计算方法实验报告 插值
插值法实验报告
插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
数值分析实验报告--实验2--插值法
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
插值运算实验报告
#### 一、实验目的1. 理解插值运算的基本概念和原理。
2. 掌握几种常见的插值方法,如拉格朗日插值、牛顿插值等。
3. 通过实验,验证插值方法在数值计算中的应用效果。
4. 培养动手能力和分析问题的能力。
#### 二、实验原理插值运算是指根据已知数据点,构造一个近似函数来描述这些数据点之间的变化规律。
常见的插值方法有拉格朗日插值、牛顿插值、分段线性插值等。
#### 三、实验内容1. 数据准备准备一组数据点,例如:```x: [1, 2, 3, 4, 5]y: [2, 4, 6, 8, 10]```2. 拉格朗日插值根据给定的数据点,构造拉格朗日插值多项式。
以三次拉格朗日插值为例,其公式如下:```L(x) = y0 ((x - x1) (x - x2) (x - x3)) / ((x0 - x1) (x0 - x2) (x0 - x3))+ y1 ((x - x0) (x - x2) (x - x3)) / ((x1 - x0) (x1 - x2) (x1 - x3))+ y2 ((x - x0) (x - x1) (x - x3)) / ((x2 - x0) (x2 - x1) (x2 - x3))+ y3 ((x - x0) (x - x1) (x - x2)) / ((x3 - x0) (x3 - x1)(x3 - x2))```将数据点代入上述公式,得到拉格朗日插值多项式。
3. 牛顿插值根据给定的数据点,构造牛顿插值多项式。
以三次牛顿插值为例,其公式如下:```N(x) = y0 + (x - x0) (y1 - y0) / (x1 - x0) + (x - x0) (x - x1) (y2 - y1) / ((x1 - x0) (x2 - x1)) + (x - x0) (x - x1) (x - x2) (y3 - y2) / ((x1 - x0) (x2 - x1) (x3 - x2))```将数据点代入上述公式,得到牛顿插值多项式。
牛顿插值的计算实习报告
一、实习目的通过本次实习,我深入了解了牛顿插值法的基本原理,掌握了其计算方法,并能够熟练运用牛顿插值法解决实际问题。
实习过程中,我结合实际数据,运用牛顿插值法进行计算,分析了插值结果,并对插值方法进行了总结和评价。
二、实习内容1. 牛顿插值法的基本原理牛顿插值法是一种构建插值多项式的方法,通过计算差商(divided differences)来逐步构建插值多项式。
该方法具有较好的计算效率和承袭性,即在添加或删除数据点时,可以基于已有计算结果进行调整,无需完全重新计算。
2. 牛顿插值法的计算步骤(1)初始化差商表,第0列初始化为ypoints。
(2)计算i阶差商,根据差商计算插值多项式。
(3)根据计算出的差商构造最终的插值多项式。
(4)计算x的估计函数值。
3. 实际应用以一组实际数据为例,运用牛顿插值法进行计算。
(1)选取一组已知数据点,计算差商。
(2)根据差商构造牛顿插值多项式。
(3)利用牛顿插值多项式估算未知点的函数值。
三、实习结果与分析1. 插值结果通过对实际数据的计算,牛顿插值法得到了较为准确的插值结果。
与实际值相比,插值值具有较高的精度。
2. 插值误差分析(1)在数据点较少的情况下,牛顿插值法具有较高的精度。
(2)在数据点较多的情况下,牛顿插值法可能会出现误差,但总体上仍具有较高的精度。
(3)插值误差与数据点的分布、差商的计算精度等因素有关。
四、实习总结与评价1. 牛顿插值法是一种有效的插值方法,具有较好的计算效率和承袭性。
2. 在实际应用中,根据数据点的分布和精度要求,选择合适的插值方法。
3. 牛顿插值法在实际应用中具有较高的精度,但在某些情况下可能会出现误差。
4. 在后续的实习中,我将进一步学习其他插值方法,如拉格朗日插值法、样条插值法等,以便在实际问题中灵活运用。
五、实习体会通过本次实习,我对牛顿插值法有了更深入的了解,掌握了其计算方法,并能够将其应用于实际问题。
在实习过程中,我认识到理论知识与实际应用相结合的重要性,以及选择合适的插值方法对于提高计算精度的重要性。
插值运算实验报告
插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
插值数值实验报告(3篇)
第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
插值实验实验报告
一、课题名称Malab 函数插值方法二、目的和意义1、学会拉格朗日插值、牛顿插值、亨密特插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。
三、计算公式拉格朗日插值的公式)())(()()()()()()()2,1,0,;,0)(;,1)(()()()(1010110n n i ni i ni n n i i i i ni i i n x x x x x x x w x f x w x x x w x L j i i j x l i j x l x f x l x L ---='-==≠====+=++=∑∑ 其中或者其中牛顿差值公式[][][])())(()()(],,[)()()()()(,))((,,)(,)()(1011,010,010*******n n n n n n n n n x x x x x x x w x w x x x f x N x f x R x x x x x x f x x x x x x x f x x x x f x f x N ---==-=--++--+-+=++- 其中亨密特插值公式∑=++=ni i x i i x i x n m b f a H 0)()()(12][五、结构程序设计拉格朗日插值的程序function[c,l]=lagan1(x,y) x=input('x=:'); y=input('y=:'); w=length(x); n=w-1;l=zeros(w,w); for k=1:n+1 v=1;for j=1:n+1 if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)); endendl(k,:)=vEndc=y*l;牛顿插值的程序function[c,l]=lagan(x,y)x=input('x=:');y=input('y=:');n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor k=j:nd(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); endendc=d(n,n);for k=(n-1):-1:1c=conv(c,poly(x(k)));m=length(c);c(m)=c(m)+d(k,k);end六、结果讨论和分析拉格朗日插值运行的结果x=:[0.4 0.55 0.65 0.80 0.95 1.05]y=:[0.41075 0.57815 0.69675 0.9 1.00 1.25382]l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05320 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05321.3333 -5.1333 7.7300 -5.67122.0177 -0.27660 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.02540 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210.0308 -0.1031 0.1353 -0.0869 0.0273 -0.0033 ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542牛顿插值的运行结果x=:[0.4,0.55,0.65,0.80,0.95,1.05]y=:[0.41075,0.57815,0.69675,0.90,1.00,1.25382]ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542多项式插值的主要目的是用一个多项式拟合离散点上的函数值,使得可以用该多项式估计数据点之间的函数值。
数值分析实验报告(插值法)
武汉理工大学学生实验报告书实验课程名称数值分析开课学院计算机科学与技术学院指导老师姓名学生姓名学生专业班级2010—2010学年第一学期实验课程名称:数值分析第二部分:实验调试与结果分析(可加页)一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)(1)用拉格朗日插值法计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(2)利用二次插值计算时,输入及运行结果如下:拉格朗日插值法牛顿插值法(3)用艾尔米特插值法计算时,f(x)的插值多项式H5(x)=(1+4*x)*(x-0.5)*(x-0.5)*(x-2)*(x-2)+(3.90807-6.03838*x)*(x-2)*(x-2)*x*x+(2.34573-4.16674*x)*x*x*(x-0.5)*(x-0.5)(4)各插值算法的精度差异比较经过比较,拉格朗日插值法要比牛顿插值法算法的计算量多一些,拉格朗日插值法后一次计算时用到了前一次计算的结果,提高了运算的效率,但拉格朗日插值法在构造艾尔米特插值法时很方便,将坐标点和对应的导数结合起来的精度比线性插值的精度又要高一些。
但从实验数据来看,在坐标不是很多的情况下,已知的点越多精度也就相对较高。
对于实验要求的第二组数据用拉格朗日插值法(或者牛顿插值法)实验结果如下:一下分别是二阶、三阶、四阶、五阶插值得到的结果以上只是实验结果的一部分,改变插值的位置时,得到的实验结果精度也是有所不同的。
由以上结果分析可知,插值次数并不是越多越好,多了反而会让结果更加偏离真实结果,这充分说明了高次插值存在“病态性质”,在已知点很多的情况下应该采用分段低次插值,将拉格朗日插值法和牛顿插值法运用到分段低次插值法当中,这样得到的结果可能胡更加精确。
拉格朗日插值实验报告
拉格朗日插值实验报告一、实验目的本实验旨在通过实际实验,深入理解拉格朗日插值法的原理和应用,掌握其计算过程和相关技巧。
二、实验原理Pn(x) = ∑ [yi * li(x)]其中,li(x)称为拉格朗日基函数,具体的计算公式如下:li(x) = ∏ [(x-xj)/(xi-xj)] (i≠j)利用拉格朗日插值法可以对数据进行插值计算,从而得到原函数未知的点的函数值。
三、实验步骤1.根据实验要求,选择一组离散的数据点,确保它们在横坐标轴上不共线。
2. 使用拉格朗日插值法计算插值多项式的各个基函数li(x)。
3.对插值多项式进行求和,得到最终的插值多项式Pn(x)。
4.在给定的范围内选择一些未知数据点,利用插值多项式Pn(x)计算其函数值。
5.将实际计算的函数值与原函数值进行对比,评估插值方法的准确性和精确度。
四、实验结果以实验要求给定的数据点为例,具体数据如下:x:1,2,3,4,5,6y:5,19,43,79,127,187根据拉格朗日插值法的计算公式,可以得到以下结果:l0(x)=(x-2)(x-3)(x-4)(x-5)(x-6)/(-120)l1(x)=(x-1)(x-3)(x-4)(x-5)(x-6)/120l2(x)=(x-1)(x-2)(x-4)(x-5)(x-6)/(-48)l3(x)=(x-1)(x-2)(x-3)(x-5)(x-6)/48l4(x)=(x-1)(x-2)(x-3)(x-4)(x-6)/(-20)l5(x)=(x-1)(x-2)(x-3)(x-4)(x-5)/20插值多项式Pn(x)=5*l0(x)+19*l1(x)+43*l2(x)+79*l3(x)+127*l4(x)+187*l5(x)综合以上计算结果,可以对给定范围内的未知数据点进行插值计算,从而得到相应的函数值。
五、实验分析与结论在实际实验中,我们可以利用拉格朗日插值法对任意给定的函数进行逼近计算,从而得到函数在离散数据点之间的近似值。
插值法和拟合实验报告(数值计算)
插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。
二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。
三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。
1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。
计算方法-插值法报告
计算方法报告——插值1.原理简介插值法是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
根据算法和插值要求的不同,有多种插值方法。
拉格朗日插值:有平面上点集{(x i,y i)}共n个点,现作函数f(x)图像使其过这n个点P i(x)=∏x−x j x i−x jnj=0 j≠i L n(x)=∑P i(x)×y ini=1则f(x)=L n(x)牛顿插值:同样点集,用不同方法构造插值多项式。
定义差商:f[x0,x1]=f(x0)−f(x1) x0−x1f[x0,x1……x k]=f[x0,x1……x k−1]−f[x1,x2……x k]x0−x k则有:N(x)=f[x0]+∑f[x0,x1……x k](x−x0)(x−x1)…(x−x k−1)nk=1理论上牛顿插值与拉格朗日插值所得插值多项式完全相同,只是不同写法。
2.算法描述分析函数:homework1.C 画图函数:DrawPlot.cpp为简化程序,将Lagrange插值与Newton插值算法作为子函数调用。
子函数Lagrange()中,输入插值点个数n,插值点集x[n],y[n],即可得到x点的Lagrange插值函数值L(x)。
同样,Newton()中输入相同信息可得到x点Newton插值函数值N(x)。
主函数main()中,先根据设定选择样点为等距分割还是Chebyshev分割,取得点集point_x[n+1]和point_y[n+1],取点范围(-1,1)。
再调用子函数分别计算各x[i]点下的真实函数值,牛顿插值函数值,拉格朗日插值函数值及各种误差,在循环结束后将需要的误差L_inf 和L1输出到屏幕。
最后利用root TGraph把计算得到的数组画出函数图像,并存到rootfile 中。
在误差计算中只用了-1~0上的点,画图时扩大范围画到-1~1全部点DrawPlot函数中读取了homework1.C中画的函数图像,将其整合到一起,设置线条颜色及宽度,加上一个图例,重新生成一张图像。
《数值计算方法》---多项式插值实验报告
1
2
3
4
5
6
y
0
0.6931
1.0986
1.3863
1.6094
1.7918
2根据下面的数据点,分别求牛顿前插多项式和牛顿后插多项式,并计算x=1.55时y的值。
x
1
2
3
4
5
6
y
0
0.6931
1.0986
1.3863
1.6094
1.79ቤተ መጻሕፍቲ ባይዱ8
3根据下面的数据点,求埃尔米特插值多项式,并计算x=1.44时y的值。
《数值计算方法》---多项式插值实验报告
实验名称:多项式插值
实验目的:
1、熟悉Matlab的编程。
2、学会求解拉格朗日插值、牛顿插值及埃尔米特插值多项式并估计函数在某点处的值。
实验设备与环境:计算机,Windows系统,Matlab等。
实验内容:
1.根据下面的数据点,分别求拉格朗日插值多项式和牛顿插值多项式,并计算x=1.5时y的值。
x
1
1.2
1.4
1.6
1.8
y
1
1.0954
1.1832
1.2649
1.3416
y’
0.5000
0.4564
0.4226
0.3953
0.3727
f =
10850.7*(t - 1.0)^2*(t - 1.4)^2*(t - 1.6)^2*(t - 1.8)^2*(9.58473*t - 10.4063) - 10850.7*(t - 1.0)^2*(t - 1.2)^2*(t - 1.4)^2*(t - 1.8)^2*(10.1455*t - 17.4978) + 24414.1*(t - 1.0)^2*(t - 1.2)^2*(t - 1.6)^2*(t - 1.8)^2*(0.4226*t + 0.59156) - 678.168*(27.5773*t - 50.9807)*(t - 1.0)^2*(t - 1.2)^2*(t - 1.4)^2*(t - 1.6)^2 + 678.168*(t - 1.2)^2*(t - 1.4)^2*(t - 1.6)^2*(t - 1.8)^2*(21.3333*t - 20.3333)
数值计算插值法实验报告
数值计算插值法实验报告
一、实验目标
本实验的目标是学习和掌握插值法的基本原理,通过实际操作,验证插值法的有效性,并利用插值法解决实际问题。
二、实验原理
插值法是一种数学方法,用于通过已知的离散数据点,构造一个连续的函数来近似地表示未知的函数值。
常用的插值法包括线性插值、多项式插值、样条插值等。
其中,多项式插值是一种常用的方法,其基本思想是选择一个多项式来逼近已知的数据点,从而得到未知点的近似值。
三、实验步骤
1.准备数据:收集一组已知的数据点,并将其整理成表格形式。
2.选择插值方法:根据实际情况选择适当的插值方法,如线性插值、多项式插值或样条插值等。
3.计算插值函数:根据选择的插值方法,利用已知的数据点计算插值函数的系数。
4.验证插值函数:利用已知的数据点对插值函数进行验证,检查其精度和误差。
5.应用插值函数:利用插值函数计算未知点的近似值,并将结果与实际值进行比较。
四、实验结果及分析
下面是本次实验的结果及分析:
1.已知数据点:。
计算方法实验报告
实验一:插值法一、实验目的通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C)编程实现数值方法的求解。
并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。
二、实验内容先在屏幕上用随机函数按适当比例画出若干个点(至少7~9),分别用拉格朗日插值,牛顿插值,三次样条插值对上述离散点进行拟和,并用该软件的绘图功能来显示其插值函数。
三、源程序⒈拉格朗日插值:(Lagrange)#include<iostream.h>void main(){float x[3];float y[3];for(int m=0;m<3;m++)cin>>x[m];for(int n=0;n<3;n++)cin>>y[n];for(int k=0;k<3;k++){float s=0;for(int i=0;i<3;i++){float p=1;for(int j=0;j<3;j++)if(i!=j)p=p*((x[k]-x[j])/(x[i]-x[j]));s=s+y[i]*p;}cout<<"("<<x[k]<<","<<s<<")"<<'\n';}}2.牛顿插值:#include<iostream.h>void main(){float x[5];float y[5];float f[5];for(int m=0;m<3;m++)cin>>x[m];for(int n=0;n<3;n++)cin>>y[n];float t=1;for(int k=0;k<5;k++){f[k]=y[k];for(int j=0;j<5;j++)t=t*(x[k]-x[j-1]);for(int i=0;i<(5-j);i++)f[i]=(f[i+1]-f[i])/(x[j+i]-x[i]);y[k]=f[k]+t*f[k];cout<<"y="<<y[k]<<'\n';}}四、实验结果五、实验心得通过此次实验编程,更好的掌握了拉格朗日插值算法,但对于应用上还有很多欠缺,对于牛顿插值更是不熟悉,需要多加练习。
计算方法上机作业插值与拟合实验报告
计算方法实验题目:班级:学号:姓名:目录计算方法实验 (1)1 实验目的 (3)2 实验步骤 (3)2.1环境配置: (3)2.2添加头文件 (3)2.3主要模块 (3)3 代码 (4)3.1主程序部分 (4)3.2多项式方程部分 (4)3.3核心算法部分 (8)3.4数据结构部分 (13)4运行结果 (19)4.1拉格朗日插值法运行结果 (19)4.2牛顿插值法运行结果 (20)4.3多项式拟合运行结果 (20)5总结 (21)拉格朗日插值法 (21)牛顿插值法 (21)多项式拟合 (21)6参考资料 (22)1 实验目的1.通过编程对拉格朗日插值法、牛顿插值法以及多项式拟合数据的理解2.观察上述方法的计算稳定性和求解精度并比较各种方法利弊2 实验步骤2.1环境配置:VS2013,C++控制台程序2.2添加头文件#include "stdio.h"#include "stdlib.h"#include "stdafx.h"2.3主要模块程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。
具体功能如下:●数据结构部分数据结构部分是整个程序的最底层,负责存储部分。
因方程系数作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用顺序表保存系数。
数据结构文件中写的是有关顺序表的所有基本操作以供其他文件调用。
本次实验使用列主元高斯消元法作为求解方程组的方法,所以也用了二维顺序表存储数组。
综上,数据结构部分文件是前两个试验的文件内容和,稍作修改。
●常系数微分方程部分多项式方程部分是程序的第二层,内容主要是常系数微分方程导数的计算和显示菜单部分。
●算法部分算法部分分为两个文件,一个是插值部分,一个是拟合部分。
插值部分文件负责有关插值的核心算法,处于整个程序最上层部分,负责拉格朗日插值法和牛顿插值法的具体实现过程。
实验2— 插值法
《计算方法》实验报告二级学院:计算机学院专业:指导教师:班级学号:姓名:实验二插值法1、实验目的1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。
2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。
2、实验设备PC机一台,C语言、PASCAL语言、Matlab任选3、实验要求1)认真分析题目的条件和要求,复习相关的知识,选择适当解决方案和算法;2)编写上机实验程序,作好上机前的准备工作;3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果;5)按照要求书写实验报告;4、实验内容1)已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求 x=0.5635时函数近似值。
2)给出函数y=f(x)=shx在x属于[0.5,0.8]的部分函数值(0.50,0.521095), (0.55,0.578152),(0.60,0.63654),(0.65,0.696748),(0.70 ,0.758584), (0.75,0.822317),(0.80,0.888106)用等距结点差值来计算 x=0.52处的值。
5、原理:拉格朗日法求解原理:通过给出的4个点,根据拉格朗日的基函数构造拉格朗日函数,然后把 x=0.5635代入函数求出函数值。
差分的原理:通过给的点构造差分表,然后根据差分表写出差分函数,把x=0.52代入差分公式求出函数值。
6、设计思想:1)通过拉格朗日函数的构造,把x的值代入函数。
2)写出差分函数,然后把x的只代入函数求值。
7、对应程序:拉格朗日法求解#include<stdio.h>#include<math.h>void main(void){float x=0.5635;float x0=0.56160,x1=0.56280,x2=0.56401,x3=0.56521;float y0=0.82741,y1=0.82659,y2=0.82577,y3=0.82495;float L0=((x-x1)*(x-x2)*(x-x3)) /((x0-x1)*(x0-x2)*(x0-x3));float L1=((x-x0)*(x-x2)*(x-x3)) /((x1-x0)*(x1-x2)*(x1-x3));float L2=((x-x0)*(x-x1)*(x-x3)) /((x2-x0)*(x2-x1)*(x2-x3));float L3=((x-x0)*(x-x1)*(x-x2)) /((x3-x0)*(x3-x1)*(x3-x2));float L=L0 * y0+L1*y1+L2*y2+L3*y3;printf("%.3f\n",L);}差分法求解#include<stdio.h>#include<math.h>void main(){float x=0.52;float t=0.4;float y0=0.521095,y1=0.578152,y2=0.636654,y3=0.696748;float m0=y1-y0;float m1=y2-2*y1+y0;float m2=y3-3*y2+3*y1-y0;float N=y0+t*m0+t*(t-1)*m1/(2*1)+t*(t-1)*(t-2)*m2/(3*2*1);printf("%.4f\n",N);}8、实验结果:拉格朗日法的结果:0.826;差分的结果:0.5438;9、图形(如果可视化)拉格朗日截图:差分截图:10、实验体会通过上机对拉格朗日和差分的进一步理解,更好地把实验与实际计算相结合。
实验报告-插值法
验 目 的 和 要 求2、掌握用MATAB 作线性最小二乘的方法。
实 验 内 容 和 步 骤计算机上机实验报告1掌握用MATLA 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。
实验的主要内容1编制拉格朗日、牛顿插值程序,并运行一个简单的实例。
(1)拉格朗日插值程序:fun cti on v=pol yin terp(x,y,u) n=len gth(x); v=zeros(size(u)); for k=1: n w=on es(size(u));for j=[1:k-1 k+1:n] w=(u-x(j))./(x(k)-x(j)).*w; end v=v+w*y(k); end实例:当x=144,169,225时,y=12,13,15,用拉格朗日差值法 求根号175。
如下:''Fl ^.kiEO- 1(2)牛顿插值程序:fun ctio n y=n ewi nterp(X,Y,x)% 牛顿插值函数m=le ngth(X);for k=2:mfor j=1:k-1Y(k)= (Y(k)- Y(j))/(X(k)-X(j));endendy=Y(m);for j=m-1:-1:1y=y.*(x-X(j))+Y(j);2、给定函数f(x)x,已知:f(2.0) .1.414214 f(2.1) .1.449138f (2.2) .1.483240 f (2.3) .1.516575 f (2.4) .1.549193 用牛顿插值法求4次Newton插值多项式在2.15处的值,以此作为函3.选择函数y=exp(-x 2) (-2 <x<2),在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m要适中,如50~100)。
数值计算方法实验报告--newton插值多项式
数值计算方法实验报告实验报告题目:newton插值多项式实验要求用mat1ab解析Newton插值多项式的程序二、实验分析(包括数学原理,小组分析讨论后确定实验方案和实现思路)根据经过n+1个不同的差值点x1,x2,…,x(n+1),构造牛顿插值公式∕V(x)=y[x1,x2](x-Λ1)+∕[x1,x2,x3](x-Jc1)(x-x2)+∙∙∙+∕[x1,Λ2∕∙∙xn+1](x-x1)(x-x 2)∙∙∙(x-xn)三、实脸步骤(过程)(包括程序及上机的实现的结果)function[p2,z]=newton(x,y,t)n=1ength(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=1ength(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j continue;e1set1=t1*(x1(j)-x1(k));ehdehds1=s1+y1(j)∕t1;end chaS(i)=s1;ehd b(1,:)=[zeros(1,n-1)chaS(1)];c1=ce11(1,n-1);for i=2:nυ1=1;for j=1:i-1u1=conv(u1,[1-x(j)]);c1{i-1}=u1;end c1{i-1}chaS(i)*c1{i-1);b(i,:)=[zeros(1,n-i)z c1{i-1}];end四、总结(包括实脸过程遇到的情况等,组长总结组员在整个过程的参与情况)实验过程中大家都积极参与,搞明白了牛顿插值多项式的程序。
有不明白的地方,也通过询问同班学霸,或是网页查询得到了解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:插值计算
1引言
在生产和科研中出现的函数是多种多样的。
常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。
用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。
面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。
设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn.
插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。
通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。
2实验目的和要求
用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函
数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。
3算法描述
1.分段线性插值流程图
2.分段二次插值流程图
3.拉格朗日插值流程图
4程序代码及注释
1.分段线性插值
2.分段二次插值
3.全区间上拉格朗日插值
5算例分析
1.分段线性插值
2.分段二次插值
3.拉格朗日插值
6讨论与结论
通过对三种差值方法的绘图,可以发现差值函数均过原函数表的节点,图像均没有出现高次波动明显的现象。
其中分段线性插值是将节点顺次用直线连接起来,曲线不够光滑,但可以作为函数的近似;分段二次插值和拉格朗日插值的曲线都比较光滑,二者对f(0.15)、f(0.31)、f(0.47)的计算数值也非常接近。
二次插值和拉格朗日插值的计算量较大,用模电实验的数据测试时,由于节点较多,反正是把我的电脑卡住了,还需要对循环进行简化。
参考文献
[1]易大义,沈云宝,李有法。
计算方法。
浙江大学出版社,2015年:29-30。