复数的四则运算
复数的四则运算
(a + bi)(c + di) = ac + adi + bci + bdi
说明:1、两个复数的积仍然是一个复数; 说明: 两个复数的积仍然是一个复数;
2
即 a + bi)(c + di) = ac −bd) + (bc + ad)i ( (
2、复数的乘法与多项式的乘法是类似的, 复数的乘法与多项式的乘法是类似的, 换成- 然后实、 只是在运算过程中把 i 2 换成-1,然后实、 虚部分别合并。 虚部分别合并。 3、复数的乘法满足交换律、结合律以及分配律 、复数的乘法满足交换律、
2、复数减法的运算法则 定义:把满足(c+d )+(x+yi (c+di a+bi 定义:把满足(c+di )+(x+yi) = a+bi 的复数 叫做复数a+bi减去复数c+di a+bi减去复数c+di的差 x+yi(x, y ∈R),叫做复数a+bi减去复数c+di的差 记作:x+yi (a+bi (c+di 记作:x+yi=(a+bi )-(c+di) 由复数的加法法则和复数相等定义, 由复数的加法法则和复数相等定义,有 c+x=a , d+y=b 由此,x=a- y=b- 由此,x=a-c , y=b-d
(a,b∈R ) ∈
z + z =? z −z =?
实数的共轭复数仍是它本身 思考:复数 是实数的充要条件是什么 是实数的充要条件是什么? 思考:复数z是实数的充要条件是什么?
∴ (a+bi )-(c+di) i - i
复数的四则运算公式
复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。
在复数的四则运算中,包括加法、减法、乘法和除法。
下面将分别介绍这四种运算。
一、复数的加法复数的加法是指将两个复数相加的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。
二、复数的减法复数的减法是指将两个复数相减的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。
三、复数的乘法复数的乘法是指将两个复数相乘的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。
四、复数的除法复数的除法是指将两个复数相除的操作。
假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。
则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。
通过以上介绍,我们了解了复数的四则运算公式。
在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。
对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。
复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。
因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。
希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。
复数的运算
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。
5.2.1复数的四则运算
3
13 3 1 3 2 1 3 3 i ) ( 证明:(1 ) 1 1 ( i) ( 2 ) ( 2 i2 ) 2 2 2 2 1 3 1 2 3 1 3 3 3 2 1 2 i ( ) 2 i ) ( i ( i ) i ) 2 2 2 2 2 2 2 2 2 1 3 3 3 1 3 1 3 1 i )( i) i ( 2 i 2 2 4 2 2 4 2 2 1 2 3 2 1 3 ( ) ( i ) 1 0; 2 2 4 4
类似于多项式的乘法
3、复数的乘方 (复数的乘方是相同复数的积)
C 对任何 z, z1 , z2 及
m n
m n
m , n N ,有
(z ) z n n n ( z1 z2 ) z1 z2 特殊的有:i 1 i i 2 1
mn
z z z
mn
一般地,如果 n N ,有 i 幂的周期性:
2
例6求 i i i i i 解:根据 i 的性质,
0 1 2 3
2006
的值等于______
i i i i 0 0 1 2 3 2004 2005 2006 则有i i i i i i i 0 1 2 3 2004 2005 2006 i (i i i i ) i i 0 1 2 1 0 i 1 i i 0 i i
1.复数加减法的运算法则 2、复数的乘法法则 3、复数的乘法运算律 4、复数的除法法则
5、一些常用的计算结果:
①如果n∈N*有:i4n=1;i4n+1=i,i4n+2=-1;i4n+3=-i. (事实上可以把它推广到n∈Z.)
复数的四则运算修改后
1. z1 z2 z2 z1 (交换率 ); 2. ( z1 z2 ) z3 z1 ( z2 z3 )(结合率 )
一.复数的加法与减法
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi , ∴(c+di )+(x+yi) = a+bi , 由复数相等定义,有 c+x=a , d+y=b 由此,x=a-c , y=b-d ∴ (a+bi )-(c+di) = (a-c) + (b-d)i (a+bi )±(c+di) = (a±c) + (b±d)i
求证:
(1) 2 ; (3)1 2 0;
3
( 2) 1(1 0) ( 4) 3 1
在复数集中 , 方程x 1的三个解为: 1, , .
复数的除法
复数的除法是乘法运算的逆运算,即把满足
(c+di)(x+yi)=a+bi (c+di≠0)
2
t 1, tan 1, 45 .
o
x1 1,x2 2 i.
例题选讲
1. 若复数z满足方程 zi i 1 ,则z ?
2. 求8+6i的平方根 .
3、在复平面内,若复数 z 满足 z 1 z 1 4
,则 z 在复平面内对应点的轨迹方程为
.
交换率 结合率
分配率
三.正整数指数幂的复数运算律
z 、 z1、 z2 ∈C,m、n ∈N*有
实数集R中正整数指数幂的运算律在复数 集C中仍成立,即
3.2复数的四则运算加减乘法
(4) 若z1=3-2i,z2=1+3i,则z1+z2=_____ Z1-2z2=_____
3.复数的乘法
我们规定,复数的乘法法则如下:
设z1=a+bi, z2=c+di 是任意两个复数,那么它们的积
a + bic + di = ac + bci + adi + bdi2
提示
本例可以用复数的乘法法则计算,也可以用乘法公式计算.
实数系中的乘法公式在复数系 中也是成立的.
解:(1) (3 + 4i)(3 - 4i)
我 来们 进用 行乘 计法 算公
式
= 32 - (4i)2
= 9 - (-16)
= 25.
(平方差公式)
(2)(1 + i)2
= 1 + 2i + i2
.
= 1 + 2i - 1
2.复数的减法
复数的减法就是加法的逆运算. (a+bi)-(c+di)=(a-c)+(b-d)i.
复数的减法法则: 实部与实部,虚部与虚部分别相减. 由此可见,两个复数的差是一个确定的复数.
例题1
计算
动动手
(5 - 6i) + (-2 - i) - (3 + 4i)
解: (5 - 6 i) + (-2 - i) - (3 + 4 i)
共轭复数.虚部不等于0的两个共轭
复数也叫做共轭虚数.
共轭复数:实部相等而虚部互为相反数的两个数. 复数z的共轭复数用 表示.
z 若z=a+bi,则 =a-bi (a,b∈R)
复数的四则运算(一)
(a+bi)(c+di)= ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i
2、复数的乘法满足交换律、
结合律以及乘法对加法的分配律. 即对任何z1, z2, z3 有
z1z2=z2z1; (z1z2)z3=z1(z2z3);
z1(z2+z3)=z1z2+z1z3
例2、 (2 i )( 3 2i )( 1 3i )
一.复数加法的运算法则:
1、运算法则:设复数z1=a+bi, z2=c+di, ( a,b,c,d∈R) 那么:z1+z2=(a+c)+(b+d)i 即:两个复数相加就是实部与实部, 虚部与虚部分别相加.
2、复数的加法满足交换律、结合律,
即对任何 z1, z2, z3∈C,有
z1+z2=z2+z1, (z1+z2)+z3=z1+(z2+z3).
例3、求下列复数的平方根
(1) -4 (2) 2i,3i,-8i
(3) 5+12i
例4:计算
2
(a bi )( a bi ) 解: (a bi )(a bi )
a abi abi b i
2 2
a b
2
2
(a bi )( a bi ) a b
2
2
例5、在复数范围内分解因式 (1) x2 +9 (2) x4 -16
(3) x2+2x+5
再见
二.复数减法的运算法则:
1、运算法则:设复数z1=a+bi, z2=c+di, ( a,b,c,d∈R) 那么:z1-z2=(a-c)+(b-d)i
复数四则运算
若 z1, z2 是共轭复数,那么
(1)在复平面内,它们所对应的点有怎样的位置关系?
(2) z1 • z2 是一个怎样的数?
关于共轭复数的运算性质
z1 , z2 ∈C , 则
z z z z
得 a 1,b 3
z 1 3i
综上: Z=4,1+ 3i ,1– 3i .
例3 将下列复数表示为 x iy 的形式.
(1)
1 1
i i
7
;
(2) i 1 i . 1i i
解 (1) 1 i (1 i)2 (1 i)2 i, 1 i (1 i)(1 i) 2
(b
4b a2 b2
)i
z 4R
z
b(1
a2
4
b2
)
0
b 0或a2 b2 4 ①
| z 2 | 2得| a bi 2 | 2
(a 2)2 b2 2 ②
将 b=0代入②得 a=4 或 a=0 ∴ Z=4 或 Z=0 (舍)
将 a2 b2 4 代入② (a 2) Nhomakorabea 4 a2 4, 得 a 1
22
22
1
小结: 2 , ( )2 ,
3 1, ( )3 1.
例4:已知z (4 3i)(1 7i) ,求 z 2 i
解:z (4 3i)(1 7i) 2 i
| 4 3i || 1 7i | | 2 i|
5 8 10 6 .
3
3
例5 计算 (1 3i)3 (1 i)6
设 OZ1 及 OZ2 分别与复数 a bi 及复数 c di对应,则 OZ1, (a,b)
§2 复数的四则运算
()
A.1-2i
B.2-i
C.2+i 答案:D
D.1+2i
5.若x-2+yi和3x-i互为共轭复数,则实数x=______,y=
________.
答案:-1 1
考点一 复数的加减运算 [典例] 计算:(1)(1+2i)+(3-4i)-(5+6i); (2)5i-[(3+4i)-(-1+3i)];
(3)(a+bi)-(2a-3bi)-3i(a,b∈R ). [解] (1)(1+2i)+(3-4i)-(5+6i) =(4-2i)-(5+6i)=-1-8i. (2)5i-[(3+4i)-(-1+3i)]=5i-(4+i)=-4+4i. (3)(a+bi)-(2a-3bi)-3i=(a-2a)+[b-(-3b)-3]i=-a +(4b-3)i.
2+ 2i34+5i (2) 5-4i1-i . 解:(1)(4-i5)(6+2i7)+(7+i11)(4-3i)
=(4-i)(6-2i)+(7-i)(4-3i)
=24-8i-6i-2+28-21i-4i-3
=47-39i.
(2)
25+-42ii31-4+i5i=2
二、基本技能·素养培优
1.判断(正确的打“√”,错误的打“×”)
(1)复数与向量一一对应. (2)复数与复数相加减后结果只能是实数.
(×)Байду номын сангаас(× )
(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.
(× )
(4)两个共轭复数的差为纯虚数.
(√ )
(5)若z1,z2∈C,且z21+z22=0,则z1=z2=0.
4.共轭复数 当两个复数的 实部 相等,虚部 互为相反数时,这样的两个
复数叫做共轭复数 .复数z的共轭复数用 z 来表示,也就是当z= a+bi时, z = a-bi .于是z z =a2+b2= |z|2 .
复数的四则运算
1 3i 3i 9i 1 9 10
2
例4.计算 (1 2i)(3 4i)(2 i) 解:
(1 2i )(3 4i )( 2 i ) (3 4i 6i 8i )( 2 i )
2
(3 2i 8)( 2 i ) (11 2i )( 2 i ) 22 11i 4i 2i 20 15i
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
z=a+bi , 其中a叫做复数 z 的 实部 记作: b叫做复数 z 的 虚部 . 全体复数集记 为 C .
有时把实部记成为Rez;虚部记成为Imz.
a bi c di a c b d i
即:两个复数相加(减)就是实部与实部,虚 部与虚部分别相加(减).
例1.计算下列各题
(1)(2 3i ) (8 2i ) ( 2)(5 3i ) (5 3i ) (3)(2 3i ) ( 5 i ) ( 4)(3 i ) ( 3 i )
2 2 2 2
先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例6.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
2
3、复数的乘方:
m , n N z , z , z C 对任何 1 2 及 ,有
《复数的四则运算》专题精讲课件
+ = .
解得 = −, = ± .所以 = − ± ,
即方程 + + = 的根为 = − ± .
=
.③
= −.
典型例题
高中数学
GAOZHONGSHUXUE
典例6 在复数范围内解方程: + + = .
思路 本题考查复数四则运算的应用,在复数范围内解方程,复数范围内,利用实系数一
元二次方程 + + = ≠ 求解方法.
(1)求根公式法
①当 ⩾ 时, =
于的周期性要记熟,即 + + + + + + = ∈ ∗ .另外记住以下结果,
可提高运算速度:① +
由于
=
−
+
= , −
= −.②
−
+
=
+
−,
−
= −,所以 = − + − + − = −.
虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如 +
+ = − + , +
= +
= + + + =
− + − .
解析
−
=
−
−
2.复数加、减法的几何意义
如图所示,设复数 = + , = + ∈ 对应的向量分别为
, ,四边形 为平行四边形,则与 + 对应的向量是,与
第五章 §2 复数的四则运算
§2复数的四则运算学习目标1.熟练掌握复数代数形式的加减乘除运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.知识点一复数代数形式的加减法思考类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c+d i)=(a±c)+(b±d)i.梳理(1)运算法则设z1=a+b i,z2=c+d i是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b+d)i,(a+b i)-(c+d i)=(a-c)+(b-d)i.(2)加法运算律对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).知识点二复数的乘法及其运算律思考怎样进行复数的乘法运算?答案两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成-1,并且把实部与虚部分别合并即可.梳理(1)复数的乘法法则设z1=a+b i,z2=c+d i是任意两个复数,那么它们的积(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律对于任意z1,z2,z3∈C,有知识点三共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数叫作互为共轭复数,z的共轭复数用z表示.即当z=a+b i时,z=a-b i.知识点四复数的除法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R,z2≠0),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).1.在进行复数的加法时,实部与实部相加得实部,虚部与虚部相加得虚部.(√) 2.复数加减乘除的混合运算法则是先乘除,再加减.(√)3.两个共轭复数的和与积是实数.(√)4.若z1,z2∈C,且z21+z22=0,则z1=z2=0.(×)类型一 复数的加法、减法运算例1 (1)若z 1=2+i ,z 2=3+a i(a ∈R ),复数z 1+z 2所对应的点在实轴上,则a =________.(2)已知复数z 满足|z |i +z =1+3i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)-1 (2)1+43i 解析 (1)z 1+z 2=(2+i)+(3+a i)=5+(a +1)i ,由题意得a +1=0,则a =-1.(2)设z =x +y i(x ,y ∈R ),则|z |=x 2+y 2, ∴|z |i +z =x 2+y 2i +x +y i =x +(x 2+y 2+y )i=1+3i , ∴⎩⎪⎨⎪⎧ x =1,x 2+y 2+y =3,解得⎩⎪⎨⎪⎧x =1,y =43,∴z =1+43i. 反思与感悟 (1)复数的加减运算就是实部与实部相加减,虚部与虚部相加减.(2)当一个等式中同时含有|z |与z 时,一般用待定系数法,设z =x +y i(x ,y ∈R ). 跟踪训练1 (1)若复数z 满足z +i -3=3-i ,则z =________.(2)(a +b i)-(2a -3b i)-3i =________(a ,b ∈R ).(3)已知复数z 满足|z |+z =1+i ,则z =________.考点 复数的加减法运算法则题点 复数加减法的综合应用答案 (1)6-2i (2)-a +(4b -3)i (3)i解析 (1)∵z +i -3=3-i ,∴z =6-2i.(2)(a +b i)-(2a -3b i)-3i=(a -2a )+(b +3b -3)i =-a +(4b -3)i.(3)设z =x +y i(x ,y ∈R ),|z |=x 2+y 2, ∴|z |+z =(x 2+y 2+x )+y i =1+i ,∴⎩⎪⎨⎪⎧ x 2+y 2+x =1,y =1,解得⎩⎪⎨⎪⎧ x =0,y =1, ∴z =i.类型二 复数代数形式的乘除运算例2 计算:(1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i); (2)(1+2i )2+3(1-i )2+i; (3)(1-4i )(1+i )+2+4i 3+4i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)⎝⎛⎭⎫-12+32i ⎝⎛⎭⎫32+12i (1+i) =⎣⎡⎦⎤⎝⎛⎭⎫-34-34+⎝⎛⎭⎫34-14i (1+i) =⎝⎛⎭⎫-32+12i (1+i) =⎝⎛⎭⎫-32-12+⎝⎛⎭⎫12-32i =-1+32+1-32i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (3)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i=7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i ) =21-28i +3i +425=25-25i 25=1-i. 反思与感悟 (1)按照复数的乘法法则,三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算,混合运算和实数的运算顺序一致,在计算时,若符合乘法公式,则可直接运用公式计算.(2)根据复数的除法法则,通过分子、分母都乘以分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.跟踪训练2 计算:(1)(4-i)(6+2i)-(7-i)(4+3i);(2)3+2i 2-3i +3-2i 2+3i; (3)(i -2)(i -1)(1+i )(i -1)+i. 考点 复数的乘除法运算法则题点 乘除法的运算法则解 (1)(4-i)(6+2i)-(7-i)(4+3i)=(24+8i -6i +2)-(28+21i -4i +3)=(26+2i)-(31+17i)=-5-15i.(2)3+2i 2-3i +3-2i 2+3i=i (2-3i )2-3i +-i (2+3i )2+3i=i -i =0.(3)(i -2)(i -1)(1+i )(i -1)+i =i 2-i -2i +2i -1+i 2-i +i=1-3i -2+i =(1-3i )(-2-i )(-2+i )(-2-i ) =-2-i +6i +3i 25=-5+5i 5=-1+i. 类型三 i 的运算性质例3 计算:(1)2+2i (1-i )2+⎝ ⎛⎭⎪⎫21+i 2 016; (2)i +i 2+…+i 2 017.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质 解 (1)原式=2(1+i )-2i+⎝⎛⎭⎫22i 1 008=i(1+i)+(-i)1 008 =i +i 2+(-1)1 008·i 1 008=i -1+i 4×252=i -1+1=i.(2)方法一 原式=i (1-i 2 017)1-i =i -i 2 0181-i =i -(i 4)504·i 21-i=i +11-i =(1+i )(1+i )(1-i )(1+i )=2i 2=i. 方法二 因为i n +i n +1+i n +2+i n +3=i n (1+i +i 2+i 3)=0(n ∈N +),所以原式=(i +i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i 2 014+i 2 015+i 2 016)+i 2 017=i 2 017=(i 4)504·i =1504·i =i.反思与感悟 (1)等差、等比数列的求和公式在复数集C 中仍适用,i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N +).(2)记住以下结果,可提高运算速度.①(1+i)2=2i ,(1-i)2=-2i.②1-i 1+i =-i ,1+i 1-i=i.③1i=-i. 跟踪训练3 (1)⎝ ⎛⎭⎪⎫1+i 1-i 2 018=________. 考点 虚数单位i 及其性质题点 虚数单位i 的运算性质答案 -1解析 ⎝ ⎛⎭⎪⎫1+i 1-i 2 018=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i ) 2 018=⎝⎛⎭⎫2i 2 2 018 =i 2 018=(i 4)504·i 2=1504·i 2=-1.(2)化简i +2i 2+3i 3+…+100i 100.考点 虚数单位i 及其性质题点 虚数单位i 的运算性质解 设S =i +2i 2+3i 3+…+100i 100,①所以i S =i 2+2i 3+…+99i 100+100i 101,②①-②得(1-i)S =i +i 2+i 3+…+i 100-100i 101=i (1-i 100)1-i -100i 101=0-100i =-100i.所以S =-100i 1-i =-100i (1+i )(1-i )(1+i )=-100(-1+i )2 =50-50i.所以i +2i 2+3i 3+…+100i 100=50-50i.类型四 共轭复数及其应用例4 把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎪⎨⎪⎧ a +2b =4,2a -b =3,得⎩⎪⎨⎪⎧ a =2,b =1, 所以z =2+i.引申探究若将本例条件改为z (z +2)=4+3i ,求z .解 设z =x +y i(x ,y ∈R ).则z =x -y i ,由题意知,(x -y i)(x +y i +2)=4+3i.得⎩⎪⎨⎪⎧x (2+x )+y 2=4,xy -y (x +2)=3, 解得⎩⎨⎧ x =-1-112,y =-32或⎩⎨⎧ x =-1+112,y =-32, 所以z =⎝⎛⎭⎫-1-112-32i 或z =⎝⎛⎭⎫-1+112-32i. 反思与感悟 当已知条件出现复数等式时,常设出复数的代数形式,利用复数相等的充要条件转化为实数问题求解.跟踪训练4 已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .考点 共轭复数的定义与应用题点 利用定义求共轭复数解 设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2=1,即a 2+b 2=1.①因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i 是纯虚数,所以3a -4b =0,且3b +4a ≠0.② 由①②联立,解得⎩⎨⎧ a =45,b =35或⎩⎨⎧ a =-45,b =-35.所以z =45-35i 或z =-45+35i.1.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于() A .第一象限 B .第二象限C .第三象限D .第四象限 考点 复数的加减法运算法则题点 复数加减法与点的对应答案 D解析 ∵z 1-z 2=5-7i ,∴z 1-z 2在复平面内对应的点位于第四象限.2.设复数z 满足i z =1,其中i 为虚数单位,则z 等于( )A .-iB .iC .-1D .1考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 z =1i =-i.3.若z =4+3i(i 为虚数单位),则z|z |等于( )A .1B .-1C.45+35iD.45-35i考点 复数的乘除法运算法则题点 乘除法的运算法则答案 D解析z=4+3i,|z|=5,z|z|=45-35i.4.设i 是虚数单位,z 是复数z 的共轭复数,若z =2i 31+i,则z =________. 考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1+i解析 z =2i 31+i =-2i (1-i )(1+i )(1-i )=-1-i , 所以z =-1+i.5.已知复数z 满足:z ·z +2z i =8+6i ,求复数z 的实部与虚部的和.考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题解 设z =a +b i(a ,b ∈R ),则z ·z =a 2+b 2,∴a 2+b 2+2i(a +b i)=8+6i ,即a 2+b 2-2b +2a i =8+6i ,∴⎩⎪⎨⎪⎧ a 2+b 2-2b =8,2a =6,解得⎩⎪⎨⎪⎧a =3,b =1, ∴a +b =4,∴复数z 的实部与虚部的和是4.1.复数代数形式的加减法满足交换律、结合律,复数的减法是加法的逆运算.2.复数代数形式的乘除运算(1)复数代数形式的乘法类似于多项式乘以多项式,复数的乘法满足交换律、结合律以及乘法对加法的分配律.(2)在进行复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化.3.复数问题实数化思想复数问题实数化是解决复数问题的基本思想方法,其桥梁是设复数z=a+b i(a,b∈R),利用复数相等的充要条件转化.一、选择题1.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4考点 复数的加减法运算法则题点 复数加减法的运算法则答案 B解析 ∵z +(3-4i)=1,∴z =-2+4i ,故z 的虚部是4.2.设复数z 满足关系式z +|z |=2+i ,那么z 等于( )A .-34+i B.34-i C .-34-i D.34+i 考点 复数的加减法运算法则题点 复数加减法的运算法则答案 D解析 设z =a +b i(a ,b ∈R ),则z +|z |=(a +a 2+b 2)+b i =2+i , 则⎩⎪⎨⎪⎧ a +a 2+b 2=2,b =1, 解得⎩⎪⎨⎪⎧a =34,b =1, ∴z =34+i.3.已知复数z满足(z-1)i=1+i,则z等于()A.-2-i B.-2+iC.2-i D.2+i考点复数的乘除法运算法则题点利用乘除法求复数答案 C解析由(z-1)i=1+i,两边同乘以-i,则有z-1=1-i,所以z=2-i.4.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 等于( )A .6B .-6C .0 D.16考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 A解析 ∵z 1z 2=3-b i1-2i =(3-b i )(1+2i )(1-2i )(1+2i )=3+2b +(6-b )i 5是实数,∴6-b =0,∴实数b 的值为6,故选A.5.已知i 为虚数单位,图中复平面内的点A 表示复数z ,则表示复数z1+i 的点是()A .MB .NC .PD .Q考点 复数的乘除法运算法则题点 运算结果与点的对应关系答案 D解析 由图可知z =3+i ,所以复数z 1+i =3+i 1+i =(3+i)(1-i )(1+i )(1-i )=4-2i 2=2-i 表示的点是Q (2,-1).故选D.6.设复数z 满足1+z1-z =i ,则|z |等于( )A .1 B. 2 C. 3 D .2考点 复数的乘除法运算法则题点 利用乘除法求复数答案 A解析 由1+z 1-z=i , 得z =-1+i 1+i=(-1+i )(1-i )2=2i 2=i , ∴|z |=|i|=1.7.若z +z =6,z ·z =10,则z 等于( )A .1±3iB .3±iC .3+iD .3-i考点 共轭复数的定义与应用题点 与共轭复数有关的综合问题答案 B解析 设z =a +b i(a ,b ∈R ),则z =a -b i , 所以⎩⎪⎨⎪⎧ 2a =6,a 2+b 2=10,解得⎩⎪⎨⎪⎧ a =3,b =±1,则z =3±i. 8.计算(-1+3i )3(1+i )6+-2+i 1+2i的值是( ) A .0 B .1 C .2i D .i考点 复数四则运算的综合应用题点 复数的混合运算答案 C解析 原式=(-1+3i )3[(1+i )2]3+(-2+i )(1-2i )(1+2i )(1-2i )=(-1+3i )3(2i )3+-2+4i +i +25=⎝⎛⎭⎫-12+32i 3-i +i =1-i +i =i (-i )i+i =2i.二、填空题9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 考点 复数的乘除法运算法则题点 利用乘除法求复数中的未知数答案 2解析 因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R ,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2. 10.若复数z 满足(3-4i)z =4+3i(i 是虚数单位),|z |=________.考点 复数的乘除法运算法则题点 利用乘除法求复数答案 1解析 因为(3-4i)z =4+3i ,所以z =4+3i 3-4i =(4+3i )(3+4i )(3-4i )(3+4i )=25i 25=i. 则|z |=1.11.定义一种运算:⎣⎢⎡⎦⎥⎤a b c d =ad -bc .则复数⎣⎢⎡⎦⎥⎤1+i -12 3i 的共轭复数是________.考点 共轭复数的定义与应用题点 利用定义求共轭复数答案 -1-3i解析 ⎣⎢⎡⎦⎥⎤1+i -12 3i =3i(1+i)+2=-1+3i , ∴其共轭复数为-1-3i.三、解答题12.已知z ,ω为复数,(1+3i)z 为纯虚数,ω=z 2+i,且|ω|=52,求ω. 考点 复数的乘除法运算法则题点 乘除法的综合应用解 设z =a +b i(a ,b ∈R ),则(1+3i)z =a -3b +(3a +b )i.由题意得a -3b =0,3a +b ≠0.因为|ω|=⎪⎪⎪⎪⎪⎪z 2+i =52, 所以|z |=a 2+b 2=510,将a =3b 代入,解得a =15,b =5或a =-15,b =-5,故ω=±15+5i 2+i=±(7-i). 13.已知复数z =1+i.(1)设ω=z 2+3z -4,求ω;(2)若z 2+az +b z 2-z +1=1-i ,求实数a ,b 的值. 考点 复数四则运算的综合应用题点 与混合运算有关的未知数求解解 (1)因为z =1+i ,所以ω=z 2+3z -4=(1+i)2+3(1-i)-4=-1-i.(2)因为z =1+i ,所以z 2+az +b z 2-z +1=(1+i )2+a (1+i )+b (1+i )2-(1+i )+1=1-i , 即(a +b )+(a +2)i i=1-i , 所以(a +b )+(a +2)i =(1-i)i =1+i ,所以⎩⎪⎨⎪⎧ a +2=1,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =2.四、探究与拓展14.投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数(m +n i)(n -m i)为实数的概率为________.考点 复数的乘除法运算法则题点 乘除法的综合应用答案 16解析 易知(m +n i)(n -m i)=mn -m 2i +n 2i +mn =2mn +(n 2-m 2)i. 若复数(m +n i)(n -m i)为实数,则m 2=n 2,即(m ,n )共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),6种情况,所以所求概率为636=16. 15.设z 是虚数,ω=z +1z是实数,且-1<ω<2. (1)求|z |的值及z 的实部的取值范围;(2)设μ=1-z 1+z,求证:μ为纯虚数. 考点 复数四则运算的综合应用题点 与四则运算有关的问题(1)解 因为z 是虚数,所以可设z =x +y i(x ,y ∈R ,且y ≠0),则ω=z +1z =(x +y i)+1x +y i =x +y i +x -y i x 2+y 2=⎝⎛⎭⎪⎫x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数,且y ≠0,所以y -y x 2+y 2=0,即x 2+y 2=1. 所以|z |=1,此时ω=2x .又-1<ω<2,所以-1<2x <2.所以-12<x <1, 即z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 μ=1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i 1+2x +x 2+y 2.又x2+y2=1,所以μ=-yi.1+x 因为y≠0,所以μ为纯虚数.。
复数的四则运算
例1、 计算:
• (1) (2-3i)(4+2i) • (2) (1+2i)(3+4i)(-2+i) • (3) (a+bi)(a-bi)
zz | z |2 | z |2 特别地,当| z | 1时, zz 1
例2 、 计算:(1+2i)2
例3、当n N *时,计算i n (i)n 所有可能的取值.
2、减法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1-Z2=(a+bi)-(c+di)=(a-c)+(b-di)
两个复数的差依然是一个复数,它的实部是原来的两个 复数实部的差,它的虚部是原来的两个复数虚部的差
例1、计算(1) (1+3i)+(-4+2i) (2) (5-6i)+(-2-I)-(3+4i) (3) 已知(3-ai)-(b+4i)=2a-bi, 求实数a、b的值。
练习: 1+i1+i2+i3+…+i 2004的值为( A ) (A) 1 (B) -1 (C) 0 (D) i
四、复数的除法
把满足(c+di)(x+yi) =a+bi (c+di≠0) 的复 数 x+yi 叫做复数 a+bi 除以复数c+di的商,
记做(a bi) (c di)或 a bi . c di
复数的四则运算
一、复数的加、减法
1、加法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1+Z2=(a+bi)+(c+di)=(a+c)+(b+di)
复数的运算
复数的运算
我们可以借助实数的四则运算法则来定义复数的四则运算。
复数的加减法为(a+bi)+(c+di)=(a+c)+(b+d)i
注意到i2=-1,定义复数的乘法为
(a+bi)(c+di)=ac+adi+bci+bdi2
=(ac-bd+(ad+bc)i
可以看到,两个复数的乘积为0当且仅当其中一个复数为0,这与实数的情况是一样的。
特别称a-bi为a+bi的共扼,两个共扼复数的乘积为实数,即
(a+bi)(a-bi)=a2+b2
当c和d不同时为零时,令分子分母同乘分母的共钜,定义复数的除法为
(a+bi)/(c+di)=(ac+bd)/(c2+d2)+[(bc-ad)/(c2+d3)]i
有了上面的定义,我们就可以求任意二次方程的解了,比如
x2-2x+20,由韦达公式可以得到两个解为x1=1+i和x2=1-i。
高斯非常认真地研究了复数,他在1801年发表地《算术研究》中考虑了复整数地问题,即复数a+bi中a和b均为整数的问题;他考虑了复素数的问题,所谓的复素数是指:不能分解为除+1和+i以外复整数乘积的形式的复数。
这样,在实数集合R中的素数在复数集合C中就不一定是复素数了,比如5在实数集合是一个素数,但在复数集合中却可以表示为两个共扼数乘积的形式,即
5=(1+2i)(1-2i),因此,5在C中就不是素数。
特别是,高斯证明
了我们在《数的性质》一讲中提到的“任何一个整数都可以唯表示为若千个素数的乘积的形式”这个事实对于复整数也成立,于是,就开辟了今天被称为代数数论的新的研究邻域.。
复数的四则运算:乘除
2 2
(化简) (最后写成代数形式)
ac bd bc ad 2 2 i 2 2 c d c d
问题探究1
复数的除法法则:
a bi ac bd bc ad (a bi ) (c di ) 2 2 i 2 2 c di c d c d
课后作业
练习册p25 9.2(3)/1、练习册p25 9.2(4)/1(1)(2)
复数的四则运算
——复数的乘法
知识回顾
已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数)
(1)加法法则:z1+z2=(a+c)+(b+d)i;
(2)减法法则:z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减).
问题引入
设a,b,c,d∈R,则(a+b)(c+d)怎样展开?
(a+b)(c+d)=ac+ad+bc+bd
问题探究1
设复数z1=a+bi,z2=c+di,其中a,b,c, d∈R,则z1z2=(a+bi)(c+di),按照上述运 算法则将其展开,z1z2等于什么?
(a bi )(c di ) ac adi bci bdi
2
(ac bd ) (bc ad )i
,
2 5 -2
问题探究1
设复数z1=a+bi,z2=c+di,其中a,b,c, d∈R,则z1÷z2=?
( a bi )( c di ) (再把分子与分母都乘以分母的共轭复数) ( c di )( c di )
复数的四则运算
z1 ( z 2 z 3 ) z 1 z 2 z 1 z 3
n m n
n n 1 2
正整数指数幂运算律:
z z z
m
n
, (z ) z ,
m n mn
( z1 z 2 ) z z
( m, n Z )
典型例题
方法一: 根据复数的乘法和两复数相等的知识,可得: 由 (c di)(x yi) a bi
(cx dy) (dx cy)i a bi ac bd bc ad 解得 x 2 , y 2 2 2 c d c d a bi ac bd bc ad 所以 2 2 i 2 2 c di c d c d
复习回顾
* 两复数相等: 若 a, b, c, d R, 则 a bi c di a c , b d
* 复平面:
Z (a, b)
一一对应
Z a bi
* 复数的模长:
OZ
z a bi
z a2 b2
新课讲解 复数 z1 与 z 2 的和的定义:
z1 z2 (a bi) (c di) (a c) (b d)i
例2 计算:
(1)
(1 i )4
(2)(2 i )2 (2 i )2
2 2 2 2 解: ( 1 )原式 [(1 i ) ] (1 2i i )
( 2i ) 4
2
( 2)原式 [(2 i )(2 i )]2 (4 1)2 25
类似于实数除法的运算,复数的除法也是复数乘 法的逆运算。 复数的除法:
复数的四则运算
a + bi 记做(a + bi ) ÷ (c + di )或 . c + di
(a + bi) ÷ (c + di) = a + bi ac + bd bc − ad = 2 + 2 i 2 2 c + di c + d c +d
例ห้องสมุดไป่ตู้、计算
1− i (1) 1+ i
13 + 9i (2) 2 (2 + i)
是____________. ____________. 解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆. 答案:以点(-1,0)为圆心,2为半径的圆
【练习】 练习】 1、在复数范围内解方程 、 (1) x2+4=0 (2) z2=2i
2、在复数范围内分解因式 、 (1) x2 + 4 (2) x4 - y4
Cz2-z1 B
z1+z2
2 、 | z 1+ z 2| = | z 1- z 2| 平行四边形OABC OABC是 平行四边形OABC是 矩形
o
z1 A
3、 |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 平行四边形OABC是 正方形 OABC
三、复数的乘法
o
x
A,说明下列各式所表示的几何意义 例1:已知复数z对应点A,说明下列各式所表示的几何意义. 1:已知复数z对应点A,说明下列各式所表示的几何意义. 已知复数
(1)|z- (1)|z-(1+2i)| (2)|z+(1+2i)| (3)|z- (3)|z-1| (4)|z+2i|
27知识讲解_复数的四则运算
i n 4k 3
【答案】(1) in
1
i
n 4k 2 n 4k 1
1 n 4k
其中k N * ;
(2) i4k i4k1 i4k2 i4k3 i4k (1 i2 i3 i) 0 ,
【学习目标】 1.ห้องสมุดไป่ตู้会进行复数的加、减运算; 2. 会进行复数乘法和除法运算;
复数的四则运算
3. 掌握共轭复数的简单性质,理解 z 、 z 的含义,并能灵活运用。
【要点梳理】 要点一、复数的加减运算
1.复数的加法、减法运算法则:
设 z1 a bi , z2 c di ( a, b, c, d R ),我们规定:
z 2 2i
5
当 a 2 , b 2 时, z 2 2i i . z 2 2i
故 z i. z
6
通常记复数 z 的共轭复数为 z 。
2.乘法运算法则:
设 z1 a bi , z2 c di ( a, b, c, d R ),我们规定:
z1 z2 (a bi)(c di) (ac bd ) (bc ad )i z1 a bi (a bi)(c di) ac bd bc ad i z2 c di (c di)(c di) c2 d 2 c2 d 2
2
2i)·4i=8,而不是-8. 举一反三:
【变式 1】在复平面内,复数 z=i(1+2i)对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】B ∵z=i(1+2i)=i+2i2=-2+i,∴复数 z 所对应的点为(-2,1),故选 B. 【高清课堂:复数代数形式的四则运算 401753 例题 1】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 复数的四则运算
1.若z-3-2i=4+i,则z等于
() A.1+i B.1-i
C.-1-i D.-1-3i
答案 B
解析z=(4+i)-(3+2i)=1-3i.
2.若复数z1=1+i,z2=3-i,则z1·z2=
() A.4+2i B.2+i C.2+2i D.3+i
答案 A
解析z1·z2=(1+i)(3-i)=4+2i,故选A.
3.5-(3+2i)=________.
答案2-2i
4.复数1
1-i
的虚部是________.
答案1 2
解析∵1
1-i =
1+i
(1-i)(1+i)
=
1+i
2=
1
2+
1
2i.∴虚部为
1
2.
1.复数代数形式的加、减法运算法则
设z1=a+b i,z2=c+d i(a,b,c,d∈R),则有z1±z2=(a+b i)±(c+d i)=(a±c)+(b±d)i.
即两个复数相加(减),就是把实部与实部、虚部与虚部分别相加(减).
2.复数代数形式的乘法运算法则
(1)复数乘法的法则
复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部、虚部分别合并.
(2)复数乘法的运算律
对于任意的z 1,z 2,z 3∈C ,有
z 1·z 2=z 2·z 1(交换律),
(z 1·z 2)·z 3=z 1·(z 2·z 3)(结合律),
z 1·(z 2+z 3)=z 1z 2+z 1z 3(乘法对加法的分配律).
3.复数代数形式的除法运算法则
在无理式的除法中,利用有理化因式可以进行无理式的除法运算.类似地,在复数的除法运算中,也存在所谓“分母实数化”问题.将商a +b i
c +
d i 的分子、
分母同乘以c -d i ,最后结果写成实部、虚部分开的形式:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )
=(ac +bd )+(-ad +bc )i
c 2+
d 2=ac +bd c 2+d 2+-ad +bc c 2+d 2i 即可.。