CA6140车床各项精度检验总结

CA6140车床各项精度检验总结
CA6140车床各项精度检验总结

下面以CA6140型卧式车床为例,介绍其总装配方法及其工艺要点:

(1)床身导轨

床身导轨是床鞍移动的导向面,是保证刀具移动直线性的关键,图7-53所示为卧式车床床身导轨的截面图,其中2、6、7为床鞍用导轨,3、4、5为尾座用导轨,1、8为压板用导轨。

床身与床脚用螺钉连接,床身是车床的基础,也是车床总装配的基准部件。床身导轨精加工往往也是在床身与床脚结合后再进行,以消除连接时变形造成的误差,床身最终应达到的要求如下:

1)床身导轨的几何精度

①床鞍导轨的直线度在竖直平面内,全长上为0.03mm,在任意500mm 测量长度上为0.015mm,只许凸;在水平面内,全长上为0.025mm。

②床鞍导轨的平行度(床身导轨的扭曲度)全长上为0.04mm。

③床鞍导轨与尾座导轨的平行度在竖直平面与水平面均为全长上0.04mm,任意500mm测量长度上为0.03mm。

④床鞍导轨对床身齿条安装面的平行度全长上为0.03mm,在任意500mm测量长度上为0.02mm,只许床头处厚。

2)接触精度

刮削导轨每25mm×25mm范围内接触点应大于10点,磨削导轨则以接触面积大小来评定接触精度的高低。

3)表面粗糙度

刮削导轨表面粗糙度一般在Ra1.6μm以下;磨削导轨表面粗糙度值在Ra0.8μm以下。

4)硬度

一般导轨表面硬度应在170HB以上,并且在全长范围内硬度一致;与之相配合件的硬度应比导轨硬度稍低。

5)导轨几何形状的稳定性

导轨在使用中应不变形。除采用刚度大的结构外,还应进行良好的时效处理,以消除内应力,减少装配和使用中的变形。

(2)床身与床脚结合的装配工艺

1)床身装到床脚上,先将各结合面的毛刺清除并倒角。在床身、床脚连接螺钉上垫等高垫圈,以保证结合面平整贴合,防止床身紧固时产生变形。同时在结合面间加入1~2mm 厚纸垫,以防止漏油。

2)当床身导轨精度由磨削来达到时,可将已磨好的床身部件直接置于可调的机床调整垫铁上,用水平仪指示读数来调整各垫铁使床身平导轨面处于自然水平位置,用桥板和水平仪指示读数将床鞍用导轨的扭曲误差调整至最小值。

3)床身导轨刮起削是单件小批生产或机修中常用的方法,刮削前应将可调垫铁置于床脚地脚螺钉附近,用水平仪调整床身处于水平位置,使各垫铁均匀受力,床身放置稳定后即可开始刮削。刮削时按下列步骤进行:

①选择刮削量最大,导轨中最重要的和精度最高的床鞍用导轨6﹑7作为刮削基础(见图7-53)。用角度平尺或桥形平尺研点,凹V行部等边垫铁和水平仪测量导轨再竖直面上的自直线度并绘导轨曲线度。对于精密车床刮研时,还需用光学平直仪导轨再水平面内的直线度误差。待刮削至导轨直线度,接触研点数和表面粗糙度均符合要求为止。

②以6﹑7面为基础,用平直研点刮平面导轨面2。要保证其直线度及与基准导轨面6﹑7的平面度要求。

③测量导轨再竖直平面内直线度及床鞍导轨平行度(扭曲),方法如图7-54所示,使

检验桥板沿导轨全长移动,一般测五点,得五个水平仪读数。横向水平仪读数为导轨平行度误差;纵向水平仪用于测量直线度,但直线测量时每次桥板移动量必须首尾相连,才能根据读数画出导轨曲线图并计算误差值。

④测量床鞍导轨水平面内的直线度,可以用光学平直仪精确地测得,但一般生产单位也可采用圆柱检验心轴作为基准进行测量,如图7-55所示。移动桥板,百分表再导轨全长上进行读数。由于导轨平行度误差会对测量带来影响,建议再测量时桥板上横向放置以水平仪,再对百分表读数的同时读取水平仪的变化值,以消除导轨平行度误差的影响。全长上最大的读数与最小的读数之差,为导轨再水平面内直线度误差。

⑤以床鞍导轨为基准刮削尾座导轨3﹑4﹑5面(图7-53),使其达到自身形状精度要求和对床鞍导轨的平行度要求。检验方法如图7-56所示,将桥板横跨在床鞍导轨上,百分表座固定再桥板上,百分表触头触及尾座导轨面3﹑4或5。沿导轨在全长上移动桥板进行测量,百分表读数差即为平行度误差值。用平尺研点修刮尾座导轨面至精度要求。

⑥刮削压板导轨面1,8(图7-53),要求达到与床鞍导轨的平行度及自身形状精度。测量方法如图7-57所示。用平直研点修刮至要求。

(3)床鞍配刮与床身装配工艺床鞍部件是保证刀架直线运动的关键。床鞍上,下导轨面分别与床身导轨和刀架下滑座导轨配刮完成。

1)配刮横向燕尾导轨

①将床鞍放在床身导轨上,可减消刮削时床鞍变形。以刀架下滑座的表面2﹑3为基准,配刮床鞍横向燕尾导轨表面5﹑6,如图7-58所示。推研时,手握固定于下滑座中心的工艺心棒,以保证安全,防止挤住手指。表面5﹑6刮削后应满足对横丝杠A孔轴线的平行度要求,其误差在全长上不大于0.02mm,测量方法如图7-59所示,在A孔中插入检验心轴,百分表座固定在角度平尺上,分别在心轴上素线上及侧素线上测量其平行度误差。

②修刮燕尾导轨面7,保证其于平面6的平行度,以保证刀架横向移动的顺利。可用角度平尺或下滑座为研具刮研。用图7-60所示的方法检查;将测量圆柱放在燕尾导轨两端,用千分尺分别在两端测量,两次测得的读数差就示平行度误差,在全长上不大于0.02mm。

2)配镶条(见图7-61)配镶条的目的是使刀架横向进给时有适合的间隙,并能在使用过程中不断调整间隙,保证机床有足够的使用寿命。镶条应按床鞍上导轨面和下滑座配刮,使刀架下滑座在床鞍燕尾导轨全长上移动时,无轻重或松紧不均匀的现象,并保证大端有10~15mm的调整余量。燕尾导轨于刀架上滑座配合表面之间用0.003mm塞尺检查,插入不大于20mm。

3)配刮床鞍下导轨面以床身导轨为基准﹑刮研床鞍与床身配合的表面至接触点为10-12点/25mm﹡25mm,并按图7-62所示检查床鞍上﹑下导轨的垂直度。测量时,线纵向移动床鞍,床头方向放置90°角尺,一个边与床鞍移动方向平行。然后将百分表移放在刀架下滑座上,沿燕尾导轨全长上移动,百分表读数的最大差值,就是床鞍上,下导轨面垂直度误差。当超过公差要求时,可刮研床鞍与床身结合的下导轨面,直至合格为止。

本项精度要求为0.02mm/300mm,只许导轨远端偏向床头,以便在车削端面时形成中凹的趋势。

刮研床鞍下导轨面到达垂直度要求的同时,还要使溜板箱安装面满足以下两项要求:

①横向应与进给箱﹑托架安装面垂直,其测量方法如图7-63所示。在床身进给箱安装面上用夹板夹持一90°角尺,在90°角尺处于水平状态的上平面上移动百分表检查溜板箱安装面的位置精度;也可以用框式水平仪分别紧贴进给箱安装面和溜板箱安装面,读取水平仪水泡示值之差来决定。要求公差为0.03mm/100mm

②纵向与床身导轨平行,测量方法如图7-64所示。将百分表固定在床身上(一般用磁力表架吸附在齿条安装面上),纵向移动床鞍,在溜板箱安装面全长上百分表读数的最大差值不得超过0.06mm。

4)床鞍与床身装配床鞍与床身的装配,主要是修刮床鞍两侧压板安装面及配刮床鞍压板,以达到床鞍与床身导轨在全长上能均匀结合,平稳的移动。

按图7-65所示,装上两侧压板并调整到适当的配合,推研床鞍,按接触情况刮研两侧压板,要求接触点为6~8点/25mm*25mm。全部螺钉调整紧固后,用200~300N力推动床鞍在导轨全长上移动应无阻带现象;用0.03mm塞尺检查滑动面的紧密程度,允许插入深度不大于20mm。

(4)溜板箱安装工艺溜板箱安装在总装配过程中起重要作用。其安装位置直接影响丝杠﹑螺母能否正确齿合,进给能否平稳进行,它还是确定进给箱合丝杠后支架安装位置的基准。确定溜板箱位置应按下列步骤进行:

1)校正开合螺母中心线与床身导轨的平行度如图7-66所示,在溜板箱的开合螺母体内加紧一检验心轴3,在床身检验桥板上紧固丝杠中心测量工具2。分别在开合螺母左﹑右两端校正校验心轴上素和测素线与床身导轨的平行度,其误差值应在0.15mm以内。

2)溜板箱左右位置的确定左右移动溜板箱,使中滑板横向进给转动齿轮副和合适的齿侧间隙,如图7-67所示。测量齿侧间隙右三种方法:

①将一张厚度为0.08mm的纸放在齿轮齿合处,转动齿轮若印痕呈现将断与不断的状态既为正常侧隙。

②用一根直径小于0.5mm的熔断丝(俗称电工保险丝)放在齿轮齿合处,转动齿轮碾压后用外径千分尺测量碾压后的厚度值。

③摇动横向进给手轮,以其空转量不超过1/30转来检查。

3)溜板箱的最后定位溜板箱预装精度校正后,应等到进给箱和丝杠后支架的位置校正后才能转﹑铰溜板箱定位销孔,配座定位锥销实现最后定位。

5)安装齿条溜板箱位置校正后,则可安装床身齿条,安装时主要保证纵走刀小齿轮与齿条的啮合间隙和啮合接触区。正常啮合侧隙为0.08mm;啮合接触区位于齿宽的中部。测量啮合侧隙的方法与横走刀齿轮副侧隙检验方法相同;测量接触区可采用红丹或蓝油涂色法来确定。最后确定齿条的安装位置及其高度尺寸。

由于齿条制造工艺所限,车床齿条常由几根齿块拼接装配而成。为保证两相邻齿条接合处的齿距精度,安装时,应采用标准齿条块来进行跨接校正,如图7-68所示。校正时,在两根相接齿条的结合端面之间,须留有0.5mm左右的间隙。

齿条安装后,必须在床鞍行程的全长上检查纵走刀小齿轮与齿条的啮合间隙及接触区,间隙要均匀一致。齿条位置调好后,每快齿条板都配有两个定位销,以确定其安装位置。

(6)装进给箱和丝杠后托架安装进给箱和丝杠后托架主要应保证进给箱﹑溜板箱﹑丝杠后托架上所安装的托架﹑光杠三孔的同轴度,并保证丝杠与床身导轨的平行度。安装时,先按图7-69所示进行测量调整,即在进给箱﹑溜板箱﹑后托架的丝杠支撑孔中,各装入一根配合间隙不大于0.005mm的检验心轴Ⅰ﹑Ⅱ﹑Ⅲ,三根检验心轴外伸测量端的外径相等。溜板箱用心轴有两种:一种其外径尺寸与开合螺母体外径相等,它在开合螺母未装入时使用,另一种是具有与丝杠中径尺寸一样的螺纹,卡在开合螺母中使用。前者测量可靠;后者测量误差较大,但如掌握得当,更能直接反映开合螺母的实际捏合中心位置。

首先用图7-66所示的专用测量工具,检查进给箱和后托架丝杠孔的中心线相对于床身导轨的平行度,其允差上母线为0.02/100,只许前端向上偏;侧母线为0.01/100,只许前端向床身方向偏。若超差,则通过刮削进给箱和后托架与床身的结合面来调整。

其次,调整进给箱﹑溜板箱和后托架三者丝杠安装孔的同轴度。其调整方法是以溜板箱

上开合螺母孔中心线为基准,通过抬高或降低进给箱和后托架丝杠支撑孔的中心线,使丝杠三处支撑孔同轴,其测量如图7-69所示,上素线测量误差不大于0.01/100。横向则采用平行移出或推进溜板箱的方法,使开合螺母中心线与进给箱子﹑后托架中心线同轴﹑其侧素线测量误差不大于0.01/100。

最后,在进给箱﹑溜板箱﹑后托架的光杠支撑孔中,各装入一根配合间隙不大于0.005mm 的检验心轴,三根检验心轴外身测量端的外径相等。用测量丝杠三孔同轴度相同的方法测量和调整进度箱﹑溜板箱和后托架三者光杠安装孔的同轴度,要求上素线和侧素线均不得大于0.10/100。注意再调整光杠三孔同轴度时,不得破坏以调整好的丝杠的三孔同轴度,待丝杠﹑光杠三孔同轴度都调整好后,应将同轴度误差全面检查一遍。

调整合格后,进给箱﹑溜板箱和后托架即配作定位销,并予以固定,以确保调整好的位置不变。

(7)主轴箱的安装主轴箱是以其底平面和凸块侧面与床身主轴箱安装面接触来保证正确安装位置的。主轴箱底平面是用来控制主轴轴线与床身导轨在竖直平面内的平行度;凸块侧面是控制主轴轴线在水平面内与床身导轨的平行度。安装时,按图7-70所示进行测量和调整。主轴孔中插入检验心轴,百分表座固定在刀架下滑座上,分别在上母线和侧母线上测量,百分表在全长(300mm)范围内读数差就是平行度误差值。

安装要求:上素线为0.03/300,只许检验心轴外端间上抬起(俗称抬头),若超差可刮削主轴箱底平面;侧素线为0.015/300,只许检验心轴偏向操作者方向(俗称里勾),超差时,通过刮削凸块侧面来满足要求。

测量和调整时应注意以下几点:

1)检验心轴在插入主轴锥孔前应先检查其锥面配合精度,要求与心轴接触点在50%以上且大端接触点多。

2)要消除检验心轴本身误差对测量的影响,测量时旋转主轴180°后做两次测量,两次测量以后结果的代数和之半就是平行度误差。

3)超差时,只能通过刮削主轴箱相应接触面来修正,决不能图方便刮削床身相应的连接面(因为床身连接面是装配的基准面)。

4)在确定主轴中心线相对于床身导轨的高度时,应预留出尾座的高度调整余量,以避免调整尾座时因余量不足而重新要下降主轴箱的安装高度。

(8)尾座的安装工艺尾座的安装分两步进行。

1)调整尾座的安放位置以床身上尾座导轨为基准,配刮尾座底板,使其达到装配质量技术要求中规定的刮研点数。

将尾座部件装在床身上,按图7-71所示测量尾座的两项精度;

①床鞍移动轨迹对尾座套筒伸出部分轴线的平行度测量方法是:使顶尖套伸出尾座体100mm,并与尾座体锁紧。移动床鞍使固定在其上的百分表触头分别触于顶尖套的上素线和侧素线上,百分表在100mm内读数差,即为平行度误差,如图7-71a所示。该项精度要求是;上素线允差为0.01/100;侧素线允差为0.03/100(以上均指顶尖套的远端处)。

②床鞍移动轨迹对尾座套筒锥孔中心线的平行度在尾座套筒内插入一根检验心轴(测量长度300mm),尾座套筒退回尾座体内并锁紧。然后移动床鞍,使固定在床鞍上的百分表分别触于检验心轴的上素线和侧素线。百分表在300mm长度范围内的读数差,即为顶尖套筒锥孔中心线相对与床身导轨平行度误差,如图7-71b所示。其要求为:上素线允差0.03/300;侧素线允差0.03/300。为了消除检验心轴本身误差对测量的影响,一次检验后,将检验心轴退出,转180°后再插入,重新检验一次,两次测量结果的代数和之半,即为该项实际误差值。

校正尾座精度时,可以刮研底板的下导轨面或尾座与底板的连接面,或在配刮尾座底板

时同时进行上述测量,根据测量结果,有针对性的修刮尾座底板的下导轨面,这样不但保证了它与床身导轨的配合,而且达到了以上规定的平行度要求。

2)调整主轴锥孔中心线和尾座套筒锥孔中心线对床身导轨的等距离其测量方法如图7-72a所示,在主轴箱主轴锥孔内紧密插入一个顶尖,并校正其与主轴轴线的同轴度。在尾座套筒锥孔内,同样装入一个顶尖,两顶尖间顶入一根长度为1500mm的标准圆柱检验芯棒。将百分表座固定在床鞍上,先将百分表测头触在芯轴的侧素线上,在尾座底板上横向移动尾座体,校正心轴在水平平面内与床身导轨平行。再将测头触与检验芯轴的上素线,百分表在心轴两端的读数差,即为主轴锥孔中心线与尾座套筒锥孔中心线对床身导轨的等距离误差。为了消除顶尖套中顶尖本身误差对测量的影响,一次检验后,将顶尖退出,转过180°后重新检验一次,两次测量结果代数和的一半,即为其误差值。

图7-72b为另一种测量方法,即分别在主轴箱主轴锥孔和尾座套筒锥孔中塞入两测量部分圆柱直径相等的心轴,将百分表固定在床鞍上移动床鞍分别测量主轴和尾座锥孔的上素线,在根据两检验心轴测量部分的直径实际尺寸和百分表的读数,经计算求得实际误差值。在测量之前,同样也要校正两检验心轴在水平面内与床身导轨的平行度。

等距离允差为0.06mm,只许尾座高于主轴箱,为了弥补使用中的磨损,应尽量接近允差只。若超差则通过修刮尾座底板与尾座的连接面来调整。修刮后要求尾座体与尾座底板之间的接触面用0.03mm塞尺检查时不得插入。用手扳动时不得出现左右摇晃现象。

(9)安装丝杠﹑光杠和操纵杆溜板箱﹑进给箱﹑后支架的三支撑孔同轴度校正后,就能装入丝杠﹑光杠和操纵杆。

1)丝杠装入后应检验以下精度。

①测量丝杠两轴承中心线与开合螺母中心线对床身导轨的等距离测量方法如图7-73所示,用图7-66所示的专用测量工具在丝杠两端和中间共三处测量。三个位置中对导轨相对距离的最大差值,就是等距度误差。测量时,开合螺母应处于闭合状态,这样可以排除丝杠因重力下垂﹑自身弯曲等因素对测量数值的影响。溜板箱应置于床身全长的中部,以防止丝杠挠度对测量的影响。精度要求:在丝杠素线上测量允差为0.15mm;在丝杠侧素线上测量允差为0.15mm。

②测量丝杠的轴向窜动测量方法如图7-73所示,在丝杠后端的中心孔内,用黄油紧密粘住一个钢球,选择钢球直径时应注意要求球面微露出中心孔端面,但大部分仍埋入中心孔内,用平头百分表顶在钢球上。合上开合螺母,使丝杠转动进行测量,百分表的读数差就是丝杠轴向窜动误差,其允差值最大不应超过0.015mm。

2)安装操纵杆支架﹑操纵杆及操纵手柄。操纵杆对床身导轨在水平面合竖直面内的平行度是以溜板箱中操纵杆支撑孔为基准的,通过调整前支架的高低位置和修刮前支架与床身的结合面来达到。其检验方法与图7-73检验丝杠的等距度方法相似,检验装置见图7-66。后支架中操纵杆中心位置的误差变化,可用增大后支架操纵杆支撑孔与操纵杆直径的间隙来补偿。

3)安装光杆。插入光杠后用手慢慢转动,感到施力均匀,无阻滞现象后即认为合适,否则可能是光杠弯曲,需经娇直后装入。

4)全部达到要求后,即可进行钻铰定位销孔进行定位,打入定位销后,再将上述精度全部复查一遍。

(10)安装刀架刀架是安装刀具和直接承受切削力的部件,在装配中应注意以下几点:

1)刀架移动导轨应保持直线性。

2)刀架移动时应保持平稳﹑无阻滞﹑滑动面无过大的间隙(0.04mm塞尺不得塞入)。

3)四方刀架的重复定位精度应长期保持在0.02mm左右。

4)丝杠螺母的同轴度﹑丝杠与滑动导轨面的平行度都不得超出规定数值。

5)各连接面应保持有足够的接触刚度。

由于刀架是作为一个部件完成的,所以在机床总装配时,一般只作以下两项工作:

①装入刀架丝杠(横丝杠),调整丝杠与螺母的间隙刀架下滑座的丝杠间隙调整方法如图7-74所示,先将左端螺母1的螺钉拧松,然后用中间的螺钉将槭块拉上,调整至手柄反向时空程量不超1/20转,且丝杠在各部位旋转灵活准确时,再将左端螺母1的螺母拧紧。

②小刀架部件装配在刀架下滑座上,按图7-75所示的方法测量小刀架移动轨迹对主轴中心线的平行度。

测量时,先横向移动刀架,使百分表触及主轴锥孔中插入的检验心轴上素线,再纵向移动小刀架进行测量,误差不超过0.03/100。若超差通过刮削小刀架滑板与刀架下滑座的结合面来调整。

上述精度合格后,将百分表触及检验心轴侧素线,用同样的方法进行测量,回转安装在刀架下滑座上的小刀架滑板位置,直至测值读数误差为零时,固定小刀架滑板,在刀架下滑座圆刻度零线处相对在小刀架滑板上刻制零线,以作标识。

(11)其他安装

1)挂轮架安装交换齿轮要配合良好﹑且固定可靠。并把车削米制﹑英制螺纹,普通走刀等挂轮基本备齐。

2)电动机﹑V带电动机V带的松紧刻通过调节电动机底座的安装倾斜度来实现,一般机床安装完毕后在空运转实验时,V带可调的松些,以便出意外故障时发生打滑,避免事故发生;待到切削实验时再适度张紧V带以便传递驱动力矩.安装时,应观察各条V带应能同时起作用,如V带长度不一致时应进行选配。

3)润滑系统各油路通畅,润滑部位有明显标记,用油绳润滑处应备齐油绳。

4)防护部分各防护罩齐全﹑安装美观可靠,床鞍两端刮屑油毡高度合适。

5)冷却系统冷却管路连接可靠,接头不漏水﹑不松脱,水泵与床腿紧固牢靠。

6)照明系统工作灯固定牢靠。

7)机床标牌包括机床铭牌﹑厂家标记﹑操作铭牌等。

普通车床几何精度检测

普通车床几何精度检验实验 一、实验目的 1、了解本实验中所检验的车床精度有关项目的内容及其和加工精度的关系。 2、了解车床精度的检验方法及有关仪器的使用。 3、掌握所测得的实验数据处理方法和检验结果的曲线绘制及分析。 二、主要仪器设备 1、实验机床:CA6140普通车床 2、测量仪器:合象水平仪、千分表、钢尺、磁力表座、圆柱长检验棒。 三、实验基本原理 根据普通车床精度检验标准,本实验进行其中的五项。 第一、二、三项是检验溜板移动时的轨迹,由于床身导轨的制造误差或因长期使用后的磨损及变形,使得溜板移动轨迹不是一条直线,而是一条空间曲线,这一条空间曲线可以用这三项精度来表示: 第一项:溜板移动在垂直平面内的不直度,检验方法,在溜板上靠近床身前导轨处放一个和床身导轨平行的水平仪,移动溜板,每隔200mm记录一次水平仪读数,在溜板上的全行程检验,见图一。 图一第一项精度检验示意图 根据所测得的各段水平仪读数,绘制溜板移动的运动曲线,以运动曲线二端

点的联线作为基准线,由曲线上各点作基准线的平行线,其中相距最近的二根平 行线之间的纵座标距离即为其不直度误差。 溜板移动的运动曲线作法如下: 以溜板行程为1500mm,溜板长度为500mm的车床为例,水平仪纵向安放在溜板平面上,当溜板处于近主轴端的极限位置时,记录一个水平仪读数,如+a (格)(“+”代表水平仪气泡移动方向与溜板移动方向相同,如相反,则为“-”)移动溜板,每隔500mm就记录一次读数,到移动行程为1500mm时得出三个读数,如为+b、-c、-d。以导轨长度(即溜板各段行程所在的导轨位置)为横座标,水平仪读数为纵座标,根据水平仪读数依次画出各折线段,并使每一折线段的起点与前一折线段的终点相重合,即得出运动曲线。(见图二)联接曲线二端点OD, 作为基准线,量出曲线上的B点到OD线的纵座标距离δ 全 为最远,即为溜板在全行程内的不直度误差,如果要求1000mm行程内的不直度误差,则把每个行程为1000mm之间的二端点相连,作为该1000mm行程中的基准线,找出这1000mm行程中的不直度误差,然后取各个1000mm行程的不直度误差中的最大值,即为 1000mm行程内的不直度误差,如图二中的δ m1>δ m2 ,则δ m1 即为1000mm行程内的 不直度误差。 δ δ δ 图二溜板移动的运动曲线

数控车床检验标准

共享知识分享快乐 一.写出CAK6140数控车床检验标准 1.机床外观的检查 机床外观的检查一般可按通用机床的有关标准进行,但数控机床是高技术设备,其外观质量的要求更高。外观检查内容有:机床有无破损;外部部件是否坚固;机床各部分联结是否可靠;数控柜中的MDI/CRT单元、位置显示单元、各印制电路板及伺服系统各部件是否有破损,伺服电动机(尤其是带脉冲编码器的伺服电机)外壳有无磕碰痕迹。 2.机床几何精度的检查 数控机床的几何精度综合反映机床的关键零部件组装后的几何形状误差。数控机床的几 何精度检查和普通机床的几何精度检查基本类似,使用的检查工具和方法也很相似只是检查要求更高。每项几何精度的具体检测办法和精度标准按有关检测条件和检测标准的规定进行。 同时要注意检测工具的精度等级必须比所测的几何精度要高一级。现以一台普通立式加工中心为例,列出其几何精度检测的内容: 1)工作台面的平面度。 2)各坐标方向移动的相互垂直度。 3)X坐标方向移动时工作台面的平行度。 4)Y坐标方向移动时工作服台面的平行度。 5)X坐标方向移动时工作台T形槽侧面的平行度。 6)主轴的轴向窜动。 7)主轴孔的径向圆跳动。 8)主轴沿Z坐标方向移动时主轴轴心线的平行度。 9)主轴回转轴心线对工作台面的垂直度。 10)主轴箱在Z坐标方向移动的直线度。 对于主轴相互联系的几何精度项目,必须综合调整,使之都符合允许的误差。如立式加工中心的轴和轴方向移动的垂直误差较大,则可以调整立柱底部床身的支承垫铁,使立柱适当前倾或后仰,以减少这项误差。但是这也会改变主轴回转轴心线对工作台面的垂直度误差,因此必须同时检测和调整,否则就会由于这一项几何精度的调整造成另一项几何精度不合格。 机床几何精度检测必须在地基及地脚螺栓的混凝土完全固化以后进行。考虑到地基的稳定时间过程,一般要求在机床使用数月到半年以后再精调一次水平。 检测机床几何精度常用的检测工具有:精密水平仪、900角尺、精密方箱、平尺、平行光管、千分表或测微仪以及高精度主轴心棒等。各项几何精度的检测方法按各机床的检测条件规定。各种数控机床的检测项目也略有区别,如卧式机床比立式机床多几项与平面转台有关的几何精度。在检测中要注意消除检测工具和检测方法的误差,同时应在通电后各移动坐标往复运动几次,主轴在中等转速回转几分钟后,机床稍有预热的状态下进行检测。 3.机床性能及数控功能的试验 根据《金属切削机床试验规范总则》的规定,试验项目包括可靠性、静刚度、空运转振动、热变形、抗振性切削、噪声、激振、定位精度、主轴回转精度、直线运动不均匀性及加工精度等。在进行机床验收时,各验收内容需按照机床出厂标准进行。 1.机床定位精度的检查 数控机床的定位精度是表明机床各运动部件在数控装置控制下所能达到的运动精度。因此,更具实测的定位精度数值,可以判断出该机床以后在自动加工中所能达到的最好的加工精度。.

数控机床精度检测项目及常用工具

数控机床精度检测项目及常用工具 随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。 雷尼绍ML10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:BS4656英国三测机标准;BS3800英国机床标准;ISO 230-2国际标准;VDI/DGQ 3441德国工程师学会机床标准;VDI 2617德国工程师学会三测机标准;NMTBA美国机床协会标准;GB10931-89中国国家标准;ASME B89.1.12M美国机械工程师学会标准;ASME B5.54美国机械工程师学会标准;E60—099法国标准;JISB2330日本国家标准。 2 英国雷尼绍公司先进技术 英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成系列质量保证手段。她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。 2.1ML10激光干涉仪 雷尼绍ML10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1PPM(在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎! 为使大家进一步了解ML10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ML10激光干涉仪在精度检测中的应用。 (1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。 (2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差

CA6140车床各项精度检验

下面以CA6140型卧式车床为例,介绍其总装配方法及其工艺要点: (1)床身导轨 床身导轨是床鞍移动的导向面,是保证刀具移动直线性的关键,图7-53所示为卧式车床床身导轨的截面图,其中2、6、7为床鞍用导轨,3、4、5为尾座用导轨,1、8为压板用导轨。 床身与床脚用螺钉连接,床身是车床的基础,也是车床总装配的基准部件。床身导轨精加工往往也是在床身与床脚结合后再进行,以消除连接时变形造成的误差,床身最终应达到的要求如下: 1)床身导轨的几何精度 ①床鞍导轨的直线度在竖直平面内,全长上为0.03mm,在任意500mm 测量长度上为0.015mm,只许凸;在水平面内,全长上为0.025mm。 ②床鞍导轨的平行度(床身导轨的扭曲度)全长上为0.04mm。 ③床鞍导轨与尾座导轨的平行度在竖直平面与水平面均为全长上0.04mm,任意500mm测量长度上为0.03mm。 ④床鞍导轨对床身齿条安装面的平行度全长上为0.03mm,在任意500mm测量长度上为0.02mm,只许床头处厚。 2)接触精度 刮削导轨每25mm×25mm范围内接触点应大于10点,磨削导轨则以接触面积大小来评定接触精度的高低。 3)表面粗糙度 刮削导轨表面粗糙度一般在Ra1.6μm以下;磨削导轨表面粗糙度值在Ra0.8μm以下。 4)硬度 一般导轨表面硬度应在170HB以上,并且在全长范围内硬度一致;与之相配合件的硬度应比导轨硬度稍低。 5)导轨几何形状的稳定性 导轨在使用中应不变形。除采用刚度大的结构外,还应进行良好的时效处理,以消除内应力,减少装配和使用中的变形。 (2)床身与床脚结合的装配工艺 1)床身装到床脚上,先将各结合面的毛刺清除并倒角。在床身、床脚连接螺钉上垫等高垫圈,以保证结合面平整贴合,防止床身紧固时产生变形。同时在结合面间加入1~2mm 厚纸垫,以防止漏油。 2)当床身导轨精度由磨削来达到时,可将已磨好的床身部件直接置于可调的机床调整垫铁上,用水平仪指示读数来调整各垫铁使床身平导轨面处于自然水平位置,用桥板和水平仪指示读数将床鞍用导轨的扭曲误差调整至最小值。 3)床身导轨刮起削是单件小批生产或机修中常用的方法,刮削前应将可调垫铁置于床脚地脚螺钉附近,用水平仪调整床身处于水平位置,使各垫铁均匀受力,床身放置稳定后即可开始刮削。刮削时按下列步骤进行: ①选择刮削量最大,导轨中最重要的和精度最高的床鞍用导轨6﹑7作为刮削基础(见图7-53)。用角度平尺或桥形平尺研点,凹V行部等边垫铁和水平仪测量导轨再竖直面上的自直线度并绘导轨曲线度。对于精密车床刮研时,还需用光学平直仪导轨再水平面内的直线度误差。待刮削至导轨直线度,接触研点数和表面粗糙度均符合要求为止。 ②以6﹑7面为基础,用平直研点刮平面导轨面2。要保证其直线度及与基准导轨面6﹑7的平面度要求。 ③测量导轨再竖直平面内直线度及床鞍导轨平行度(扭曲),方法如图7-54所示,使

数控切割机机床几何精度国家标准

数控切割机机床几何精度国家标准 数控机床的几何精度是综合反映机床主要零部件组装后线和面的形状误差、位置或位移误差。根据GB T 17421.1-1998《机床检验通则第1部分在无负荷或精加工条件下机床的几何精度》国家标准的说明有如下几类: (一)、直线度 1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度; 2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度; 3、运动的直线度,如立式加工中心X轴轴线运动的直线度。 xx测量方法有: 平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。 角度测量方法有: 精密水平仪法,自准直仪法和激光干涉仪法。 (二)、平面度(如立式加工中心工作台面的平面度) 测量方法有: 平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 (三)、平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度; 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度; 等距度,如立式加工中心定位孔与工作台回转轴线的等距度; 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 测量方法有:

平尺和指示器法,精密水平仪法,指示器和检验棒法。 (四)、垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 测量方法有: 平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器)。 (五)、旋转 径向跳动,如数控卧式车床主轴轴端的卡盘定位锥面的径向跳动,或主轴定位孔的径向跳动;周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动; 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 测量方法有: 指示器法,检验棒和指示器法,钢球和指示法。

数控车床几何精度检测

数控车床几何精度检测 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如0001 所示,水平仪沿Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如0002 所示,水平仪沿X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

2.溜板在水平面内移动的直线度 检验工具:指示器和检验棒,百分表和平尺 检验方法:如0003 所示,将直验棒顶在主轴和尾座顶尖上;再将百分表固定在溜板上,百分表水平触及验棒母线;全程移动溜板,调整尾座,使百分表在行程两端读数相等,检测溜板移动在水平面内的直线度误差。 3.尾座移动对溜板移动的平行度 ☆垂直平面内尾座移动对溜板移动的平行度 ☆水平面内尾座移动对溜板移动的平行度 检验工具:百分表 检验方法:如0004 所示,将尾座套筒伸出后,按正常工作状态锁紧,同时使尾座尽可能的靠近溜板,把安装在溜板上的第二个百分表相对于尾座套筒的端面调整为零;溜板移动时也要手动移动尾座直至第二个百分表的读数为零,使尾座与溜板相对距离保持不变。按此法使溜板和尾座全行程移动,只要第二个百分表的读数始终为零,则第一个百分表相应指示出平行度误差。或沿行程在每隔300mm 处记录第一个百分表读数,百分表读数的最大差值即为平行度误差。第一个指示器分别在图中ab 位置测量,误差单独计算。

4.主轴跳动 ☆主轴的轴向窜动 ☆主轴的轴肩支承面的跳动 检验工具:百分表和专用装置 检验方法:如0005 所示,用专用装置在主轴线上加力 F ( F 的值为消除轴向间隙的最小值),把百分表安装在机床固定部件上,然后使百分表测头沿主轴轴线分别触及专用装置的钢球和主轴轴肩支承面;旋转主轴,百分表读数最大差值即为主轴的轴向窜动误差和主轴轴肩支承面的跳动误差 5.主轴定心轴颈的径向跳动 检验工具:百分表 检验方法:如0006 所示,把百分表安装在机床固定部件上,使百分表测头垂直于主轴定心轴颈并触及主轴定心轴颈;旋转主轴,百分表读数最大差值即为主轴定心轴颈的径向跳动误差

平床身数控车床精度几何检验表

数控车床几何精度检验表 序号检验项目简图允差mm 实测mm G1 导轨调平 a. 纵向 导轨在垂直平面 内的直线度 b. 横向 导轨的平行度(a) 500<Dc≤1000 0.02(凸) 局部公差:在任意250测量长度上为0.0075 (b) 0.04/1000 G2 溜板移动在水平 面内的直线度 (尽可能在两顶 尖间轴线和刀尖 所确定的平面内 检验)500<Dc≤1000 0.02 Dc>1000 最大工件长度每增加 1000允差增加0.005 最大允差: 0.03 G3 尾座移动对溜板 移动的平行度: a.在垂直平面内 b.在水平面内Dc≤1500 a和 b:0.03 局部公差:在任意500测量长度上为0.02 G4 主轴端部的跳 动: a.主轴的轴向窜 动 b.主轴轴肩支承 面的跳动a: 0.01 b: 0.02 (包括轴向窜动) G5 主轴定心轴径的 径向跳动 0.01 G6 主轴锥孔轴线的 径向跳动 a.靠近主轴端 部; b.距主轴端面 300处a: 0.01 b: 在 300测量长度上为: 0.02

序号检验项目简图允差mm 实测mm G7 主轴轴线对溜板 移动的平行度 a.在垂直平面 内; b.在水平面内a: 在 300测量长度上为: 0.02(只许向上偏) 冷检:-0.01~-0.02 b: 在 300测量长度为: 0.015(只许向前偏) G8 主轴顶尖的跳动0.015 G9 尾座套筒轴线对 溜板移动的平行 度 a.在垂直平面内 b.在水平面内a: 在 100测量长度上为: 0.015(只许向上偏) b: 在 100测量长度为: 0.01(只许向前偏) G10 尾座套筒锥 孔轴线对溜板移 动的平行度 a.在垂直平面 内; b.在水平面内a: 在 300测量长度为: 0.03(只许向上偏)b: 在 300测量长度为: 0.03(只许向前偏) G11 床头和尾座两顶 尖的等高度0.040 (只许尾座高) 冷检:0.05~0.07 G12 横刀架横向移动 对主轴轴线的垂 直度0.02/300 (偏差方向α≥ 90°) 操作学员(签字):指导教师(签字):年月日年月日

车床几何精度检测及调整

实验三车床几何精度检测及调整 实验项目性质:综合性 实验计划学时:2学时 一、实验目的 1、了解进行车床几何精度检测、加工精度检测常用的工具及其使用方法 2、了解ISO标准、GB中常见的机床几何精度及加工精度检测项目标准数据。 3、掌握机床几何精度概念。 二.实验原理 机床的加工精度是衡量机床性能的一项重要指标。影响机床加工精度的因素很多 , 有机床本身的精度影响 , 还有因机床及工艺系统变形、加工中产生振动、机床的磨损以及刀具磨损等因素的影响。在上述各因素中 ,机床本身的精度是一个重要的因素。 例如在车床上车削圆柱面 ,其圆柱度主要决定于工件旋转轴线的稳定性、车刀刀尖移动轨迹的直线度以及刀尖运动轨迹与工件旋转轴线之间的平行度 ,即主要决定于车床主轴与刀架的运动精度以及刀架运动轨迹相对于主轴的位置精度。 机床的精度包括几何精度、传动精度、定位精度以及工作精度等 , 不同类型的机床对这些方面的要求是不一样的。车床的几何精度,是指车床在不工作情况下,对车床工作精度有直接影响的零部件本身及其相互位置的几何精度。属于这类精度的有:车床溜板移动的直线性及其与它表面间相互的不平行度;车床主轴的径向跳动和轴向窜动,及其中心线与溜板移动方向的不平行度;主轴锥孔中心线对机床导轨的不等距离等等。 三、实验步骤 1.床身导轨的直线度和平行度 ☆纵向导轨调平后,床身导轨在垂直平面内的直线度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 Z 轴向放在溜板上,沿导轨全长等距离地在各位置上检验,记录水平仪的读数,并记入“报告要求”中的表 1 中,并用作图法计算出床身导轨在垂直平面内的直线度误差。 ☆横向导轨调平后,床身导轨的平行度 检验工具:精密水平仪 检验方法:如图所示,水平仪沿 X 轴向放在溜板上,在导轨上移动溜板,记录水平仪读数,其读数最大值即为床身导轨的平行度误差。

精度标准

精度与精度是不一样的! 在一份数控机床的促销文章上,机床A的“定位精度”标为0.004mm,而在另一生产商的样本上,同类机床B的“定位精度”标为0.006mm。从这些数据,你会很自然地认为机床A比机床B 的精度要高。然而,事实上很有可能机床B比机床A的精度要高,问题就在于机床A和B的精度分别是如何定义的。 所以,当我们谈到数控机床的“精度”时,务必要弄清标准、指标的定义及计算方法。 1 精度定义 一般说来,精度是指机床将刀尖点定位至程序目标点的能力。然而,测量这种定位能力的办法很多,更为重要的是,不同的国家有不同的规定。 日本机床生产商标定“精度”时,通常采用JISB6201或JISB6336或JISB6338标准。JISB6201一般用于通用机床和普通数控机床,JISB6336一般用于加工中心,JISB6338则一般用于立式加工中心。上述三种标准在定义位置精度时基本相同,文中仅以JIS B6336作为例子,因为一方面该标准较新,另一方面相对于其它两种标准来说,它要稍稍精确一些。 欧洲机床生产商,特别是德国厂家,一般采用VDI/DGQ3441标准。 美国机床生产商通常采用NMTBA(National Machine Tool Builder's Assn)标准(该标准源于美国机床制造协会的一项研究,颁布于1968年,后经修改)。 上面所提到的这些标准,都与ISO标准相关联。 当标定一台数控机床的精度时,非常有必要将其采用的标准一同标注出来。同样一台机床,因采用不同标准会显示出不同的数据(采用JIS标准,其数据比用美国的NMTBA标准或德国VDI标准明显偏小)。 2 同样的指标,不同的含义 经常容易混淆的是:同样的指标名在不同的精度标准中代表不同的意义,不同的指标名却具有相同的含义。上述4种标准,除JIS标准之外,皆是在机床数控轴上对多目标点进行多回合测量之后,通过数学统计计算出来的,其关键不同点在于:(1)目标点的数量;(2)测量回合数;(3)从单向还是双向接近目标点(此点尤为重要);(4)精度指标及其它指标的计算方法。 这是4种标准的关键区别点描述,正如人们所期待的,总有一天,所有机床生产商都统一遵循ISO 标准。因此,这里选择ISO标准作为基准。附表中对4种标准进行了比较,本文仅涉及线性精度,因为旋转精度的计算原理与之基本一致。 3 ISO标准

数控机床精度检验

数控机床精度检测 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1、检验所用的工具 1.1、水平仪 水平:0.04mm/1000mm 扭曲:0.02mm/1000mm 水平仪的使用和读数 水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。 使用方法: 测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算: 实际倾斜值=分度值×L×偏差格数

水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。 1.2、千分表

1.3、莫氏检验棒

2、检验内容 2.1、相关标准(例) 加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998 加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998 加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998 机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000 加工中心技术条件JB/T8801-1998 2.2、检验内容 精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。 2.2.1、数控机床几何精度的检测 机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。所使用的检测工具精度必须比所检测的精度高一级。其检测项目主要有: 直线度 一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。 部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。 运动的直线度,如立式加工中心X轴轴线运动的直线度。 平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度。 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度。 等距度,如立式加工中心定位孔与工作台回转轴线的等距度。 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 旋转 径向跳动,如数控卧式车床或主轴定位孔的径向跳动。 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动。 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 2.2.2、机床的定位精度检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值判断机床是否合格。其内容有:

一、数控机床的精度检验(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 一、数控机床的精度检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1. 几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所设的几何精度高一个等级。 以卧式加工中心为例,要对下列几何精度进行检验: 1)X、Y、Z坐标轴的相互垂直度; 2)工作台面的平行度; 3)X、Z轴移动时工作台面的平行度; 4)主轴回转轴线对工作台面的平行度; 5)主轴在Z轴方向移动的直线度; 6)X轴移动时工作台边界与定位基准的平行度; 7)主轴轴向及孔径跳动; 8)回转工作台精度。

2. 定位精度的检验 数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。 (1)定位精度检测的主要内容 机床定位精度主要检测内容如下: 1) 直线运动定位精度(包括X 、Y 、Z 、U 、V 、W 轴); 2) 直线运动重复定位精度; 3) 直线运动轴机械原点的返回精度; 4) 直线运动失动量的测定; 5) 直线运动定位精度(转台A 、B 、C 轴); 6) 回转运动重复定位精度; 7) 回转轴原点的返回精度; 8) 回转运动矢动量的测定。 (2)机床定位精度的试验方法 检查定位精度和重复定位精度使用得比较多的方法是应用精密线纹尺和读数显微镜(或光电显微镜)。以精密线纹尺作为测量时的比较基准,测量时将精密线纹尺用等高垫按最佳支架(见图5.1)安装在被测部件例如工作台的台面上,并用千分表找正。显微镜可安装在机床的固定部件上,调整镜头使与工作台垂直。在整个坐标的全长上可选取任意几个定位点,一般为5~15个,最好是非等距的。对每个定位点重复进行多次定位。可以从单一方向趋近定位点,也可以从两个方向分别趋紧,以便揭示机床进给系统中间隙和变形的影响。每一次定位的误差值X 可按下式计算: ()()00y y s s X L L ---= 式中 0s ——基准点或零点时显微镜的读数; L s ——工作台移动L 距离后显微镜的读数; 0y 、L y ——相应于0s 和L s 时机床调位读数装置或数码显示装置的读数,对于数

机床几何精度检查方法

在机床完成空运行及相关功能检测后,数控机床的安装调试过程就进入了精度检验环节,这个环节也是用户和设备提供方最关心和最重要的环节,也是设备检测验收中最常见的环节。数控机床全部检测验收是一项复杂的工作,对检测手段及技术要求也很高。它需要使用各种高精度的仪器,对机床的机、电、液、气等各部分性能及整机综合性能进行检测,最后才能对该机床得出综合结论。这项工作目前在国内只有国家权威部门(如国家机床质量监督检验中心)才能进行。对一般的数控机床用户、购买一台价格昂贵的数控机床后,千万不要吝啬几千元的验收费用,至少应对数控机床的几何精度、位置精度、工作精度及功能等重要指标进行验收,确保达到合同所约定的验收标准的要求,并将这些数据保存好,以作为日后机床维修调整时的依据。同时要对采购合同中约定的重要条款进行详细的检验验收 (一)、直线度 1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度; 2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度; 3、运动的直线度,如立式加工中心X轴轴线运动的直线度。 长度测量方法有:平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。角度测量方法有:精密水平仪法,自准直仪法和激光干涉仪法。(二)、平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。(三)、平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度;运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度;等距度,如立式加工中心定位孔与工作台回转轴线的等距度;同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。测量方法有:平尺和指示器法,精密水平仪法,指示器和检验棒法。(四)、垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度;运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 测量方法有:平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器) 五)、旋转

与车床相关的行业标准108条

1.[JB机械标准] 单柱、双柱立式车床精度检验JB/T 4116-96 单柱、双柱立式车床精度检验JB/T 4116-96 中华人民共和国机械行业标准本标准规定了单柱、双柱立式车床几何精度和工作精度的要求及其检验方法。本标准适用于最大车削直径为 630~8000mm 的一般用途的工作台固定型单柱、双柱立式车床。 日期:2008-12-06 人气:434 2.[JB机械标准] 数控立式车床精度检验JB/T 9934.1-1999 数控立式车床精度检验JB/T 9934.1-1999 本标准规定了数控立式车床几何精度和工作精度的要求及其检验方法。本标准适用于最大车削直径630~5000 mm一般用途的数控立式车床。立式车削加工中心也可参照使用。 日期:2008-11-29 人气:326 3.[JB机械标准] 卧式车床性能试验方法JB/T 2322.1-2002 卧式车床性能试验方法JB/T 2322.1-2002 本标准规定了卧式车床的性能试验项目和试验方法。 本标准适用于床身上最大回转直径250mm~1250mm,最大工作长度至16000mm的普通级、精密级的卧式车床、马鞍车床、无丝杠车床、卡盘车床及球面车床的型式检验和产品水平评价.. 日期:2008-11-30 人气:226 4.[JB机械标准] 数控卧式车床性能试验规范JB/T 4368.4-1996 数控卧式车床性能试验规范JB/T 4368.4-1996 中华人民共和国机械行业标准本标准规定了数控卧式车床的试验项目和试验方法。本标准适用于最大车削直径200~1000 mm,最大车削长度至5000 mm的数控卧式车床型式试验和产品水平评价。其试验项目、试验条件和试验方.. 日期:2008-12-07 人气:222 5.[JB机械标准] 数控卧式车床技术条件JB/T 4368.3-1996 数控卧式车床技术条件JB/T 4368.3-1996 中华人民共和国机械行业标准本标准规定了数控卧式车床制造和验收的要求。本标准适用于床身上最大车削直径200~1000 mm的一般用途的普通精度级数控卧式车床。 日期:2008-12-07 人气:219 6.[JB机械标准] 重型卧式车床精度检验JB/T 3663.3-1999 重型卧式车床精度检验JB/T 3663.3-1999 中华人民共和国机械行业标准本标准规定了重型卧式车床的预调、几何精度和工作精度的要求及检验方法。标准适用于床身上最大回转直径 1000~5000 mm,顶尖间最大工件重量大于或等于10 t 的一般用途的普通精度重型卧式车床.. 日期:2008-12-06 人气:203

1数控机床精度分析

1数控机床精度分析。 根据GB/T16462-2007《数控车床和车削中心检验条件》,卧式数控车床精度检验主要有3大项:几何精度检验(GB/T16462.1-2007);线性轴定位精度和重复定位精度检验(GB/T16462.4-2007)即位置精度检验;精加工试件精度检验(GB/T16462.6-2007)即工作精度检验。 数控车床几何精度主要包括主轴回转运动精度,线性轴直线运动精度。 主轴回转时,其回转轴线的空间位置应该固定不变,但实际上由于主轴部件中轴承,轴颈,轴承座孔等的制造误差和配合质量,润滑条件的影响,主轴实际回转轴线对其理想回转轴线呈现周期性飘移,即为主轴回转误差,表现为径向圆跳动和轴向窜动。主轴轴承精度等级,主轴支承轴颈的圆度误差,主轴前后支承的同轴度误差,主轴箱体与主轴轴承系统的刚性,主轴及随其回转的零件的不平衡,主轴箱装配质量及主轴回转过程中热变形等因素影响了主轴的几何精度。 机床床身底座刚性和动态特性-负荷切削下机床抗变形能力,导轨布置形式,导轨自身的几何精度,导轨润滑条件等因素影响了线性轴直线运动精度。GB/T16462.4-2007之线性轴定位精度是指在该轴行程内任意1个点定位时的误差范围,它综合反映了机床存在的几何误差,运动误差,热变形误差等,它与机床的几何精度共同对机床切削精度产生重要的影响,是数控车床最关键的技术指标。线性轴重复定位精度,反映了该轴在行程内任意定位点的定位稳定性,这是衡量该轴能否稳定可靠工作的基本指标。 影响数控车床位置精度主要有丝杠的导程误差,传动链的反向间隙误差,导轨的摩擦阻尼,滚珠丝杠轴系的装配精度,伺服电机的惯量匹配等因素。 数控车床的电机,液压泵,卡盘油缸等连续运转的部件在运动过程中摩擦产生的热量会引起机床结构件的温度产生波动。一方面,这些结构件会因温度变化产生线性尺寸的膨胀或收缩;另一方面,由于零件结构的不对称性,在内部热应力的作用下,必然出现结构的扭曲变形。结构件热变形也是影响数控车床位置精度的一个重要因素。 只有提高数控车床的几何精度和位置精度,其工作精度才有可能得到保证。数控车床工作精度不仅与机床自身静态精度有关,还与伺服系统跟踪误差,位置检测误差,刀具系统的位置误差,工件装夹误差有关。另外,加工工艺的合理性,操作者的编程水平也影响到零件加工的稳定性。因此,数控车床工作精度是一个综合影响的结果。 2提高数控车床精度保持性的技术措施。 数控车床已有数十年的发展历史,已积累形成了一系列成熟的先进技术。生产1台性能稳定良好的机床,不是在于对每个零件提出很高要求,也不是在于选择使用高精度的配套件,而应在数控车床精度分析的基础上,掌握规律,从设计,制造开始就要进行全过程控制。 2.1做好数控车床的总体设计。 当前多数机床制造企业采取主机结构自行设计,功能部件外购的策略。机床

机床几何精度检测方法

几何精度检测方法 一百分表、千分表及杠杆千分表的特点及适用范围 百分表的分度值为0.01mm,其读数清晰,表针跳动较小,常用的一般分为0~5、0~10mm两种量程,测量时测杆的压缩量一般为0.15~0.2mm(如图1),适用于较低精度要求的测量。百分表经过震动后测杆可以很容易的回到原始位置,在震动的情况下检测不易磨损,损坏率低。 千分表(指常用的指针式或压杆式千分表)的分度值为0.001mm,因其比百分表的放大比更大,分度值更小,测量的精确度更高,适用于较高精度要求的测量。千分表受到震动后测量杆不容易恢复到原始位置,可能会影响到检测数据的真实性,因此在震动较小的情况下使用较好(如图2)。 杠杆千分表体积小巧,测杆可以按需转动,并能以正反两个方向测量工件,因此常用于间隙较小的槽、孔、浮动件(如测量丝杠远端跳动)等千分表难以测量的情况,其测杆压缩量一般为0.03~0.06mm(如图3),灵敏度高。同样杠杆千分表适合在震动小的情况下使用。另外杠杆千分表不适合长期在压缩量较大的情况下工作,因为压缩量过大会造成测量数据失真,误差变大,而且会加快杠杆千分表各部件的磨损,使其老化,失去作用,因此在测量空间允许的情况下,一般优先选用千分表或百分表。 图1 百分表 图2 千分表 图3 杠杆千分表

二测量前提说明 1. 本说明所有图示均以Carver600G为例; 2. 在检测前应保证测量所用仪器可以正常使用; 3. 在检测前应保证测量所用工具以及被测部分的清洁; 4. 在测量过程中移动各轴时,进给速度不能过大,一般为1.8m/min左右; 5. 本说明所指方向(即前、后、左、右)均为人站立在机床正面,面对机床时(如图4)。 图4 三、各精度指标的检测方法 1.检测、调整床身水平度 1.1 所需工具 水平仪(刻度值为0.02mm)、活动扳手 1.2准备工作 1)检查水平仪精度是否符合标准 将水平仪水平放置,读出气泡位置,然后将水平仪原地旋转180°,比较旋转前后水平仪气泡位置。如果旋转水平仪之后,气泡的偏移方向不同,或者偏移方向相同但是气泡偏移的位置之差超过0.5格,则说明水平仪精度不符合要求(前提是检验水平仪的基准面是水平的)。 2)检查放置机床的地面是否符合要求 由于机床的四个地脚处的减震垫铁的调节范围为12mm,所以放置机床的地面高度差不能超过10mm。

数控机床几何精度检测教学教材

数控机床几何精度检测 一、机床精度概念 机床的加工精度是衡量机床性能的一项重要指标。影响机床加工精度的因素很 多 , 有机床本身的精度影响 , 还有因机床及工艺系统变形、加工中产生振动、机床的磨损以及刀具磨损等因素的影响。在上述各因素中 ,机床本身的精度是一个重要的因素。例如在车床上车削圆柱面 ,其圆柱度主要决定于工件旋转轴线的稳定性、车刀刀尖移动轨迹的直线度以及刀尖运动轨迹与工件旋转轴线之间的平行度 ,即主要决定于车床主轴与刀架的运动精度以及刀架运动轨迹相对于主轴的位置精度。 机床的精度包括几何精度、传动精度、定位精度以及工作精度等 , 不同类型的机床对这些方面的要求是不一样的。 (一)几何精度 机床的几何精度是指机床某些基础零件工作面的几何精度 ,它指的是机床在不运动 ( 如主轴不转 ,工作台不移动)或运动速度较低时的精度.它规定了决定加工精度的各主要零、部件间以及这些零、部件的运动轨迹之间的相对位置允差。例如 ,床身导轨的直线度、工作台面的平面度、主轴的回转精度、刀架溜板移动方向与主轴轴线的平行度等。在机床上加工的工件表面形状 ,是由刀具和工件之间的相对运动轨迹决定的 ,而刀具和工件是由机床的执行件直接带动的 ,所以机床的几何精度是保证加工精度最基本的条件。 (二)传动精度 机床的传动精度是指机床内联系传动链两末端件之间的相对运动精度。这方面的误差就称为该传动链的传动误差。例如车床在车削螺纹时 ,主轴每转一转 ,刀架的移动量应等于螺纹的导程。但是 ,实际上 ,由于主轴与刀架之间的传动链中 ,齿轮、丝杠及轴承等存在着误差 ,使得刀架的实际移距与要求的移距之间有了误差 ,这个误差将直接造成工件的螺距误差。为了保证工件的加工精度 ,不仅要求机床有必要的几何精度 ,而且还要求内联系传动链有较高的传动精度。 (三)定位精度 机床定位精度是指机床主要部件在运动终点所达到的实际位置的精度。实际位置与预期 位置之间的误差称为定位误差。对于主要通过试切和测量工件尺寸来确定运动部件定位位置的机床 ,如卧式车床、万能升降台铣床等普通机床 , 对定位精度的要求并不太高。但对于依靠机床本身的测量装置、定位装置或自动控制系统来确定运动部件定位位置的机床 ,如各种自动化机床、数控机床、坐标测量机等 ,对定位精度必须有很高的要求。 机床的几何精度、传动精度和定位精度通常是在没有切削载荷以及机床不运动或运动速度较低的情况下检测的 ,故一般称之为机床的静态精度。静态精度主要决定于机床上主要零、部件 , 如主轴及其轴承、丝杠螺母、齿轮以及床身等的制造精度以及它们的装配精度。 (四)工作精度 静态精度只能在一定程度上反映机床的加工精度 ,因为机床在实际工作状态下 ,还有一系列因素会影响加工精度。例如 ,由于切削力、夹紧力的作用,机床的零、部件会产生弹性变形 ; 在机床内部热源 ( 如电动机、液压传动装置的发热 ,轴承、

机床几何精度检验

机床几何精度检验燕山大学机电液一体化实验教学中心

1.熟悉机床几何精度检验的内容、原理、方法和步骤 2.掌握仪器的使用,以及实验数据的处理,误差曲线的绘制 3.通过实验,了解被检验机床的几何精度状况和加工精度关系

设备:CA6140车床 仪器:框式水平仪 自准直仪 验棒 千分表 磁性表座

机床几何精度是指机床在不运动(如主轴不转、工作台不移动等)或运动速度较低时的精度,它规定决定加工精度的各主要零部件间以及这些部件的运动轨迹相对运动的允差。一切机床都有一定的几何精度要求,常用机床已经制定了这方面的标准,按JB2314—78普通机床规定,车床精度检验包括车床导轨直线度、平行度、车端面的平面度,主轴回转精度18项。

—78 普通机床几何精度检验标准 序号项目名称允差 1溜板移动在垂直面不直度0.02mm/m只许凸 2溜板移动时的倾斜度0.03mm/m 3溜板移动在水平面内的不直度0.015mm/m 4主轴锥孔中心线的径向跳动近主轴端0.01mm,在 300mm处0.02mm 5溜板移动对主轴中心线的不平度上母线0.03mm,只许上。侧 母0.015mm只许向操作者 6主轴锥孔中心线和尾架套筒中心 线对移动溜板移动的不等高度 0.06mm只许尾架高 7溜板移动对尾座套筒锥孔中心线 的不平行度上母线0.03mm,侧母线0.03mm 8主轴轴肩支撑面的径向跳动0.02mm 9主轴定心轴承颈的径向跳动0.01mm

1.框式水平仪的工作原理: 框式水平仪主要部分是一个弧形玻璃管,它的内壁磨成100米左右的曲率半径。刻有刻度的玻璃管内充以少量乙醚液体,中间留一个气泡。如图1所示。不论水平仪放在什么位置,玻璃管中的页面总是处于水平,气泡总是向高处移动,读出气泡两端边缘,移动的格数,即可求出相应的高度差。水平仪的刻度值为 0.02/1000,它表示将该水平仪放在1米长的平尺表面上,在平尺 右端垫起0.02mm的高度,平尺便倾斜一个a角,此时,水平仪正好移动一个刻度值。 △H △H L1 L 图1 水平仪测量升落差的原理图

车床验收标准

车床检验标准 车床标准较为完善。有国家标准、行业标准等以及作为制造厂内控标准使用的企业标准,供需双方在合同上规定的技术条款和特殊要求也是检验依据。车床的相关标准,专业标准和产品分等标准齐全。主要标准有:GB6477.3-86《金属切削机床术语机床》,GB5268-85《车床刀架装刀槽高度》,ZBJ53019-90、JB/T5598-91《仪表车床参数与系列型谱》,JB4135-85《仪表车床精度》,JB/T4136-96《仪表车床技术条件》,JB4138-85《精整车床精度》,JB3754-84《单轴纵切自动车床参数》,JB1464-94《单轴纵切自动车床精度》, JB/T54012-93《单轴纵切自动车床技术条件》,ZBJ53010—89《单轴自动车床技术条件》,JB3644-84、4321-84《卧式多轴自动车床精度、技术条件》,JB/T5762-91、JB/T5597-91《转塔车床参数与系列型谱》,GB4683-93、ZBJ53011-89《转塔车床精度、技术条件》,ZBJ53009-89、ZB/Z123-76《立式车床参数与系列型谱》,JB4116-96《单柱双柱立式车床精度》, JB/T3317-93、JB/T6590-93《卡盘多刀车床参数与系列型谱》,ZBJ5307-90、ZBJ53018-90《卡盘多刀车床精度、技术条件》,GB1582-93、JB/T6085-92《卧式车床参数与系列型谱》,GB/T4020-97等效ISO1708:1989、 JB/T2322-93《卧式车床精度、技术条件》,JB/GQ1125-88、JB/GQ1126-88《简式数控卧式车床精度、技术条件》,JB4369-86、JBn4368-86《数控卧式车床精度、技术条件》,JB4117-85《重型卧式车床精度》,JB/T3849.1~3849.2-94《仿形车床精度、技术条件》。进行检验时,还须参照JB2670-82《金属切削机床检验通则》。出口产品不得低于一等品。 检验项目 检验时,除按照相关标准和制造验收技术要求进行外观检查外,主要应进行精度和性能检验。机床的精度是设计装配质量的体现,是设备性能的保证,各类车床的精度检验项目有20项左右,可归纳为:

相关文档
最新文档