合问题-答案一、选择题1. 【答案】B[解析]A.▱ABCD中,若∠ABC=90°,则▱ABCD是矩形,再由AB=AD 可得是正方形,故此选项错误;B.▱ABCD中,若AB=BC,则▱ABCD是菱形,再由AC⊥BD仍可得是菱形,不能判定为正方形,故此选项正确;C.▱ABCD中,若AC⊥BD,则▱ABCD是菱形,再由AC=BD可得是正方形,故此选项错误;D.▱ABCD中,若AC=BD,则▱ABCD是矩形,再由AB=BC可得是正方形,故此选项错误.故选B.2. 【答案】B3. 【答案】D[解析]由旋转的性质可知,△ADE ≌△ABF ,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D .4. 【答案】C[解析]连接EF .∵AE=AF ,∠EAF=60°,∴△AEF 为等边三角形,∴AE=EF .∵四边形ABCD 为正方形,∴∠B=∠D=∠C=90°,AB=AD ,∴Rt △ABE ≌Rt △ADF (HL),∴BE=DF ,∴EC=CF .设CF=x ,则EC=x ,AE=EF==x ,BE=1-x.在Rt △ABE 中,AB 2+BE 2=AE 2,∴1+(1-x )2=(x )2,解得x=-1(舍负).故选C .5. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,22(10)x x +-2222(10)210(10)x x xx x +-=-+-,解得:x =154.故选B.6. 【答案】B【解析】∵AB =2,∴BF =2,又∵BM =12BC =1,由勾股定理得FM =FB 2-BM 2= 3.7. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CD DP CB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x 5∴DC =5,BC =5AB =10,△ABC 的斜边上的高=25454AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .8. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16. 二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.10. 【答案】8[解析]∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠CAE+∠BAF=90°,又∠CAE+∠ECA=90°,∴∠ECA=∠BAF,则在△ACE和△F AB中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.11. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.12. 【答案】5[解析]∵四边形ABCD 是正方形,AC 为对角线,∴∠F AE=45°,又∵EF ⊥AC , ∴∠AFE=90°,∴∠AEF=45°, ∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.13. 【答案】(3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图14. 【答案】∠BAD =90°(答案不唯一)【解析】∵▱ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD ,∴▱ABCD 是菱形,当∠BAD =90°时,菱形ABCD 为正方形.故可添加条件:∠BAD =90°.15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】4[解析]如图,连接EG,作GM⊥EN交EN的延长线于M.在Rt△EMG中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.三、解答题17. 【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD是正方形,BD是角平分线,可想到连接CG,易得CG=AG,再由四边形CEGF是矩形可得AG2=GE2+GF2;(2)给出∠AGF=105°,可得出∠AGB=60°,再由∠ABG=45°,可想到过点A作BG的垂线,交BG于点M,分别在两个直角三角形中得出BM和MG的长,相加即可得出BG的长.解:(1)AG2=GE2+GF2;(1分)理由:连结CG,∵ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,(2分)∴AG=CG,又∵GE⊥DC,GF⊥BC,∠GFC=90°,∴四边形CEGF是矩形,(3分)∴CF=GE,在直角△GFC中,由勾股定理得,CG2=GF2+CF2,∴AG2=GE2+GF2;(4分)(2)过点A作AM⊥BD于点M,∵GF⊥BC,∠ABG=∠GBC=45°,∴∠BAM=∠BGF=45°,∴△ABM,△BGF都是等腰直角三角形,(6分)∵AB=1,∴AM=BM=2 2,∵∠AGF=105°,∴∠AGM=60°,∴tan60°=AMGM,∴GM=66,(8分)∴BG=BM+GM=22+66=32+66.(10分)18. 【答案】解:(1)证明:连接OC.∵CE是☉O的切线,∴OC⊥CE.∴∠FCO+∠ECF=90°.∵DO⊥AB,∴∠B+∠BFO=90°.∵∠CFE=∠BFO,∴∠B+∠CFE=90°.∵OC=OB,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF.(2)∵AB是☉O的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE+∠ECF=90°,∠D+∠EFC=90°.由(1)得∠ECF=∠CFE,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF.即点E为线段DF的中点.①四边形ECFG为菱形时,CF=CE.∵CE=EF,∴CE=CF=EF.∴△CEF为等边三角形.∴∠CFE=60°.∴∠D=30°. 故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形. ∴∠CEF=45°.∵∠CEF=∠D +∠DCE , ∴∠D=∠DCE=22.5°. 故填22.5°.19. 【答案】解: (1)(2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a,∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′∵四边形ABCD 为正方形,∴BD CD BDC=45°.∴DB DE ′=BDCD, ∵∠EDB ′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BD CE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m 。

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。

中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)

中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)

第19讲矩形、菱形和正方形考纲要求命题趋势1.掌握平行四边形与矩形、菱形、正方形之间的关系.2.掌握矩形、菱形、正方形的概念、判定和性质.3.灵活运用特殊平行四边形的判定与性质进行有关的计算和证明.特殊的平行四边形是中考的重点内容之一,常以选择题、填空题、计算题、证明题的形式出现,也常与折叠、平移和旋转问题相结合,出现在探索性、开放性的题目中.知识梳理一、矩形的性质与判定1.定义有一个角是直角的____________是矩形.2.性质(1)矩形的四个角都是________.(2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义一组邻边相等的__________叫做菱形.2.性质(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形.三、正方形的性质与判定1.定义一组邻边相等的________叫做正方形.2.性质(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定(1)一组邻边相等并且有一个角是直角的__________是正方形.(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.(4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.自主测试1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=5,则AD 的长是( )A .52B .5 3C .5D .102.在菱形ABCD 中,AB =5 cm ,则此菱形的周长为( ) A .5 cm B .15 cm C .20 cm D .25 cm3.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .C .32D .24.下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.分析:判定一个四边形是矩形,可以先判定四边形是平行四边形,再找一个内角是直角或说明对角线相等.解:当点O 运动到AC 的中点(或OA =OC )时, 四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又OA=OC,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,即∠ECF=90°.∴四边形AECF是矩形.方法总结矩形的定义既可以作为性质,也可以作为判定.矩形的性质是求证线段或角相等时常用的知识点.证明一个四边形是矩形的方法:(1)先证明它是平行四边形,再证明它有一个角是直角;(2)先证明它是平行四边形,再证明它的对角线相等;(3)证明有三个内角为90°.触类旁通1 如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD 于点F,连接AE.求证:(1)BF=DF;(2)AE∥BD.考点二、菱形的性质与判定【例2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长.分析:(1)先证明四边形OCED是平行四边形,然后证明它的一组邻边相等;(2)因为△DOC是等边三角形,根据菱形的面积计算公式可以求菱形的边长,从而求出AC的长.解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形.(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.,在Rt△DFC中,tan 60°=DFFC∴DF=FC·tan 60°=3x.由已知菱形OCED的面积为83得OC·DF=83,即2x·3x=8 3.解得x=2.∴AC=4×2=8.方法总结菱形的定义既可作为性质,也可作为判定.证明一个四边形是菱形的一般方法:(1)四边相等;(2)首先证明是平行四边形,然后证明有一组邻边相等;(3)对角线互相垂直平分;(4)对角线垂直的平行四边形.触类旁通2 如图,在ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,求证:四边形BEDF是菱形.考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.分析:根据题目的条件可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1方法总结证明一个四边形是正方形可从以下几个方面考虑:(1)“平行四边形”+“一组邻边相等”+“一个角为直角”(定义法);(2)“矩形”+“一组邻边相等”;(3)“矩形”+“对角线互相垂直”;(4)“菱形”+“一个角为直角”;(5)“菱形”+“对角线-相等”.1.(四川成都)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.(山东滨州)若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.(江苏泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个 B.2个 C.3个 D.4个4.(江苏苏州)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.(贵州铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.(山东临沂)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD3.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3C.4 2 D.85.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l1的距离为4千米,则村庄C到公路l2的距离是()(第5题图)A.3千米 B.4千米 C.5千米 D.6千米6.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是__________.(第6题图)7.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的__________.(第7题图)8.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别是AB,BC边上的中点,MP+NP的最小值是__________.(第8题图)9.如图(1)所示,在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2)所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案导学必备知识自主测试1.B2.C3.C∵设AG=A′G=x,∴x2+22=(4-x)2,解得x=32,故选C.4.C5.证明:如题图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°.∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°.∴∠EAB=∠FBC.∴△ABE≌△BCF.∴BE=CF.探究考点方法触类旁通1.证明:(1)在矩形ABCD中,AD∥BC,AD=BC,∴∠1=∠2.∵∠2=∠3,∴∠1=∠3,∴BF=DF.(2)∵AD=BC=BE,BF=DF,∴AF=EF,∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠1=∠3,∴∠AEB=∠3,∴AE∥BD.触类旁通2.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.品鉴经典考题1.B因为菱形的对边平行且相等,所以A正确;对角线互相平分且垂直,但不一定相等,所以C,D正确,B错误.2.C根据已知可得到菱形的边长为2 cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.3.B①一组对边平行且一组对角相等的四边形是平行四边形是真命题;②对角线互相垂直且相等的四边形是正方形是假命题;③顺次连接矩形四边中点得到的四边形是菱形是真命题;④正五边形既是轴对称图形又是中心对称图形是假命题.故选B.4.C∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为4OC=4×2=8.故选C. 5.2 如图:∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD .∵AO ⊥OB ,∴∠AOB =90°,∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°,∴∠COA =∠DOB .∵在△COA 和△DOB 中,有⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠DOB ,∴△COA ≌△DOB ,∴OA =OB .∵∠AOB =90°,∴△AOB 是等腰直角三角形, 由勾股定理得:AB =OA 2+OB 2=2OA ,要使AB 最小,只需OA 取最小值即可.根据垂线段最短,OA ⊥CD 时,O A 最小.此时OA =12CF =1,即AB = 2.6.解:(1)证明:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF . 又∵∠A =∠D ,AB =DE ,∴△ABC ≌△DEF . ∴BC =EF ,∠ACB =∠DFE .∴BC ∥EF .∴四边形BCEF 是平行四边形.(2)若四边形BCEF 是菱形,连接BE ,交CF 于点G ,∴BE ⊥CF ,FG =CG .∵∠ABC =90°,AB =4,BC =3, ∴AC =AB 2+BC 2 =42+32=5.∵∠BGC =∠ABC =90°,∠ACB =∠BCG , ∴△ABC ∽△BGC .∴BC AC =CG BC ,即35=CG 3.∴CG =95.∴FC =2CG =185. ∴AF =AC -FC =5-185=75.因此,当AF =75时,四边形BCEF 是菱形.研习预测试题1.A 2.B 3.D4.A ∵点E 是CD 的中点,∴DE =CE =12CD =3.∵四边形ABCD 是矩形,∴AB =CD =6. 由折叠性质可知,AE =AB =6,BF =EF , 在Rt △ADE 中,AD =AE 2-DE 2=33,∴BC =3 3.设CF =x ,BF =EF =33-x , 在Rt △CEF 中,(33-x )2=x 2+32, ∴x = 3.∴BF =2 3.在Rt △ABF 中,AF =4 3.5.B 6.22.5° 7.148.1 在DC 上找N 点关于AC 的对称点N ′,连接MN ′,则MN ′的长即为MP +NP 的最小值,此时MN ′=AD =1.9.分析:(1)证MD =MN ,可证它们所在的三角形全等,易知MN 在钝角△MBN 中,而MD 在直角△AMD 中,显然需添加辅助线构造全等三角形,由△MBN 的特征想到可在AD 上取AD 的中点F ,构造△MDF ≌△NMB ;(2)可参照第(1)题的方法.(1)证明:取AD 的中点F ,连接MF . ∵M 是AB 的中点,F 是AD 的中点,∴MB =AM =12AB ,DF =AF =12AD .∵AB =AD ,∴AF =AM =DF =MB ,∴∠1=45°, ∴∠DFM =135°.∵BN 平分∠CBE ,∴∠CBN =45°. ∴∠MBN =135°.∴∠MBN =∠DFM . ∵∠DMN =90°,∴∠NMB +∠DMA =90°. ∵∠A =90°,∴∠ADM +∠DMA =90°. ∴∠NMB =∠ADM .∴△DFM ≌△MBN .∴MD =MN . (2)解:结论MD =MN 仍成立.证明:在AD 上取点F ,使AF =AM ,连接MF .由(1)中证法可得:DF =BM ,∠DFM =∠MBN ,∠FDM =∠BMN ,∴△DFM≌△MBN,∴MD=MN.11 / 11。

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案

备考2022年中考数学一轮复习-图形的性质_四边形_正方形的性质-综合题专训及答案正方形的性质综合题专训1、(2018哈尔滨.中考真卷) 已知:⊙O是正方形ABCD的外接圆,点E在弧AB上,连接BE、DE,点F在弧AD上,连接BF,DF,BF与DE、DA分别交于点G、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙0于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.2、(2016常州.中考真卷)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.拼成的正三角形边长为;(3)在图2中用虚线画出一种剪拼示意图.(4)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)3、(2019吴兴.中考模拟) 定义:长宽比为:为正整数的矩形称为矩形下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:过点G作CD∥AB,使点D、点C分别落在边AF,BE上.则四边形ABCD 为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.如图b,O是对角线AC的中点,若点N在边BC上,,连接求的值;连结AC,CM,当△AMC为等腰三角形时,将△CBM沿着CM翻折,点B的对称点为B’,连结AB’求的值.4、(2011金华.中考真卷) 在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF 在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.5、(2017谷城.中考模拟) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.6、(2017武汉.中考模拟) 四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG= BG,求;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE=(直接写出结果)7、(2019永州.中考真卷) 如图(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.8、(2019封开.中考模拟) 已知,如图,在正方形ABCD中,P是BC上的点,且BP =3PC,Q是CD的中点,求证:(1)AQ⊥QP;(2)△ADQ∽△AQP.9、(2017上思.中考模拟) 如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.10、(2017河池.中考真卷) 解答题(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.11、(2013崇左.中考真卷) 如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?12、(2018沙湾.中考模拟) 如图,在正方形中,、分别是、边上的点,且.(1)求证: ;(2)若,,求的长.13、(2017兰州.中考模拟) 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC,PD.求证:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.14、(2018陇南.中考真卷) 已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.15、(2019吉林.中考模拟) 若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形.(1)下列四边形一定是巧妙四边形的是.(填序号)①平行四边形;②矩形;③菱形;④正方形.(初步应用)(2)如图,在绝妙四边形ABCD中,AC=AD,且AC垂直平分BD,若∠BAD=80°,求∠BCD的度数.(3)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.正方形的性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

2020重庆中考复习数学几何最值专题训练三(含答案解析)

2020重庆中考复习数学几何最值专题训练三(含答案解析)

2020年重庆中考数学最值专题训练三(含答案)1、(2018•明光市二模)如图,正方形ABCD中,AB=4,点E、F分别为BC,AD上的点,过点E、F 的直线将正方形ABCD的面积分为相等的两部分.过点A作AG⊥EF于点G,连接DG,则线段DG长的最小值为()A.2B.2﹣2C.2D.2﹣22、如图,正方形ABCD的边长为2,点E、F分别是边AB、CD上的动点,且AE=CF,连接EF,将线段EF绕点E逆时针旋转90°得到线段EG,连接DG,则线段DG长的最小值为.3、(2019•南充模拟)如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ的最小值为.4、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.5、(2019•惠山区一模)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF,OF.则线段OF长的最小值()A.2B.+2C.2﹣2 D.56、如图,在边长为2的正方形ABCD中,点O为AB中点,以AB为直径在正方形ABCD内部作半圆,E为半圆上任意一点(不与A.B重合),连接CE,将线段CE绕点C逆时针旋转90°得列CF,连接DE、BF,OF.则线段OF长的最小值为.7、(2019秋•颍州区校级月考)如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为.8、(2019•太原二模)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为.9、(2019秋•锡山区期中)已知:如图,△ABC是边长为6的等边三角形,直线AF⊥BC于F,点D是直线AF上一动点,以BD为边在BD的右侧作等边△BDE,连接EF,则EF的最小值为.10、(2019•台州模拟)如图,四边形ABCD是矩形,AB=4,BC=a(a>1),E是BC上的一点,且BE=1,点F是边AB上的任意一点.连接EF,将线段EF绕点E顺时针旋转90°,得到线段EG.在点F从点B运动到点A的过程中,若要点G能落在对角线AC上,则a的最大值为.11、如图1,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE、BG,则2BG+BE的最小值为.2020年重庆中考数学最值专题训练三(含答案)1、(2018•明光市二模)如图,正方形ABCD中,AB=4,点E、F分别为BC,AD上的点,过点E、F 的直线将正方形ABCD的面积分为相等的两部分.过点A作AG⊥EF于点G,连接DG,则线段DG长的最小值为()A.2B.2﹣2C.2D.2﹣2解:连接AC,BD交于O,∵过点E、F的直线将正方形ABCD的面积分为相等的两部分,∴EF过点O,∵AG⊥EF,∴∠AGO=90°,∴点G在以AO为直径的半圆弧上,设AO的中点为M,连接DM交半圆弧于G,则此时,DG最小,∵四边形ABCD是正方形,AB=4,∴AC=8,AC⊥BD,∴AO=OD=AC=4,∴AM=OM=AO=2,∴DM==2,∴DG=2﹣2,故选:B.2、如图,正方形ABCD的边长为2,点E、F分别是边AB、CD上的动点,且AE=CF,连接EF,将线段EF绕点E逆时针旋转90°得到线段EG,连接DG,则线段DG长的最小值为.解:如图,过点F作FM⊥AB于M,过点G作GH⊥AD于H,GN⊥AB于N,∵四边形ABCD是正方形,∴AB=BC=AD=CD=2,∠B=∠C=∠BAD=90°,且FM⊥AB,GH⊥AD,GN⊥AB,∴四边形BCFM,四边形AHGN是矩形,∴BM=CF,NG=AH,AN=GH,MF=BC=2,∵将线段EF绕点E逆时针旋转90°得到线段EG,∴EG=EF,∠GEF=90°,∴∠NEG+∠FEM=90°,且∠NGE+∠NEG=90°,∴∠FEM=∠NGE,且∠N=∠FME=90°,EF=EG,∴△EGN≌△EFM(AAS)∴NE=MF=2,EM=NG,设AE=CF=a,∴EM=2﹣2a=NG=AH,AN=2﹣a=GH,∴HD=AD﹣AH=2﹣(2﹣2a)=2a,∵GD==∴当a=时,GD有最小值为,3、(2019•南充模拟)如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ的最小值为.解:连接OD,如图所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.4、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为2.解:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,5、(2019•惠山区一模)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF,OF.则线段OF长的最小值()A.2B.+2C.2﹣2 D.5解法一:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.解法二:如图,由于OE=2,所以E点可以看作是以O为圆心,2为半径的半圆上运动,延长BA到P 点,使得AP=OC,连接PE,∵AE=CF,∠P AE=∠OCF,∴△P AE≌△OCF,∴PE=OF,当O、E、P三点共线时,PE最小,OP===5,∴PE=OF=OP﹣OE=5﹣2,∴OF的最小值是5﹣2.6、如图,在边长为2的正方形ABCD中,点O为AB中点,以AB为直径在正方形ABCD内部作半圆,E为半圆上任意一点(不与A.B重合),连接CE,将线段CE绕点C逆时针旋转90°得列CF,连接DE、BF,OF.则线段OF长的最小值为.解:由于OE=2,所以E点可以看作是以O为圆心,2为半径的半圆上运动,延长BA到P点,使得AP=OC,连接PE,∵AE=CF,∠P AE=∠OCF,∴△P AE≌△OCF(SAS),∴PE=OF,当PE最小时,为O、E、P三点共线,OP===5,∴PE=OF=OP﹣OE=5﹣2,∴OF的最小值是5﹣2.7、(2019秋•颍州区校级月考)如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为.解:如图,连接CO,将线段CO绕点C逆时针旋转90°得CM,连接FM,OM,则∠ECF=∠OCM=90°,∴∠ECO=∠FCM,∵CE=CF,CO=CM,∴△ECO≌△FCM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=5,O是AB边的中点,∴OB=2.5,∴OC==,∴OM=OC=,∵OF+MF≥OM,∴OF≥﹣2.∴线段OF的最小值为﹣2.8、(2019•太原二模)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为+1.解:如图,作DM⊥BC于M,FJ⊥DM于J交AB于N.∵Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,∴AC=2BC=4,AB=BC=2,∵AD=DC.DM∥AB,∴DM=AB=,BM=CM=1,易证四边形BMJN是矩形,∴JN=BM=1,∵∠FDJ+∠EDM=90°,∠EDM+∠DEM=90°,∴∠FDJ=∠DEM,∵∠FJD=∠DME=90°,∴△FJD≌△DME(AAS),∴FJ=DM=,∴FN=FJ+JN=1+,∴点F在直线l上运动(直线l与直线AB之间的距离为+1),根据垂线段最短可知,当AF⊥直线l时,AF的值最短,最小值为+1,9、(2019秋•锡山区期中)已知:如图,△ABC是边长为6的等边三角形,直线AF⊥BC于F,点D是直线AF上一动点,以BD为边在BD的右侧作等边△BDE,连接EF,则EF的最小值为.解:如图,取AB中点H,连接DH,∵△ABC,△BDE都是等边三角形,∴AB=BC,BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠EBC,∵△ABC是等边三角形,AF⊥BC,∴BF=BC=AB=3,∠BAF=30°,∵H是AB中点,∴AH=BH=AB=BF=3,且∠ABD=∠EBC,BD=BE,∴△BHD≌△BFE(SAS)∴EF=DH,∴当DH取最小值时,EF有最小值,当DH⊥AF时,DH有最小值,∴DH=AH=,∴EF的最小值为,10、(2019•台州模拟)如图,四边形ABCD是矩形,AB=4,BC=a(a>1),E是BC上的一点,且BE=1,点F是边AB上的任意一点.连接EF,将线段EF绕点E顺时针旋转90°,得到线段EG.在点F从点B运动到点A的过程中,若要点G能落在对角线AC上,则a的最大值为.解:如图,当点G落在对角线AC上,过点G作GH⊥BC于点H,∵△EFB≌△GEH,∴GH=BE=1,EH=BF,∴CH=BC﹣BE﹣EH=a﹣1﹣BF,∵△CHG∽△CBA,∴,∴,∴BF=∵点F是边AB上的任意一点,∴0≤BF≤AB,∴0≤≤4,∴≤a≤∴a的最大值为11、如图1,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE、BG,则2BG+BE的最小值为4.解:延长BE、GD相交于点H.∵矩形ECGF、矩形ABCD,∴∠ECG=∠BCD=90°,∴∠DCG=∠BCE∵CD:CB=2:4=1:2,CG:CE=1:2,∴CD:CB=CG:CE,∵∠DCG=∠BCE∴△DCG∽△BCE,∴,∠BEC=∠DGC,∴DG=BE作EN⊥BC于N,GM⊥BC交BC的延长线于M.易证△ECN∽△CGM,∴==2,∵EN=AB=2,∴CM=1,∴点G的运动轨迹是直线MG,作点D关于直线GM的对称点G′,连接BG′交GM于G,此时BG+GD的值最小,最小值=BG′∵DG=BE,∴BE=2DG,∴2BG+BE=2BG+2DG=2(BG+DG)∴2BG+BE的最小值就是2(BG+DG)的最小值.∵BG′==2,∴2BG+BE的最小值为4。

【名师点睛】2017年中考数学一轮复习专题 正方形及答案

【名师点睛】2017年中考数学一轮复习专题 正方形及答案

2017年中考数学一轮复习专题正方形综合复习一选择题:1.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°2.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为( )A.1B.2C.3D.33.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A. B.2 C.2 D.14.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.3 C. D.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()6.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为()A. B. C. D.7.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A. B.2 C.2 D.8.如图,正方形的边长为4,动点在正方形的边上沿运动,运动到点停止,设,的面积,则关于的函数图象大致为9.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( )A.16 B.17 C.18 D.1911.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),,过点A作AE∥BP,交BQ于点E,则下列结论正确的是()A. B. C. D.12.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关 B.与m、n的大小都无关C.只与m的大小有 D.只与n的大小有关13.如图,在正方形ABCD中,AB=4,P是线段AD上动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF值为()A. B.4 C. D.214.如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:(1)∠E=22.50.(2) ∠AFC=112.50.(3) ∠ACE=1350. (4)AC=CE. (5) AD∶CE=1∶.其中正确的有()A.5个B.4个C.3个D.2个15.如图,E为正方形ABCD的边BC上一动点,以AE为一边作正方形AEFD,对角线AF交边CD于H,连EH.①BE+DH=EH;②EF平分∠HEC;③若E为BC的中点,则H为CD的中点;④.其中正确的是()16.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N从A点出发沿折线AD→DC→CB以每秒3cm的速度运动,到达B时运动同时停止,设△AMN的面积为y(cm),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()17.将正方形ABCD绕点A按逆时针方向旋转,得正方形,交CD于点E,AB=,则四边形的内切圆半径为( )A.B.C. D.18.如图所示,正方形顶点,,顶点位于第一象限,直线将正方形分成两部分,记位于直线左侧阴影部分的面积为S ,则S关于t函数图象大致是()19.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF中点,那么CH长是()A.2.5 B.C.D.220.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,. 下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④.其中正确结论的序号是()A.①②③ B.①②④ C.①③④D.②③④二填空题:21.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.22.如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .23.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .24.在平面直角坐标系中,正方形ABCD如图摆放,点A的坐标为(﹣1,0),点B的坐标为(0,2),点D在反比例函数y=(k<0)图象上,将正方形沿x轴正方向平移m个单位长度后,点C恰好落在该函数图象上,则m的值是.25.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.26.如图,正方形ABCD中,点E、F分别是BC、CD边上的点,且∠EAF=45°,对角线BD交AE于点M,交AF于点N.若AB=4,BM=2,则MN的长为.27.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且,将纸片的一角沿过点B 的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD、BC边的上距DC最近的n等分点(n ≥2,且n为整数),则A′N= (用含有n的式子表示).28.如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D 落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D运动的路径长为cm.29.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)30.如图,四边形是正方形,是等边三角形,EC=,则正方形ABCD的面积为.三简答题:31.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.32.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.33.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.34.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.(1)求证:AE=CE.(2)求证:△CAN为直角三角形.(3)若AN=4,正方形的边长为6,求BE的长.35.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?36.如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.37.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.38.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.39.如图所示,四边形ADEF为正方形,△ABC为等腰直角三角形,D在BC边上,连接CF.(1)求证:BC⊥CF;(2)若△ABC的面积为16,BD:DC=1:3,求正方形ADEF的面积;(3)当(2)的条件下,连接AE交DC于G,求的值.40.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE=_______cm,△FDM的周长为_____cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).参考答案1、C2、C3、B4、A5、A6、A.7、B8、A9、A 10、B 11、B 12、D 13、A;14、A. 15、A 16、B 17、B 18、C 19、B 20、A 21、5 22、 23、8 . 24、1 25、7. 26、 27、 28、π29、①②③ 30、831、(1)略;(2)AE⊥CG;32、【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.33、【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.34、【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和∠CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;(2)证明:∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(3)解:∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.35、【解答】解:(1)OE=OF.证明如下:∵CE是∠ACB的平分线,∴∠1=∠2.∵MN∥BC,∴∠1=∠3.∴∠2=∠3.∴OE=OC.同理可证OC=OF.∴OE=OF.四边形BCFE不可能是菱形,若四边形BCFE为菱形,则BF⊥EC,而由(1)可知FC⊥EC,在平面内过同一点F不可能有两条直线同垂直于一条直线.当点O运动到AC中点时,且△ABC是直角三角形(∠ACB=90°)时,四边形AECF是正方形.理由如下:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴▱AECF为矩形,又∵AC⊥EF.∴▱AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.36、略;37、【解答】解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.38、【解答】拓展:证明:∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS).应用:解:∵在等腰三角形ABC中,AB=AC,CD=2BD,∴△ABD与△ADC等高,底边比值为:1:2,∴△ABD与△ADC面积比为:1:2,∵△ABC的面积为9,∴△ABD与△ADC面积分别为:3,6;∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS),∴△ABE与△CAF面积相等,∴△ABE与△CDF的面积之和为△ADC的面积,∴△ABE与△CDF的面积之和为6,故答案为:6.39、【解答】解:(1)∵四边形ADEF为正方形,△ABC为等腰直角三角形,∴AD=AF=EF=DE,AB=AC,∠DAF=∠BAC=∠DEF=∠ADE=90°,∠B=∠ACB=45°,AD∥EF.∴∠DAF﹣∠DAC=∠BAC﹣∠DAC,∴∠DAB=∠FAC.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠B=∠ACF,BD=CF,∴∠ACF=45°,∴∠ACF+∠ACB=90°,即∠BCF=90°.∴BC⊥CF;(2)设AB=BC=x,由题意,得=16,∴x=4.∴BC=8.∵BD:DC=1:3,∴BD=8×=2,CD=8﹣2=6.作DH⊥AB于点H,∴∠DHB=∠DHA=90°,∴∠BDH=45°,∴∠B=∠BDH,∴BH=DH.设BH=DH=a,由勾股定理,得a=,∴AH=4﹣=3.在Rt△ADH中,由勾股定理,得AD2=20.∴AD=2.∵S正方形ADEF=AD2,∴正方形ADEF的面积为20;(3)设EF交BC于点M,设CM=x,则DM=6﹣x.∵BD=CF,∴CF=2.在Rt△CMF中,由勾股定理,得FM=.∵∠DEF=∠FCM=90°,∠DME=∠FMC,∴△FCM∽△DEF,∴,∴,∴,解得:x1=1,x2=﹣4(舍去)∴CM=1,FM=,∴ME=.DM=5∵AD∥EF.∴△AGD∽△EGM,∴,∴=2,∴DG=2GM,设GM=b,DG=2b,∴b+2b=5,∴b=,∴GC=,∴DG=6﹣=.∴=.答:的值为.40、(1)3, 16(2)EG⊥BF, EG=BF则∠EGH+∠GEB=90°由折叠知,点B、F关于直线GE所在直线对称∴∠FBE=∠EGH∵ABCD是正方形∴AB=BC ∠C=∠ABC=90°四边形GHBC是矩形,∴GH=BC=AB∴△AFB全等△HEG∴BF=EG(3)①△FDM的周长不发生变化由折叠知∠EFM=∠ABC=90°∴∠DFM+∠AFE=90°∵四边形ABCD为正方形,∠A=∠D=90°∴∠DFM+∠DMF=90°∴∠AFE=∠DMF∴△AEF∽△DFM∴设AF为x,FD=8-x∴∴FMD的周长=∴△FMD的周长不变②(2)中结论成立。

2022年中考数学一轮考点课时练习19《正方形》(含答案)

2022年中考数学一轮考点课时练习19《正方形》(含答案)

2022年中考数学一轮考点课时练习19《正方形》一、选择题1.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.16B.12C.24D.182.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.已知正方形的边长为2cm,则其对角线长是()A.4cmB.8cmC.2cmD.22cm4.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形5.如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A.2B.3C.4D.56.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为()A.1.5B.2.5C.2.25D.37.如图,把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1B.2C.3D.4二、填空题9.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.10.若正方形的面积是9,则它的对角线长是 .11.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.12.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.13.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则HD的长为.14.如图,以直角三角形ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=62,则AC= .三、解答题15.如图,已知在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.16.如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.17.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.18.如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.(1)求证:△ABE∽△FDE;(2)当BE=3DE时,求tan∠1的值.参考答案1.A.2.A3.D4.D.5.A6.B7.A8.C;9.答案为:45°.10.答案为:3 2.11.答案为:6512.答案为:10.13.答案为:3﹣1.14.答案为:1615.解:16.解:17.证明:18.(1)证明:在正方形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,在△ABE与△CBE中,,∴△ABE≌△CBE,∴∠BAE=∠ECB,∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;(2)连接AC交BD于O,设正方形ABCD的边长为a,∴BD=a,BO=OD=OC=a,∵BE=3DE,∴OE=OD=a,∴tan∠1=tan∠OEC==.。

九年级数学中考复习专题有关45°角问题的处理方案讲义导学案含答案

九年级数学中考复习专题有关45°角问题的处理方案讲义导学案含答案

45°角的题目专项训练(雷老师整理)1、如图,正方形ABCD 中,F E 、分别是CD BC 、上的点,且︒=∠45EAF ,求证:DFBE EF +=解析:延长BG 至点G ,使BF BG =,连接AG ABG ADF ≅∆∴GABDAF ∠=∠ ︒=∠45EAF ∴︒=∠+∠45BAE DAF ∴︒=∠+∠45BAE GAB 易证FAEGAF ∆≅∆∴EF GE =∴DFBE EF +=2.如图,在ABC ∆中,AC AB =,︒=∠90BAC ,E D 、分别是BC 上两点,若︒=∠45DAE ,试推断CE DE BD 、、之间的数量关系,并说明理由.解:CE DE BD 、、之间的数量关为:222CE BD DE +=.理由如下:∵︒=∠90BAC ,AC AB =,∴将ABD ∆绕点A 顺时针旋转︒90得ACF ∆,连EF ,如图:∴︒=∠∠=∠==90,1,,DAF B BD CF AD AF ,︒=∠+∠=∠+∠=∠901B ACB ACB ECF ,∴22222BD CE CF CE EF +=+=;又∵︒=∠45DAE ,而︒=∠90DAF ,∴︒=︒-︒=∠454590EAF ,而AF AD =,AE 为公共边,∴AED AEF ∆∆≌,∴DE EF =,∴222CE BD DE +=.3.如图,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若53=CE ,且045=∠ECF ,则CF 的长为__________.解析:如图,延长FD 到G ,使BE DG =;连接CG 、EF ;∵四边形ABCD 为正方形,在BCE ∆与DCG ∆中,⎪⎩⎪⎨⎧=∠=∠=DG BE CDG CBE CD CB ,()SAS DCG BCE ∆≅∆∴,CE CG =∴,BCE DCG ∠=∠,BCE DCG ∠=∠∴045=∠∴DCF ,在ECF GCF ∆∆与中,⎪⎩⎪⎨⎧=∠=∠=CF CF ECF GCF EC GC ,∴()SAS ECF GCF ∆≅∆,∴EF GF =,∵53=CE ,6=CB ,∴()36532222=-=-=CB CE BE ,∴3=AE ,设()x x GF x DF x AF -=-+=-==9636,,则,2229x AF AE EF +=+=∴,∴()2299x x +=-,∴4=x ,即4=AF ,4.如图,在ABC ∆中,AC AB =,︒=∠90BAC ,点E D 、分别是BC 上两点,且︒=∠45DAE ,10=BC ,求CD BE ⋅的值解析:︒=∠45DAE ∴DAE ABE ∆∆∽,DCA DAE ∆∆∽∴DCAABE ∆∆∽∴ACBE CD AB =∴AC AB CD BE ⋅=⋅ 10=BC ∴502525=⨯=⋅=⋅AC AB CD BEAMB ,ADNABM =∠∴2a DN BM =⋅;7.如图,四边形ABCD 中,已知10=AB ,12=CD ,对角线BD 平分ABC ∠,045=∠ADB ,090=∠BCD ,则边BC 的长度为解:如图,过点D 作AB DE ⊥于点E ;在ED 上截取EB EF =,EA EG =;连接AG ,BF ;则045=∠=∠AGE BFE ,0135=∠=∠∴DGA BFD ;8.如图,矩形ABCD 中,点E ,F 分别在BC ,CD 上,且045=∠=∠CEF EAF ,若9=BE ,8=DC ,则EF 的长为_______.解:延长EF 、AD 交于点N ,延长FE ,AB 交于点M ,由于︒=∠=∠45BEF CEF ,所以:︒=∠=∠45ANM AMN ,所以AN AM =然后将ANF ∆绕点A 顺时针旋转090,得到AMG ∆,则000904545=+=∠GME ,GAM DAF ∠=∠,AG AF =,EAB DAF EAF ∠+∠==∠045,易证AEF AEG ∆≅∆,得2222ME MG EG EF +==,由旋转得NF MG =,090=∠C ,045=∠CEF ,BME DNF CEF ∆∆∆∴,,都是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019 初三中考数学复习正方形专题练习题1. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A.BC=CD B.AB=CD C.AD=BC D.AC=BD
2. 下列说法不正确的是( )
A.一组邻边相等的矩形是正方形
B.对角线相等的矩形是正方形
C.对角线互相垂直的矩形是正方形
D.有一个角是直角的菱形是正方形
3. 在四边形ABCD中,点O是对角线AC,BD的交点,能判定这个四边形是正方形的条件是( )
A.AC=BD,AB∥CD,AB=CD
B.AO=BO=CO=DO,AC⊥BD
C.AD∥BC,∠A=∠C
D.AO=CO,BO=DO,AB=BC
4. 如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )
A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF
5. 如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE的长为( )
A.2 B.3 C.2 2 D.2 3
6. 正方形具有而菱形不一定具有的性质是( )
A.对角线互相平分
B.内角和为360°
C.对角线相等
D.对角线平分内角
7. 能判定一个四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等
B.一组对边平行,一组对角互补
C.一组对角相等,一组邻角互补
D.一组对角相等,另一组对角互补
8. 矩形、菱形、正方形都具有的性质是( )
A.对角线相等
B.对角线垂直平分
C.对角线平分一组对角
D.对角线互相平分
9. 正方形ABCD在平面直角坐标系中的位置如图所示,已知点A的坐标为(0,4),点B坐标为(-3,0),则点C的坐标为( )
A.(1,3) B.(1,-3) C.(1,-4) D.(2,-4)
10. 如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有( )
A.4个B.6个C.8个D.10个
11. 如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是____________.
12. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是____.
13. 如图,已知正方形ABCD的边长为1,连结AC,BD,CE平分∠ACD交BD于点E,则DE=_________________.
14. 如图,四边形ABCD是正方形,对角线AC与BD相交于O,MN∥AB,且
分别与AO ,BO 交于M ,N ,求证:
(1)BM =CN ;
(2)BM ⊥CN.
15. 如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于E ,DF ⊥AG 于F ,连结DE.
(1)求证:△ABE ≌△DAF ;
(2)若AF =1,四边形ABED 的面积为6,求EF 的长.
参考答案:
1---10 ABBDC CCDBC
11. 45°
12. 4
13. 2-1
14. 解:(1)∵MN ∥AB ,∴∠OMN =∠OAB ,∠ONM =∠OBA ,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OMN =∠ONM ,∴OM =ON ,∴AM =OA -OM =OB -ON =BN ,在△ABM 和△BCN 中,
⎩⎪⎨⎪⎧AB =BC ∠MAB =∠NBC AM =BN
,∴△ABM ≌△BCN(SAS),∴BM =CN (2)由△ABM ≌△BCN 得,∠ABM =∠BCN ,又∵∠ABM +∠CBM =90°,∴∠BCN +∠CBM =90°,∴CN ⊥BM
15. 解:(1)∵四边形ABCD 是正方形,∴AB =AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF =90°,∠DAF +∠ADF =90°,∴∠BAE =∠ADF ,在
△ABE 和△DAF 中,⎩⎪⎨⎪⎧∠BAE =∠ADF ,∠AEB =∠DFA ,AB =AD ,
∴△ABE ≌△DAF(AAS)
(2)设EF =x ,则AE =DF =x +1,由题意2×12×
(x +1)×1+12×x×(x +1)=6,解得x =2或-5(舍弃),∴EF =2。

相关文档
最新文档