2019-2020学年汕头市金平区中考数学模拟试卷(有标准答案)
【附5套中考模拟试卷】广东省汕头市2019-2020学年中考第三次质量检测数学试题含解析

广东省汕头市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万B .420510⨯C .62.0510⨯D .72.0510⨯2.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1. (2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2. (3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )A .0.01B .0.1C .10D .1003.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定4.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ). A .众数B .中位数C .平均数D .方差5.一次函数21y x =-的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下列图形中,是轴对称图形的是( )A .B .C .D .7.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50 人数23245211则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30 C .这些运动员的平均成绩是 2.25 D .这些运动员成绩的方差是 0.07258.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤169.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A .532410⨯B .632.410⨯C .73.2410⨯D .80.3210⨯.10.一个正多边形的内角和为900°,那么从一点引对角线的条数是( ) A .3B .4C .5D .611.如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .32C .74D .15412.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB=________________.14.如图,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S四边形CBFG=1:2;③∠ABC=∠ABF ;④AD 2=FQ•AC ,其中正确的结论的个数是______.15.因式分解:2312x -=____________.16.在直角坐标平面内有一点A(3,4),点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是_____.17.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y =kx+b 与直线y =mx+2相交于点A(32-,-1),则不等式mx+2<kx+b <0的解集为____.18.已知二次函数2y x 2x c =-++的部分图象如图所示,则c =______;当x______时,y 随x 的增大而减小.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解下列不等式组:6152(43){2112323x x x x ++-≥->①② 20.(6分)如图,有长为14m 的篱笆,现一面利用墙(墙的最大可用长度a 为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为xm ,面积为Sm 1.求S 与x 的函数关系式及x 值的取值范围;要围成面积为45m 1的花圃,AB 的长是多少米?当AB 的长是多少米时,围成的花圃的面积最大?21.(6分)如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=kx交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .求双曲线的解析式;求点C 的坐标,并直接写出y 1<y 2时x 的取值范围.22.(8分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么? 23.(8分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.24.(10分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 25.(10分)如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC,求出点C的坐标.26.(12分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.27.(12分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】【分析】根据题中的按键顺序确定出显示的数即可.【详解】=40,1=0.4,100.42=0.04,=0.4,1=40,0.1402=400,400÷6=46…4,则第400次为0.4.故选B.【点睛】此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.3.B【解析】【分析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.4.B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可. 详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选B .点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数 5.B 【解析】 【分析】由二次函数k 20b 10=>=-<,,可得函数图像经过一、三、四象限,所以不经过第二象限 【详解】解:∵k 20=>,∴函数图象一定经过一、三象限;又∵b 10=-<,函数与y 轴交于y 轴负半轴, ∴函数经过一、三、四象限,不经过第二象限 故选B 【点睛】此题考查一次函数的性质,要熟记一次函数的k 、b 对函数图象位置的影响 6.B 【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意; B 、是轴对称图形,故此选项符合题意; C 、不是轴对称图形,故此选项不合题意; D 、不是轴对称图形,故此选项不合题意; 故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形. 7.B 【解析】 【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案. 【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.8.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.9.C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】32400000=3.24×107元.故选C.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.10.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.11.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.12.D【解析】【分析】根据同底数幂的乘除法运算进行计算. 【详解】3x 2y 2⋅x 3y 2÷xy 3=6x 5y 4÷xy 3=6x 4y.故答案选D. 【点睛】本题主要考查同底数幂的乘除运算,解题的关键是知道:同底数幂相乘,底数不变,指数相加. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.4 【解析】∵点C 是线段AD 的中点,若CD=1, ∴AD=1×2=2,∵点D 是线段AB 的中点, ∴AB=2×2=4, 故答案为4. 14.①②③④ . 【解析】 【分析】由正方形的性质得出∠FAD =90°,AD =AF =EF ,证出∠CAD =∠AFG ,由AAS 证明△FGA ≌△ACD ,得出AC =FG ,①正确;证明四边形CBFG 是矩形,得出S △FAB =12FB•FG =12S 四边形CBFG ,②正确; 由等腰直角三角形的性质和矩形的性质得出∠ABC =∠ABF =45°,③正确; 证出△ACD ∽△FEQ ,得出对应边成比例,得出④正确. 【详解】解:∵四边形ADEF 为正方形, ∴∠FAD =90°,AD =AF =EF , ∴∠CAD +∠FAG =90°, ∵FG ⊥CA ,∴∠GAF +∠AFG =90°, ∴∠CAD =∠AFG , 在△FGA 和△ACD 中,G CAFG CAD AF AD ===∠∠⎧⎪∠∠⎨⎪⎩, ∴△FGA ≌△ACD (AAS ), ∴AC =FG ,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=12FB•FG=12S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.15.3(x-2)(x+2)【解析】【分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【详解】原式=3(x2﹣4)=3(x-2)(x+2).故答案为3(x-2)(x+2).【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.16.3 5【解析】【分析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可. 【详解】∵点A坐标为(3,4),∴,∴cosα=35, 故答案为35 【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.17.﹣4<x <﹣32 【解析】根据函数的图像,可知不等式mx+2<kx+b <0的解集就是y=mx+2在函数y=kx+b 的下面,且它们的值小于0的解集是﹣4<x <﹣32. 故答案为﹣4<x <﹣32. 18.3, >1【解析】【分析】根据函数图象与x 轴的交点,可求出c 的值,根据图象可判断函数的增减性.【详解】解:因为二次函数2y x 2x c =-++的图象过点()3,0. 所以96c 0-++=,解得c 3=.由图象可知:x 1>时,y 随x 的增大而减小.故答案为(1). 3, (2). >1【点睛】此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣2≤x <92. 【解析】【分析】先分别求出两个不等式的解集,再求其公共解.【详解】()6152432112323x x x x ⎧++⎪⎨-≥-⎪⎩f ①②, 解不等式①得,x <92, 解不等式②得,x≥﹣2, 则不等式组的解集是﹣2≤x <92. 【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.(1)S=﹣3x 1+14x ,143≤x< 8;(1) 5m ;(3)46.67m 1 【解析】【分析】(1)设花圃宽AB 为xm ,则长为(14-3x ),利用长方形的面积公式,可求出S 与x 关系式,根据墙的最大长度求出x 的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x ,即AB ;(3)根据二次函数的性质及x 的取值范围求出即可.【详解】解:(1)根据题意,得S =x (14﹣3x ),即所求的函数解析式为:S =﹣3x 1+14x ,又∵0<14﹣3x≤10, ∴1483x ≤<; (1)根据题意,设花圃宽AB 为xm ,则长为(14-3x ),∴﹣3x 1+14x =2.整理,得x 1﹣8x+15=0,解得x =3或5,当x =3时,长=14﹣9=15>10不成立,当x =5时,长=14﹣15=9<10成立,∴AB 长为5m ;(3)S =14x ﹣3x 1=﹣3(x ﹣4)1+48∵墙的最大可用长度为10m ,0≤14﹣3x≤10, ∴1483x ≤<, ∵对称轴x =4,开口向下,∴当x=143m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.21.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx=;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.22.(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】 试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.23.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.124.证明见解析【解析】解:∵42a c b +=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根. ∴240b ac -≥,∴24b ac ≥.25. (1) AB 的解析式是y=-13x+1.点B (3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2). 【解析】试题分析:(1)把A 的坐标代入直线AB 的解析式,即可求得b 的值,然后在解析式中,令y=0,求得x 的值,即可求得B 的坐标;(2)过点A 作AM ⊥PD ,垂足为M ,求得AM 的长,即可求得△BPD 和△PAB 的面积,二者的和即可求得;(3)当S △ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A 、B 、P 分别是直角顶点求解. 试题解析:(1)∵y=-13x+b 经过A (0,1), ∴b=1,∴直线AB 的解析式是y=-13x+1. 当y=0时,0=-13x+1,解得x=3, ∴点B (3,0).(2)过点A 作AM ⊥PD ,垂足为M ,则有AM=1,∵x=1时,y=-13x+1=23,P 在点D 的上方, ∴PD=n-23,S △APD =12PD•AM=12×1×(n-23)=12n-13 由点B (3,0),可知点B 到直线x=1的距离为2,即△BDP 的边PD 上的高长为2,∴S △BPD =12PD×2=n-23, ∴S △PAB =S △APD +S △BPD =12n-13+n-23=32n-1; (3)当S △ABP =2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.26.16【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率. 详解:列表如下:红 红 白 黑 红﹣﹣﹣ (红,红) (白,红) (黑,红) 红(红,红) ﹣﹣﹣ (白,红) (黑,红) 白(红,白) (红,白) ﹣﹣﹣ (黑,白) 黑 (红,黑) (红,黑) (白,黑) ﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P (两次摸到红球)==.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.27.(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元.【解析】【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.【详解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依题意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售价x(元)取整数,∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x﹣5)[400﹣40(x﹣10)]﹣2,当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
广东省汕头市2019-2020学年中考数学模拟试题含解析

广东省汕头市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 22.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,将Rt ∆ABC 绕直角项点C 顺时针旋转90°,得到∆A' B'C ,连接AA',若∠1=20°,则∠B 的度数是( )A .70°B .65°C .60°D .55°4.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:15.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ).A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=6.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .32 7.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.1(,0)3B.4(,0)3C.8(,0)3D.10(,0)38.边长相等的正三角形和正六边形的面积之比为()A.1∶3 B.2∶3 C.1∶6 D.1∶6 9.已知x a=2,x b=3,则x3a﹣2b等于()A.89B.﹣1 C.17 D.7210.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %11.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.312.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.14.计算:|-3|-1=__.15.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).16.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.17.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).18.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.20.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?21.(6分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图(1)),则sinB=AD c ,sinC=AD b ,即AD =csinB ,AD =bsinC ,于是csinB =bsinC ,即sin sin b c B C =,同理有:sin sin c a C A =,sin sin a b A B=,所以sin sin sin a b c A B C ==. 即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A = ;AC = ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C 处测得A 在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A 的距离AB .(结果精确到0.01,6≈2.449)22.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A )、去郊游(记为B )、去图书馆(记为C ).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.23.(8分)解分式方程:- =24.(10分)一天晚上,李明利用灯光下的影子长来测量一路灯D 的高度.如图,当在点A 处放置标杆时,李明测得直立的标杆高AM 与影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处放置同一个标杆,测得直立标杆高BN 的影子恰好是线段AB ,并测得AB =1.2m ,已知标杆直立时的高为1.8m ,求路灯的高CD 的长.25.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.26.(12分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?27.(12分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B。
广东省汕头市金平区2020年中考模拟考试数学试卷(有答案)-(九年级)

2020年金平区九年级学业模拟考试数学试卷说明:本试卷共4页,25小题,满分120 分.考试用时100 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题 (本大题10小题,每题3分,共30分)1.1-8的倒数是(▲)A.18B.﹣8 C.8 D.1-82.下图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是(▲)A.B.C.D.3.若一个正n边形的每个内角为150°,则这个正n边形的边数是(▲)A.10 B.11 C.12 D.134.地球的表面积约是510 000 000千米2,用科学记数法表示为(▲)A.0.51×109千米2B.5.1×108千米2C.5.1×107千米2D.51×107千米25.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为(▲)A.B.C.D.6.在Rt△ABC中,∠C=90°,如果BC=2,sinA=23,那么AB的长是(▲)A.3 B.43C5D137.如果代数式4y2﹣2y+5的值是9,那么代数式2y2﹣y+2的值等于(▲)A.2 B.3 C.﹣2 D.4OF E DCBAFEABC8. 下面是一位同学做的四道题,其中正确的是(▲)A .m 3+m 3=m 6B .x 2•x 3=x 5C .(﹣b )2÷2b=2bD .(﹣2pq 2)3=﹣6p 3q 6 9. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点, 以下说法错误的是(▲)A .OE=DCB .OA=OC C .∠BOE=∠OBAD .∠OBE=∠OCE10. 对于函数22y x =-+,下列结论:①.当x >1时,y <0; ②.它的图象经过第一、二、三象限;③.它的图象必经过点(-2,2); ④.y 的值随x 值的增大而增大,其中正确结论的个数是( ▲ )A .1B .2C . 3D .4 二.填空题(本大题6小题,每小题4分,共24分) 11. 比较大小:3 ▲ 7(填“>”、“<”或“=”) .12.如图,正六边形ABCDEF 内接于⊙O ,若AB=2,则⊙O 的半径为▲.13. 不等式组23-40x xx +<⎧⎨≤⎩的解集为▲.14.如图,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置, 若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 ▲ . 15. 已知满足()2350a a b -+--=,则ab =▲.16.如图,△ABC 的面积是4,点D 、E 、F 分别是BC 、AD 、BE 的中点, 则△C EF 的面积是 ▲ .三.解答题(一)(本大题3小题,每题6分,共18分)17.计算:()-2311192π⎛⎫-+- ⎪⎝⎭.18. 先化简,再求值(1122m m +-+)÷2244mm m -+,其中m =3.19. 光明市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成AA DE 这一工程.已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. 求甲、乙工程队每天各铺设多少米?四.解答题(二)(本大题3小题,每小题7分,共21分) 20.如图,在△ABC 中,∠ABC=60°,∠C=45°. (1)作∠ABC 的平分线BD ,与AC 交于点D ; (用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,证明:△ABD 为等腰三角形.21.某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有400名学生, 图2是根据各年级学生人数占全校 学生总人数的百分比绘制的扇形统 计图,请你估计全校学生中最喜欢 篮球活动的人数约为多少?22.如图,矩形ABCD 中,点E 是AD 的中点,连接EB ,EC . (1)求证:EB=EC ;(2)若∠BEC=60°,AE=1,求AB 的长.五.解答题(三)(本大题3小题,每小题9分,共27分)AB CDEFOF EDCA23.如图,反比例函数my x的图象上的一点A (2,3)在第一象限内,点B 在x 轴的正半轴上,且AB=AO ,过点B 作BC ⊥x 轴,与线段OA 的延长线相交于点C ,与反比例函数的图象相交于点D . (1)求反比例函数的解析式; (2)求点D 的坐标; (3)求证:CD=3BD .24.如图,AB 为半圆O 的直径,OD ⊥AB ,与弦BC 延长线交于点D ,与弦AC 交于点E . (1)求证: △AOE ∽△DOB ;(2)若点F 为DE 的中点,连接CF .求证:CF 为⊙O 的切线; (3)在(2)的条件下,若5tan A =12,求AB 的长.25.在Rt △ABC 中,∠C=90°,BC=3,AC=4,点D 从A 点出发,在线段AC 上以每秒1个单位的速度向C 匀速运动.DE ∥AB 交BC 于点E ,DF ∥BC ,交AB 于点F.连接EF.设运动时间为t 秒(0<t <4).(1)证明:△DEF ≌△BFE ;(2)设△DEF 的面积为S ,求S 与t 的函数关系式,并求出S 的最大值; (3)存在某一时刻t ,使△DEF 为等腰三角形.请你直接写出此时刻t 的值.2020年金平区九年级学业模拟考试数学参考答案一.选择题1. B2. A3. C4.B5. C6. A7. D8.B9. D 10. A二.填空题11. >. 12. 2 . 13.14x <≤. 14. 30° . 15. -8 . 16. 1 . 三.解答题(一)17.解:原式=1+(﹣1)﹣3+4, 4分=0-3+4, 5分 =1. 6分18. 解:原式=()()()2222222m m m m m m -++-⨯-+, 3分 =()()()222222m mm m m-⨯-+, 4分 =22m m -+, 5分 当m=3时,原式=3-23+2=15. 6分19. 解:设乙工程队每天能铺设x 米,则甲工程队每天能铺设)20(+x 米, 1分依题意,得xx 25020350=+ . 3分 解得50=x . 4分经检验,50=x 是原方程的解,且符合题意. 5分答:甲工程队每天能铺设70米;乙工程队每天能铺设50米. 6分 四.解答题(二) 20. 解:(1)如图BD 为所求; 3分 (2)∵在△ABC 中,∠ABC=60°,∠C=45°.∴∠A=75°. 4分 ∵BD 平分∠ABC ,∴∠DBC=12∠ABC=30°. 5分∴∠ADB=∠DBC+∠C=30°+45°=75°. 6分 ∴∠A=∠ADB . ∴△ABD 为等腰三角形. 7分 21. 解:(1)4﹢8﹢10﹢18﹢10=50(名) 1分 答:该校对50名学生进行了抽样调查. 2分 (2)最喜欢足球活动的有10人, 3分10=20%50, 4分 ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%) 5分A DE BC=400÷20%=2000(人) 6分 则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 7分 22. (1)证明:矩形ABCD 中,AB=DC ,∠A=∠D=90°, 1分 ∵点E 是AD 的中点,∴EA=DE . 2分 ∴△ABE ≌△DCE. 3分 ∴EB=EC ; 4分 (2)解:由(1)得EB=EC . ∵∠BEC=60°,∴△EBC 为等边三角形. 5分 ∴BE=BC=AD=2AE .∵AE=1,∴BE=2. 6分∴在Rt △ABE 中,AB=2222213BE AE -=-=. 7分 五.解答题(三)23. 解:(1)∵点A (2,3)在反比例函数my x=的图象上, ∴32m=. 1分 ∴6m =.∴反比例函数解析式为6y x=; 2分(2)过点A 作AH ⊥x 轴于H , 3分 ∴H (2,0). ∵AB=OA ,∴OB=2OH . 4分 ∴B (4,0). 5分 ∵BD ⊥x 轴于B , ∴点D 的横坐标为4.∵点D 在反比例函数y=的图象上, ∴D (4,32); 6分 (3)设直线AO 的解析式为y=kx , ∵点A (2,3), ∴3=2k . ∴k=32. ∴直线AO 的解析式为y=32x . 7分 ∵点C 在直线AO 上,且横坐标为4,∴C (4,6). 8分∴CD=93. ∵BD=32,∴CD=3BD . 9分 24.(1)证明:∵AB 为半圆O 的直径,∴∠ACB=90°. 1分 ∴∠A+∠B=90°. ∵OD ⊥AB ,∴∠AOE=∠DOB=90°. ∴∠D+∠B=90°.∴∠A=∠D . 2分 ∴△AOE ∽△DOB ; 3分 (2)证明:连接OC ,∵点F 为DE 的中点,∠ECD=90°,∴EF=CF . 4分 ∴∠FCE=∠FEC . ∵∠AEO=∠FEC , ∴∠FCE=∠AEO . ∵OA=OC ,∴∠OCA=∠A .∵∠A+∠AE0=90°,∴∠OCA+∠FCE=90°.即∠FCO=90°. 5分 ∴OC ⊥CF .∴CF 为⊙O 的切线; 6分 (3)解: ∵点F 为DE的中点,∠ECD=90°, ∴DE=2CF=2⨯ 在Rt △AOE 中,tanA=12OE OA =, ∴OA=2OE . 7分 ∴OB=OA=2OE .由(1)得△AOE ∽△DOB .∴2=2DO BO OEAO EO OE ==, 8分 ∴22DE OE OE+=.FB∴4OEOE =. 解得∴AB=2OA=4OE=4⨯ 9分 25.(1)证明:∵DE ∥AB ,DF ∥BC ,∴四边形DFBE 为平行四边形. 1分 ∴DF=BE ,DE=BF . 2分 又∵EF=FE ,∴△DEF ≌△BFE ; 3分 (2)解:在Rt △ABC 中,∠C=90°,BC=3,AC=4, ∵DF ∥BC ,∴△ADF ∽△ACB . 4分∴DF AD BC AC=. ∵AD=t , ∴3=4AD BC tDF AC ⋅=. ∵DF ∥BC ,∠C=90°,CD=AC -AD=4-t ,∴△DEF 的面积S=12DF CD ⋅, =()13424tt ⋅-,=23382t t -+, 5分=()233282t --+.∴当t=2时,S 的最大值为32; 6分(3)△DEF 为等腰三角形,此时刻t 的值为83、52或43100. 9分。
【附20套中考模拟试题】广东省汕头市2019-2020学年中考数学模拟试卷含解析

广东省汕头市2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .142.一次函数y=kx+k (k≠0)和反比例函数()0ky k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .3.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .34.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°5.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .6.实数21-的相反数是( ) A .21-B .21+C .21--D .12-7.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A .B .C .D .8.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( ) A .1645(100)x x =- B .1645(50)x x =- C .21645(100)x x ⨯=-D .16245(100)x x =⨯-9. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .10.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱11.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .12.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( ) A .m <nB .m≤nC .m >nD .m≥n二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的母线长为5cm ,底面半径为1cm ,那么这个圆锥的侧面积为_____cm 1. 14.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1-12- 012 132 …y (54)- 2-94-2- 54- 074…则2ax bx c 0++=的解为________.15.如图,身高是1.6m 的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m 和9m.则旗杆的高度为________m.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元. 17.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 18.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,点是线段的中点,,.求证:.20.(6分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?21.(6分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=3,求阴影部分的面积.(结果保留 和根号).22.(8分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.23.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.24.(10分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:7.5(04)510(414)x xyx x≤≤⎧=⎨+<≤⎩工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P 与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?25.(10分)解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.26.(12分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.27.(12分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =12BC•PE =12×4×2=4, ∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =12S 四边形AFPG =132, ∴132=12×AG•PG , ∴AG =132,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC+AB+CE+BE =AC+AB+CF+BG =AF+AG =2AG =13, 故选C .【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型. 2.C 【解析】A 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故选项错误;B 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象与y 轴交点在y 轴的正半轴可知k >0,两结论相矛盾,故选项错误;C 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象过二、三、四象限可知k <0,两结论一致,故选项正确;D 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象与y 轴交点在y 轴的负半轴可知k <0,两结论相矛盾,故选项错误, 故选C . 3.C 【解析】 【分析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出. 【详解】详解:∵四边形ABCD 是正方形, ∴AD=BC,90DAB ABC ∠=∠=o , ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中, AD ABDAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ , ∴∠P=∠Q ,∵90Q QAB ∠+∠=o, ∴90P QAB ∠+∠=o , ∴90AOP ∠=o , ∴AQ ⊥DP ; 故①正确;②无法证明,故错误. ∵BP=1,AB=3, ∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C . 【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高. 4.C 【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质. 5.B 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选:B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.D 【解析】 【分析】根据相反数的定义求解即可. 【详解】1的相反数是1,故选D . 【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数. 7.B 【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小. 考点:三视图. 8.C 【解析】 【分析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底, 依题意可列方程()21645100x x ⨯=- 故选C. 【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系. 9.C 【解析】 【分析】根据左视图是从左面看所得到的图形进行解答即可. 【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间. 故选:C . 【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 10.A 【解析】 【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱. 【详解】解:观察图形可知,这个几何体是三棱柱. 故选A . 【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.. 11.D 【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC , ∴PA+PC=BC .故选D . 考点:作图—复杂作图. 12.C 【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--, ∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,, ∴1222x x ,->- ∴m n >, 故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.10π 【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm ,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=12•10π•1=10π(cm 1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R ,(l 为弧长). 14.x 2=-或1 【解析】 【分析】由二次函数y=ax 2+bx+c (a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x 轴的另一个交点.继而求得答案. 【详解】解:∵二次函数y=ax 2+bx+c (a≠0)过点(-1,-2),(0,-2), ∴此抛物线的对称轴为:直线x=-12, ∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键. 15.1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.16.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.17.2【解析】【分析】接把点P(a,b)代入反比例函数y=2x即可得出结论.【详解】∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.1【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.详见解析【解析】【分析】利用证明即可解决问题.【详解】证明:∵是线段的中点∴∵∴在和中,∴≌∴【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.20.20千米【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.21.(1)详见解析;(2)133 24π-;【解析】【分析】(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论. 【详解】 :(1)连接OC , ∵OF ⊥AB , ∴∠AOF=90°,∴∠A+∠AFO+90°=180°, ∵∠ACE+∠AFO=180°, ∴∠ACE=90°+∠A , ∵OA=OC , ∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE , ∴∠OCE=90°, ∴OC ⊥CE , ∴EM 是⊙O 的切线; (2)∵AB 是⊙O 的直径, ∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°, ∴∠ACO=∠BCE , ∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E , ∴∠ABC=∠BCO+∠E=2∠A , ∴∠A=30°, ∴∠BOC=60°,∴△BOC 是等边三角形,∴∴阴影部分的面积1122π= 【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键. 22. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1. 【解析】 【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.23.(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.【解析】【分析】(1)根据D组人数以及百分比计算即可.(2)根据圆心角度数=360°×百分比计算即可.(3)求出A,C两组人数画出条形图即可.(4)利用样本估计总体的思想解决问题即可.【详解】(1)本次接受调查的市民共有:50÷25%=1(人),故答案为1.(2)扇形统计图中,扇形B的圆心角度数=360°×24200=43.2°;故答案为:43.2°(3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).条形统计图如图所示:(4)15×40%=6(万人).答:估计乘公交车上班的人数为6万人.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元.【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可.本题解析:解:(1)若7.5x=70,得x=>4,不符合题意;则5x+10=70,解得x=12.答:工人甲第12天生产的产品数量为70件.(2)由函数图象知,当0≤x≤4时,P=40,当4<x≤14时,设P=kx+b,将(4,40)、(14,50)代入,得解得∴P=x+36.①当0≤x≤4时,W=(60-40)·7.5x=150x,∵W随x的增大而增大,∴当x=4时,W最大=600;②当4<x≤14时,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴当x=11时,W最大=845.∵845>600,∴当x=11时,W取得最大值845元.答:第11天时,利润最大,最大利润是845元.点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题.25.x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.吉普车的速度为30千米/时.【解析】【分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.27.(1)m>94-;(2)x1=0,x2=1.【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m>0即可求出m的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴94 m>-.(2)∵m为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x-∴x1=0,x2=1.考点:1.解一元二次方程;2.根的判别式.中考模拟数学试卷数学模拟试题(三)参考答案一、选择题:(每题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADCCABAAACAA二、填空题:(每题4分,共24分)13.5105.7-⨯; 14.29或6; 15.10; 16.36;17.3;18.38.三、解答题:(共60分)19. 解:)2(2ab ab a a b a --÷- =2)(b a aa b a -•- ………………………………………………3分 =ba -1, ………………………………………………5分∵0)2(32=-+-b a ,∴2,3==b a , ……………………………………………7分 故原式=b a -1=231-=1. ………………………………………………8分 20.解:设小明家2月份用气x 立方米,……………………………………………1分90%2511096=++x x )(, ……………………………………………4分 解得 x=30, ……………………………………………6分 经检验x=30是原方程的解,且符合题意. ……………………………………………8分 答:小明家2月份用气30立方米. ……………………………………………9分 21.解:(1)61千米/时;图的补充如下图所示:………………………………4分 (2)列表得: 70酒 70 70 80酒 是 否 否 80酒 是 否 否 80 否 否 否 80否否 否………………………………………………………………………7分∵车速为70千米/时的车辆有3辆,车速为80千米/时的车辆有4辆,∴所有出现的情况如下:共有12种等可能的结果,两辆车的驾驶员均饮酒的可能有两种,故概率为:=.………………………………………………………9分22.解:过点O 作OH ⊥BC 于点H . ……………………………………………1分 在Rt △OHB 中,∠HOB=90°﹣∠B=45°=∠B ,∴OH=HB . …………………2分 ∵在Rt △DCE 中,∠DCE=90°﹣∠D=60°,∴在Rt △OHC 中,∠COH=90°﹣∠OCH=90°﹣60°=30°, ∴OC=2CH . ……………………………………4分 又∵OH=CH•tan ∠OCH=CH 3,∴HB=OH=CH 3. ……………………………………6分 又∵CH +HB=CB , ∴CH +CH 3=.……………………………………8分∴CH=1. ……………………………………9分 ∴CO=2CH=2. ……………………………………10分 23.解:(1)直线BP 和⊙O 相切. ………………1分 理由:连接BC ,∵AB 是⊙O 直径,∴∠ACB=90°, ………………2分 ∵PF ∥AC ,∴BC ⊥PF ,则∠PBC +∠BPF=90°, ∵∠BPF=∠ADC ,∠ADC=∠ABC ,∴∠BPF=∠ABC , ∴∠PBC +∠ABC=90°,即∠PBA=90°,………………4分 ∴PB ⊥AB ,∵AB 是直径,∴直线BP 和⊙O 相切. ………………………………………………………………5分 (2)解:由已知,得∠ACB=90°, ∵AC=2,AB=2,∴由勾股定理得:BC=4,………………………………………………………………6分 ∵∠BPF=∠ADC ,∠ADC=∠ABC ,∴∠BPF=∠ABC , ………………………………………………………………7分 由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP , ………………………………………………………………8分 ∴BPBCBE AC , ……………………………………………………………………………9分 解得BP=2,第22题答案图第23题答案图即BP 的长为2. …………………………………………………………………………10分24.解:(1)由抛物线22++=bx ax y 过点A (﹣3,0),B (1,0),则⎩⎨⎧=++=+-02,0239b a b a , …………………………………………………………………2分 解得.34,32-=-=b a …………………………………………………………………3分 ∴所求的二次函数解析式为.234322+--=x x y ……………………………4分(2)设点P 坐标为(m ,n ),则.234322+--=m m n连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N . PM=﹣m 2﹣m +2,PN=﹣m ,AO=3.当x=0时,y=﹣×0﹣×0+2=2,所以OC=2; ……………………………5分 S △PAC =S △PAO +S △PCO ﹣S △ACO =AO•PM +CO•PN ﹣AO•CO=×3×(﹣m 2﹣m +2)+×2×(﹣m )﹣×3×2=﹣m 2﹣3m ; …………………………………………………………………7分 ∵﹣1<0,∴函数S △PAC =﹣m 2﹣3m 有最大值, 当m=﹣时,S △PAC 有最大值, 此时n=﹣m 2﹣m +2=﹣﹣+2=∴存在点P (﹣,),使△PAC 的面积最大. ……………………………9分(3)如图所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.21世纪教育 过Q 1点作Q 1D ⊥y 轴于点D , ∵∠BCQ 1=90°, ∴∠Q 1CD +∠OCB=90°,又∵在直角△OBC 中,∠OCB +∠CBO=90°, ∴∠Q 1CD=∠OCB ,又∵Q 1C=BC ,∠Q 1DC=∠BOC ,∴△Q 1CD ≌△CBO , ………………………………………………………………10分 ∴Q 1D=OC=2,CD=OB=1, ∴OD=OC +CD=3,∴Q 1(2,3); …………………………………………………………………………11分同理得Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).………………………14分第24(3)题答案图中考模拟数学试卷数 学 模 拟 试 卷满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分) 1、下列各式正确的是( ).A 、39=3B 、39=±3C 、9=3D 、9=±32、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为( ).A .3.6×102B .360×104C .3.6×104D .3.6×1063、已知,如图,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )A .40°B .50°C .60°D .70°4、若关于x 的方程223x x m x+=--的解为4x =,则m =( ). A 、3 B 、4 C 、5 D 、65、下列图形中,能通过折叠围成一个三棱柱的是( )A.B.C.D.6、如图,△ABC 中,∠ABC =45°,AC =10,对折使点B 与点A 重合,折痕与BC 交于点D ,BD :DC =4:3,则DC 的长为A .4B .6C .8D .10ABCD7、如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,∠BOC =1100,AD ∥OC ,则∠AOD =( ).A .70°B .60°C .50°D .40°8、生产季节性产品的企业,当它的产品无利润时就会及时停产.一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为21424y n n =-+-,则该企业一年中应停产的月份是( ).OBD ACA .1月、2月、3月B .2月、3月、12月C .1月、2月、12月D .1月、11月、12月9、某班体育委员统计了全班45名同学一周的体育锻炼 时间(单位:小时),并绘制了如图所示的折线统计图, 下列说法中错误..的是( ). A .众数是9 B .中位数是9C .平均数是9D .锻炼时间不低于9小时的有14人10、如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC 、CB 上的动点,且AE =BF ,EF 与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( ) 二、填空题(本题共4小题,每小题5分,满分20分) 11、若分式224x x -+的值为0,则x 的值为 .12、分解因式 269mx mx m -+= . 13、如图,“把一个面积为1的正方形等分成两个面积为12的矩形”称为第1次变换,接着“把其中一个面积为12的矩形等分成两个面积为14的矩形”称为第2次变换,再“把其中一个面积为14的矩形等分成两个面积为18的矩形”称为第3次变换,……一直到第100次变换,我们得到一系列数:21,41,81,161,321,……,利用图形可求得前10个数的和是 .1/21/41/81/16第13题 第14题14、已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为 .yxxy y xy xDCBAOOOOGHF A C BE三.(本题共2小题,每小题8分,满分16分)15、求不等式组⎪⎩⎪⎨⎧<≤341112x x x --的整数解.16、如图,平行于y 轴的直尺(一部分)与双曲线1y =xk(x >0) 交于点A 、C ,与x 轴交于点B 、D ,连结AC .点A 、B 的刻度分别 为5、2(单位:cm ),直尺的宽度为2cm ,OB=2 cm . (1)求k 的值;(2)求经过A 、C 两点的直线解析式y 2.四、(本题共2小题,每小题8分,满分16分)17、如图,在四边形ABCD 中,90ABC ∠=︒,30CAB ∠=︒,DE AC ⊥于E ,且AE CE =,若5DE =,12EB =,求四边形ABCD 的周长.18、如图,在边长为1个单位长度的小正方形组成的格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;(1)先作△ABC 关于直线成轴对称的图形,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.EDCBA五、(本题共2小题,每小题10分,满分20分)19、在建筑物顶部A 处测得B 处的俯角为60°,在C 处测得B 处的俯角为30°,已知AC =40米,求BD 之间的直线距离.(结果精确到个位)20、近年来随着国际石油价格的上涨,我国加快了对新能源汽车产业的扶持力度。
广东省汕头市2019-2020学年中考第五次模拟数学试题含解析

广东省汕头市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A.1 2B.3C.31-D .31-2.不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是()A.5 B.4 C.3 D.23.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤4.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.5.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417176.下列说法中正确的是( ) A .检测一批灯泡的使用寿命适宜用普查. B .抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上. C .“367人中有两人是同月同日生”为必然事件. D .“多边形内角和与外角和相等”是不可能事件.7.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.8.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点9.已知关于x 的不等式ax <b 的解为x >-2,则下列关于x 的不等式中,解为x <2的是( ) A .ax+2<-b+2B .–ax-1<b-1C .ax >bD .1x a b<- 10.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( ) A .1.35×106B .1.35×105C .13.5×104D .135×10311.如图,A(4,0),B (1,3),以OA 、OB 为边作□OACB ,反比例函数ky x=(k≠0)的图象经过点C .则下列结论不正确的是( )A .□OACB 的面积为12 B .若y<3,则x>5C .将□OACB 向上平移12个单位长度,点B 落在反比例函数的图象上.D .将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上.12.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.14.计算:﹣1﹣2=_____. 15.计算22111x x x +--的结果为 . 16.计算:a 6÷a 3=_________. 17.函数12x y x +=-中,自变量x 的取值范围是 . 18.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE= °.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知一次函数y=32x ﹣3与反比例函数k y x=的图象相交于点A (4,n ),与x 轴相交于点B .填空:n 的值为 ,k 的值为 ; 以AB 为边作菱形ABCD ,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.20.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.21.(6分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD 成立吗?为什么?22.(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y 与x 的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.23.(8分)已知:关于x 的方程x 2﹣(2m+1)x+2m=0 (1)求证:方程一定有两个实数根;(2)若方程的两根为x 1,x 2,且|x 1|=|x 2|,求m 的值. 24.(10分) (1)计算:|3-1|+(2017-π)0-(14)-1-3tan30°+38; (2)化简:(22369a aa a --++23a -)÷229a a --,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.25.(10分)如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F . (1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)26.(12分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A 非常了解、B 了解、C 了解较少、D 不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:此次共调查了 名学生;扇形统计图中D 所在扇形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.27.(12分)如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)。
【2019年中考数学】广东省汕头市金平区2019年初中毕业生学业模拟考试数学试卷(含答案)

EDCB A广东省汕头市金平区2019年初中毕业生学业模拟考试数学试卷(含答案)说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×109 B .4.4×109 C .4.4×109D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 9÷a 2=a 4D .a 2•a 3=a 6 9.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤19.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .9D .9310.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=9.动点E 从点B 出发,沿着P OFEDCBACCB ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=9,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共19分)19.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫ ⎝⎛-.19.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).四.解答题(二)(本大题3小题,每小题9分,共21分)20.(本题满分9分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计 图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择) 请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为 度; 条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有 人;(2)若该校共有学生1200人,请根据上述调查结果, 估计该校学生中“很喜欢”月饼的有 人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙 月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄 三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为 .21.(本题满分9分)如图,将矩形纸片ABCD 折叠,使点C 与 点A 重合,折痕EF 分别与AB 、DC 交于点E 和点F . (1)证明:△ADF ≌△AB′E ;(2)若AD=12,DC=19,求△AEF 的面积.22.(本题满分9分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车9辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达19辆. (1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.9万元/辆.且销售m 辆汽车,汽车厂返利销售公司0.04m 万元/辆.若使6月份每辆车盈利不低于1.9万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)五.解答题(三)(本大题3小题,每小题9分,共29分)23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny2的E图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13 ,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 9.D 9.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共19分) 19.解:原式=3-3-1+3 4分 =2. 6分 19.解:原式=()()()11112+-⨯-+x x x x x x 4分 =12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题9分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 9分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=19-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分 ∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=99. 9分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:9(1+x )2=19, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.9﹣9)≥1.9, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 9分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共29分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5, ∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 9分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分 24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=190°. ∵∠ADF+∠ADC=190°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分FE∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 9分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 9分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA =90°.∴∠ADG+∠BDA =90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EABF AF =. ∴ABEABC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。
2019年金平区中考数学模拟题答案(以此为准)

数学参考答案
一、选择题(本大题 10 小题,每小题 3 分,共 30 分) 1. C. 2. D. 3. B. 4. B. 5.D. 6. B. 7. C. 8. A. 9. A. 10.D.
二、填空题(本大题 6 小题,每小题 4 分,共 24 分)
11.x 3 . 12.8. 13.10. 14.30. 15. 144 (或 72 ). 16.5.
21.解:(1)60,
2分
90.
3分
(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下: 5 分
(3) .
7分
22.(1)证明:∵矩形 ABCD 中,
∠B=∠C=∠D=90°.
1分
∴∠BAF+∠AFB=90°.
由折叠性质,得∠AFE=∠D=90°.
∴∠AFB+∠EFC=90°.
∴∠BAF=∠EFC.
2分
x
6
∴y= ;
3分
x
(2)不等式 kx+b﹣ >0 的解集为 1<x<3 或 x<0; 6 分 (3)∵点 A(1,6)为抛物线 y 2x2 bx c 顶点,
∴ y 2 x 12 6 .
8分
∴抛物线的解析式为 y 2x2 4x 4 .
9分
24.(1)证明:∵AB=AC,
∴ »AB »AC .
tan∠EBA= AE 2 , tan∠BDA= AB 2 ,
AB
AD
∴AE=4AD.
4分
∵DM 为⊙O 的切线,∴OD⊥DM.
;
6分
GM AD
(3)解: ∵ ∠ABC=∠ACB=∠ADB=∠BAG,
∴ tan∠ABC=tan∠ADB=tan∠BAG =2.
广东省汕头市金平区2019-2020年中考模拟数学试题

2019-2020年金平区初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.某种禽流感病毒变异后的直径为0.00000012米,将0.00000012写成科学记数法是(▲) A .1.2×10﹣5B .0.12×10﹣6C .1.2×10﹣7D .12×10﹣82.如图,李师傅做了一个零件,请你告诉他这个零件的主视图是(▲)A .B .C .D . 第2题图3.计算323a a ÷的结果是(▲)A .2aB .23a C .3a D .34.下列运算正确的(▲)A .(﹣3)2=﹣9 B 2= C .328-= D .00π=5.若一个多边形的每一个外角都是40°,则这个多边形是(▲)A .六边形B .八边形C .九边形D .十边形6.如图,要使平行四边形ABCD 变为矩形,需要添加的条件是(▲)A .AC=BDB .AD=BC C .AB=CD D .AB=BC 第6题图则这个礼仪队20名女队员身高的众数和中位数分别是(▲) A .169cm ,169cm B .168cm ,168cm C .172cm ,169cm D .168cm ,169cm8.如图,在等腰三角形纸片ABC 中,AB=AC ,∠A=40°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE 的度数是(▲) 第8题图 A .20° B .30° C .40° D .70°9.将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个 图形的面积关系得到的数学公式是(▲)A .(a+b )2=a 2+2ab+b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b )(a ﹣b ) D .(a+2b )(a ﹣b )=a 2+ab ﹣2b 210.关于反比例函数y=2x的图象,下列说法正确的是(▲) 第9题图 A .图象经过点(1,1) B .两个分支分布在第二、四象限 C .两个分支关于x 轴成轴对称 D .当x <0时,y 随x 的增大而减小 二.填空题(本大题6小题,每小题4分,共24分) 11.函数y=53-x 中自变量x 的取值范围是▲.12.写出一个实数k 的值▲,使得正比例函数y=kx 的图象在二、四象限.14.已知a 、b 、c 是△ABC ()240b -=,则第三边c 的取值范围是▲. 15.如图,AB 是⊙O 的直径,点C 、D 在圆上,∠D=68°,则∠ABC 等于▲度.16.如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的 位置,得到图2,则阴影部分的周长为▲.第15题图 第16题图 三.解答题(一)(本大题3小题,每题6分,共18分)17.(本题满分6分)解不等式组110320x x ⎧+>⎪⎨⎪-≥⎩.18.(本题满分6分)先化简,再求值:()()224a a a -++,其a =19.(本题满分6分)如图,在Rt △ABC 中,∠C=90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD , 垂足为D (不写作法,只保留作图痕迹);(2)在(1)的条件下,请写出图中所有与△ABC 相似的三角形. 第19题图四.解答题(二)(本大题3小题,每小题7分,共21分)20.(本题满分7分)陈钢和王昊两人从甲市开车前往乙市,甲、乙两市的行使路程为180千米.已知王昊行使速度是陈钢行使速度的1.5倍,若陈钢比王昊早出发0.5小时,结果陈钢比王昊晚 到0.5小时,求陈钢、王昊两人的行使速度.21.(本题满分7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,李晓同学从布袋里随机取出一个小球,记下数字为x ,张丹同学在剩下的3个 小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ). (1)画树状图或列表,写出点Q 所有可能的坐标;(2)求点Q (x ,y )在函数y=﹣x+6图象上的概率.22.(本题满分7分)如图,正方形ABCD 中,点F 在AD 上,点E 在AB 的延长线上,∠FCE=90°.(1)求证:△CDF ≌△CBE .(2)若CD=8..求∠DCF 的余弦值.第22题图五.解答题(三)(本大题3小题,每小题9分,共27分)23.(本题满分9分)如图,抛物线2y x bx c =++与x 轴交于A (﹣2,0),B (6,0)两点. (1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)点P 为y 轴右侧抛物线上一个动点,若S △PAB =32, 求出此时P 点的坐标.第23题图24.(本题满分9分)如图,AB 为半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,连结BC ,作∠BCP=∠BCD ,CP 交AB 延长线于点P . (1)求证:PC 是半圆O 的切线; (2)求证:PC 2=PB•PA ;(3)若PC=2,tan ∠BCD=,求AB 的长. 第24题图25.(本题满分9分)如图,在矩形ABCD 中,AB=6cm ,BC=8cm .如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2cm/s 和1cm/s .FQ ⊥BC ,分别交AC 、BC 于点P 和Q ,设运动时间为t (s )(0<t <4). (1)连结EF 、DQ ,若四边形EQDF 为平行四边形,求t 的值;(2)连结EP ,设△EPC 的面积为ycm 2,求y 与t 的函数关系式,并求y 的最大值; (3)若△EPQ 与△ADC 相似,请直接写出t 的值.第25题图 备用图1 备用图22019-2020年金平区初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分) 1.C 2.A 3.C 4.B 5.C 6.A 7.D 8.B 9.C 10.D二.填空题(本大题6小题,每小题4分,共24分) 11.53x ≥12. -1(答案不唯一) 13.4 14.5<c<13 15.22 16. 2 三.解答题(一)(本大题3小题,每题6分,共18分)17.解:110(1)320(2)x x ⎧+>⎪⎨⎪-≥⎩,解(1)得3x >-, 2分 解(2)得2x ≤, 4分 ∴不等式组的解集为32x -<≤. 6分 18.解:原式=22444a a a a -+++, 2分224a =+, 3分当a =原式=2×)2+4 4分=10. 6分19.解:(1)如图,线段CD 为所求. 4分(没有结论扣1分) (2)与△ABC 相似的三角形有△AC D 和△C BD .6分(写对一个1分) 四.解答题(二)(本大题3小题,每小题7分,共21分)20.解:设陈钢的行使速度为x 千米/小时,则王昊的行使速度为1.5x 千米/小时, 1分由题意得,=+0.5+0.5, 3分解得:x=60, 4分 经检验,x=60是原分式方程的解,且符合题意, 5分 则1.5x=60×1.5=90. 6分 答:陈钢的行使速度为60千米/小时,王昊的行使速度为90千米/小时. 7分 21.解:列表得:4), (3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种; 4分 (2)∵共有12种等可能的结果,其中在函数y=﹣x+6图象上的有2种,即:(2,4),(4,2), 5分22.(1)证明:∵∠ECF=90°,∴∠2+∠3=90°. 1分 ∵正方形ABCD ,∠DCB =∠D =∠ABCD=90°, ∴∠1+∠2=∠DCB =90°.∴∠1=∠3. 2分 ∵在△DCF 和△BCE 中,,∴△DCF≌△BCE(ASA ); 3分 (2)∵△DCF≌△BCE(已证),∴CF=CE , 4分 ∵∠ECF=90°,∴∠CF E =∠CEF=45°,∴CF=EF sin ∠CEF=EF sin45°=10, 5分 ∴在Rt △CDF 中,cos ∠DCF=84105DC CF ==. 7分 五.解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)∵抛物线2y x bx c =++与x 轴交于A (﹣2,0),B (6,0)两点,解法一:∴()()26y x x =+-,即二次函数解析式是y=x 2﹣4x ﹣12. 3分解法二:∴4203660b c b c -+=⎧⎨++=⎩, 1分解得412bc=-⎧⎨=-⎩, 2分∴二次函数解析式是y=x2﹣4x﹣12. 3分解法三:∴方程x2+bx+c=0的两根为x=﹣2或x=6,∴﹣2+6=﹣b, 1分﹣2×6=c, 2分∴b=﹣4, c=﹣12,∴二次函数解析式是y=x2﹣4x﹣12. 3分(2)∵y=x2﹣4x-12=(x﹣2)2﹣16,∴抛物线的对称轴x=2, 4分顶点坐标(2,﹣16). 5分(3)设P的纵坐标为y P,∵S△PAB=32,∴AB•|y P|=32,∵AB=6+2=8,∴|y P|=8,∴y P=±8, 6分把y P=8代入解析式得,8=x2﹣4x﹣12,解得,,(负值舍去) 7分把y P=﹣8代入解析式得,﹣8=x2﹣4x﹣12,解得,,(负值舍去) 8分24.(1)证明:连结OC,∵CD⊥AB,∴∠B CD+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,1分∵∠BCP=∠BCD,∴∠OCP=∠OCB+∠BCP=90°,∴OC⊥PC,2分∴PC是半圆O的切线;3分(2)证明:连结AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BCD+∠ABC=90°,∴∠A=∠BCD,∵∠BCP=∠BCD,∴∠A=∠BCP,4分∵∠P=∠P,∴△PCB∽△PAC,5分∴PC PB PA PC=,∴PC2=PA•PB;6分(3)解:∵∠A=∠BCD,tan∠BCD=,∴tanA=tan∠BCD=.∴在Rt△ABC中,tanA=BCAC=12.7分∵△PCB∽△PAC,∴12 PC PB BCPA PC AC===.∵PC=2,∴PB=1,PA=4.∴AB=4-1=3.8分∴AB的长为32π. 9分25.解(1)在矩形ABCD中,∠ADC=∠BCD=90°,∵FQ⊥BC,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省汕头市金平区中考数学模拟试卷一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.2.下列图形是中心对称图形的是()A.B.C. D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B. =10 C.x(x+1)=10 D. =107.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8π C.12πD.(4+4)π9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°=.12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D运动到点F的位置,则S△ADE :S四边形DBCF是.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= cm2.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P 作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.广东省汕头市金平区中考数学模拟试卷参考答案与试题解析一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看第二层是三个小正方形,第一层左边一个小正方形,故选:A.2.下列图形是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【考点】二次函数图象与几何变换.【分析】根据图象左移加,可得答案.【解答】解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m【考点】相似三角形的应用.【分析】求出△ABE和△DCE相似,根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABE=∠DCE=90°,又∵∠AEB=∠DEC,∴△ABE∽△DCE,∴=,即=,解得AB=40m.故选B.6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B. =10 C.x(x+1)=10 D. =10【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为: =10;故选B.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8π C.12πD.(4+4)π【考点】圆锥的计算.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BA C=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π【考点】扇形面积的计算;旋转的性质.【分析】图中S阴影=S扇形ABB′+S△AB′C′﹣S△ABC.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC =S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:A.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a >0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.【解答】解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= 1 .【考点】特殊角的三角函数值.【分析】将cos45°=,tan30°=,sin60°=代入即可得出答案.【解答】解:cos245°+tan30°•sin60°=+×==1.故答案为:1.12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E顺时针旋转180°,点D运动到点F的位置,则S△ADE :S四边形DBCF是1:4 .【考点】相似三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE :S▱BCED=1:3,又因为S△ADE =S△CEF,进而可得到S△ADE:S▱DBCF的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE =:S△ABC=1:4,∴S△ADE :S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE =S△CEF,∴S△ADE :S▱DBCF=1:4,故答案为:1:4.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= 4 cm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=×弧长×半径,求出面积即可.扇形【解答】解:由题可知,弧长=8﹣2×2=4cm,∴扇形的面积=×4×2=4cm2,故答案为:4.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为1或﹣2 .【考点】反比例函数的图象;一次函数的图象.【分析】根据一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),求出k,b的值,代入方程kx+b=,求得方程的解.【解答】解:一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),则一次函数y=kx+b过点(1,2),又过点(﹣2,﹣1),故k=1,b=1,即y=x+1.关于x的方程kx+b=可化为x+1=,它的解为1或﹣2.故答案为:1或﹣2.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.【考点】作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1,从而得到△OA1B1;(2)由于点A所走过的路线是以点O为圆心,OA为半径,圆心角为90°所对的弧,然后根据弧长公式求解.【解答】解:(1)如图,△A1OB1为所作;(2)OA==,所以A1旋转经过的路程长==π.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.【考点】列表法与树状图法.【分析】(1)随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,由此可知随机从中抽出一张牌牌面是K的概率=.(2)分别求出甲获胜与乙获胜的概率,进行比较,即可得出结论.【解答】解:(1)∵随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,∴随机从中抽出一张牌,牌面是K的概率==.故答案为(2)乙获胜的可能性大.理由如下,进行一次游戏所有可能出现的结果如下表:从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K的有(J,J),(J,Q),(Q,J),(Q,Q)等4种结果.∵P(两次取出的牌中都没有K)=.∴P(甲获胜)=,P(乙获胜)=.∵<,∴乙获胜的可能性大.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=80米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,,则,∴;在Rt△BCD中,tan48°=,则,∴.∵AD+BD=AB,∴,解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则=,即可得出BC=.【解答】(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.【考点】反比例函数综合题.【分析】(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解;(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:(1)过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°, ∴OG=1,CG=OG•tan60°=1•=,∴点C 的坐标是(1,),由=,得:k=,∴该双曲线所表示的函数解析式为y=;(2)过点D 作DH ⊥AF 于点H ,设AH=a ,则DH=a .∴点D 的坐标为(4+a ,),∵点D 是双曲线y=上的点,由xy=,得(4+a )=,即:a 2+4a ﹣1=0, 解得:a 1=﹣2,a 2=﹣﹣2(舍去),∴AD=2AH=2﹣4,∴等边△AEF 的边长是2AD=4﹣8.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC 和ED 重合,在BC 边上有一动点P .(1)在图(2),当点P 运动到∠CFB 的平分线上时,连接AP ,求线段AP 的长; (2)在图(2),当点P 在运动的过程中出现PA=FC 时,求∠PAB 的度数(3)当点P 运动到什么位置时,以A 、P 、F 、Q 为顶点的平行四边形的顶点Q 恰好在边FC 上?求出此时四边形 APFQ 的面积.【考点】四边形综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP 的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)先判断出AP∥FQ,进而得出AP⊥BC,即可求出AP=BP=CP=,最后用四边形的面积公式即可得出结论.【解答】解:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP==1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP==.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG==;∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.(3)如答图3,∵以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,∴AP∥QF,∴∠APC=∠BCF,∵∠BCF=90°,∴∠APC=90°,在R△ABC中,∠ABC=45°,BC=3,∴AC=AB=,∴AP=BP=CP=BC=,∴S=AP×PC=×=,平行四边形APFQ即:点P运动到BC中点的位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC 上,且面积是.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P 作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x 1=3+,x 2=3﹣,∵点A 在点B 的左侧, ∴A (3﹣,0),B (3+,0).(2)证明:如答图1,过顶点D 作DG ⊥y 轴于点G ,则G (0,﹣1),GD=3.令x=0,得y=, ∴C (0,). ∴CG=OC+OG=+1=, ∴tan ∠DCG=.设对称轴交x 轴于点M ,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE ⊥CD ,易知∠EOM=∠DCG . ∴tan ∠EOM=tan ∠DCG==,解得EM=2, ∴DE=EM+DM=3. 在Rt △AEM 中,AM=,EM=2,由勾股定理得:AE=; 在Rt △ADM 中,AM=,DM=1,由勾股定理得:AD=.∵AE 2+AD 2=6+3=9=DE 2,∴△ADE 为直角三角形,∠EAD=90°. 设AE 交CD 于点F ,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD (对顶角相等), ∴∠AEO=∠ADC .(3)解:依题意画出图形,如答图2所示:由⊙E 的半径为1,根据切线性质及勾股定理,得PQ 2=EP 2﹣1, 要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设点P 坐标为(x ,y ),由勾股定理得:EP 2=(x ﹣3)2+(y ﹣2)2. ∵y=(x ﹣3)2﹣1, ∴(x ﹣3)2=2y+2.∴EP 2=2y+2+(y ﹣2)2=(y ﹣1)2+5 当y=1时,EP 2有最小值,最小值为5.将y=1代入y=(x ﹣3)2﹣1,得(x ﹣3)2﹣1=1, 解得:x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上, ∴x 1=1舍去. ∴P (5,1).∵△EQ 2P 为直角三角形,∴过点Q 2作x 轴的平行线,再分别过点E ,P 向其作垂线,垂足分别为M 点和N 点. 由切割线定理得到Q 2P=Q 1P=2,EQ 2=1 设点Q 2的坐标为(m ,n )则在Rt △MQ 2E 和Rt △Q 2NP 中建立勾股方程,即(m ﹣3)2+(n ﹣2)2=1①,(5﹣m )2+(n ﹣1)2=4②①﹣②得n=2m ﹣5③ 将③代入到①得到 m 1=3(舍,为Q1) m 2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴KCD ×KOE=﹣1,∴KOE=,∴lOE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴KEA==,∵KAD=,∴KEA ×KAD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),...∵Q 1Q 2被EP 垂直平分,垂足为H , ∴K Q1Q2×K EP =﹣1, ∴K EP ==﹣,K Q1Q2=2,∵Q 1(3,1), ∴l Q1Q2:y=2x ﹣5, ∵l EP :y=﹣x+, ∴x=,y=, ∴H (,),∵H 为Q 1Q 2的中点, ∴H x =, H Y =, ∴Q 2(x )=2×﹣3=,Q 2(Y )=2×﹣1=,∴Q 2(,).。