2018年北师大版九年级数学 5.2.1视图
北师大版初中数学九年级上册5.2 第2课时 复杂图形的三视图

北师大初中数学
北师大初中数学
九年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!
置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。
绘制:请你将抽象出来的三种视图画出来,并与同伴交流。
比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画
12)五棱
),
9
下图是正方体分割后的一部分,它的另一部分为下列图形中的(
由主视图、俯视图确定小立方体的个数
由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图
可综合判出简单几何体的可能情况(其中俯视图中的数字表示垂直方向小正方体
1 2 3
本节课主要是通过观察――绘制――比较――拓展,来完成学习内容的。
在学习中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。
数学思维可以让他们
更理性地看待人生。
北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。
北师大版九年级数学上册《视图》课件

中心投影原理及应用
• 中心投影定义:中心投影是指所有投影线都交汇于一点的投影方式。根据投影线与投影面的相对位置,中心投 影可分为透视投影和轴测投影。
通过三视图(主视图、俯 视图、左视图)展示机械 零件的形状和尺寸,用于 指导加工和装配。
装配图
通过多个零件的视图组合 ,展示机械设备的整体结 构和装配关系。
工艺流程图
通过流程图的形式,展示 机械制造过程中的各个工 序和操作,以便进行生产 计划和调度。
其他领域应用拓展
地理信息系统(GIS)
通过地图的视图展示地理信息数据, 如地形、地貌、交通网络等,用于城 市规划、环境保护等领域。
练习题2
请画出给定几何体的主视图、左视图和俯 视图。
练习题3
请根据给定的三视图,尝试还原出原始的 几何体。
学生自主完成练习题并提交答案
学生活动
学生独立完成练习题,并在规定时间 内提交答案。
教师指导
教师巡视课堂,对学生遇到的问题进 行及时指导。
教师点评学生答案并给出正确答案
答案点评
教师对学生的答案进行点评,指出其中的优点和不足,并给出改进建议。
• 正投影特性:当投影线垂直于投影面时,物体的正投影具有真实性、积聚性和类似性。真实性是指物体上与投 影面平行的线段,其正投影长度不变;积聚性是指物体上与投影面垂直的线段,其正投影积聚为一点;类似性 是指物体上与投影面倾斜的线段,其正投影长度缩短,但形状不变。
• 斜投影特性:当投影线与投影面倾斜时,物体的斜投影不具有真实性、积聚性和类似性。斜投影的图形与物体 实际形状有差异,但可以通过一定的方法恢复物体的真实形状。
北师大版数学九年级上册5.2视图(第三课时)教学设计

2.学生的空间想象力:观察学生在课堂上的表现,了解他们在观察和想象物体形状时的困难,以便及时给予指导和帮助。
3.学生的合作与交流能力:在小组合作环节,关注学生的参与程度,鼓励他们积极发表观点,提高团队协作能力和表达能力。
二、新课讲解
1.讲解主视图、左视图、俯视图的概念,强调它们之间的相互关系。
2.通过实例演示,让学生观察和思考如何从不同角度观察物体,并绘制出相应的视图。
3.分析视图在工程设计、建筑、制造等领域的应用,让学生认识到视图知识的重要性。
三、课堂练习
1.让学生独立完成教材中的练习题,巩固所学知识。
2.引导学生运用视图知识解决实际问题,如根据视图设计物体、计算物体的表面积和体积等。
(二)过程与方法
1.通过观察、操作、实践等教学活动,让学生体验从不同角度观察物体,培养空间想象力和观察力。
2.引导学生运用类比、归纳、推理等方法,发现视图之间的内在联系,提高逻辑思维能力和解决问题的能力。
3.通过小组合作、交流讨论等形式,培养学生的团队协作能力和表达能力。
(三)情感态度与价值观
1.培养学生对视图学习的兴趣,激发学生的学习热情,使学生在轻松愉快的氛围中学习数学。
3.教师布置课后作业,要求学生运用所学知识解决实际问题,如根据视图设计物体、计算物体的表面积和体积等。
4.教师提醒学生关注生活中的视图现象,培养学生的观察力和空间想象力,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学知识,培养学生的空间想象力和解决问题的能力,特布置以下作业:
1.完成教材课后练习题:要求学生独立完成,注意在绘制视图时保持准确性和规范性。通过完成练习题,使学生进一步熟悉三视图的绘制方法和技巧。
北师大版数学九年级上册5.2《视图》教案

一、教学内容
本节课选自北师大版数学九年级上册第五章第二节《视图》,主要内容包括:
1.三视图的概念:从物体的正面、侧面和上面分别观察,所得到的图形称为物体的主视图、左视图和俯视图。
2.三视图的绘制方法:学会利用简单几何体的三视图,掌握其绘制方法,并能够运用到实际问题的解决中。
三、教学难点与重点
1.教学重点
-理解三视图的概念:主视图、左视图和俯视图的定义及其在表示物体形状中的作用。
-掌握三视图的绘制方法:如何从不同角度观察几何体,并准确绘制出三视图。
-应用三视图解决实际问题:能够运用三视图知识,进行几何体的识别和尺寸推断。
举例解释:
-重点强调主视图、左视图和俯视图的区分,通过实际操作让学生理解不同视图展现的物体面和边的信息。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三视图的基本概念。三视图是从物体的正面、侧面和上面分别观察所得到的图形。它们分别是主视图、左视图和俯视图。三视图是表达物体形状的重要方式,广泛应用于工程绘图、建筑设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了三视图在实际中的应用,以及它如何帮助我们解决问题。
-通过示例,讲解如何从几何体的正面、左面和上面进行观察,并逐步引导学生学会绘制三视图。
-结合实际案例,如建筑设计图等,让学生了解三视图在实际中的应用,强调其在解决几何问题中的重要性。
2.教学难点
-空间想象能力的培养:学生需要通过二维的视图来想象和构建三维的物体形状。
-三视图的绘制技巧:在绘制过程中,如何准确表现物体的前后、左右和上下关系。
2.提升几何直观能力:让学生在观察、分析和绘制三视图的过程中,掌握几何体的特征,培养几何直观能力,为解决复杂几何问题奠定基础。
5.2.2视图(课件)-九年级数学上册精品课堂(北师大版)

(2) 主
视
(2)
图
探索&交流
左 视 图 左 视 图
探索&交流 想一想
观察图1的三种视图,你能在图2中找到与之对应的几何体吗?
主 视 图
俯 视 图
图1
左 视 图
(1) (2) (3) (4) 图2
探索&交流
总结:由三视图想象立体图形时,先分别根据主视图、俯视图和 左视图想象立体图形的前面、上面和左侧面的局部形状,然后再 综合起来考虑整体图形.
议一议
探索&交流
根据图中的三种视图,你能想象出相应几何体的形状吗?
先独立思考,再与同伴交流。
主
左
视
视
图
图
几何体的形状:
俯 视 图
例题欣赏 ☞
例题&解析
例2.与如图所示的三视图对应的几何体是 ( B )
A
B
C
D
例题欣赏 ☞
例题&解析
例3.由几个相同的小立方块搭成的几何体的俯视图如图所示.方格 中的数字表示该位置的小方块的个数.请画出这个几何体的主视图 和左视图.
第五章 投影与视图
5.2.2 视图
北师大版九年级数学上册
学习&目标
1.会辨别复杂的几何体的三视图. (重点) 2.会画复杂的几何体的三视图,会根据复杂的三视图判断实物 原型.(重点) 3.明确三视图中实线和虚线的区别.(难点)
1.要想制作出长方体,我们需要知道哪些量? 长方体的长、宽、高.
情景&导入
13 2
主视图
左视图
1.与图中的三视图相对应的几何体是( B )习&巩固
2.若干桶方便面摆放在桌子上,如图是它的三视图,则这一 堆方便面共有 ( B ) A.5桶 B.6桶C.9桶
北师大版九年级数学上册《 第五章 投影与视图 5.2 视图》

北师大版九年级数学上册《第五章投影与视图 5.2 视图》一. 教材分析北师大版九年级数学上册《第五章投影与视图 5.2 视图》这一节主要让学生了解三视图的概念,掌握主视图、左视图、俯视图的画法,以及能够根据物体的形状确定其三视图。
教材通过生活中的实例引入视图的概念,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形有了一定的认识。
但是,对于三维空间中的物体,学生可能还比较陌生。
因此,在教学过程中,教师需要通过生动形象的实例,让学生建立起对三维空间物体的直观认识,以便于理解三视图的概念。
三. 教学目标1.让学生了解三视图的概念,掌握主视图、左视图、俯视图的画法。
2.培养学生根据物体的形状确定其三视图的能力。
3.培养学生的空间想象能力和数学应用能力。
四. 教学重难点1.重难点:三视图的概念及其画法。
2.难点:如何让学生理解并掌握三视图的画法,以及如何根据物体的形状确定其三视图。
五. 教学方法采用情境教学法、实例教学法和小组合作学习法。
通过生活中的实例引入视图的概念,让学生感受数学与生活的紧密联系;通过小组合作学习,让学生在实践中掌握三视图的画法。
六. 教学准备1.准备一些生活中的实例,如建筑物、家具等,用于导入课堂。
2.准备一些三维物体模型,如球体、长方体等,用于让学生观察和操作。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的一些实例,如建筑物、家具等,引导学生观察这些物体在不同角度的投影,从而引入视图的概念。
2.呈现(10分钟)向学生介绍主视图、左视图、俯视图的定义,并通过三维物体模型让学生直观地感受三视图。
同时,讲解三视图的画法,让学生能够自己动手画出简单物体的三视图。
3.操练(10分钟)让学生分组进行合作学习,每组选择一个三维物体模型,尝试画出其三视图。
教师在旁边指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对三视图概念和画法的掌握程度。
5.2.1 视图 第1课时 数学北师大版九年级上册教案

2 视图第1课时【教学目标】知识与技能:1.探索基本几何体(圆柱、圆锥、球)与其三种视图(主视图、左视图、俯视图)之间的关系.2.会判断简单物体的三视图,发展合情推理能力和数学表达能力.过程与方法:经历由实物抽象出几何体的过程,进一步发展空间观念.情感态度与价值观:结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识.【重点难点】重点:会判断简单物体的三视图.难点:由实物抽象出几何体,判断简单物体的三视图.【教学过程】一、创设情境1.“横看成岭侧成峰,远近高低各不同.”一句中蕴含着怎样的数学道理?2.王明昨天买了一本字典,假如有一束平行光线从正面、左面、上面照射这本字典,得到正投影图形是什么?二、探索归纳1.如图,这个物体可以看做是由什么几何体组成的?2.假如一束平行光线从正面、左面、上面投射到物体上,你能想象出它的正投影吗?试着画出来.物体的正投影称为物体的视图,由此自然引出主视图、左视图、俯视图的定义,随之准确给出上述三种图形的名称.参照教材提供的几何体,提出问题:(1)图中物体的形状分别可以看成什么样的几何体?与同伴交流.(2)在图中分别找出上述几何体的主视图.(3)你能想象出(1)中各物体的左视图和俯视图吗?与同伴交流,请你试着画出来.(4)你能说出常见几何体的三种视图的特点吗?三、交流反思学生互相交流总结三视图的特点,主视图、左视图、俯视图的区别与内在的联系,及各自在合作交流学习过程中的体会与感受等.四、检测反馈1.“圆柱与球的组合体”如图所示,则它的三视图是( )2.下图是冰激凌模型图,它的三视图是( )五、布置作业课本P137 习题5.3 第1、2题六、板书设计视图1.探究2.归纳:3.练习:七、教学反思 通过课堂小组合作解决有关问题的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的能力,以及思维的误区,以便指导今后的教学.课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度. 注意改进的方面: 在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问.教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中需注意的问题等.关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/1/23
议一议
• (1)下图中物体的形状分别可以看成什么样的几何体?
从正面、侧面、上面看这些几何体,它们的形状各是什 么样的?
• (2)在下图中找出上图各物体的主视图。 • (3)上图各物体的左视图是什么?俯视图呢?
√
俯视图 左视图 (2) 1) (2018/1/23
2018/1/23
蒙古包模型按如图所云浮的方式摆放在一起, D 其主视图是( )。
(A)
(B)
(C)
2018/1/23
(D)
随堂练习
• 3.(1)画出图中各物体的主视图、左视图和
俯视图。
(2)请找出一些类似形状的物体,并尝试 画出它们的三种视图。
2018/1/23
随堂练习
• 4.根椐下列主视图和俯视图,找出对应的物体。
体,有几种搭法?试试看,与同学交流一下。
2018/1/23
学而不思则殆 回 头 一 看 , 我 想 说
我有哪些收获呢? 与大家共分享!
2018/1/23
…
• 课后讨论: • 将一个直角三角形绕其一边旋转,所
得图形的三视图是怎样的?
2018/1/23
知识象一艘船 让它载着我们 驶向理想的……
敬 请 指 导
√
左视图 (3) 俯视图 (4)
√
左视图和俯视图 (6) (5)
2018/1/23
• 一 想 右图是一个蒙古包的照片,你能画出这 想
个几何体的三种视图吗?
主视图
2018/1/23
左视图
俯视图
随堂练习
• 1找出图中每一物品所对应的主视图。
2018/1/23
Байду номын сангаас(A)
(B)
(C)
(D)
随堂练习
• 2.将两个圆盘一个茶叶桶,一个皮球和一个
主视图
俯视图
2018/1/23
小结
• 1、主视图、俯视图和左视图合称三视
图。 • 2、主视图反映物体的长和高,俯视图 反映物体的长和宽,左视图反映物体 的高和宽,在画三视图时主、俯视图 要长对正,主、左视图要高平齐,左、 俯视图要宽相等。
2018/1/23
试一试
•
1、如下图几何体,请画出这个物体的三视图。
主视图 主视图 主视图 主视图
左视图 左视图 左视图 左视图
俯视图 俯视图 俯视图 俯视图
2018/1/23
• 2、关于几何体
试一试:
下面有几种说法,其中说法正 确的是 (B ) A、它的俯视图是一圆。 B、它的主视图与左视图相同。 C、它的三种视图都相同。 D、它的主视图与俯视图都是圆。
• 3、用6个小正方体搭成一个俯视图为下图的几何
第5章 投影与视图
2.视 图 第1课时
复习
议一议
想一想 随堂练习
小结
试一试
作业
复习提问:
• 1、什么是一个物体的主视图、左视图和俯视
图? 我们从不同的方向观察同一物体时,把从 正面看到的图叫做主视图,从左面看到的图叫 • 2、你能画出右图的主视图、左视图和俯视图 做左视图,从上面看到的图叫做俯视图。 吗?