六年级高斯学校竞赛数学比例解应用题含答案

合集下载

六年级高斯学校竞赛应用题综合二含答案

六年级高斯学校竞赛应用题综合二含答案

第17讲应用题综合二内容概述各种具有较强综合性的复杂应用题.包含多种可能情况,需要进行分类讨论的问题;需要进行合理守排对策,以达到最佳效果的问题.典型问题兴趣篇1.有一批砖,每块砖的长和宽都是自然数,且长比宽长12厘米.如图17-1,若把这批砖横着铺,则可铺897厘米长;如图17-2,若竖横相间铺,则可铺657厘米长,请问:如图17-3这样铺,可铺多少厘米长?2.一种商品的定价为整数元,100元最多能买3件,甲、乙两人各带了若干张百元钞票,甲带的钱最多能买7件这种商品,乙带的钱最多能买14件,两人的钱凑在一起就能多买1件,求这件商品的定价.3.小明要写152页字,小强要写150页字.从暑假第一天起,小明一天写3页,天天写;小强第一天写4页,但是隔一天写一次,请问:第多少天写完字后,小强没写的页数是小明没写的页数的2倍?4.现有甲、乙、丙三种食盐水各200克,浓度依次为42%、36%、30%,现在要配制浓度是34%的食盐水420克,至少要取甲种食盐水多少克?5.要生产某种产品100吨,需用A种原料200吨,或B种原料200.5吨,或C种原料195.5吨,或D种原料192吨,或E种原料180吨.现知用A种原料及另外一种(指B、C、D、E 中的一种)原料共19吨生产此种产品10吨.试分析所用另外一种原料是哪一种,这两种原料各用了多少吨?6.某城出租车的计价方式为:起步价是3千米8元,之后每增加2千米(不足2千米按2千米计算)增加3元.现从甲地到乙地乘出租车共支出车费44元;如果从甲地到乙地先步行900米,然后再乘出租车只要41元,那么从甲、乙两地的中点乘出租车到乙地需支付多少钱?7.现有21块巧克力,A、B、C、D、E五个人轮流把这些巧克力吃光了,但不知道他们吃的先后顺序.A说:“我吃了剩下巧克力数量的三分之二.”B说:“我吃了剩下巧克力数量的一半,”说:“我吃了剩下巧克力数量的一半.”D说:“我吃光了剩下的巧克力,”E说:“我们每人吃的数量互不相同.”已知每人吃的数量都是正整数,请问:E吃了多少块巧克力?8.已知A、B、C、D、E、F六人分别看了5、5、6、8、8、10场演出.每场演出票价不变,成人票的票价是儿童票的2倍,且均为整数元.已知这六人买演出票共支出了1026元,求成人票单价.9.甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天生产裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服.现两厂合并后,100天最多可以生产多少套衣服?10.如图17-4,圆形湖泊周长1200米,除了A点和B之外,每隔100米就有一只蜜蜂,一共十只蜜蜂.它们按照顺时针的方向飞行,各个蜜蜂的速度均标在了图上,单位是“米/秒”,小偷从A点出发沿湖顺时针逃到位于B点的家中,只要被沿途的蜜蜂碰到,小偷就会被蜇一下.请问:小偷最少会被几只蜜蜂蜇到?拓展篇1.有8个盒子,各盒内分别装有奶糖9、17、24、28、30、31、33、44块.甲先取走了一盒,其余各盒被乙、丙、丁三人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?2.商店进了一批同样规格的袜子甩卖,为了避免找零,按40%的利润先定价,实际上收取高于“定价×双数”的最小整数元.结果买2双袜子需要5元,3双袜子需要8元,5双袜子需要12元,已知每双袜子的成本和利润都是整数分,求每双袜子的成本.3.甲站有车26辆,乙站有30辆.从上午8点开始,每隔5分钟由甲站向乙站开出一辆车,每隔7.5分钟由乙站向甲站开出一辆车,都经过1小时到达对方车站,问:最早在什么时刻,乙站车辆数是甲站的3倍?总共持续多长时间?4.有4种颜色的卡片每种各3张,每张卡片上写有一个正整数,相同颜色的卡片上写有相同的数,不同颜色的卡片上写有不同的数.把这些卡片发给6个人,每人得到2张不同色的卡片,将上面的数相加,得到了6个和:88、121、129、143、154、187.但是,其中有一个人算错了.请从小到大依次写出四种颜色卡片上所写的数,请写出所有可能.5.生产某种产品100吨,需用A 原料250吨,或B 原料300吨,或C 原料225吨,或D 原料240吨,或E 原料200吨.现知用了A 原料和另外两种原料共15吨生产该产品7吨,每种原料都用了至少1吨,且某种原料占了原料总量的一半,那么另两种原料是什么?分别用了多少吨?6.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者(包含200元)优惠5%.每次买书500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜39.4元.已经知道第一次的书价是第三次书价的85.问:这位顾客第二次买了多少钱的书?7.甲、乙两人同时从A 地出发,以相同的速度向B 地前进,甲每行5分钟休息2分钟,乙每行210米休息3分钟,甲出发后50分钟到达B 地,乙到达B 地比甲迟了10分钟.已知两人最后一次的休息地点相距70米,求两人的速度.8.货运公司要用若干辆最大载重2.1吨的汽车一次性搬运总重18.6吨的货物.为方便搬运,公司把这18.6吨货物包装成若干箱,每箱重量相同.由于包装规格所限,每箱的重量不能超过320千克,且包装好后,货物只能整箱搬运,不得拆箱.请问:要保证一定能一次搬运所有货物,至少需要多少辆汽车?此时每箱货物重量为多少千克?9.某车间有30名工人,计划要加工A 、B 两种零件,这些工人按技术水平分成甲、乙、丙三类人员,其中甲类人员有6人,乙类有16人,丙类有8人.各类人员每人每天加工两种零件的个数如表17-1所示.如果要求加工A 、B 两种零件各3000个,那么最少要用几天?10.有三个一样大的桶,一个装有浓度为60%的酒精100升,一个装有水100升,还有一个桶是空的.现在要配置浓度为36%的酒精,只有5升和3升的空桶各一个可以作为量具,并且桶上无其他刻度.如果倒溶液的时候最多只允许往每个量具里倒4次,那么最多能配置出浓度为36%的酒精多少升?11.一条环形道路,周长为2千米.甲、乙、丙三人从同一地点同时出发,每人环行2周.现有自行车两辆,乙和丙骑自行车出发,甲步行出发,中途乙和丙下车步行,把自行车留给其他人骑.已知甲步行的速度都是每小时5千米,乙和丙步行的速度都是每小时4千米,三人骑车的速度都是每小时20千米.请你设计一种走法,使三个人两辆车同时到达终点,环行2周最少要用多少分钟?12.幼儿园分大、中、小三个班,小班人数最少,大班比小班多61人,中班共27人.把25筐苹果分给他们,每筐苹果在50至60之间不等.已知苹果总数的个位数字是7,若每人分得19个,则苹果不够;若大班比中班每人多1个,中班比小班每人多一个,则苹果刚好分完.那么按第二种分法,大班每人分得几个苹果?小班有多少人?超越篇1.如图17-5所示,在直角三角形ABC 中,AC 长3厘米,CB 长4厘米,AB 长5厘米.有一只小虫从C 点出发,沿CB 以l 厘米/秒的速度向B 爬行;同时,另一只小虫从B 点出发,沿BA 以1厘米/秒的速度向A 爬行,请问经过多少秒后,两只小虫所在的位置D 、E 与B 组成的三角形DBE 是等腰三角形?(请写出所有答案)2.七个人围坐在圆桌周围,在每个人面前都有一个牛奶杯.第一个人把自己的牛奶都平均分到其余的杯子中去,接着第二个人照样做一遍,然后第三个人到第七个人也同样做一遍.最后发现每个杯子中的牛奶都和最开始时一样多.如果所有杯子的牛奶共有7升,那么第一个人到第七个人的杯子里开始时分别有牛奶多少升?3.甲、乙两人切蛋糕,两人轮流切,每人切走了五块.已知:①甲切了5次蛋糕,每次切走的蛋糕恰是切蛋糕时蛋糕大小的61、62、63、64和65各1次,但不全对应切蛋糕顺序;②乙切了5次蛋糕,每次切走的蛋糕恰是切蛋糕时蛋糕大小的51、52、53、54和55各1次,也是不全对应切蛋糕顺序;③切的最大的两块都是原来蛋糕的91,另外还有一块大小是原来蛋糕的2251.求切的第八块蛋糕与原来蛋糕的大小之比.4.师徒两人共同组装50台机器,每台机器组装必须经过A 、B 两道工序.对于每台机器,师傅操作A 工序需要15分钟,操作B 工序需要5分钟;徒弟操作A 工序需要45分钟,操作启工序需要20分钟,每台机器每道工序只能由一人完成,不同工序可以由不同人分别完成,但必须A 先B 后.试问:如果两人合作至少要花多少分钟才能完成工作?5.甲、乙两人在如图17-6的跑道上练习跑步,两人从A 点同时出发,甲在A 、E 之间做折返跑(转身时间不计),乙则沿着正方形跑道ABCD 顺时针跑步,已知AB=BE=100米,且两人跑步的速度都在每秒3米到每秒8米之间.如果两人出发2分钟后第一次相遇,之后隔了15秒后两人第二次相遇,那么两人第二次相遇处距离A 多远?6.某电器商场开展促销活动,每次消费超过1500元不足3000元者(含1500元)优惠5%,超过3000元者(含3000元)优惠10%.甲、乙、丙三个人各买了一件电器,如果甲、乙一起结算,比分开结算便宜130元;如果甲、丙一起结算,比分开结算便宜260元;如果三人一起结算,比三人分开结算便宜405元.请问:三人购买的电器价格分别是多少?7.某商场进行酬宾,规定现金消费每满50元返回10元礼券,多出不足50元部分不计(比如消费99元只能返回1张10元礼券),用礼券产生的消费不参与返券.妈妈看中了3件商品,分别是100多元、200多元、300多元,且都是10的倍数,更巧的是,有两件商品的价格之和正好是整百.为了充分利用返券,妈妈打算先买其中的两件,然后兑换成返券,这样买第三件商品的时候,就可以用上返券了,当然,如果返券不够买第三件,自己还得再掏一些钱,她合计了一下,这样安排的话,共有三种可能的消费结果:第一种恰好花640元,礼券也用完了;另外两种情况都要花670元,但最后又返回40元礼券.问:三种商品的价格分别是多少元?8.学校运来125个桃和若干个梨,分别平分给每位老师,最后剩下一些梨和桃不够分,这时又运来了26个水果(桃梨若干),和之前剩下的水果凑在一起,再平分给老师,每个老师多分得3个水果(每位老师的桃数相同,梨数相同).最后又运来40个水果(桃梨若干),但是发现所剩的桃和梨竞不够每位老师同时多拿一个,那么第一次分后剩下了多少个梨?第 17 讲 应用题综合二兴趣篇1、有一批砖,每块砖的长和宽都是自然数,且长比宽长 12 厘米。

高思奥数导引小学六年级含详解答案第03讲 方程解应用题

高思奥数导引小学六年级含详解答案第03讲 方程解应用题
则可以求出 (平方厘米)。

兴趣篇
1.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米。已知 厘米, 厘米, 厘米,求图形的面积。
【分析】
2. 如图所示, 等于多少度?
【分析】将这六个角用中心六边形的六个内角代换,利用六边形内角和为 ,列方程得

所以
3. 如图,平行四边形 的周长为75厘米。以 为底时高是14厘米,以 为底时高是16厘米。求平行四边形 的面积。
【分析】 ,根据面积相等,底的比与高的比成反比例,所以 ,因此 ,平行四边形 的面积是 平方厘米
4. 如图所示,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是 平方米、 平方米、 平方米和 平方米。已知图中的阴影部分是正方形,那么它的面积是多少平方米?
【分析】 ,因此 , , ,所以 , ,因此 ,那么它的面积是 平方米
【分析】
从A点向BC做垂线交BC于F点,交BD于H点。
三角形ABH面积等于三角形CDE的面积,又四边形AEDH为平行四边形。
所以三角形AED的面积=75-45=30。
7. 在长方形 中, 、 、 、 分别是边 、 、 、 上的点,将长方形的四个角分别沿着 、 、 、 对折后, 点与 点重合, 点与 点重合。已知 =3, =4,求线段 与 的长度比。
2. 如图, 是正五边形, 是正三角形, 等于多少度?
【分析】 ,因为 ,所以 ,因此
3. 一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图所示。问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?
【分析】设 ,有 ,解得 ,所以 平方厘米
4. 图中大长方形被分成四个小长方形,面积分别为12、24、36、48。请问:图中阴影部分的面积是多少?

六年级数学竞赛上册奥数高思第4讲方程解应用题(彩色)

六年级数学竞赛上册奥数高思第4讲方程解应用题(彩色)

上册第4讲方程解应用题本讲我们主要学习如何利用方程或方程组来解应用题.在以前的学习中,我们已经系统地学习了很多不同类型的应用题,像和差倍分问题、行程问题、工程问题等.这些问题的解决方法已经学过很多,为什么现在又要专门学习方程方法呢?和以前的方法相比,方程方法有什么优点呢?这些问题大家在学完本讲之后就会有答案了.24方程解应用题首先,我们来复习一下一元一次方程的解法.练一练解下列方程:(1)3171x +x −xx++=+;(2)461232172××x +1+2−=x23423;(3)3x 55+=4x +12;(4)()()()2x +1x +7=x +2+ 5.;(4)()()()2接下来我们学习如何列一元一次方程解应用题.一个分,分子与分母的和是122;如果分子、分母都减去19,得到的分数化简后是15,那么原分数是多少?分析设原来的分子x ,那原来的分母就是122−x .再由另外一个已知条件,不难列出方程求解.1.一个分数,分子与分母的和是122.如果把分子、分母都加上19,得到的分数化简后是14.那么这个分数是多少?25上册第4讲如下图的短除式所示,一个自然数被8除余1,所得的商被8除也余1,第二次所得的商被8除后余7,最后得到的商是a.同时这个自然数被17除余4,所得的商被17除余15,最后得到的商是a 的2倍.求这个自然数.8 ĂĂဥ1ဥဥԅ가ဥဥ8 ĂĂဥ1ԛԛұဥ8 ԛԛұဥĂĂဥ7a 17 ĂĂဥ4ဥဥԅ가ဥဥ17 ĂĂဥ15ԛԛұဥ2a分析这是一个带余除法的问题,蕴含着等量关系:被除数= 除数×商+ 余数.利用这一等量关系以及图中的两个短除式,不难用字母a 表示出原来的自然数(有两种不同表示方式).2.如果一个自然数被3除余1,所得的商被3除也余1,第二次所得的商被3除后余2,最后得到的商是a.同时这个自然数被7除余6,所得的商被7除余3,最后得到的商是a 的一半.求这个自然数.给某班分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果.问:该班一共有多少人?分析刚开始看这道题目,会觉得条件非常多,有些乱.不过稍加分析就会发现,本题的数量关系并不复杂.题目中虽然有四个组,但这四组人数之间有很多联系.如果某一组的人数知道了,其他各组的人数也就知道了.根据这一点,我26方程解应用题们可以设出其中一组的人数,列方程求解.3.司机小王身上带有1元、2元、5元、10元四种面值的纸币共82元,其中1元与2元纸币共22张,5元和10元纸币共7张,所有2元纸币的总面值和所有5元纸币的总面值相等.问:小王身上有多少张10元纸币?有大、中、小三种包装盒的筷子,里面分别装有18双、12双和8双筷子.现在某商店里有27盒这样包装的筷子,一共装有筷子330双,其中小盒数是中盒数的2倍.问:三种包装的筷子各有多少盒?分析本题与例3类似,你能够方程解这道题吗?4.小王家今早由于懒得做饭,直接到包子店里花了18元4角买了31个包子.已知这个店里只有A、B、C 三种包子,三种包子单个价格分别为4角、6角、7角.据卖包子的小哥透露,小王买的4角的包子比6角的包子少一个.问:小王今早买了三种包子各多少个?看过前面这些一元一次方程解应用题的题目,大家是否有这样的体会:原本这些题目都属于不同的类型,算术方法迥异,难度差别也很大,但如果我们利用方程进行求解,那么解题方法就变得统一起来,而且难度也降低了不少.只要找到等量关系,列出方程,就可以得到答案——这就是方程的妙处,看上去只是一种简单的套路,却有着四两拨千斤的功效,轻描淡写就能化解难题.27上册第4讲一元一次方程我们已经会解了,那么二元一次方程组应该怎么解呢?方法很简单,只要设法把二元一次方程组变为一元一次方程,就可以求解了.下面我们学习二元一次方程组的解法.解二元一次方程的两种常用方法一、代入消元法,如示例1.该解法的步骤和要点可总结如下:1. 由方程组的任意一个方程出发,把一个未知数写成只含有另一个未知数的算式;2. 将这个算式代入另一个方程中去,使它转化为一元一次方程,达到消元的目的;3. 解一元一次方程,得到一个未知数;4. 将该未知数的数值代回第1步所得的算式,求出另一个未知数.2x +7y =39,示例1.解方程组:3x +5y =31.①②我们采用类似的方法.由①式可得x39−7y=③.将其代入②式消去x,可得297−y +=.5y 312解这个关于y 的一元一次方程可得y =5.再将y 的数值代入③式即可得到x =2.x =综上所述,该方程组解为=y 2,5.二、加减消元法,如示例2.该方法的步骤和要点可总结如下:1. 若有某个未知数,它前面的系数在两个方程中恰好相反或者相同,就可以通过把两个方程相加或者相减的方法消去该未知数;如果没有上述特点,可以通过等式两边同乘以一个数,将其凑成可以加减消元的形式;2. 解消元后得到的一元一次方程;3. 把得到的未知数带入原方程中,求出另一个未知数.,5x +6y =32①示例2.解方程组:15x 7y 46②−=.注意到15x 正好是5x 的3倍,因此可以将①乘以3,得15x +18y =96.③将②与③联立可得:28方程解应用题+=15x 18y 96,③−=15x 7y 46.②该方程组的两个算式都含有15x,因此我们可以把它们相减.由于96比46大,因此采用③−②:(15x +18y)−(15x −7y)=96−46.脱去括号正好可以消去x,可得15x +18y −15x +7y =50.这样就只剩下未知数y,得方程25y =50,所以y =2.将y 的数值代入方程,可进一步求得x =4.x =4,综上所述,该方程组的解为=y 2.练一练解下面的方程组:(1)2y −x =1,−=13x 8y 59;(2)+=11x 9y 49,−=13x 3y 17;(3)18+29=307x y ,+=16x 28y 284;(4)1.2+1.3=14x y ,−=2.2x 0.7y 1.甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.问:甲、乙两人每小时各走多少千米?分析本题包含两个相遇过程,由于甲、乙两人并非同时出发,所以不能直接用相遇问题的公式来算.那我们应该寻找怎样的等量关系来列方程呢?29上册第4讲大家不妨从最简单的关系出发去思考,比如想想甲、乙两人走的路程等于什么?相遇时两人的路程和又等于什么?5.甲、乙两人从相距48千米的两地相向而行.如果甲、乙同时出发,他们4小时之后相遇;如果乙比甲先走3小时,那么他们在甲出发后3小时相遇.问:甲、乙两人每小时各走多少千米?一元一次方程和二元一次方程组我们都见识过了,那有没有未知数个数更多的方程组呢?这些方程组是不是也可以拿来求解应用题呢?下面我们就来看一看.奥运指定商品零售店里的福娃有大号、中号和小号三种.卡莉娅买了一个大号的个中号的和两个小号的,共花了360元;小高买了两个大号的、一个中号的和一个小号的,共花了270元;墨莫买了一个大号的、两个中号的和两个小号的,共花了300元.请问:商店里的大号、中号和小号福娃的价各是多少?分析假设商店里的大号、中号和小号福娃的单价分别是x 元、y 元和z 元,那么这三个未知数满足哪些等量关系?要求三个未知数,通常需要三个方程组成方程组,你能列出这个方程组来吗?所列出来的方程组又当如何求解呢?6.小朋友们,我身上本来有1元、2元和5元三种纸币共18张,刚好可买16瓶2.5元的可口可乐.但由于在上课的路上用掉了一半的5元纸币和一半的2元纸币,现在想买10瓶可口可乐就差一块钱了.大家知道我现在有多少张5元纸币吗?30方程解应用题思考题如图,直角墙边放着一块木板,一只淘气的猫,爬了上去,使得木板向下滑动了一段距离,90现在已知图中的三段长度(单位:厘米),请问这块木板的长度是多少厘米?13070一、学会找等量关系,能够熟练应用一元一次方程解应用题.二、学会用代入消元法和加减法解简单的二(多)元一次方程组.三、初步学习列多元一次方程组解应用题.1.解下列方程:(1)21214(1)1x x++x −x −−=+;453;511751(2)××x +−−=x122115524(3)4x +3=44x +13;31上册第4讲(4)()()()22x −32x −5=2x −1−28.2.解下列方程组:(1)6x +7y =23,+= 14x 17y 55;(2)3x +2y =19,−= 7x 18y 33;(3)16y −9x =6,−=.21x 12y 593.寒暑表中通常有两个刻度:摄氏度和华氏度,它们之间的换算关系是:摄氏度×+32=5华氏度.问:在摄氏多少度时,华氏度的值恰比摄氏度的值大80?4.小高去商店买了一些大瓶饮料和小瓶饮料,共花了75元.已知大瓶饮料每瓶5.5元,小瓶饮料每瓶1.8元.每只大瓶装饮料2.5升,每只小瓶装480毫升,所有大瓶比所有小瓶共多装饮料27.6升.问:小高买了大瓶和小瓶饮料各多少瓶?5.小琪到超市购物,他花了73元买了甲、乙、丙、丁4种商品.已知四种商品单价分别是2元、3元、5元、7元,其中乙和丙共7件,丁的数量是丙的3倍,甲和乙的总数量恰与丙和丁的总数量相同.问:小琪在超市一共买了多少件商品?32。

六年级高斯学校竞赛数学比例解应用题含答案

六年级高斯学校竞赛数学比例解应用题含答案

第2讲比例解应用题内容概述涉及两个或多个量之闻比例的应用题.熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系.典型问题兴趣篇1.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问:圆珠笔的单价是每支多少元?2.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3千米,下坡时每小时走4.5千米.如果阿奇走完全程用了半小时.请问:这段路程一共有多少千米?3.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟,现有1170个零件,甲、乙、丙三人各加工几个零件,才能使得他们同时完成任务?4.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.5.已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14.请问: (1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克? 7.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时.问:小明去时用了多长时间?8.冬冬从家去学校,平时总是7:50到校,有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校,请问:冬冬这天是几点出发的?9.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的87就可完成;如果减少2台机器,就要推迟32小时才能完成.请问: (1)在规定时间内完成需几台机器?(2)由1台机器去完成这工程,需要多少小时?10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?拓展篇1.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元,已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?2.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?3.甲、乙、丙三人合买一台电视机,甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少? (2)这台电视机售价多少钱?4.一把小刀售价3元,如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?5.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?6.某俱乐部男、女会员的人数比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数比是3:1,乙组中男、女会员的人数比是5:3.求丙组中男、女会员的人数比.7.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1: 2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍; ③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?8.如果单独完成某项工作,甲需24天,乙需36天,丙需48天,现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作的天数比为3:5.问:完成这项工作一共用了多少天?9.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同,求猫、狗和兔的速度之比.10.星期天早晨,哥哥和弟弟都要到奶奶家去,弟弟先走5分钟,哥哥出发25分钟后追上了弟弟,如果哥哥每分钟多走5米,出发20分钟后就可以追上弟弟.问:弟弟每分钟走多少米?11.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行多少千米?12.一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的65即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?超越篇1.甲、乙两人分别同时从A 、B 两地开始,修建一条连接A 、B 两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元.而在实际施工的时候,乙每天比原计划多修l 千米,结果乙实际分得了150万元,那么乙队实际施工时,每天修多少千米?2.孙悟空有仙桃、机器猫有甜饼、米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃分别与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出88个泡泡糖与其他两位互换.请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?3.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知: ①第一包糖的粒数是第二包糖的32;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍,当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.4.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投人工作,又干了15天才完成任务.求甲种车完成的工作量与总工作量之比.5.在一个490米长的圆形跑道上,甲、乙两人从相距50米的A 、B 两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一.当乙回到B地时,甲刚好回到A地,此时他们都按现有速度与方向前进.请问:当甲再次追上乙时,甲(从开始出发算起)一共走了多少米?6.将A、B两种细菌分别放在两个容器里.在光线亮时A细菌需12小时分裂完毕,B细菌需15小时分裂完毕;在光线暗时,A细菌的分裂速度要下降40%,B细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?7.某大学本科共有四个年级,男生总人数和女生总人数的比为7:5.又已知:①一年级男生和二年级女生的比是3:2,二年级男生和一年级女生的比也是3:2;②三年级和四年级的人数相等,且三年级男生比四年级女生多100人;③三、四年级男生与女生的比为6:5;④二年级的男生占学生总数的24%.请问:一年级男生和女生的人数分别是多少?8.如图2-1所示,A、B、C、D、E、F是六个齿轮.其中A和B相互咬合,B和C相互咬合,D和E、E和F也都相互咬合;而C和D是同轴的两个齿轮,也就是说C和D转动的圈数始终相同.当A转了7圈时,B恰好转了5圈;当E转了8圈时,F恰好转了9圈;当C转了5圈时,B和E恰好共转了28圈.请问:(1)如果A、E转的总圈数总是和B、F转的总圈数相同,那么当A、F共转了100圈时,D转了多少圈?(注:图片只是示意图,并不代表实际齿数)(2)如果A、E的总齿数和B、F的总齿数相等,D的齿数是C的齿数的2倍,那么当A转了210圈时,D和F分别转了多少圈?第2讲比例解应用题兴趣篇1. 圆珠笔和铅笔的价格比是4︰3,20 支圆珠笔和21 支铅笔共用71.5 元。

第二届高思杯 六年级综合素质测评_数学试卷解析

第二届高思杯 六年级综合素质测评_数学试卷解析
计算是数学学习的重要基础, 希望大家能够对计算有足够的重视 . 这道题主要考察学生对整数、 .. 小数、 分数的四则运算能力, 以及各种基本计算技巧的熟悉程度, 难度不大, 最重要的是计算的准确性, 这一大题应该要尽量争取满分!
二、填空题
6. 【答案】144.
【简答】 8,12,18 72 , 8,12,18 2 ,乘积是 72 2 144 . 【评析】主要考察多个数的最大公约数与最小公倍数的计算.
简答天天欢欢乐乐三人总分是97分所以欢欢乐乐凯凯欣欣的总分是291279111评析这是一个与平均数有关的应用题处理时注意理清平均数与总数之间的联系可能有些同学对于四年级时候学的平均数问题已经有些忘了希望大家在以后的学习过程中一定要注意对之前所学知识的复习
第二届高思杯 六年级综合素质测评
思维部分 第一试
9. 【答案】10.
【简答】由平行的性质及等高三角形的性质,有
CD : DB AE : BE 6 : 9 2 : 3 ,所以 S ABD : S ACD BD : CD 3 : 2 ,
A E
6
D C
9
B
S ACD 6 9
2 10 . 3
【评析】综合考察平行线的性质及三角形中的比例关系,需要同学对两方面都有一定的认识.
5. 【答案】B.
【简答】取 1 元 4 张,5 元 1 张,10 元 1 张,20 元 2 张,50 元 1 张即可表示出 1 到 100 元的所 有整数元钱数. 【评析】这是一个构造的问题,只要思考清楚,不难构造出 9 张纸币的情形,但要证明 9 张纸
币就是最少的就不是那么容易了,同学们可以自己尝试着论证一下!
9. 【答案】22.28.

六年级思维专项训练9 比例问题(原卷+解析)

六年级思维专项训练9  比例问题(原卷+解析)

六年级思维训练9 比例问题1、老赵、老钱、老孙三人凑钱买来一张彩票,没想到居然中奖了。

领来奖金后,他们三人按3:5:4的比例来分,结果老赵比老钱多分到了2000元,那么老孙得到了_________元。

2、中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例是15:2:3。

今有木炭50千克,要配制“黑火药”1000千克,还需要木炭多少千克?3、根据美学的观点及经验法则,一幅彩色的作品其红、黄、蓝三原色之配色比例是5:3:8时,其色彩强度大道平衡,可使作品看起来柔和,不会有某种颜色特别突兀的感觉,我们都知道橘色是由红色加黄色而成,紫色是由红色加蓝色而成,绿色是由黄色加蓝色而成。

请问以此法则,橘、紫、绿这三种中间色之配色比例是多少时,其色彩强度达到平衡?4、有三批货物共值152万元,第一、第二、第三批货物按重量比为2:4:3,按单价比为6:5:2,这三批货物分别值_________万元、___________万元、____________万元。

5、一个容器内注满了水。

讲大、中、小三个铁球这样操作: 第一次,沉入小球;第二次,取出小球,沉入中球; 第三次,取出中球,沉入大球。

已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍。

求小、中、大三球的体积比。

|6、今年儿子的年龄是父亲年龄的41,15年后,儿子的年龄是父亲年龄的115。

今年儿子___________岁.7、某学校有若干名学生参加《走进数学王国》电视邀请赛,其中男生人数与女生人数之比为8:5。

后来又有20名女报名参赛,这时女生人数占参赛总人数的115。

现在参赛的学生共有多少人?8、传说印度数学家花拉子密(al —khawarrizmi ,公元780—850)在他太太怀第一胎时,写了一份遗嘱,内容为:如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果生女儿,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析

六年级数学比和按比例分配试题答案及解析1.一个文具盒卖价5元,如果小东买了这个文具盒,小东与小鹏的钱数之比是2∶5,如果小鹏买了这个文具,则小东与小鹏的钱数之比是8∶13,小东原来有多少钱?【答案】5÷(﹣)÷ =20(元)答:所以小东原来有20元钱。

【解析】由比与除法的定义,根据题意列方程式得。

2.两辆汽车同时从相距360km的两地相对开出,2.4小时后相遇.已知两辆车的速度比是12:13,两辆车的速度分别是多少?【答案】其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.【解析】首先根据路程÷时间=速度,用两地之间的距离除以两车相遇用的时间,求出两车的速度之和是多少;然后把两车的速度之和看作单位“1”,则其中一辆车的速度占两车速度之和的(=),根据分数乘法的意义,用两车的速度之和乘以,求出其中一辆车的速度是多少;最后用两车的速度之和减去其中一辆车的速度,求出另一辆车的速度是多少即可.解答:解;360÷2.4×=150×=72(千米)360÷2.4﹣72=150﹣72=78(千米)答:其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.3.六(1)班男生和女生人数的比是5:4,男生比女生多6人,这个班一共有学生.【答案】54.【解析】男女生比是5:4,所以男生人数是全班人数的,女生人数是人班人数的,男生人数比女生人数多6人,所以全班人数是6.解:6÷=6÷=54(人)故答案为:54.【点评】本题关健是先根据男女生的比求出男女生各占全班人数的几分之几,然后将全班人数当做单位“1”求出全班人数.4. 27: = ÷12=0.75== %【答案】36,9,8,75.【解析】解:27:36=9÷12=0.75==75%.故答案为:36,9,8,75.5.如果A:B=4:5,那么A=3,B=5 .(判断对错)【答案】×【解析】解:A=3,B=5代入 A:B=4:5,得到3:5=4:5,因为4×5=20,3×5=15,两个内项积就不等于两个外项积,这样的两个比就不能组成比例了.故应判断为:×.6.把10克盐放入100克水中,盐和盐水的比是1:10..(判断对错)【答案】×.【解析】解:10:(10+100)=10:110=1:11,故答案为:×.7.大圆和小圆半径的比是5:4,小圆面积和大圆面积的比是()A.5:4B.4:5C.16:25D.10:8【答案】C【解析】解:设小圆的半径为4r,大圆的半径为5r,小圆的面积为:π(4r)2=16πr2大圆的面积为:π(5r)2,=25πr2大圆的面积与小圆面积的比为:16πr2:25πr2=16:25.故选:C.8. ÷20= :12=18÷ =3:4= (填小数)【答案】15,9,24,0.75.【解析】解:15÷20=9:12=18÷24=3:4=0.75.故答案为:15,9,24,0.75.9.甲数的与乙数的相等,甲乙两数的比是.【答案】8:9【解析】解:设甲数为1.则乙数为÷=甲数:乙数=1:=8:9.故答案为:8:9.10. 5克糖放入15克水中,糖和水的比是5:15..(判断对错)【答案】√【解析】解:糖与水的比:5:15=1:3.故答案为:√.11. 3:5的前项增加12,要使比值不变,后项应增加20..(判断对错)【答案】√【解析】解:3:5比的前项增加12,由3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由5变成25,相当于后项加上:25﹣5=20;所以后项应该增加20,说法正确;故答案为:√.12.一套衣服480元,裤子是上衣的,裤子和上衣各是多少元?(用比的知识和列方程这两种方法解答)【答案】裤子180元,上衣300元【解析】解:方法①裤子的价格:上衣的价格=5:3480×=180(元)480×=300(元);答:裤子180元,上衣300元.方法②设上衣的价格是x元,则裤子的价格是x元,x+x=480x=480x=300480﹣300=180(元);答:裤子180元,上衣300元.13.妈妈准备按1:25的比例配用糖水,如果用糖20克,那么能配备克糖水.【答案】520.【解析】糖水中糖与水的比是1:25,把糖看成1份,那么水就是25份,水是糖的25倍,用糖的质量乘上25即可求出水的质量,再把糖和水的质量相加就是糖水的总质量.解:20×25+20=500+20=520(克)答:能配备 520克糖水.故答案为:520.【点评】解决本题把比看成份数,求出水的质量是糖的质量的多少倍,再根据乘法的意义求出水的质量,进而求出糖水的质量.14.是比例尺,把它改写成数值比例尺是.【答案】线段,1:1500000.【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.解:是线段比例尺,15千米=1500000厘米,改写成数值比例尺为1:1500000.故答案为:线段,1:1500000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.15.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉有多少千克?(3)你还能提出什么问题?并解答出来.【答案】(1)5:7(2)25千克.(3)写出香蕉和桔子的比,香蕉和桔子的比为5:8.【解析】把水果的总重量看成单位“1”,那么香蕉的重量就是,桔子的重量就是,苹果的重量就是1﹣;(1)先计算出苹果的重量占水果总重量的几分之几,然后再作比;(2)先根据苹果的重量求出水果的总重量,然后再用乘法求出香蕉的重量.(3)根据以上数据提出问题,并解答.解:(1)1﹣=,:=:=5:7;答:香蕉与苹果的比为5:7.(2)35×,=100×,=25(千克);答:香蕉有25千克.(3)写出香蕉和桔子的比,并化成最简整数比.:=:=:=5:8;香蕉和桔子的比为5:8.【点评】本题关键是把水果的总重量看成单位“1”,用分数分别把香蕉,桔子,苹果的重量表示出来,再根据基本的数量关系求解.16.:的最简整数比是,比值是.【答案】5:8,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):,=(×20):(×20),=5:8;(2):,=÷,=;故答案为:5:8,.【点评】要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.17.六(1)有男生35人,女生25人,男生占全班的,女生占全班的,男生和女生的比是,女生和男生的比是.【答案】7:5,5:7.【解析】把全班人数看成单位“1”,用男生人数除以全班总人数就是男生占全班人数的几分之几,再用1减去男生占的分率就是女生占的分率;分别写出男生和女生的比及女生和男生的比;再化简即可.解:35÷(35+25)=1﹣=35:25=7:525:35=5:7答:男生占全班的,女生占全班的,男生和女生的比是7:5,女生和男生的比是5:7.故答案为:7:5,5:7.【点评】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,只要找出单位“1”,问题不难解决.18.比的前项和后项同时乘或除以一个数,比值不变..(判断对错)【答案】×【解析】比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.解:比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.故判断为:×【点评】本题主要考查了比例的基本性质,注意“0”这个特殊的数.19. a是b的9倍,b与a的比是9:1..(判断对错)【答案】×【解析】设b为x,则a是9x,根据题意进行比,然后化成最简整数比即可.解:设b为x,则a是9x,则:b与a的比是:x:9x=1:9;故答案为:×.【点评】解答此题应进行假设,设出其中的一个量为x,另一个量也用未知数表示,根据题意进行比,解答即可.20.一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()A.8分米 B.8毫米 C.8厘米【答案】C【解析】比例尺=图上距离:实际距离,根据题意列出比例式求解即可.解:根据题意,设图纸上的长度是x毫米,10:1=x:8,x=10×8,x=80;80毫米=8厘米.故选:C.【点评】考查了图上距离与实际距离的换算(比例尺的应用),关键是理解比例尺的概念,正确进行计算.。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.(6分)求未知数x4.2+0.5x=5.6:=:x=.【答案】x=2.8;x=;x=6【解析】①依据等式的性质,方程两边同时减去4.2,再同除以0.5求解;②先根据比例的基本性质,把原式转化为x=×,然后根据等式的性质,在方程两边同时乘4求解;③先根据比例的基本性质,把原式转化为0.6x=4×0.9,然后根据等式的性质,在方程两边同时除以0.6求解.解:①4.2+0.5x=5.64.2+0.5x﹣4.2=5.6﹣4.20.5x÷0.5=1.4÷0.5x=2.8②:=:xx=×x×4=××4x=③=0.6x=4×0.90.6x÷0.6=3.6÷0.6x=6点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.2.一个直径4mm的手表零件,画在图纸上直径是8cm,这幅图纸的比例尺是()。

【答案】20:1【解析】比例尺表示图上距离和实际距离的比,所以这幅图的比例尺是:8cm:4mm,统一单位化简后是80mm:4mm=20:1。

3. a、b是两种相关联的量,如果a、b成正比例,那么“?”处应该填();如果a、b成反比例,那么“?”处应该填()。

【答案】2.4【解析】如果ab成正比例,那么它们的比值就是一定的,即3:4=5:?,解比例得到?=。

如果a、b成反比例,那么它们的乘积就是一定的,即3×4=5×?,得到?=2.4。

4.一段路,甲小时走完,乙小时走完,甲乙两人的速度比是3:4。

()【答案】√【解析】审题时要看清,条件给出的是甲乙的时间,而最后表示的是两人的速度之比。

根据条件得到甲的速度是1÷,乙的速度是1÷,所以甲乙的速度比是3:4,题目正确。

5.①某校毕业生共有9个班,每班人数相等.②已知一班的男生人数比二、三班两个班的女生总数多1;③四、五、六班三个班的女生总数比七、八、九班三个班的男生总数多1.那么该校毕业生中男、女生人数比是多少?【答案】5:4【解析】如下表所示,由②知,一、二、三班的男生总数比二、三班总人数多1;由③知,四至九班的男生总数比四、五、六班总人数少1.因此,一至九班的男生总数是二、三、四、五、六共五个班的人数之和,由于每班人数均相等,则女生总数等于四个班的人数之和.所以,男、女生人数之比是.6.在比例尺为1:2000000的这个地图上,量得北京到郑州的距离是32厘米;把它画在比例尺为的地图上。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。

六年级高斯学校竞赛行程问题六含答案

六年级高斯学校竞赛行程问题六含答案

第10讲 行程问题六内容概述灵话应用比例分析的行程问题,需考虑路程、时间、速度三个量之间的各种正反比关系;综合性较强,运动路线或路况复杂的行程问题;需零进行优化设计的行程问题.典型问题兴趣篇1.姐弟俩正要从公园门口沿马路向东去博物馆,而他们回家则要从公园门口沿马路向西行,他们商量是先回家取车,再骑到博物馆,还是直接从公园门口走到博物馆,姐姐算了一下:如果从公园到博物馆距离超过2千米,则回家取车比较省时间;如果公园和博物馆的距离不足2千米,那么直接走过去省时间.已知骑车与步行的速度比为4:1,那么公园门口到他们家的距离是多少千米?2.有甲、乙、丙三辆汽车,各以一定的速度从某地出发同向而行.乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙晚出发20分钟,出发后1小时40分钟追上丙.请问:甲出发多少分钟后才能追上乙?3.客车、货车分别从甲、乙两地出发相向而行.如果两车都在6:00出发,那么会在11:00相遇,如果客车和货车分别于7:00和8:00出发,那么会在12:40相遇.现在客车和货车分别于10:00和8:00出发,它们将在什么时候相遇?4.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分钟后,两人与十字路口的距离相等;出发100分钟后,两人与十字路口的距离再次相等,此时他们距十字路口多少米?5.A 、B 、C 、D 四个小镇之间的道路分布如图10-1所示,其中A 、D 两镇相距20千米,B 、D 两镇相距30千米.某天甲、乙两人同时从B 镇出发,甲到达D 镇后再向A 镇走,到达A 镇后又立刻返回,而乙到达D 镇后直接向C 行进.丙从C 镇与甲、乙两人同时出发,在距离D 镇15千米处与乙相遇.当丙到达D 镇后又向A 镇前行,在与D 镇相距6千米的地方与甲相遇,已知甲、乙的速度比为8:9,求O 、C 两镇之间的距离.6.甲、乙两车分别从A 、B 两地同时出发相向而行,甲车速度为32千米/时,乙车速度为48千米/时.它们分别到达B 地和A 地后,甲车速度提高四分之一,乙车速度减少六分之一.如果它们第一次相遇与第二次相遇地点相距74千米,那么乙车比甲车早多少小时返回出发点?7.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人下山的速度都是各自上山速度的2倍.甲到山顶时,乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰.求从山脚到山顶的距离.8.从甲市到乙市有一条公路,它分成三段:在第一段上,汽车速度是每小时40千米;在第二段上,汽车速度是每小时90千米;在第三段上,汽车速度是每小时50千米,己知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段公路上从甲到乙方向的31处相遇,请问:甲、乙两市相距多少千米?9.一支轻骑摩托小分队奉命把一份重要文件送到距驻地很远的指挥部,每辆摩托车装满油最多能行150千米,且途中没有加油站.由于一辆摩托车无法完成任务,队长决定派两辆摩托车执行任务,其中一辆摩托车负责把文件送到指挥部,另一辆则在中途供给油料后安全返回驻地.请问:指挥部距小分队驻地最远可能是多少千米?10.甲、乙两班学生到离校24千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生,为了尽快到达飞机场,两个班商定,由甲班先坐车,乙班先步行,同时出发,甲班学生在途中某地下车后步行去飞机场,汽车则立即返回接在途中步行的乙班学生.如果甲、乙两班学生步行速度相同,都为5千米/时,汽车的速度为35千米/时.请问:汽车应在距飞机场多少千米处返回接乙班学生,才能使两班学生同时到达飞机场?拓展篇1.一辆轿车和一辆巴士都从A 地到B 地,巴士速度是轿车速度的54.巴士要在两地的中点停10分钟,轿车中途不停车,轿车比巴士在A 地晚出发11分钟,早7分钟到达B 地.如果巴士是10点出发的,那么轿车超过巴士时是10点多少分?2.客车和货车同时从甲、乙两地相向开出,已知客车行完全程需10小时,货车行完全程需15小时.两车在中途相遇后,货车又行了90千米,这时客车行完了全程的80%,求甲、乙两地的距离.3.甲、乙两人从A 、B 两地同时出发相向而行,相遇时乙比甲多行了100米,如果甲出发后在距离AB 中点220米处把速度提高到原来的3倍,则相遇时甲比乙多行了100米,求A 、B 两地的距离,4.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲与乙在离山顶400米处相遇,当甲回到山脚时,乙刚好下到半山腰,求山脚到山顶的距离. 5.某天早上8点甲从B 地出发,同时乙从A 地出发追甲,结果在距离B 地9千米的地方追上.如果乙把速度提高一倍,而甲的速度不变,那么将在距离艿地2千米处追上.请问:A 、B 两地相距多少千米?6.如图10-2,A 、B 两地相距54千米,D 是AB 的中点.甲、乙、丙三人骑车分别同时从A 、B 、C 三地出发,甲骑车去B 地,乙骑车去A 地,丙总是经过D 之后往甲、乙两人将要相遇的地方骑,结果三人在距离D 点5400米的E 点相遇.如果乙的速度提高到原来的3倍,那么丙必须提前52分钟出发三人才能相遇,否则甲、乙相遇的时候,丙还差6600米才到D .请问:甲的速度是每小时多少千米?7、甲、乙两地是电车发车站,每隔一定时间两地同时发出一辆电车,每辆电车都是每隔4分钟遇到迎面开来的一辆电车。

六年级数学竞赛上册奥数高思第15讲行程问题中的比例关系(彩色)

六年级数学竞赛上册奥数高思第15讲行程问题中的比例关系(彩色)

六年级数学竞赛上册奥数高思第15讲行程问题中的比例关系(彩色)上册第15讲行程问题中的比例关系108行程问题中的比例关系本讲我们主要学习比例关系在行程问题中的应用.首先学习的是匀速过程中的比例关系.这比较简单,只要弄明白题中有哪些相同的量,就能找到相应的比例关系.比如:当两个过程的路程相同,速度就与时间成反比;当两个过程的时间相同,路程就与速度成正比;当两个过程的速度相同,路程就与时间成正比.求出下面几个比例:(1)阿呆和阿瓜的速度比为3:4,所花的时间比为5:6,那么所走的路程比是多少?(2)阿呆和阿瓜的速度比为3:4,所走的路程比为5:6,那么所花的时间比是多少?(3)阿呆和阿瓜的运动时间比为3:4,所走的路程比为5:6,那么速度比是多少?分析速度比、时间比、路程比,这三个比例只要知道其中两个,就可以求出第三个.1.求出下面几个比例:(1)客车和货车的速度比为1:2,所花的时间比为2:3,那么所走的路程比是多少?(2)客车和货车的速度比为1:2,所走的路程比为2:3,那么所花的时间比是多少?(3)客车和货车的运动时间比为1:2,所走的路程比为2:3,那么速度比是多少?萱萱去姥姥家,途中要经过上坡、平路和下坡各一段,路程比为1:2:1.已知萱萱在三种路段上行走的速度比为3:4:6,且在平路上行走的时间是25分钟.那么萱萱去姥姥家路上一共花了多长时间?109上册第15讲分析题目告诉了我们路程比与速度比,那么时间比是多少?各段分别用了多长时间?2.乌龟要回家,途中要经过草地、沙地和海洋三种地形各一段.如果乌龟在三种地形上的爬(游)行速度的比为3:2:9,所花的时间比为3:6:1,且爬过的沙地部分长是200米,那么乌龟的回家之旅一共是多少米?一辆轿车和一辆巴士都从A 地到B 地,巴士速度是轿车4速度的.巴士要在两地的中点停10分钟,轿车中途不停车.轿车比巴士5在A 地晚出发11分钟,早7分钟到达B 地.如果巴士是10点出发的,那么轿车超过巴士时是10点多分?分析如果巴士不在中点停留,那么从A 地到B 地,轿车将比巴士少花多少分钟?两车所花的时间比是多少?3.墨莫和小高参加一次200米障碍跑.已知在没有障碍物的情况下跑步,墨莫的速8度是小高的.但由于是障碍跑,跑道上多了10个跨栏.墨莫每过一个跨栏要额外多花1.2 9秒,小高每过一个跨栏要额外多花1.6秒.结果两人恰好同时到达终点!那么两人跑200米障碍跑所花的时间各是多少秒?在例题3中,我们是由“时间比结合时间差”求时间的.用“时间比结合时间差”求时间,“速度比结合速度差”求速度,“路程比结合路程差”求路程,是我们用比例解决行程问110行程问题中的比例关系题很常见的手段.另外,在分析行程问题时还需留意过程的“同时性”.所谓过程的同时性,就是指若干个过程在同一时段里发生.例如,在相遇问题中,两人同时出发到某地相遇,那么这两人从出发到相遇的过程就具有“同时性”.如果这两人的速度比是4:5,那么这两人所走的路程比也应该是4:5,这样就可以得到两人分别走了全程的4 9和59.反过来,如果知道两人相遇时,各走了全程的几分之几或者知道各走的路程,那么两人的速度比也就知道了.下面我们就来看一看“同时性”在解题中的作用.客车和货车同时从甲、乙两地相向开出,已知客车行完全程需10小时,货车行完全程需15小时.两车在中途相遇后,货车又行了90千米,这时客车行完了全程的80%.请问:甲、乙两地的距离是多少千米?分析这道题如何画出线段图?其中蕴含着哪些比例关系?4.客车和货车同时从甲、乙两地相向开出,已知甲、乙两地的距离是600千米,客车行完全程需9小时,货车行完全程需18小时.两车在中途相遇后,货车又行了80千米,这时客车距离乙地多少千米?行程问题与电影大家一定都看过电影吧,看电影的时候,尤其是在家里用DVD放电影时,我们经常会使用快进来迅速看完不重要的部分,而用慢放来细细品味精彩的细节.经常可以看到这样的镜头:两个分别很多年的好友忽然在一个中间有喷泉的广场上相遇了,于是两个人都十分开心,向对方跑去,最后在喷泉前相互拥抱,导演在这时往往喜欢用慢镜头来表现两人重逢的这个过程.大家想一想,如果不用慢镜头的话,这两个好朋友相遇的过程会有什么变化?又有什么没变呢?如果用快放的话呢?不管是用慢镜头也好,快放也好,我们看到的两个人总是在喷泉前相拥的,也就是111上册第15讲不管快慢程度如何,两个人都是跑了那么些距离,只不过用慢镜头的话我们看到两个人都跑得很慢,花的时间也多,但每人跑的路程没变;而快放的话两个人就都成了“飞人”,花的时间少了,但两人跑的路程仍然不会改变.同样的,我们面对行程问题时也经常可以把问题进行“快放”和“慢镜头”的变化,这样能大大简化我们的解题过程.接下来我们学习变速过程中的正反比例关系.有变速的行程问题通常都比较复杂,其中的正反比例关系不像匀速过程中那么直接、明了.我们处理这类问题的想法就是“化归”,虽然变速的不会,但匀速的问题已经学过很多了,那我们就想办法把变速的问题化成匀速的问题来解决.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的2倍.甲与乙在离山顶400 米处相遇,当甲回到山脚时,乙刚好下到半山腰.请问:山脚到山顶的距离是多少米?分析在甲上山、下山一个来回的过程中,乙恰好爬上山顶又回到半山腰——这两段过程具有“同时性”.那是马上可以由两人的路程比求出速度比了呢?非也,甲、乙两人在行走过程中都变速了,无法直接由路程比得速度比.为了计算速度比,我们必须在保持“同时性”的前提下,把过程变为“匀速”才行,不妨就把他们的速度都统一为上山速度.那怎么把速度变统一呢?5.墨莫与小高两人同时从山脚开始爬山,到达山顶后就立即下山.他们两人下山的速度都是各自上山速度的3倍.当墨莫到达山顶的时候,小高距离山顶还有700米的路程.当小高到达山顶的时候,墨莫恰好下到半山腰.请问:山脚到山顶的距离是多少米?在保持“同时性”的前提下统一速度,再进行比较——这是处理变速行程问题一个非常有效的手段.但处理变速问题的手段不唯一,有时候,我们不统一速度,一样可以利用比例关系进行求解.下面我们就来看一道这样的例题.112行程问题中的比例关系某天早上8点甲从B 地出发,同时乙从A 地出发追甲,结果在距离B 地9千米的地方追上.如果乙把速度提高一倍,而甲的速度不变,那么将在距离B 地2千米处追上.请问:A、B 两地相距多少千米?分析这道题有两次追及过程,两次追及过程中,两次追及的路程之间、两次追及的速度之间、两次追及所花的时间之间各有什么样的联系?请你画出线段图来比较一下.6.甲、乙两人从A、B 两地同时出发相向而行,相遇时,甲已经走了600米;如果甲一开始就把速度提高为原来的2倍,相遇时,甲已经走了900米.请问:A、B 两地的距离是多少米?思考题如图,A、B 两地相距54千米,D 是AB 的 D EA B中点.甲、乙、丙三人骑车分别同时从A、B、C三地出发,甲骑车去B 地,乙骑车去A 地,丙总是经过D 之后往甲、乙两人将要相遇的地方骑,C结果三人在距离D 点5400米的E 点相遇.如果乙的速度提高到原来的3倍,那么丙必须提前52分钟出发三人才能相遇,否则甲、乙相遇的时候,丙还差6600米才到D.请问:甲的速度是每小时多少千米?一、通过速度比、时间比、路程比中的任意两个比例求出第三个比例.113上册第15讲二、通过速度、时间、路程的比例结合和差关系,求具体的速度、时间或路程.三、用“同时性”分析行程过程.四、处理变速问题时,在保持“同时性”的前提下统一速度,再进行比较.1.求出下面几个比例:(1)甲、乙的速度比为1:2,所花的时间比为3:4,那么所走的路程比是多少?(2)甲、乙、丙的速度比为1:2:3,所走的路程比为4:5:6,那么所花的时间比是多少?(3)甲、乙、丙、丁的运动时间比为1:2:3:4,所走的路程比为5:6:7:8,那么速度比是多少?2.甲、乙两人从A、B 两地同时出发相向而行,两人的速度比为2:5,经过18分钟相遇.如果甲的速度变为原来的2倍,那么经过多少分钟两人相遇?3.乌龟和兔子赛跑,乌龟速度是兔子的29.它们在中午12点整的时候同时出发,由于兔子在中途睡了半个小时,结果乌龟比兔子早2分钟到达终点.那么乌龟到达终点的时间是几点几分?4.甲、乙两人从A、B 两地同时出发相向而行,相遇时乙比甲多行了1200米.如果甲一开始就把速度提高为原来的2倍,而乙的速度减半,那么两人将在A、B 两地的中点相遇.请问:A、B 两地的距离是多少米?5.孙悟空和克林分别从龟仙屋、西都同时出发相向而行.孙悟空从龟仙屋飞到西都要花12分钟,克林从西都飞到龟仙屋要花20分钟.两人在中途相遇后继续往前飞,当克林飞到距离龟仙屋300千米的时候,孙悟空到达了西都.那么西都与龟仙屋的距离是多少千米?114。

六年级高斯学校竞赛数学方程解应用题含答案

六年级高斯学校竞赛数学方程解应用题含答案

第3讲方程解应用题内容概述掌握一元一次方程的解法,多元一次方程组的解法,以及具有对称性的多元一次方程的特殊解法.能从已知条件中寻找出等量关系,列出方程或方程组并求解。

典型问题兴趣篇1. 解下列方程:;52221)1(+-=--x x x ;65)521(31)2(x x =-⨯⋅=+-312311)3(x x2.在一次选举中,有甲、乙、丙三位候选人,乙的选票比甲的2倍还多5张,丙的选票比甲的一半还少4张.如果甲、乙、丙三人的选票一共有36张,请问:甲得了多少张选票?.3.有若干名学生上体育课,体育老师规定每两人合用一个排球,每三人合用一个足球,每四人合用一个篮球,已知排球、足球、篮球共用了26个.问:有多少名学生上体育课?4.唐老师给幼儿园大班的小朋友每人发17张画片,小班每人发13张画片.已知大班人数是小班的⋅53,小班比大班总共多发126张画片,求小班的人数.5.明知小学六年级一班男生的人数占全班总人数的70%,六年级二班的男生比一班男生少2名,而女生人数为一班女生的2倍.如果两班合在一起,则男生所占的比例为60%.请问:二班有多少名女生?6.甲、乙两车同时从A 、B 两地出发,相向而行,在A 、B 之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A 、B 两地相距多少千米?7.解下面的方程组:⎩⎨⎧=+=+;80717,2224)1(y x y x ⎩⎨⎧=-=+.24812,14474)2(x y y x8.冬冬与小悦一起在水果店买水果,冬冬买了3千克苹果和2千克梨,共花了18.8元.小悦买了2千克苹果和3千克梨,共花了18.2元,你能算出1千克苹果多少元,1千克梨多少元吗?9.2个蟹将和4个虾兵能打扫龙宫的103,8个蟹将和10个虾兵就能把龙官全部打扫完.如果只让蟹将打扫龙宫,需要多少个?只让虾兵打扫龙宫,需要多少个?10.如图3-1,小玲有两种不同形状的纸板,一种是正方形的,一种是长方形的.正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.那么在小玲所做纸盒中,竖式纸盒的总数与横式纸盒的总数之比是多少?拓展篇1.解下列方程:;11276143)1(+=-+++x x x x ;3227]2)141(32[23)2(x x =-++⨯⨯ ;251453)3(=++x x .5)2()7)(1)(4(2++=++x x x2.一个分数,分子与分母的和是122.如果分子、分母都减去19,得到的分数约分后是51,那么原来的分数是多少?3. 130克含盐5%的盐水,与若干含盐9%的盐水混合,配成含盐6.4%的盐水.请问:最后配成的盐水有多少克?4.如图3-2中的短除式所示,一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到的商是以.图3-3中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的商是a 的2倍,求这个自然数.5.给六年级五班的同学分苹果,第一组每人3个,第二组每人4个,第三组每人5个,第四组每人6个.已知第二组和第三组共有22人,第一组人数是第二组的2倍,第三组和第四组人数相等,总共分出去230个苹果,问:该班一共有多少名学生?6.解下面的方程组:⎩⎨⎧=-=+;17313,49911)1(y x y x ⎩⎨⎧=-=-;59813,12)2(y x x y ⎩⎨⎧=+=+.2842816,3072918)3(y x y x7.商店里有大盒、中盒、小盒共27盒筷子,其中大盒中装有18双筷子,中盒中装有12双筷子,小盒中装有8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍,问:三种包装的筷子各有多少盒?8.甲、乙两人从相距36千米的两地相向而行.如果甲比乙先出发2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先出发2小时,那么他们在甲出发3小时后相遇.问:甲、乙两人每小时各走多少千米? 9.一台天平,右盘上有若干重量相等的白球,左盘上有若干重量相等的黑球,这时两边平衡.如果从右盘中取走一个白球置于左盘上,再把左盘的两个黑球置于右盘上,同时给左盘加20克砝码,这时两边也平衡.如果从右盘移两个白球到左盘上,从左盘移一个黑球到右盘上,那么需要再给右盘加50克砝码,两边才能平衡.问:白球、黑球每个各重多少克?10.奥运指定商品零售店里的福娃有大号、中号和小号三种.小悦买了一个大号的、三个中号的和两个小号的,共花了360元;冬冬买了两个大号的、一个中号的和一个小号的,共花了270元;阿奇买了一个大号的、两个中号的和两个小号的,共花了300元.请问:商店里的大号、中号和小号福娃的单价各是多少?11.如图3-4,墙边放着一块木板,一只猫淘气,爬了上去,使得木板向下滑动了 一段距离,现在已知图中的三段长度(单位:厘米),你能求出这块木板的长度吗?12.甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29, 23,21和17.这四人中最大年龄与最小年龄的差是多少?超越篇1.丙看到甲、乙两人正在解下面这个方程组:⎩⎨⎧=+=+.704 □ □,2536 □ □y x y x其中未知数前面的系数被甲和乙遮住了.甲计算得出方程的解是x=7,y=3;而乙误把“2536”看作“1536”,得到的解是x=4,y=4.试问:方程组四个被遮住的系数中最小的一个是多少?2.幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣;乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班总共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共分了多少个枣?3.下表显示了一次钓鱼比赛的结果:nO1 2 3 … 13 14 15 钓了n 条鱼的人数 95723…521已知:①冠军钓到15条鱼;②钓到3条或3条以上的选手平均每人钓到了6条鱼;③钓到12条或者12条以下的选手平均每人钓到了5条鱼.请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼?4.A、B两地相距2400米,甲、乙两人分别从A、B两地同时出发,相向而行,两人在途中某处相遇后,甲又继续行进18分钟到达B地,乙又继续行进50分钟到达A地,请问:甲比乙每分钟多走多少米?5.甲、乙两车运一堆货物,甲车单独运比乙车单独运要少运5次;如果一起运,各运6次就刚好运完.问:甲车单独运要几次运完?6.一个从小到大排列的等差数列,如果把这个数列的首项除以2,末项乘以2,这些数的平均数就增加了7;如果把首项乘以2,末项除以2,平均数就少了2.已知这个等差数列中所有数的和等于245,求这个数列的末项.7.一个水池,顶部有一个进水管,底部有一个出水管.如果只打开进水管,50分钟可以把水池灌满;如果只打开出水管,60分钟可以把一池水放完,现在水池在中间的某个位置出现了一条与池底平行的裂缝,如果只打开进水管,需要80分钟才能放满一池水,而只打开出水管只需46.5分钟即可放完一池水,请问:裂缝出现在离池底几分之几高度的地方?8.“太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向潜航,“北冰洋号”在前,“太平洋号”在后.在某个时刻,“太平洋号”发出声波,间隔2秒后,再次发出声波,当声波传到“北冰洋号”时,“北冰洋号”会反射声波.已知“太平洋号”的速度是每小时54千米,第一次和第二次探测到“北冰洋号”反射的回波的间隔时间是2.01秒,声波传播的速度是每秒1185米.请问:“北冰洋号”的速度是每小时多少千米?⎪ 第3讲方程解应用题兴趣篇1、解下列方程:(1)x-x -1=2-x +2;2 51 2 5(2)⨯(1- x) =x ;3 5 6(3)x -11=1. x +23 3[分析](1)10x -5(x -1)=20 -2(x+2)10x -5x +5 =20 -2x -47x =11 ;11x =7(2)2⎛1-2x ⎫=5x⎝ 5 ⎭2 -4x =5x 529x =2 ;510x =29(3)3(x-11)=x +233x -33 =x +232x =56x =282、在一次选举中,有甲、乙丙三位候选人,乙的选票比甲的2 倍还多5张,丙的选票比甲的一半还少4 张.如果甲、乙、丙三人的选票一共有36 张.请问:甲得了多少张选票?[分析]设甲有选票x票,那么乙有2x+ 5 票,丙有1 x - 4 票.依题意有2x + 2x +5+1x - 4 = 36 2解得,x=10答:甲得了5票.3、有若干名学生上体育课,体育老师规定每两人合用一个排球,每三人合用一个足球,每四人合用一个篮球,已知排球、足球、篮球共用了26 个.问:有多少名学生上体育课?[分析]设一共有x名学生上课.那么有1 1 x +x +3 4 x = 26解得,x= 26答:一共有26 名学生上体育课.4、唐老师给幼儿园大班的小朋友每人发17 张画片,小班每人发13 张画片.已知大班人数⎨ ⎨是小班的 3,小班比大班总共多发 126 张画片,求小班的人数.5[分析]设小班有 x 人,那么大班有 3x 人.依题意有517 ⨯ 3x +13 x =1265 解得, x = 45 答:小班有 45 人.5、明知小学六年级一班男生的人数占全班总人数的 70%,六年级二班的男生比一班男生少 2 名,而女生人数为一班女生的 2 倍.如果两班合在一起,则男生所占的比例为 60%.请 问:二班有多少名女生? [分析]设一班男生有 7 x 人,那么一班女生有 3x 人,二班男生 7 x - 2 人,二班女生3 x ⨯ 2 = 6 x人.依题意有: 7 x + 7 x - 2 = 3x + 6x6 4 解得, x = 4 ,那么二班女生有 4 ⨯ 6 = 24 (人) 答:二班有 24 名女生.6、甲、乙两车同时从 A 、B 两地出发,相向而行,在 A 、B 之间不断往返行驶.甲车到达 B 地后,在 B 地停留了 2 个小时,然后返回 A 地;乙车到达 A 地后,马上返回 B 地;两车 在返回的途中又相遇了,相遇的地点距离 B 地 288 千米.已知甲车的速度是每小时 60 千 米,乙车的速度是每小时 40 千米.请问: A 、 B 两地相距多少千米? [分析]设 A 、 B 两地相距 x 千米.那么相遇时甲走了 x + 288 千米,乙走了2 x - 288 千米.根 据题意列方程 x + 288 + 2 = 2x - 28860 40 解得, x = 420 答: A 、 B 两地相距 420 千米7、解下面的方程组:(1) ⎧4x + 2y = 22, ⎩17x + 7y = 80; (2) ⎧ 4x + 7y = 144, ⎩12x - 8y = 24. [分析](1)x=1,y =(2) x = 15 , y = 128、冬冬与小悦一起在水果店买水果,冬冬买了 3 千克苹果和 2 千克梨,共花了 18.8 元, 小悦买了 2 千克苹果和 3 千克梨,共花了 18.2 元.你能算出 1 千克苹果多少元,1 千克 梨多少元吗? [分析]设 1 千克苹果 x 元,1 千克梨 y 元,由题意 ⎧3 x + 2 y =18.8 ⎨ ⎩ 2 x + 3 y = 18.2 ⎧ x = 4 ⇒ ⎨ ⎩ y = 3.4 答:苹果 4 元,梨 3.4 元. 9、2 个蟹将和 4 个虾兵能打扫龙宫的 3 10,8 个蟹将和 10 个虾兵就能把龙宫全部打扫完.如 果只让蟹将打扫龙宫,需要多少个?只让虾兵打扫龙宫,需要多少个? [分析]设只让蟹将打扫龙宫,需要 x 个;只让虾兵打扫龙宫,需要 y 个.⇒ 2⎧ 2 + 4= 3 ⎪ x y 10 ⎨⎧ x = 12⎨ ⎪ 8 + 10 = 1 ⎪⎩ x y⎩ y = 30 答:只让蟹将打扫龙宫,需要 12 个;只让虾兵打扫龙宫,需要 30 个.10、如图,小玲有两种不同形状的纸板,一种是正方形的,一种是长方形的.正方形纸板的 总数与长方形纸板的总数之比是 1:2.她用这些纸板做成一些竖式和横式的无盖纸盒, 正好将纸板用完.那么在小玲所做纸盒中,竖式纸盒的总数与横式纸盒的总数之比是多 少?[分析]设做了竖式纸盒 x . 方形纸板 x + 2 y 个,长方形纸板 4 x + 3 y 个. x + 2 y =14 x + 3 y 2 解得, x : y = 1 : 2答:竖式纸盒的总数与横式纸盒的总数之比是1: 2 .拓展篇1、解下列方程:(1) x + x + 3 + x - 1 = 7x+ 1 ;4 6 123 ⎡ 2 1 (2) ⨯ ⨯ ( x + 1) + ⎤ - 7 = 2 x ;2 ⎢⎣3 42 3 3x + 5 5 (3) = ;4x + 1 2( x + ( x + 7 ) = ( x + 2)2 + 5.[分析](1 )12x + 3( x + 3) + 2( x - 1) = 7 x + 1212x + 3x + 9 + 2x - 2 = 7 x +12 10x = 5x = 12(2) 1 x +1 + 3 - 7 = 2x4 2 35 x = 1 12 26 x = 5 (3) 2 (3x + 5) = 5 (4 x + 1) 6 x + 10 = 20 x + 5 (4) x 2 + 8x +7 = x 2 + 4x + 4 + 54 x = 2x = 5 ; x = 114 22、一个分数,分子与分母的和是 122.如果分子、分母都减去 19,得到的分数约分后是 1,5那么原来的分数是多少?17 ⎨ 3x - 3y = 17; ⎨3x - 8y = 59; ⎨6x + 28 y = 284. 8[分析]设原分数是x 122 - x,那么 x -19 = 1 ,解得 x = 33 ,原来的分数是 33.122 - x - 19 5 893、130 克含盐 5%的盐水,与若干含盐 9%的盐水混合,配成含盐 6.4 %的盐水.请问:最后配 成的盐水有多少克? [分析]设 9%的盐水有 x 克,依题意 5% ⨯ 130 + 9% x = 6.4% ⨯ (130 + x )解得, x = 70 ,因此最有有盐水 200 克. 答:最后配成的盐水有 200 克.4、如图 1 中的短除式所示,一个自然数被 8 除余 1,所得的商被 8 除也余 1,再把第二次 所得的商被 8 除后余 7,最后得到的商是a .如图 2 中的短除式表明:这个自然数被 17 除余 4,所得的商被 17 除余 15,最后得到的商是 a 的 2 倍.求这个自然数.8所求的自然数 … … 余1 8 第一次商… … 余1 17 所求的自然数 … … 余48第二次商 a图1… … 余7 17第二次商 … … 余152 a 图2[分析]原数可以表示成 (a 711)= a ⨯ 83 + 7 ⨯ 82 + 1 ⨯ 8 + 1 = 512a + 457 也可表示成 ((2a ) (15) 4) = 2a ⨯172 + 15 ⨯17 + 4 = 578a + 259 那么512a + 457 = 578a + 259 ,解得 a = 3 那么原数为 512 ⨯ 3 + 457 = 19935、给六年级五班的同学分苹果,第一组每人 3 个,第二组每人 4 个,第三组每人 5 个,第 四组每人 6 个.已知第二组和第三组共有 22 人,第一组人数是第二组的 2 倍,第三组和 第四组人数相等,总共分出去 230 个苹果.问:该班一共有多少名学生? [分析]设第二组有 x 名学生,那么,第三组、第四组有 22 - x 名,第一组有 2 x 名. 依题意: 2 x ⨯ 3 + x ⨯ 4 + (22 - x ) ⨯ 5 + (22 - x )⨯ 6 = 230 ,解得 x = 12 那么一共有:12 ⨯ 2 +12 + 2 ⨯ (22 -12) = 56 (名)学生. 答:该班一共有 56 名学生.6、解下面的方程组: (1) ⎧11x + 9 y = 49,⎩1(2) ⎧2y - x = 1, ⎩1(3) ⎧18 x + 29 y = 307,⎩1 [分析](1)x = 2 ,7、商店里有大盒、中盒、小盒共 27 盒筷子,其中大盒中装有 18 双筷子,中盒中装有 12 双筷子,小盒中装有 8 双筷子,一共装有 330 双筷子,其中小盒数是中盒数的 2 倍.问: 三种包装的筷子各有多少盒? [分析]设有 x 个中盒,那么有 2 x 个小盒, 27 - 3x 个大盒. 18 ⨯ (27 - 3x ) + 12 x + 8 ⨯ 2 x = 330 ,解得, x = 6 那么,大盒数 9,中盒数 6,小盒数 12 答:共有大盒 9 个,中盒 6 个,小盒 12 个. 8、甲、乙两人从相距 36 千米的两地相向而行.如果甲比乙先出发 2 小时,那么他们在乙出⇒发 2 .5 小时候相遇;如果乙比甲先出发 2 小时,那么他们在甲出发 3 小时候后相遇.问: 甲、乙两人每小时各走多少千米? [分析]设甲速每小时 x 千米,乙速每小时 y 千米.那么依据题意列方程组: ⎧ 4.5x + 2.5y = 36 ⎧x = 6⎨⎨ ⎩3 x + 5 y = 36 ⎩ y = 3.6答:甲每小时走 6 千米,乙每小时走 3 .6 千米.9、一台天平,右盘上有若干重量相等的白球,左盘上有若干重量相等的黑球,这时两边平 衡.如果从右盘中取走一个白球置于左盘上,再把左盘的两个黑球置于右盘上,同时给 左盘加 20 克砝码,这时两边也平衡.如果从右盘两个白球到左盘上,从左盘移一个黑球 到右盘上,那么需要再给右盘加 50 克砝码,两边才能平衡.问:白球、黑球每个各重多 少克?[分析]设白球重 x g ,黑球重 y g , 因为,原来天平是平衡的,在进行调整后天平重新达到平衡,但总重量增加了一个砝码 的重量.对于第一次调整,增加了 20g ,对于第二次调整,增加了 50g .那么实际上,第一次调整,天平两边各重了 10g ,第二次调整各重了 25g . 通过天平一侧的重量变化建立方程:所以,白球重 20g ,黑球重 15g . [分析]白球 20 克,黑球 15 克⎧2 y - x = 10 ⎨⎩2 x - y = 25 ⎧ x = 20 ⇒ ⎨ ⎩ y = 1510、奥运指定商品零售店里的福娃有大号、中号和小号三种.小悦买了一个大号的、三个中 号的和两个小号的,共花了 360 元;冬冬买了两个大号的、一个中号的和一个小号的, 共花了 270 元;阿奇买了一个大号的、两个中号的和两个小号的,共花了 300 元.请问: 商店里的大号、中号和小号福娃的单价各是多少? [分析]设大、中、小 3 种型号的福娃单价分别是 x , y , z .那么有 ⎧ x + 3y + 2z = 360 ⎪ 2 x + y + z = 270 ⎧x = 80⇒ ⎪y = 60 ⎨ ⎨⎪ x + 2 y + 2z = 300 ⎪z = 50⎩ ⎩ 答:大号 80 元,中号 60 元,小号 50 元11、如图,墙边放着一块木块,一只猫淘气,爬了上去,使得木块向下滑动了一段距离, 现在已知图中的三段长度(单位:厘米),你能求出这块木板的长度吗?[分析]设下滑后,木块低端距离地面 x 厘米.那么根据勾股定理可以列式: 2002 + x 2 = 702 + ( x + 90 )2,解得 x = 1502002 +1502 = 2502 ,因此木块长 250 厘米.⎪ ⎪ ⎪ ⇒ ⎪⎩答:木块的长度为 250 厘米12、甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为 29,23,21 和 17. 这四人中最大年龄与最小年龄的差是多少? [分析]设四个人的年龄分别为 a , b , c , d ,那么有⎧ a + b + c+ d = 29 ⎪ 3⎪⎪ a + b + d + c = 23 ⎪ 3 ⎨ ⎪ a + c + d + b = 21 四试相加,得 2 (a + b + c + d ) = 90 ⇒ a + b + c + d = 45 ⎪ 3 ⎪ ⎪ b + c + d + a = 17⎩ 3⎧ 2d = 29 - 15 = 14 ⎪ 3 ⎪ ⎪ 2 c = 23 - 15 = 8⎪ 3 ⎨⎧ a = 21 ⎪b = 12 ⇒把上式代入方程组,有 ⎪ 2 ⎪ 3 ⎪ b = 21- 15 = 6⎨ c = 9 ⎪⎩ d = 3,因此,最大与最小之差为 18 ⎪ 2a = 17 - 15 = 2 ⎩ 3另解:四个人的年龄分别为 a > b > c > d ,那么 b + c + d + a = 29, a + b + c+ d = 17 ,两式相3 3减得: b + c + d + a - a + b + c - d = 12 ⇒ 2 ( a - d ) = 12 ⇒ a - d = 183 3 3即最大年龄与最小年龄的差是 18 岁超越篇1、丙看到甲、乙两人正在解下面这个方程组:⎧ x + y = 2536 ⎨ x + y =704其中未知数前面的系数被甲和乙遮住了.甲计算[分析]把 x ,y 的值代入方程,以方框为未知数,重新建立方程,得: ⎧7 a + 3b = 2536 ⎪7 c + 3d = 704 ⎨ 4a + 4b = 1536 ⎧a = 346 ⎪b = 38⎨c = 44 ⎪ ⎪ 最小的是 38. 4c + 4d = 704 d = 132 2、幼儿园有三个班,甲班比乙班多 4 人,乙班比丙班多 4 人.老师给小孩分枣,甲班每个 小孩比乙班每个小孩少分 3 个枣;乙班每个小孩比丙班每个小孩少分 5 个枣.结果甲班 比乙班总共多分 3 个枣,乙班比丙班总共多分 5 个枣.问:三个班总共分了多少个枣? [分析]设丙班有 x 人,则乙班 x +4 人,甲班 x +8 人.丙班每个小孩共分了 y 个枣,则乙班分⎩了 y -5 个枣,甲班分了 y -8 个枣.则: ⎧ (x + 8)( y - 8) - (x + 4)( y - 5) = 3 ⎨⎩ (x + 4)( y - 5) - xy = 5 ⎧ 4 y - 3x = 47 ⇒ ⎨ ⎩4 y - 5x = 25⎧ x = 11⇒ ⎨ ⎩ y = 20 则三班总共分了 (x + 8)( y - 8) + (x + 4)( y - 5) + xy = 19 ⨯ 12 + 15 ⨯ 15 + 11⨯ 20 = 673 个枣 答:三个半总共分了 673 个枣3②钓到 3 条或 3 条以上的选手平均每人钓到了 6 条鱼; ③钓到 12 条或者 12 条以下的选手平均每人钓到了 5 条鱼. 请问:一共有多少名选手参赛?这些选手一共钓到了多少条鱼? [分析]设共有 x 人参加比赛,则钓到 3 条及以上的人数为 x - 9 - 5 - 7 = x - 21 ,掉到 12 条及 以下的人数为 x - 5 - 2 - 1 = x - 8 . 依题意列方程: (x - 21) ⨯ 6 + 1 ⨯ 5 + 2⨯ 7 = (x - 8) ⨯ 5 + 13 ⨯ 5 + 14 ⨯ 2 + 15 ⨯ 1 解得 x = 175 . 则共钓鱼: (175 - 21) ⨯ 6 + 1 ⨯ 5 + 2 ⨯ 7 = 943 条. 答:一共有 175 名选手;一共钓上 943 条鱼.4、A 、B 两地相距 2400 米.甲、乙两人分别从 A 、B 两地同时出发,相向而行.两人在途中 某处相遇后,甲又继续行进 18 分钟到达 B 地,乙又继续行进 50 分钟到达 A 地.请问: 甲比乙每分钟多走多少米? [分析]设甲速为 x ,乙速为 y .那么,甲走乙 50 分钟的路程和乙走甲 18 分钟的路程需要的时 间相同(都为两者相遇时对方走的路程).那么可以建立方程:⎧18x + 50 y = 2400⎪⎨ 50 y = 18 x⎧ x = 50 ⇒ ⎨y = 30 ,甲比乙每分钟多走 20 米. ⎪ x y⎩ 答:甲比乙每分钟 多走 20 米.5、甲、乙两车运一堆货物,甲车单独运比乙车单独运要少运 5 次;如果一起运,各运 6 次 就刚好运完.问:甲车单独运要几次运完? [分析]设甲效 x ,乙效 y ,建立方程 ⎧ 1 - 1 = 5 ⎪ y x ⎧ x =⇒ ⎪ 110,甲单独运要 10 次. ⎨ ⎨⎪ x + y = 1= ⎪ y = 1 615 答:驾车单独运要 10 次运完.6、一个从小到大排列的等差数列,如果把这个数列的首项除以 2,末项乘以 2,这些数的 平均数就增加了 7;如果把首项乘以 2,末项除以 2,平均数就少了 2.已知这个等差数 列中所有数的和等于 245,求这个数列的末项. [分析]题目出错7、一个水池,顶部有一个进水管,底部有一个出水管.如果只打开进水管,50 分钟可以把 水池灌满;如果只打开出水管,60 分钟可以把一池水放完.现在水池在中间的某个位置 出现了一条与池底平行的裂缝,如果只打开进水管,需要 80 分钟才能放满一池水,而 只打开出水管只需 46.5 分钟即可放完一池水.请问:裂缝出现在离池底几分之几高度的 地方?⇒[分析]设裂缝出现在离池底 x 处,裂缝漏水的效率为 1 .那么可以建立方程: y⎧ 1 ⨯ 80 - (80 - 50 x ) ⨯ 1 = 1 ⎧ 2 ⎪ 50 ⎨ y ⎪ x = ⎨ 5 .⎪ 1 ⨯ 46.5 + (46.5 - 60 x ) ⨯ 1 = 1 y = 10060 y答:裂缝出现在离池底 2 高的地方. 5 “太平洋号”和“北冰洋号”两艘潜艇在海下沿直线同向“北冰洋号”在前,“太 平洋号”在后.在某个时刻,“太平洋号”发出声波,间隔 2 秒后,再次发出声波.当声 波传到“北冰洋号“北冰洋号”会反射声波.已知“太平洋号”的速度是每小时54 千米,第一次和第二次探测到“北冰洋号C D B E M P Q N O [分析]用上图示意太平洋号、北冰洋号和声波运动的情况:A 、D 分别是第一次发出声波时 太平洋号和北冰洋号的位置,M 和 Q 分别是第二次发出声波时太平洋好和北冰洋号的位 置;C 和E 分别是太平洋好接收到北冰洋号第一次反射声波时太平洋好和北冰洋号的位 置,P 和 O 分别是太平洋好接收到北冰洋号第二次反射声波是太平洋好和北冰洋号的位 置;B 是北冰洋号收到第一次声波时的位置,N 是北冰洋号收到第二次声波时的位置. 太平洋好的速度是 54 千米/小时,相当于 15 米/秒.声波的速度是 1185 米/秒,设北冰洋 号的速度为 x 米/秒. 设 t 为太平洋好第一次发出声波的时刻, t + 2 为太平洋好第二次发出声波的时刻,设 0 0 t + t 0 为太平洋号收到第一次发出声波返回的时刻, t + t 0 + 2.01 是太平洋号收到第二次发出 声波返回的时刻. (1)如图,AC 是太平洋号第一次发出声波到接收反射回的声波潜航的距离, A C = 15t , AB + BC 是 第 一 次 声 波 传 导 的 距 离 , AB + BC = 1185t , 他 们 的 和 等 于AC + AB + BC = 2 A B = 1200t ; ( 2 ) 类 似 的 , MP = 15(t + 0.01), MN + NP 是 第 二 次 声 波 传 导 的 距 离 , MN + NP = 1185 (t + 0.01) ,他们的和等于 M P + MN + NP = 2MN = 1200 (t + 0.01) ; ( 3 ) 由 ( 1 ),( 2 ) 得 : BC - NP = 6 - 1185 ⨯ 0.01 MN - AB = 6, M N - AB + NP - BC = 1185 ⨯ 0.01 , 也 有 (4)由于 D B 是北冰洋号从太平洋好第一次发出声波到北冰洋号接收到声波时潜航的距离, DB = tv - BC 1185 v ;QN 是北冰洋号从太平洋好第二次发出声波到北冰洋号接收到声波时的潜 航距离, Q N = (t + 0.01)v - NP v ; 1185 (5)由(4)得到: Q N - DB = 0.01v + ( 6 -1185 ⨯ 0.01) ⨯ v . 1185 (6) AD 是太平洋好第一次发出声波时两艘潜艇之间的距离,是太平洋好第二次发出声波 时两艘潜艇之间的距离, M D - AD = 2 ( v - 15) .因为 A D = AB - DB , MQ = MN - QN ,所以, MQ - AD = ( MN - AB ) - ( Q N - DB ) = 6 - 0.01v - (6 -1185 ⨯ 0.01) ⨯ v = 6 - 6v1185 1185于是:6- 6v=2(v -15)1185解得v =17 2122因此北冰洋号潜航的速度是每小时17 21 = 64 7 千米.22 11答:北冰洋号潜航的速度是每小时64 7 千米.11。

小学六年级数学比例测试题含答案及知识点.docx

小学六年级数学比例测试题含答案及知识点.docx

小学六年级数学比例测试题含答案及知识点一、比例1.下面()能和:4成比例。

A. 5: 10B.C.【答案】C【解析】【解答】:4=÷4=;A,5 :10=5 ÷ 10= ,≠ ,不能成比例;B,: = ÷=,≠ ,不能成比例;C,: = ÷=,=,能成比例。

故答案: C。

÷后 =比【分析】表示两个比相等的式子叫比例,判断两个比是否能成比例,用前,分求出比,如果比相等,就能成比例,否,不能成比例,据此解答。

2.下列法中,不正确的是()。

A. 2019 年二月份是28 天。

B. 零件0.2 厘米,画在上30 厘米,幅的比例尺是1: 150。

C. 930 分,面上与分成的小角是一个角。

D.两个数的一定是一个合数。

【答案】 B【解析】【解答】 A, 2019÷4=504⋯⋯3,2019 年是平年,二月份有 28 天,此法正确;B, 30cm: 0.2cm=( 30× 10):( 0.2 × 10) =300:2=( 300 ÷2):( 2÷2) =150: 1,原法;C, 9 30 分,面上与分成的小角是一个角,此法正确;D,数× 数 =合数,此法正确。

故答案: B.【分析】年和平年的判断方法:当年份是整百年份,年份能被400 整除的是年,不能被 400 整除的是平年;当年份不是整百年份,年份能被 4 整除的是年,不能被 4 整除的是平年,年全年366 天,平年全年365 天,平年 2 月 28 天,年 2 月 29 天,据此解答;比例尺 =上距离:距离,据此解答;面被12 个数字平均分成12 大格,每个大格所的心角是360 °÷ 12=30,°角的分:0°<角< 90°,直角 =90 °,90°<角< 180 °,平角 =180 °,周角 =360 °,据此解答;一个数,如果除了 1 和它本身还有别的因数,这样的数叫做合数,两个质数的积一定是一个合数。

高斯小学六年级下册奥数应用题综合练习答案

高斯小学六年级下册奥数应用题综合练习答案

高斯小学六年级下册奥数应用题综合练习答案一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )A.20B.15C.10D.54.一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的可能为( )A.B.C.D.10.,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k 的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.点评:理解题意是解答应用题的关键,找出题中的.等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k 的取值范围是k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2 ∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。

第一届六年级“高思杯”数学试题详解

第一届六年级“高思杯”数学试题详解

高思杯六年级试卷评析第一试一、 填空题Ⅰ1. 计算:321456123654×−×=__________.「答案」 65934.「简答」 本题考验的是学生的计算能力.这道题虽然也有速算的方法,但是速算方法本身并不容易想到.如果对分配律运用不熟练,速算也就不那么“速”了.而直接计算只需要计算两次三位数的乘法,并不难做到.速算方法如下:原式()()()321123333123321333321333123333321123333=×+−×+=×−×=−×()19833320023336660066665934=×=−×=−=.2. 计算:0.10.20.30.10.20.3++=×× __________. 「答案」 81. 「简答」 本题考验的是循环小数与分数的转化.只要知道10.19= ,20.29= ,310.393== ,解决这道题目就不成问题.3. 小明上周去百货商店用30元买了2支钢笔和4支铅笔.这周去百货商店时,他发现钢笔降价10%,铅笔加价20%.于是小明花30元买了3支钢笔和1支铅笔.现在..买1支钢笔和1支铅笔一共需要__________元.「答案」 12.「简答」 本题考验的是解应用题的能力.不管利用和差倍分问题的解法还是利用方程,都能很轻松的解决.这里推荐大家采用方程的解法.和小学不同,中学时绝大多数应用题要求必须用方程来解,直接列算式是不合要求的.4. 把2000分解为若干互不相等的自然数的乘积,这些自然数的总和最小是__________.「答案」 37.「简答」 将2000分解质因数4325×,然后对不同的分解状况讨论就可以了.显然这些自然数越多越接近,总和就越小.但具体怎样分解是最好的,很难直接推理出来.不妨把最后几种情况列举出来,分别求和比较一下就可以了.2000251020=×××这种情况是最好的.5. 如图,在一个4厘米×4厘米的方格纸内画了一个格点八边形,那么这个八边形内部所有阴影部分的面积之和是________平方厘米.「答案」 2.「简答」 仔细看图,容易发现这个八边形中的阴影部分是8个直角三角形,每个直角三角形的面积都是14平方厘米,故总面积为2平方厘米.6. 今年6月份的挂历如右图所示,明年__________月份的挂历恰好和它是一模一样的.「答案」 11.「简答」 本题综合考察了周期问题和数表问题.依次计算2011年每月的1号是星期几,其中2月1日、3月1日和11月1日是星期二,那么排列情况就和图中所示情况相同.还应该注意到该月应该恰有30天,故答案为11月.本大题难度一般,但解题时需要仔细,不少题目很容易因为粗心导致错误.第一题错误的同学必须练习计算基本功,上了初中,基础运算题的正确率就应该做到100%.第四题和第六题都涉及多种情况讨论比较,中学非常重视思维的严谨性和过程的周密性,做题时绝对不能想当然.二、 填空题Ⅱ7. 360可以分解为两个自然数m ,n 的乘积,已知m 有a 个约数,n 有b 个约数,且a b >,如果13a b +=,那么a b −=__________.「答案」 5.「简答」 将360分解质因数得32360235=××,讨论m ,n 的所有情况即可.这里有一个简单一点的方法:由于13a b +=,故a ,b 中一定有一个奇数,即m ,n 中一定有一个完全平方数,故只需讨论1360×,490×,940×,3610×这四种情况.最后发现36m =,10n =,9a =,4b =,故5a b −=8. 将3个相同的红球和5个相同的绿球分给三个人(允许有人没有分到球),有___________种分法. 「答案」 210.「简答」 由于允许有人没有分到球,故红球和绿球可以分开考虑,再利用乘法原理即可.将3个相同的红球分给三个人,利用插板法,共有2510C =种方法(也可直接枚举出来).将5个相同的绿球分给三个人,利用插板法,共有2721C =种方法(也可直接枚举出来).故一共有210种方法.9. 右图中的每一块都是正方形,已知正方形A 的边长为1,那么正方形B 的边长为__________.「答案」 138125. 「简答」 依次考虑各块正方形的边长比.因为正方形A 的边长为1,故A 右侧正方形边长为12,再往右的大正方形边长为45.设正方形B 的边长为x ,故B 左侧大正方形边长为34x ,再往左的正方形边长为13x .于是311414325x x x ++=++,解得138125x =. 星期日星期一星期二星期三星期四 星期五 星期六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3010. 小赵是铁人三项运动的爱好者,如果他用2小时骑自行车,用3小时长跑,用4小时游泳则行进总路程为74公里;如果他用4小时骑自行车,用2小时长跑,用3小时游泳则行进总路程为91公里.又知道他进行三个项目的速度都是整数公里每小时.则他三个项目速度之和为__________公里/小时.「答案」 28.「简答」 本题考察了不定方程的知识.设骑自行车每小时x 公里,长跑每小时y 公里,游泳每小时z 公里,可得2347442391x y z x y z ++=⎧⎨++=⎩,解不定方程,整数解只有1774x y z =⎧⎪=⎨⎪=⎩,故答案为28.11. 下列算式中每个字母都代表3、4、6、8、9这五个数字中的一个,不同的字母代表不同的数字,那么五位数ABCDE =________.157122A B C D E ++=××× 「答案」 43689(或43698,46389,46398,填对任意一个均可).「简答」 注意到3、6均含有一个质因子3,而9含有两个质因子3.要想最后约去3,只可能把3、6放在一起,再和9通分时约去,分别对每种情况验算即可.12. 甲从A 地,乙丙从B 地同时出发,相向而行.甲乙先相遇.甲乙相遇后,乙又行了3.2小时到达A 地,相遇后甲又行了2小时后遇见丙.甲丙相遇后,甲继续前进,3小时后到达B 地;丙12小时后到达A 地.如果乙比丙每小时多行40千米,则AB 两地相距________千米.「答案」 480.「简答」 由题意,甲乙相遇后,乙又行了3.2小时到达A 地,甲又行了5小时到达B 地.这个时间比为22::v v v v v v ××=甲乙乙甲乙甲相遇时间相遇时间,故甲乙的速度比为4:5,同样可以求得甲丙的速度比为2:1,故甲乙丙的速度比为4:5:2.再根据“乙比丙每小时多行40千米”算出他们的速度,并求出AB 的距离为480千米.这道大题难度较大,要求对各种技巧能够灵活运用.第8题只要能想到乘法原理,其实不用插板法也可通过枚举得到,但大多数同学没有注意到红球和绿球可以分开考虑.第9题本身涉及到的知识并不难,但形式比较特别,不少同学无法从图中发现数量关系,导致这道题得分偏低.第12题是难度最大的一道,从时间比转化为速度比的平方,很多同学一时无法想到,或是直接把时间比当成了速度比.另外这道题目中三人的速度也均不是整数,这也进一步加深了难度.三、 解答题13. L 博士乘坐飞行器要到正东方向1公里处的地方,他将飞行器交由机器人控制,自己去睡觉了.但是机器人出了故障,飞行器每行进3米,机器人就会将飞行器向左转动90°,每行进n 米就会将飞行器向右转动90°,如果里程是3和n 的公倍数,则两次操作抵消,飞行器保持航向.假设飞行器的速度是每秒1米,问:(1)当6n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由; (2)当7n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由; (3)当8n =时,L 博士能到达目的地吗?如果能,多少秒后才能到达目的地;如不能说明理由. 「简答」 解:(1)按题目所说过程画出飞行器前进路线(图1),发现每24秒,飞行器绕过一个正方形回到出发点,故L 博士不可能到达目的地.(2)由于[]3,721=,画出飞行器前进路线(图2),发现每21秒,飞行器向正东前进1米.故L 博士可以到达目的地.一共要前进1000米,注意到每个周期的最开始飞行器可以向正东先前进3米,故L 博士一共需要()1000321320940−×+=秒.(3)由于[]3,824=,画出飞行器前进路线(图3),发现每24秒,飞行器向前飞2米,向左飞2米.继续下去,每过96秒飞行器回到出发点,故L 博士不可能到达目的地.本题严格说来只是一个周期问题,只要能理解题意,顺利作出飞行器的路线图,这道题可以说已经解决了一大半.但是在做题时有很多地方都容易粗心犯错误.最明显的错误是对“向左转动”和“向右转动”理解不对,误以为飞行器越开越偏,实际上飞行器只是在绕圈子而已.最可惜的错误是第二问中,有些同学已经画对了图,但是发现飞行器20秒后回到出发点,就误以为飞行器一直在绕圈子了,没有按照21秒的周期进行计算.另外在这一问中,很多同学没有注意到每个周期的头3秒一直向东,只注意到每21秒向东飞行1米,于是结果算成了21000秒.本题总体得分情况并不太理想,可见对于处理这种题干很长且叙述语言较多的问题,大多数同学缺乏经验. 出发点图1出发点图2出发点图3。

高斯小学奥数六年级上册含答案第22讲分数、百分数应用题综合提高

高斯小学奥数六年级上册含答案第22讲分数、百分数应用题综合提高

第二十二分数、百分数应用题综合提高、基础知识回顾:1. 比:(1 )比的概念:两个数相除叫做两个数的比•例如,5+6可记作5:6. “:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值.比的后项不能为0.(2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变.2. 比例基本性质:如果a:b c:d ,那么a d b c .3. 正比例关系和反比例关系:( 1 )正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值 (也就是商) 一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,或者简写为“成正比” .( 2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,或者简写为“成反比” .注意,正比例和反比例是两种“量”之间的关系.比如长度、面积、时间、价格、重量……这些都是生活中实际存在的“量”.而以前我们学习的比和比例则是针对具体的“数” 之间的关系. 两个量之间如果成正比例关系或成反比例关系,称为这两个量成比例 .、分数、百分数应用题相关的题目类型及解题方法:1. 比例互化:( 1 )部分占部分,部分占整体之间的转化;( 2)多组比化连比.2. 通过寻找不变量解题:常用不变量有:( 1 )总量(和)不变:给来给去的情况;( 2)差不变:同增、同减的情况;( 3)其中某一个量没有变化.3. 正反比例的概念和应用.4. 复合比.5. 方程法.6. 倒推法.7. 列表法.例1.甲、乙两个人分别有许多苹果,如果甲买了5个苹果,则此时甲、乙两人的苹果数之比是7:8 ;如果甲买了9个苹果,乙丢了4个苹果,此时甲乙两人的苹果数之比是3:2,那么两人原来分别有多少个苹果?「分析」本题可以利用“和不变”解题.练习1、小高、小思两个人分别有许多积分,如果小高又得了3分,则此时两人的积分之比是2:3 ;如果小高又得了8分,小思丢了5分,此时两人的积分之比是3:4,那么两人原来分别有多少积分?例2.甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动.其中甲班参加的人数是乙班参加人数的 -.乙班未参加人数是甲班未参加人数的-.请问:甲5 5班未参加人数是乙班参加人数的几分之几?「分析」因为两班总人数相同可以采用设数法,设出这个总数后,就可以表示出所需的其它数量了.练习2、甲、乙两人有相同数目的水果,水果有梨和苹果两种,甲的梨和乙的苹果数目之比为4:3,甲的苹果和乙的梨数目之比为6:7,那么甲的苹果数和乙的苹果数之比是多少?例3.有三个最简真分数,其分子的比为3:2:4,分母的比为5:9:15 .将这三个分数相加,再28经过约分后为.那么三个分数的分母相加是多少?45「分析」可以采用设未知数的办法解答此题.练习3、有三个真分数(其中第一个是最简真分数),其分子的比为3:4:5,分母的比为4:9:18 •将这三个分数相加,再经过约分后为72 •那么三个分数的分母相加是多少?例4.某工厂有A, B, C, D , E五个车间,人数各不相等•由于工作需要,把B车间工人1 1 1的—调入A车间,C车间工人的-调入B车间,D车间工人的一调入C车间,E车间2 3 41工人的-调入D车间.现在五个车间都是30人.原来每个车间各有多少人?6「分析」本题可以采用“倒推法”.练习4、五指山上有甲,乙,丙,丁四队妖怪,妖怪数各不相等•为了均衡势力,把乙111队妖怪的1调入甲队,丙队的丄调入乙队,丁队的 -调入丙队•现在四支队伍都是483 5 7人•原来每个队伍各有多少妖怪?例5•小光、小明和小亮分一些苹果. 他们发现,苹果可以恰好按照4:3:2分配(按照小光、小明、小亮的顺序,下同),也可以恰好按照5:4:n分配(其中n为自然数),两种分配方法下,小光所分得的苹果数相差20个•那么苹果总数的最大值是多少?「分析」本题中哪些量是没有发生变化的呢?例6.甲、乙、丙三人玩赢卡片的游戏,他们手中一共有156张卡片•第一轮,甲赢了乙、1 1丙每人手中卡片的1;第二轮,乙赢了甲、丙每人上轮结束时手中卡片的1,最后一轮,5 1 4丙赢了甲、乙每人上轮结束时手中卡片的1,最后甲、乙手中的卡片数之比是2:3,那4么结束时丙手中有多少张卡片?「分析」本题可以采用寻找“不变量”作为解题突破口.数学泰斗——阿基米德阿基米德(约前287年—前212年)是伟大的古希腊哲学家、数学家、物理学家、力学家,静力学和流体静力学的奠基人. 他出生于西西里岛的叙拉古,从小就善于思考,喜欢辩论. 早年游历过埃及,曾在亚历山大城学习. 据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着. 第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手. 他一生献身科学,忠于祖国,受到人们的尊敬和赞扬.阿基米德出生在古希腊西西里岛东南端的叙拉古城. 在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起. 阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所.阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学.大概在他九岁时,父亲送他到埃及的亚历山大城念书. 亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里得,在此奠定了他日后从事科学研究的基础.在数学方面,阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法. 在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖.他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率. 面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题.浮力原理的发现关于浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠.但是在做好后,国王疑心工匠,但这顶金冠确与当初交给金匠的纯金一样重.工匠到底有没有私吞黄金呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑.经一大臣建议,国王请来阿基米德检验.最初,阿基米德也是冥思苦想而却无计可施.一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起. 他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重. 他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”(Eureka,意思是“我知道了” ).他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多. 这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属.这次试验的意义远远大过查出金匠欺骗国王的事实,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于它所排出液体的重量.一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等. 给我一个支点,我可以撬动地球阿基米德对于机械的研究源自于他在亚历山大城求学时期. 有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”,埃及一直到二千年后的现在,还有人使用这种器械.这个工具成了后来螺旋推进器的先祖.当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理” 和“力矩” 的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的.他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球. ”后世的评价美国的E. T. 贝尔在《数学大师》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯.不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.作业1. 甲、乙、丙、丁四人合做一批零件,甲做的个数是另外3个人所做的总数的一半,乙做1 1的个数是另外3个人所做的总数的1,丙做的个数是另外3个人所做的总数的1,丁3 5做了390个•那么四个人共做了多少个零件?2. 甲、乙两个人分别有许多包子,如果甲买了4个包子,则此时甲乙两人的包子数之比是2:3;如果甲买了9个包子,乙吃了5个包子,此时甲乙两人的包子数之比是5:7,那么两人原来分别有多少个包子?3. 萱萱手上有语、数、英三种高思积分卡,分值的总和是590,英语积分卡的分值和是数5 3学的5,也是语文的3•萱萱手头的语文高思积分卡的分值是多少?8 44. 三班原计划抽20%的人参加大扫除,临时又有两人主动参加,使实际参加打扫除的人1数是余下人数的-,原计划抽出多少人大扫除?35. 甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动. 其中甲班未5 参加的人数是乙班未参加人数的2倍.乙班参加人数是甲班参加人数的一.请问:甲4 班未参加人数是乙班参加人数的几分之几?第二十二分数、百分数应用题综合提高例7.答案:9、16详解:答案甲原有9个,乙原有16个.前后两种情况下甲乙两人的苹果总数不变,则可把前后苹果的总份数统一为 15份,那么两种情况下甲和乙的苹果数之比分别为 7:8、9:6,由题意可知一份对应了 2个苹果,所以甲原有2 7 5 9个苹果,乙原有16个苹果.例&答案:四分之三详解:设份数,按下面转化,可以得出最后甲乙均为 23分的总人数,所以,甲班未参加人数是乙班参加人数的四分之三.参 未 参 未甲 2 5 和同8 15 乙 51■*203例9.答案:203所以a 和b 的值分别为4和7.因此三个分数的分母相加是例10. 答案:A , B , C , D , E 五个车间分别有 11、38、33、32、36人详解:设A , B , C , D , E 五个车间分别有a 、b 、Godnd30=_e =_d+_e =_c+_d =_b+_c =_b+a ,所以 A , B , c , D , E 五个车间分别有 11、38、33、32、36 人.详解:设三个分数为3a 5b、担(其中a 与b 互质),则三个分数之和为9b 15b49a 45b28 45(5 9 15) 7203 .c 、d 、e 个人,则例11 . 答案:1980时45和36 4n 的差最小,即两种情况小光的苹果数所占总数的比例最接近, 所以苹果总数的最大值是1980.例12 . 答案:66:由上表最左列可知 的值只可以取,则结束时丙手中有 张卡片.详解:小光第一次占总数的36 4n 9(9 n)第二次占总数的45 9(9 n)通过枚举可知当练习1、答案:小高67分,小思105分简答:根据“和不变”,统一单位1解题即可.练习2、答案2:1简答:甲的梨:乙的苹果=4:3,甲的苹果:乙的梨=6:7,设甲共10份的水果,则乙也是10份的水果,发现单位1相同,不需进行比例计算,甲的苹果:乙的苹果=6:3=2:1 .练习3、答案62简答:设三个分数为3a-4a-5a(其中a与b互质),则三个分数之和为4b9b18b27a 16a 10a53a53所以a和b的值分别为1和2 .因此三个分数的分母相加36b36b72,是(4 9 18) 262 .练习4、答案:甲,乙,丙,丁四队各有29、57、50、56 个妖怪简答:同例4,用倒推法.作业6. 答案:1560.7. 答案:甲有116个,乙有180个.简答:由已知条件发现,前后两种情况下包子的总量不变,所以可以把前后两个比的化 为相同份数来分析,即化为 24:36和25:35,由于乙在两种情况下相差5个包子,所以一 份对应5个包子,因此可求出甲原来有 116个,乙原来有180个.& 答案:200.简答:以英语积分作为前后两个比的桥梁, 5和5可分别化为15和毎,此时一共分为8 4 24 20了 59份,而总积分为590,所以一份对应10分,因此语文积分有 200分.9.答案:&简答:两人加入后,打扫卫生的人数占总人数的25%,即与原来相差总数的 5%,所以原来有2 4 8人. 10. 答案:五分之二.简答:直接例2的方式写出比例后,发现甲乙之和相等,不需统一单位1,直接可以看 出甲班未参加人数是乙班参加人数的五分之二. 简答:已知条件即告诉大家甲、乙、丙做的零件个数分别占总个数的完成的个数占总个数的1 1 1 1 1,所以总个数为390 - 3 4 6 4 4 1560 • 〕,则丁 6。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.(1分)(2009•宝安区)在比例尺1:6000000的地图上,量得深圳和广州两地的距离为3厘米,深圳与广州的实际距离约为千米.【答案】180【解析】要求深圳与广州两地间实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值,计算即可.解:3÷=18000000(厘米),18000000厘米=180千米;答:深圳与广州的实际距离约为180千米;故答案为:180.点评:此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.2.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。

【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。

首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。

如24:4=20:53.正方体的表面积和一个面的面积成正比例。

()【答案】√【解析】正方体有6个完全相同的面,所以正方体表面积÷一个面的面积=6(一定),题目正确。

4.学校操场长100米,宽60米,在练习本上画图,选用()作比例尺较合适。

A.1︰20B.1︰2000C.1︰200D.1:2【答案】B【解析】可以分别根据这几个比例尺算一算图中的距离,看哪个更符合实际情况,即为哪个选项。

根据四个比例分别算出长为:5米,5厘米,5分米,50米。

显然,B更符合实际。

5.会议室用一种方砖铺地,用边长4dm的方砖,要360块。

用边长3dm的方砖,至少要多少块?(用比例解)【答案】640块【解析】对于用比例解的问题,首先要判断题目中的哪种量一定,哪种量和哪种量成什么比例。

根据题意可知,是在会议室里铺地,用不同大小的方砖铺,需要的块数也不一样,但是房间的面积是一定的,所以房间面积一定,方砖面积和需要的块数成反比例。

六年级高斯学校竞赛计算综合二含答案

六年级高斯学校竞赛计算综合二含答案

第9讲计算综合二内容概述综合性较强的计算问题。

典型问题兴趣篇1.计算:).09.05321323.1()1857.66.35333.4(31--÷-÷+-⨯⨯2.要使等式53332154]1011) □625.1(322[6.15=÷--+⨯÷成立,方格内应该填入多少?3.计算:⋅÷⨯+⨯-212805520541874.计算:⋅⨯-++5.353212195020022002119505.计算下列繁分数:;31211)1(++;431211)2(+++⋅-+-198711111)3(6.算式10191817161514131211+++++++++的计算结果,小数点后第2008位是数字几?7.定义运算符号“△”满足:⋅⨯+=∆ba ba b a 计算下列各式: (1) 100△102; (2) (3△4) △5⋅∆∆∆∆)32(13)21()3(8.已知876545857565554:37 □:112111333++++++++=,那么方框所代表的数是什么?9.如图9-1,每一条线段的长度规定为它的端点上两数之和,图中6条线段的长度总和是多少?10.我们规定:△n=n ×n +l ),比如:△l=l ×2,△2=2×3,△3=3×4.请问: (1)如果要使等式100□991312111∆=∆++∆+∆+∆ 成立,那么方框内应填入什么数? (2)计算: △1 +△2+△3+….+△100.拓展篇1.计算:⋅÷⨯+÷413)5413.1218585.3(2.计算:⋅÷÷-+⨯8721654333113612141873.计算:).19956.15.019954.01993(22.550276951922.510939519+⨯⨯÷+--+4.我们规定:符号“O ”表示选择两数中较大数的运算,例如:3.5 O 2.9= 2.9 O3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9 =2.9△3.5=2.9.请计算:⋅∆+⨯∆)25.2104235()3.0 ○31()4.0 ○384155()3323625.0(5.计算:⋅+⨯+++-++⨯++)975753357579()531135975753357579135531()531135975753357579()975753357579135531(6.算式2004)1311211111019181716151413121(⨯+++++++++++计算结果的小数点后第2004位数字是多少?7.古埃及人计算圆形面积的方法是:将直径减去直径的91,然后再平方.由此看来,古埃及人认为圆周率л等于多少?(结果精确到小数点后两位数字)8.(1)将下面这个繁分数化为最简真分数: (2)若下面的等式成立,工应该等于多少?;21314151+++⋅=+++1184112111x 9.已知符号“*”表示一种运算,它的含义是:))(1(11*A b a ab b a +++=,已知413*2=,那么:(1)A 等于多少? (2)计算⋅++++)100*99()6*5()4*3()2*1(10.已知19991100211001110001,200019991651431211++++=⨯++⨯+⨯+⨯=B A 比较A 和B 的大小,并计算出它们的差.11.根据图9-2中5个图形的变化规律,求第99个图形中所有圆圈(实心圆圈与空心圆圈)的个数.12.定义:)11()311()211()111(1nn na +⨯⨯+⨯+⨯+=(1)求出20010021,,,a a a a 的大小; (2)计算:⋅+++++10043211004321a a a a a超越篇1.⋅-++⨯----⨯2141121117331311227331393766)43322(17412.真分数27a化为小数后,如果小数点后连续2004个数字之和是8684,那么a 可能等于多少?3.定义运算“Ω”满足:304.)]1([2,1=Ω+-Ω⨯=Ω=Ωm a n a n a a a 已知②①。

六年级数学竞赛上册奥数高思第2讲比例计算与列表分析(彩色)

六年级数学竞赛上册奥数高思第2讲比例计算与列表分析(彩色)

11
身体健康
六年 级
上册第 2 讲
练习
3. 一次考试,卡莉娅的分数是小高的 分,那么三人的平均分是多少?
8 倍,是墨莫的 4 倍.已知小高比墨莫高了 12
7
3
在利用 “设份数 ”法求解比例应用题时,抓住题中的 行分析是关键.
“公共量 ”或者 “不变量 ”进
例题 4
一把小刀售价 3 元.如果小明买了这把小刀,那么小明与 小强剩余的钱数之比是 2 :5 ; 如果小强买了这把小刀,那么两人剩余的钱数 之比变为 8 :13 .小明原来有多少钱?
桃与甜饼为 3 :5 ,仙桃与泡泡糖为 3:8 , 甜饼与泡泡糖为 5 :8 .现在孙悟空共拿
出 39 个仙桃分别与其他两位互换,机器猫共拿出甜饼
90 个与其他两位互换,米
老鼠共拿出 88 个泡泡糖与其他两位互换.那么,米老鼠与孙悟空和机器猫各交
换泡泡糖多少个?
本讲知 识点 汇总
一、将多组比例化成连比. 二、 “设份数 ”的方法解比例问题. 三、找比例问题中的 “公共量 ”与“不变量 ”. 四、列表分析的方法.
花比康乃馨少 50 束,且玫瑰花与康乃馨的总支数之比为 3 :7 ,问:花店共有多少支玫瑰花?
例题 3
甲、乙、丙三人合买一台电视机.甲付钱数等于乙付钱数 的 2 倍,等于丙付钱数的 3 倍.已知甲比丙多付了 680 元,请问:这台电视 机价值多少钱?
分析 甲、乙、丙三人所付出的钱数之比是多少?每人各付了多少钱?
出三者付出的总钱数之比了.
利用份数进行分析的好处是简单易懂,理解起来直接而且清晰.但是在比例关系不
太明显的题目中,我们必须想清楚哪些是我们设的
“份数 ”,哪些是题目给出的具体 “数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲比例解应用题内容概述涉及两个或多个量之闻比例的应用题.熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系.典型问题兴趣篇1.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问:圆珠笔的单价是每支多少元?2.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3千米,下坡时每小时走4.5千米.如果阿奇走完全程用了半小时.请问:这段路程一共有多少千米?3.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟,现有1170个零件,甲、乙、丙三人各加工几个零件,才能使得他们同时完成任务?4.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的.求合铸所成的合金中铜与锌的重量之比.5.已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生的比为5:4,丙班男、女生的比为2:1,而且三个班所有男生和所有女生的比为13:14.请问: (1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?6.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克? 7.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时.问:小明去时用了多长时间?8.冬冬从家去学校,平时总是7:50到校,有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校,请问:冬冬这天是几点出发的?9.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的87就可完成;如果减少2台机器,就要推迟32小时才能完成.请问: (1)在规定时间内完成需几台机器?(2)由1台机器去完成这工程,需要多少小时?10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?拓展篇1.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元,已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?2.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?3.甲、乙、丙三人合买一台电视机,甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少? (2)这台电视机售价多少钱?4.一把小刀售价3元,如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.小明原来有多少钱?5.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟?6.某俱乐部男、女会员的人数比是3:2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数比是3:1,乙组中男、女会员的人数比是5:3.求丙组中男、女会员的人数比.7.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1: 2,但它们一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍; ③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?8.如果单独完成某项工作,甲需24天,乙需36天,丙需48天,现在甲先做,乙后做,最后由丙完成.甲、乙工作的天数比为1:2,乙、丙工作的天数比为3:5.问:完成这项工作一共用了多少天?9.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同,求猫、狗和兔的速度之比.10.星期天早晨,哥哥和弟弟都要到奶奶家去,弟弟先走5分钟,哥哥出发25分钟后追上了弟弟,如果哥哥每分钟多走5米,出发20分钟后就可以追上弟弟.问:弟弟每分钟走多少米?11.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行多少千米?12.一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的65即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?超越篇1.甲、乙两人分别同时从A 、B 两地开始,修建一条连接A 、B 两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元.而在实际施工的时候,乙每天比原计划多修l 千米,结果乙实际分得了150万元,那么乙队实际施工时,每天修多少千米?2.孙悟空有仙桃、机器猫有甜饼、米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃分别与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出88个泡泡糖与其他两位互换.请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?3.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖.已知: ①第一包糖的粒数是第二包糖的32;②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍,当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.4.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投人工作,又干了15天才完成任务.求甲种车完成的工作量与总工作量之比.5.在一个490米长的圆形跑道上,甲、乙两人从相距50米的A 、B 两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一.当乙回到B地时,甲刚好回到A地,此时他们都按现有速度与方向前进.请问:当甲再次追上乙时,甲(从开始出发算起)一共走了多少米?6.将A、B两种细菌分别放在两个容器里.在光线亮时A细菌需12小时分裂完毕,B细菌需15小时分裂完毕;在光线暗时,A细菌的分裂速度要下降40%,B细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?7.某大学本科共有四个年级,男生总人数和女生总人数的比为7:5.又已知:①一年级男生和二年级女生的比是3:2,二年级男生和一年级女生的比也是3:2;②三年级和四年级的人数相等,且三年级男生比四年级女生多100人;③三、四年级男生与女生的比为6:5;④二年级的男生占学生总数的24%.请问:一年级男生和女生的人数分别是多少?8.如图2-1所示,A、B、C、D、E、F是六个齿轮.其中A和B相互咬合,B和C相互咬合,D和E、E和F也都相互咬合;而C和D是同轴的两个齿轮,也就是说C和D转动的圈数始终相同.当A转了7圈时,B恰好转了5圈;当E转了8圈时,F恰好转了9圈;当C转了5圈时,B和E恰好共转了28圈.请问:(1)如果A、E转的总圈数总是和B、F转的总圈数相同,那么当A、F共转了100圈时,D转了多少圈?(注:图片只是示意图,并不代表实际齿数)(2)如果A、E的总齿数和B、F的总齿数相等,D的齿数是C的齿数的2倍,那么当A转了210圈时,D和F分别转了多少圈?第2讲比例解应用题兴趣篇1. 圆珠笔和铅笔的价格比是4︰3,20 支圆珠笔和21 支铅笔共用71.5 元。

问:圆珠笔的单价是每支多少元?【分析】设圆珠笔价格为4份,铅笔价格为3份。

则,20 支圆珠笔,21 支铅笔共20⨯ 4+21⨯3 = 143份。

共花费71.5 元所以每份71.5 ÷143 = 0.5 元。

圆珠笔每支0.5⨯ 4 = 2 元。

2、一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知阿奇在上坡时每小时走3 千米,下坡时每小时走4.5 千米。

如果阿奇走完全程用了半小时。

请问:这段路程一共有多少千米?【分析】设上坡长度为4份,下坡距离为3份,4 2则,上坡时间4 ÷3=份,下坡时间3 ÷4.5 =份,3 34 2总时间+= 2 份,用了半小时,每份15 分钟,上坡时间20 分钟,下坡时间10 分钟。

3 3总距离:3⨯1 +4.5⨯1 =1.75千米。

3 63、加工一个零件,甲要2 分钟,乙要3 分钟,丙要4分钟。

现有1170 个零件,甲、乙、丙三人各加工几个零件,才能使他们同时完成任务?1 11【分析】甲、乙、丙每人每分钟分别加工1 +1+1=13个零件。

2 3 4 12,,2 34个零件。

甲乙丙一起,每分钟加工1170 个零件需要三人一起加工:1170 ÷13=1080 分钟。

12此时甲加工了1⨯1080 = 540 个零件;乙加工了1⨯1080 = 360 个零件;丙加工了2 31⨯1080 = 270 个零件。

44、有两块重量相同的铜锌合金。

第一块合金中铜与锌的重量比是1︰3。

现在把这两块合金铸成一块大的。

求合铸所成的合金中铜与锌的重量之比。

2【分析】设每块合金的重量为“1”,则,第一块合金中有铜“75”,有锌“7”;第二块合1金中有铜“43”,有锌“”。

4两块合金熔在一起,总重量为“2”,其中有铜:2+1=15,有锌:5+3=41。

铜与锌的重量比为15:41。

7 4 28 7 4 285、已知甲、乙、丙三个班总人数的比是3︰4︰2,甲班男、女生的比为5︰4,丙班男、女生的比为2︰1,而且三个班所有男生和所有女生的比为13︰14。

请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12 人,那么甲、乙、丙三个班各有多少人?【分析】设共有男生13 份,女生14 份,则三班总人数为27 份。

相关文档
最新文档