2017浙教版数学八年级上册53《一次函数》练习题
中考数学 (一次函数的应用应用)
函数与应用(22题)1.(2017虹口)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,下图反映的是每月水费y (元)与用水量x (吨)之间的函数关系.(1)当用水量超过10吨时,求y 关于x 的函数解析式(不写定义域);(2)按上述分段收费标准,小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?2.(2017杨浦)水果市场的甲、乙两家商店中都有批发某种水果,批发该种水果x 千克时,在甲、乙两家商店所花的钱分别为1y 元和2y 元,已知1y 、2y 关于x 的函数图像分别为如图所示的折线OAB 和射线OC .(1) 当x 的值为 时,在甲乙两家店所花钱一样多?(2) 当x 的值为 时,在乙店批发比较便宜? (3) 如果批发30千克该水果时,在甲店批发比在乙店批发便宜50元,求射线AB 的表达式,并写出定义域.3.(2017崇明)在一条笔直的公路上有AB 两地,小明骑自行车从A 地去B 地,小刚骑电动车从B 地去A 地然后立即原路返回到B 地,如图是两人离B 地的距离y (千米)和行驶时间x (小时)之间的函数图像.请根据图像回答下列问题: (1)AB 两地的距离是 ,小明行驶的速度是 ;(2)若两人间的距离不超过3千米时,能够用无线对讲机保持联系,那么小刚从A 地原路返回到 B 地途中,两人能够用无线对讲机保持联系的 x 的取值范围是 .千克))(第22题图)4.(2017黄浦) 小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),下图是“设定扫地时间”与“扫地速度”之间的函数图像(线段AB ),其中设定扫地时间为x 分钟,扫地速度为y 平方分米/分钟.(1)求y 关于x 的函数解析式;(2)他应该设定的扫地时间为多少分钟?5.(2017至少10元,但不高于每千克20元时,销售量y (千克)与销售单价x (元)的函数图像 (1)求y 关于x 的函数解析式,并写出它的定义域; (2)当王阿姨销售草莓获得的利润为800元时,求 草莓销售的单价.6.(2015虹口)某商店试销一种成本为10元的文具.经试销发现,每天销售件数y (件)是每件销售价格x (元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.(1)试求y 关于x 的函数解析式(不用写出定义域);(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素)7.(2016浦东)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y (万元/吨)与生产数量x (吨)的函数关系式如图所示: (1)求y 关于x 的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)8.(2017静安) 有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒. (1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n 个,所有盒子所装物品的总量为w 克. ①求w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.9.(2017嘉定)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:(1)如果该车的油箱内剩余油量(升)与行驶路程x (千米)之间是一次函数关系,求y 关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由.10.(2016杨浦)某山山脚的M 处到山顶的N 处有一条长为600米的登山路,小李沿此路从M 走到N ,停留后再原路返回,其间小李离开M 处的路程y 米与离开M 处的时间x 分(x >0)之间的函数关系如图中折线OABCD 所示.(1)求上山时y 关于x 的函数解析式,并写出定义域; (2)已知小李下山的时间共26分钟,其中前 18分钟内的平均速度与后8分钟内的平均速度 之比为2∶3,试求点C 的纵坐标.x (分)11.(2016徐汇)一次越野跑中,当小明跑了1600米时,小杰跑了1400米,小明、小杰在此后所跑的路程y (米)与时间t (秒)之间的函数关系(如图3),那么这次越野跑的全程为 米.12. 甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.13.(2015崇明)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍. (1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?)14.(2015长宁)到达乙地卸货后返回甲地.设汽车从甲地出发x (h 甲地的距离为y (km ),y 与x 的关系如图所示. 根据图像回答下列问题:(1)汽车在乙地卸货停留 (h );(2)求汽车返回甲城时y 与x (3)求这辆汽车从甲地出发4 h 时与甲地的距离.15.(2015徐汇)某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量成一次函数关系,其图像如图所示.根据图像提供的信息,解答下列问题: (1)求营销员的个人月收入y 元与该营销员每月的销售量x 万件(x ≥0)之间的函数关系式;(2)若两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相1.414 ,保留到百分位);16.(2015宝山)已知一水池的容积V (公升)与注入水的时间t (分钟)之间开始是一次函数关系,表中记录的是这段时间注入水的时间与水池容积部分对应值.(1)求这段时间时关于的函数关系式(不需要写出函数的定义域);(2)从t 为25分钟开始,每分钟注入的水量发生变化了,到t 为27分钟时,水池的容积为726公升,如果这两分钟中的每分钟注入的水量增长的百分率相同,求这个百分率.h )17. (2014 黄浦)已知弹簧在其弹性限度内,它的长度y (厘米)与所挂重物质量x (千克)的关系可表示为y kx b =+的形式,其中k 称为弹力系数,测得弹簧A 的长度与所挂重物(不超过弹性限度)的关系如图7-1所示.(1)求弹簧A 的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k 与弹簧的直径d (如图7-2所示)成正比例.已知弹簧B 的直径是弹簧A 的1.5倍,且其它条件均与弹簧A 相同(包括不挂重物时的长度).当弹簧B 挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.18.(2014奉贤)在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y (米)与施工时间x (时)之间关系的部分图象.请解答下列问题: (1)求乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; (2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到 完工所铺设的彩色道砖的长度为多少米?19.(2014虹口)某文具店店主到批发中心选购甲、乙两种品牌的文具盒,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.(1)求y 关于x 的函数解析式(不必写出自变量x 的取值范围);(2)该店主用3000元选购了甲品牌的文具盒,用同样的钱选购了乙品牌的文具盒,乙品牌文具盒的单价比甲品牌的单价贵15元,求所选购的甲、乙文具盒的数量.y (厘米) x (千克)810 4 8 O时)第22题/ 个)20.(2014浦东)甲、乙两车都从A 地前往B 地,如图分别表示甲、乙两车离A 地的距离S (千米)与时间t (分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B 地,最终甲、乙两车同时到达B 地,根据图中提供的信息解答下列问题:(1)甲、乙两车行驶时的速度分别为多少? (2)乙车出发多少分钟后第一次与甲车相遇? (3)甲车中途因故障停止行驶的时间为多少分钟?21.(2014松江)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA 和OB 分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数1w (张)和每个无人售票窗口售出的车票数2w (张)关于售票时间t (小时)的函数图象.(1)求1w (张)与t (小时)的函数解析式; (2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?22.(2014杨浦) 某商店第一次用600元购进某种型号的铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价比第一次贵1元,所以购进数量比第一次少了30支. (1)求第一次每支铅笔的进价及购进的数量.(2)若将这两次购进的铅笔按同一单价x (元/支)全部销售完毕,并要求获利不低于420元,求获利y (元)关于单价x(元/支)的函数关系式及定义域,并在直角坐标系内画出它的大致图像。
2017浙教版数学八年级上册53《一次函数》练习题基础
2017浙教版数学八年级上册5.3《一次函数》word练习题(基础)5、3一次函数练习题(基础)1.下列说法正确的是( )A。
正比例函数是一次函数B。
一次函数是正比例函数C。
正比例函数不是一次函数D。
不是正比例函数就不是一次函数2.下列函数中,y是x的一次函数的是( )A。
y=—3x+5 B.y=-3x2 C.y=1xD.y=2x3。
已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20—2x,则其自变量的取值范围是( )A。
0<x<10 B.5〈x<10 C.x〉0 D.一切实数4.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是(•)A。
y=2x+1 B.y=—2x+1 C.y=2x-1 D.y=-2x-15。
已知函数y=(k—1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.6.从甲地向乙地打长途电话,按时间收费,3分钟内收费2、4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________。
7。
已知A、B、C是一条铁路线(直线)上顺次三个站,A、B两站相距100•千米,现有一列火车从B站出发,以75千米/时的速度向C站驶去,设x(•时)表示火车行驶的时间,y(千米)表示火车与A站的距离,则y与x的关系式是_________。
8。
某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费50元,另外,每通话1分缴费0、25元。
(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某用户本月通话120分钟,他的费用是多少元?•(3)若某用户本月预交了200元,那么该用户本月可以通话多长时间?9.小明用的练习本可在甲、乙两个商店内买到,•已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10•本以上,•从第11•本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖(1)小明要买20个练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式,它们都是正比例函数吗(3)小明现有24元钱,最多可买多少个本子?10。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (312)
瓦时仍按原标准收费,超过部分按每千瓦时 0.50 元计算.
(1)设某月用电 x 千瓦时,应交电费 y 元,当 O≤x≤100 和 x>100 时,分别写出 y 与 x 之间的
关系式;
(2)小王家第一季度交纳电费情况如下:
月份
一月份 二月份 三月份 合计
交纳金额(元) 87 79.5 45.6 212.1
三、解答题
23.(1) A(12,0), B(0,6), C(4,4) (2) 24
24.解:(1)依题意,得
−2k + b b = 1.
=
0,,解得
k
=
1 ,b 2
=1.
∴y = 1 x +1. 2
(2)当 x = 4 时, y = 3 .
25.(1)x≤40 时,y=50x+1500;x>40 时,y=lOOx-500;(2)第 45 天
评卷人
得分
二、填空题
8. − 4
3 9.16 10.2 11.25 12.2 13.四 14.y=-2x+1 15.(1)1000;(2)1000 16.0.5,9,45,2
17. −1 k 1
18.2 19.是,不是 20.例如:“-1”
21. y = − 2 x + 2
3 22.1
评卷人 得分
1、2,分别过这些点作 x 轴与 y 轴的垂线. 则图中阴部分的面积之和是( )
A.1
B. 3
C. 3(m −1)
D. 3 (m − 2) 2
2.(2 分)已知一次函数 y = kx + b 的图象经过点(0,-3)与(1,5),则这个一次函数的表 达式是 ( ) A .y=8x 一 3 B.y=-8x 一 3 C.y=8x+3 D.y=-8x+3 3.(2 分)下列图象中,表示直线 y = x −1 的是( )
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (348)
26.解:(1)依题意,得
−2k + b b = 1.
=
0,,解得
k
=
1 ,b 2
=1.
∴y = 1 x +1. 2
(2)当 x = 4 时, y = 3 .
27.(1) y = −2x − 4 ;(2) a = −3
28.(1)y=2000-200x;(2)0≤x≤10;(3)图略
29.(1)y=3x-2;(2) 2 ;y=9x+4 3
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.B 2.A 3.D 4.B 5.D 6.D 7.C 8.B 9.D 10.B
评卷人
得分
二、填空题
11. y = − 1 x
8
12.
x y
= =
−4 −2
13.2 14.(-1,0)或(1,O) 15.y=-2x+1 16.y=15-x,O<x<7.5 17.-2≤y≤2 18.一条直线,原点 19.M=7.8v 20.y=2.2x,33,用水量为 15 吨时所付水费为 33 元,l6 21.1 22.y=x+5,l<x<5 23.180、 ; l 、 n 、r
30.(6 分)某空中加油飞机接到命令,立即给另一架正在飞行的战斗机进行空中加油.在加 油过程中,设战斗机的油箱余油量为 Ql,加油飞机的加油油箱余油量为 Q2,加油时间为 t 分钟,Ql、Q2 与 t 之间的函数关系图象如图所示,结合图象回答问题:
(1)加油飞机的加油油箱中装载了多少油?将这些油全部加给战斗机需多长时间? (2)求加油过程中,战斗机的余油量 Ql(t)与时间 t(min)的函数解析式; (3)战斗机加完油后,以原速度继续飞行,需 10 h 到达目的地,油料是否够用?请说明理 由.
中考数学总复习《与一次函数相关的规律问题》专题测试卷带答案
中考数学总复习《与一次函数相关的规律问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1的长为半径画弧,交直线y=12x于点B1;过点B1作B1A2//y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y=12x于点B2;过点B2作B2A3//y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y=12x于点B3按如此规律进行下去,点B2021的坐标为()A.(22021,22021)B.(22021,22020)C.(22020,22021)D.(22022,22021)2.如图,在平面直角坐标系中,直线l是y=x的图象,点A1在x轴正半轴上,OA1=1作A1B1⊥x轴交直线l于点B1,以O为圆心,OB1为半径画弧,交x轴正半轴于点A2作A2B2⊥x轴交直线l于点B2,以O为圆心,OB2为半径画弧,交x轴正半轴于点A3作A3B3⊥x轴交直线l于点B3,以O为圆心,OB3为半径画弧,交x轴正半轴于点A4…….按此作法进行下去,则点A2019的横坐标为().A.21009B.21010C.22018D.220193.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n﹣1+1,2n﹣1)C.(2n﹣1,2n﹣1)D.(2n﹣1,n)4.下表中的每一对x,y的值都是二元一次方程ax+by=10的一个解,则下列结论中正确的是()x……-3-2-10123……y……131********……A.当x<0时,y的最小值是10B.当y<10时,x的最小值是1C.当x取任何实数时,均有y≥0D.当x的值越来越大时,y的值越来越小5.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的纵坐标是()A.8B.32C.64D.1266.如图,直线l:y=√33x过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…按此作法继续下去,则点A2015的坐标为()A.(0,42015)B.(0,42014)C.(0,32015)D.(0,32014)7.如图,在平面直角坐标系中,点A1,A2和A3在直线y=15x+b上,点B1,B2和B3在x轴上ΔOA1B1,ΔB1A2B2和ΔB2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是()A.32B.23C.49D.948.如图,已知直线l:y=√33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…按此作法继续下去,则点A2020的坐标为()A.(0,2020)B.(0,4040)C.(0,22020)D.(0,42020)9.如图,直线l1:y=x+1与直线l2:y=x2+12相交于点P,直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x 轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动……照此规律运动,动点C依次经过点则A2020B2020的长度为()A.22020B.22019C.2020D.4040x 10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=√33上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n则S2020可表示为()A.24037√3B.24038√3C.24039√3D.24040√3A .(32)2019B .(32)2020C .(23)2019D .(23)2020A .( 2n−1 , 2n )B .( 2n - 12 , 2n )C .( 2n−1 - 12, 2n−1 )D .( 2n−1 -1, 2n−1 )二、填空题(共6题;共6分)13.如图,放置的 △OAB 1,△B 1A 1B 2,△B 2A 2B 3 ,都是边长为4的等边三角形,点A 在x 轴上,点B 1,B 2,B 3 ,都在正比例函数 y =kx 的图象l 上,则点 B 2021 的坐标是 .14.如图, 正方形 A 1B 1B 2C 1 、 A 2B 2B 3C 2 、A 3B 3B 4C 3… …按如图所示的方式放置.点 A 1A 2、A 3…和点 B 1、B 2、B 3…分别在直线 y = x 和 x 轴上, 若点 B 1(1 , 0), 则点 Cn 的坐标是 .15.如图,直线l:y=−√3x点A1的坐标为(−1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行下去.点A2020的坐标为.16.如图,△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1都是等腰直角三角形,其中点A1,A2…A n在x轴上,点B1,B2…B n在直线y=x上,已知OA2=1,则OA2015的长为17.在直角坐标系中,直线l:y=√33x﹣√33与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3…则等边△A2017A2018B2018的边长是.18.如图所示,直线y=√3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按此做法进行下去,点A2021的坐标为.三、综合题(共5题;共34分)交x轴于点B,交y轴于点C.在ΔABC内依次作等边三角形19.如图,直线y=−√33x+1使一边在x轴上,另一个顶点在BC边上,作出的等边三角形第一个是ΔAA1B1,第二个是ΔB1A2B2,第三个是ΔB2A3B3…(1)ΔB2A3B3的边长等于;(2)ΔB2017A2018B2018的边长等于20.正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图所示的方式放置点A1、A2、A3…和点C1、C2、C3…分别在直线y=ka+b(k>0)和x轴上,已知点B1(1,1),B2(3,2).(1)求k、b的值;(2)填写下列各点的坐标:B3(,),B n(,).21.对于点P(x,y),规定x+y=a,那么就把a叫点P的亲和数.例如:若P(2,3),则2+3=5,那么5叫P的亲和数.(1)在平面直角坐标系中,已知,点A(﹣2,6)①B(1,3),C(3,2),D(2,2),与点A的亲和数相等的点;②若点E在直线y=x+6上,且与点A的亲和数相同,则点E的坐标是;(2)如图点P是矩形GHMN边上的任意点,且点H(2,3),N(﹣2,﹣3),点Q是直线y=﹣x+b上的任意点,若存在两点P、Q的亲和数相同,那么求b的取值范围?22.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B (5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);(3)已知两点D(1,−3)、E(−1,−4)试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.23.下列图案由边长相等的黑,白两色正方形按一定规律拼接而成,设第x个图案中白色小正方形的个数为y.(1)第2个图案中有个白色的小正方形;第3个图案中有个白色的小正方形;y与x之间的函数表达式为(直接写出结果).(2)是否存在这样的图案,使白色小正方形的个数为2019个?如果存在,请指出是第几个图案;如果不存在,说明理由.参考答案1.【答案】B 2.【答案】A 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】A 11.【答案】A 12.【答案】A13.【答案】(−4042,4042√3) 14.【答案】(2n ,2n−1) 15.【答案】(-22019,0) 16.【答案】22013 17.【答案】22017 18.【答案】(22020,0)19.【答案】(1)√38 (2)√32201820.【答案】(1)解:∵点B 1(1,1),B 2(3,2)∴A 1(0,1),A 2(1,2)将点A 1,A 2代入直线y =kx +b (k >0)得: {b =1k +b =2解得: {k =1b =1(2)7;4;2n ﹣1;2n ﹣121.【答案】(1)B ,D ;(﹣1,5)(2)解:点P 是矩形GHMN 边上的任意点,点Q 是直线y =﹣x+b 上的任意点,若存在两点P 、Q 的亲和数相同∴直线y=﹣x+b与矩形GHMN的边有交点,如图当直线y=﹣x+b过点N(﹣2,﹣3)时2+b=﹣3∴b=﹣5当直线y=﹣x+b过点H(2,3)时﹣2+b=3∴b=5∴﹣5≤b≤5,存在两点P、Q的亲和数相同22.【答案】(1);(2)(3)由(2)得,D(1,-3)关于直线l的对称点D'的坐标为(-3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E= √D′M2+ME2=√22+52= √29∴QD+QE的最小值为:√2923.【答案】(1)13;18;y=5x+3(2)解:依题意得5x+3=2019解得x=403.2(不是整数)∴不存在这样的图案,使白色小方形的个数为2019个.第11页共11页。
八年级数学:一次函数的图像练习(含解析)
八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。
中考数学复习:专题3-4 一次函数考点分析及典型试题
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
2017年中考复习《一次函数》压轴题练习含答案
2017年中考复习《一次函数》压轴题练习含答案2017年中考复习《一次函数》压轴题练习一、选择题1.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B. C.D.2.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<03.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y 与x的函数图象大致是()7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B. C.D.8.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点9.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题10.已知y﹣3与x+1成正比例函数,当x=1时,y=6,则y与x的函数关系式为.11.已知一次函数y=﹣x+a与y=x+b的图象相交于点(m,8),则a+b= .12.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()13.如图,若直线y=kx+b经过A,B两点,直线y=mx 经过A点,则关于x的不等式kx+b>mx的解集是.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是.三、解答题15.已知一次函数的图象经过(3,5)和(﹣4,﹣9)两点.(1)求这个一次函数的解析式;(2)若点(a,2)在这个函数图象上,求a的值.16.已知一个正比例函数和一个一次函数的图象交于点P(﹣2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.17.小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x(小时)之间关系的函数图象,小强9点离开家,15点回家,根据这个图象,请你回答下列问题:(1)小强到离家最远的地方需要几小时?此时离家多远?(2)何时开始第一次休息?休息时间多长?(3)小强何时距家21km?(写出计算过程)18.雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6m,B 种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获得的总利润为y元.(1)请帮雅美服装厂设计出生产方案;(2)求y(元)与x(套)的函数关系,利用一次函数性质,选出(1)中哪个方案所获利润最大?最大利润是多少?19.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.参考答案一、选择题1.D2.D3.A4.C 5.C6.A7.B8.C9.A二、填空题10. y=x+.11. 16.12.2.13. x>1.14. x=﹣2.三、解答题15解:(1)设一次函数的解析式y=ax+b,∵图象过点(3,5)和(﹣4,﹣9),将这两点代入得:,解得:k=2,b=﹣1,∴函数解析式为:y=2x﹣1;(2)将点(a,2)代入得:2a﹣1=2,解得:a=.16.解:设正比例函数解析式为y=mx,一次函数解析式为y=nx+4,将(﹣2,2)代入可得2=﹣2m,2=﹣2n+4,解得:m=﹣1,n=1,∴函数解析式为:y=﹣x;y=x+4.(2)根据过点(﹣2.2)及(0,4)可画出一次函数图象,根据(0,0)及(﹣2,2)可画出正比例函数图象.(3)面积=|OQ|•|P横坐标|=×2×4=4.17.解:观察图象可知:(1)小强到离家最远的地方需要3小时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)点C(11,15),D(12,30),用待定系数可得DC的解析式:y=15x﹣150,当y=21时x=11.4,即11:24时;点E(13,30),F(15,0),用待定系数法可得EF的解析式:y=﹣15x+225,当y=21时x=13.6,即13:36时.∴小强在11:24时和13:36时距家21km.18.解:(1)设生产N型号的时装套数为x,则生产M 型号的时装为(80﹣x),由题意,得,解得:40≤x≤44.∵x为整数,∴x取40,41,42,43,44.∴有5种方案:方案1:M型号40套,N型号40套;方案2:M型号39套,N型号41套;方案3:M型号38套,N型号42套;方案4:M型号37套,N型号43套;方案5:M型号36套,N型号44套;(2)由题意,得y=45(80﹣x)+50x=5x+3600.∵k=5>0,∴y随x的增大而增大,∴当x=44时,y最大=3820元.∴选择方案5所获利润最大.19.解:(1)由题意,得小明骑车的速度为:20÷1=20km/时,小明在南亚所游玩的时间为:2﹣1=1小时.(2)由题意,得小明从南亚所到湖光岩的时间为25﹣(2﹣)×60=15分钟=小时,∴小明从家到湖光岩的路程为:20×(1+)=25km.∴妈妈的速度为:25÷=60km/时.C点横坐标为: +=,C(,25).设直线CD的解析式为y=kx+b(k≠0),由题意,得,解得:,∴直线CD的解析式为y=60x﹣110.。
2017年中考数学真题分类汇编 一次函数和反比例函数
一次函数与反比例函数一、选择题1.(2017·安徽)已知抛物线2y ax bx c =++与反比例函数by x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是()A. B . C. D . 【答案】B 【解析】考点:函数的综合运用. 2.(2017·山东青岛)一次函数的图像经过点A (),B (2,2)两点,P 为反比例函数图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则△PCO 的面积为() A 、2 B 、4 C 、8 D 、不确定 【答案】 【解析】试题分析:如下图,考点:1、一次函数,2、反比例函数图像与性质3.(2017·江苏徐州)如图,在平面直角坐标系xOy中,函数y=kx+b (k≠0)与y=(m≠0)的图象相交于点A(2,3),B(﹣6,﹣1),则不等式kx+b>的解集为()A.x<﹣6 B.﹣6<x<0或x>2 C.x>2 D.x<﹣6或0<x <2【考点】反比例函数与一次函数的交点问题.【分析】根据函数的图象和交点坐标即可求得结果.【解答】解:不等式kx+b>的解集为:﹣6<x<0或x>2,故选B.二、填空题1.(2017·广西贵港)如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9.【答案】2≤k≤9.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.【考点】反比例函数与一次函数的交点问题.2.(2017·江苏南京)函数与的图像如图所示,下列关于函数的结论:①函数的图像关于原点中心对称;②当时,y随x 的增大而减小;③当时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.【答案】①③考点:一次函数与反比例函数3.(2017·江苏徐州)反比例函数y=的图象经过点M (﹣2,1),则k= ﹣2 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点M (﹣2,1)代入反比例函数y=,求出k 的值即可.1y x =24y x=12y y y =+2x <0x >【解答】解:∵反比例函数y=的图象经过点M (﹣2,1), ∴1=﹣,解得k=﹣2. 故答案为:﹣2.4.(2017·江苏无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k 的值为 . 【答案】2.【解析】把点(﹣1,﹣2)代入解析式可得k=2. 考点:待定系数法求反比例函数解析式.5.(2017·山东烟台)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P ,若OP=,则k 的值为3 .【考点】反比例函数与一次函数的交点问题. 【分析】可设点P (m ,m+2),由OP=根据勾股定理得到m 的值,进一步得到P 点坐标,再根据待定系数法可求k 的值. 【解答】解:设点P (m ,m+2), ∵OP=,∴=,解得m 1=1,m 2=﹣3(不合题意舍去),∴点P (1,3), ∴3=,解得k=3.故答案为:3.kx三、解答题1.(2017·北京)如图,在平面直角坐标系中,函数的图象与直线交于点. (1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.①当时,判断线段与的数量关系,并说明理由; ②若,结合函数的图象,直接写出的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3. 【解析】试题分析:(1)先求A 点坐标,在代入,即可求出结果;(2)①令y=1,求出PM 的值,令x=1求出PN 的值即可;(3)过点P 作平行于x 轴的直线,利用图象可得出结果.xOy ()0ky x x=>2y x =-()3,A m k m 、()(),0P n n n >P x 2y x =-M P y ()0k y x x=>N1n =PM PN PN PM ≥n ky x=试题解析:(1) ∵函数(x>0)的图象与直线y=x-2交于点A(3,m) ∴m=3-2=1,把A (3,1)代入得,k=3×1=3.即k 的值为3,m 的值为1.考点:直线、双曲线的函数图象2.(2017·重庆A 卷)如图,在平面直角坐标系中,一次函数y=mx+n (m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第一、三象限内的A 、B 两点,与y 轴交于点C ,过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,A 的纵坐标为4. (1)求该反比例函数和一次函数的解析式; (2)连接MC ,求四边形MBOC 的面积.k y x=ky x=,一次函数的解析式为【答案】(1)反比例函数的解析式为y=4xy=2x+2;(2)4.【解析】试题分析:(1)根据题意可得B的坐标,从而可求得反比例函数的解析式,进行求得点A的坐标,从而可求得一次函数的解析式;(2)根据(1)中的函数关系式可以求得点C,点M,点B,点O 的坐标,从而可求得四边形MBOC的面积.试题解析:(1)由题意可得,BM=OM,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),即一次函数的解析式为y=2x+2; (2)∵y=2x+2与y 轴交与点C , ∴点C 的坐标为(0,2),∵点B (﹣2,﹣2),点M (﹣2,0),点O (0,0), ∴OM=2,OC=2,MB=2, ∴四边形MBOC 的面积是:22222222OM OCOM MB⨯⨯⨯⨯+=+=4. 考点:反比例函数与一次函数的交点问题.3.(2017·重庆A 卷)如图,在平面直角坐标系中,抛物线y=3x 2﹣3x x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值; (3)点G 是线段CE 的中点,将抛物线y=33x 2﹣233x ﹣3沿x 轴正方向平移得到新抛物线y′,y′经过点D ,y′的顶点为点F .在新抛物线y′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=3x+3.(2)3,(3)点Q 的坐标为(3,3),Q′(3,3)或(3,3,﹣5). 【解析】试题分析:(1)抛物线的解析式可以变天为y=3(x+1)(x-3),从而可得到点A 和点B 的坐标,然后再求得点E 的坐标,设直线AE 的解析式为y=kx+b ,将点A 和点E 的坐标代入,求得k 和b 的值,从而得到AE 的解析式;(3)由平移后的抛物线经过点D ,可得到点F 的坐标,利用中点坐标公式可求得点G 的坐标,然后分为QG=FG 、QG=QF 、FQ=FQ 三种情况求解即可. 试题解析:(1)∵y=3x 2﹣23x ﹣,∴x+1)(x ﹣3). ∴A (﹣1,0),B (3,0). 当x=4时, ∴E (4,3). 4.(2017·重庆B 卷)如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =cos ∠ACH ,点B 的坐标为(4,n ) (1)求该反比例函数和一次函数的解析式;k y x(2)求△BCH 的面积.【答案】(1),y =﹣2x +4;(2)8. 试题解析:(1)∵AH ⊥x 轴于点H ,AC =,cos ∠ACH =,∴,解得:HC =4,∵点O 是线段CH 的中点,∴HO =CO =2,∴AH =8,∴A (﹣2,8),∴反比例函数解析式为:,∴B (4,﹣4),∴设一次函数解析式为:y =kx +b ,则:,解得:,∴一次函数解析式为:y =﹣2x +4; (2)由(1)得:△BCH 的面积为:×4×4=8.考点:反比例函数与一次函数的交点问题;解直角三角形.16y x=-45555545HC AC ==22AC HC -16y x=-2844k b k b -+=⎧⎨+=-⎩24k b =-⎧⎨=⎩12过点P 作PF ∥y 轴,交CE 与点F .设点P 的坐标为(x ,3x 2﹣3x ,则点F (x ,3x ,则FP=x 2x =-2x .∴△EPC 的面积=12×(-2)×4=x 2x . ∴当x=2时,△EPC 的面积最大.∴P (2.如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∴点G(0,0).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴.∴KM+MN+NK的最小值为3.(3)如图3所示:∴点Q″(3,.当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:a+3解得:a=﹣5.∴点Q 1的坐标为(3,﹣5).综上所述,点Q 的坐标为(3,3),Q′(3,3)或(3,3,﹣5). 考点:二次函数综合题.5.(2017·浙江金华)如图.已知点和点,点在反比例函数的图象上.作射线,再将射线绕点按逆时针方向旋转,交反比例函数图象于点,则点的坐标为.【答案】(-1,-6). 【解析】试题分析:作BF ⊥AC 于点F ,作AE ⊥y 轴于点E ,设AC 交y 轴于点D ,已知A (2,3),B (0,2),即可得AE=2,BE=1,由勾股定理可得AB=,又因∠BAC=45°,可得BF=AF=,因△DEA ∽△DFB ,令AD=x ,根据相似三角形的性质可得,,解得∴,解得 (舍去),所以,设D (0,y ),即可得,解得:(舍去),设AC 直线方程为()2,3A ()0,2B A ky x=AB AB A 45 C C 5102DE AEDF BF=1010x =-21010222DE AE AD +=12210210,x x ==1022(3)4(210)y -+=123,9y y ==y=kx+b,将A (2,3),D (0,-3)代入直线方程得求得直线AC 的解析式为y=3x-3,因A (2,3)在y=上,所以k=2×3=6,把直线AC的解析式和反比例函数的解析式联立得方程组,解得,即可得C (-1,-6).6.(2017·广西贵港)如图,一次函数y=2x ﹣4的图象与反比例函数y=的图象交于A,B两点,且点A 的横坐标为3. (1)求反比例函数的解析式; (2)求点B 的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A 的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B 的坐标.kx336y x y x =-⎧⎪⎨=⎪⎩16x y =-⎧⎨=-⎩【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).7.(2017·甘肃)已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.【考点】G8:反比例函数与一次函数的交点问题;KQ:勾股定理;T7:解直角三角形.【分析】(1)根据P(,8),可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据中心对称的性质,可得点P关于原点的对称点P'的坐标;(3)过点P′作P′D⊥x轴,垂足为D,构造直角三角形,依据P'D以及AP'的长,即可得到∠P'AO的正弦值.【解答】解:(1)∵点P在反比例函数的图象上,∴把点P(,8)代入可得:k2=4,∴反比例函数的表达式为,∴Q (4,1).把P(,8),Q (4,1)分别代入y=k1x+b中,得,解得,∴一次函数的表达式为y=﹣2x+9;(2)点P关于原点的对称点P'的坐标为(,﹣8);(3)过点P′作P′D⊥x轴,垂足为D.∵P′(,﹣8),∴OD=,P′D=8,∵点A在y=﹣2x+9的图象上,∴点A(,0),即OA=,∴DA=5,∴P′A=,∴sin∠P′AD=,∴sin∠P′AO=.8.(2017·河南)如图,一次函数与反比例函数的图象交于点和.(1)填空:一次函数的解析式为,反比例函数的解析式为; (2)点是线段上一点,过点作轴于点,连接,若的面积为,求的取值范围.【答案】(1) ,;(2)的取值范围是. 【解析】试题分析:(1)把分别代入和,即可求得b 、k 的值,直接写出对应的解析式即可;(2)把点代入求得m=1,即可得点A 的坐标设点P (n ,-n+4),,因点是线段上一点,可得1≤n≤3,根据三角形的面积公式,用n 表示出的面积为,根据n 的取值范围即可求得S 的取值范围.y x b =-+(0)ky x x=>(,3)A m (3,1)B P AB P PD x ⊥D OP POD ∆SS 4y x =-+3y x=S 322S ≤≤(3,1)B y x b =-+(0)k y x x=>(,3)A m 3y x=P AB POD ∆S而点是线段上一点,设点P (n ,-n+4),则1≤n≤3 ∴S= ∵且1≤n≤3∴当n=2时,=2,当n=1或3时,, ∴的取值范围是.考点:一次函数与反比例函数的综合题.9.(2017·山西)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数ky x=的表达式,并直接写出E 、F 两点的坐标.(2)求△AEF 的面积.P AB 2111(4)(2)2222OD PD n n n ⋅=⨯⨯-+=--+102- S 最大=32S 最小S 322S ≤≤【答案】(1)2y x =,E (2,1),f (-1,-2);(2)32.考点:反比例函数综合题.10.(2017·湖南湘潭)已知反比例函数k y x=的图象过点(3,1)A . (1)求反比例函数的解析式;(2)若一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,求一次函数的解析式. 【解析】(1)把(3,1)A 代入ky x=得(2)由一次函数6y ax =+(0)a ≠的图象与反比例函数的图象只有一个交点,知⎪⎩⎪⎨⎧=+=x y ax y 36只有一组解,得0362=-+x ax 有2个相等的实数根,再利用0=∆求a【解】 (1)∵(3,1)A∴313==k k ∴x y 3=(2)∵一次函数6y ax =+(0)a ≠的图象与反比例函数xy 3=的图象只有一个交点∴⎪⎩⎪⎨⎧=+=x y ax y 36只有一组解∴x ax 36=+只有一组解 ∴0362=-+x ax 有2个相等的实数根 ∴0)3(462=-⨯-=∆a a= -3 ∴y= -3x+6考点:一次函数与反比例函数11.(2017·四川成都)如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数k y x=的图象交于(),2,A a B -两点. (1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.【答案】(1)()8,4,2y B x=;(2)()2,4P 或P ⎛⎝⎭【解析】试题分析:(1)把A 点的坐标代入已知的函数解析式,求得a 的值,然后利用待定系数法求出函数的解析式,联立方程组求出交点B ;∴()4,2B ;(2)如图,过点P 作//PE y 轴,设8,P m m ⎛⎫⎪⎝⎭,AB y kx b =+,代入A B 、两点,12AB y x ⇒=, ∴1,2C m m ⎛⎫⎪⎝⎭, 118322POCS m m m∆=-= ,1862m m m -=,2862m m -=⇒= 218622m m -=⇒=,∴7P ⎛⎝⎭或()2,4P . 考点:反比例函数与一次函数。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (353)
14.如 y = −x +1(答案不唯一)
15.(-1,0)或(1,O)
16.y=2x+7
17.(1)1000;(2)1000
18.三
19.M=7.8v
20.y=18x,2016
21.y=2.2x,33,用水量为 15 吨时所付水费为 33 元,l6
22.14
23.180、 ; l 、 n 、r
浙教版初中数学试卷
2019-2020 年八年级数学上册《一次函数》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分)若正比例函数 y = (2m −1)x 的图象经过点 A( x1 , y1 )和点 B( x2 , y2 ),当 x1 x2 时, y1 y2 ,则 m 的取值范围是( )
29.(6 分)衢州是中国历史文化名城,衢州烂柯山是中国围棋文化的重要发源地.如图是棋 子摆成的“巨”字.
求: (1)第四个“巨”字需要的棋子数; (2)按以上规律继续摆下去,求第 n 个“巨”字所需的棋子数 m.
30.(6 分)在计算器上按下面的程序进行操作:
请问:y 是 x 的函数吗?如果是,写出它的表达式;如果不是,说明理由.
求:(1)这个函数的解析式;
(2)当 x = 4 时, y 的值.
28.(6 分)已知一次函数图象经过点(1,1)和(-1,-5). (1)求该一次函数的表达式; (2)求此一次函数图象与两坐标轴围成的三角形面积; (3)另一条直线与该一次函数图象交于点 A(-1,m),且与 y 轴交点的纵坐标为 4,求这条直 线的解析式.
第六章《一次函数》专练(选择、填空题)(含解析)
第六章《一次函数》专练(选择、填空题)一.选择题1.(2018•呼和浩特)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1 2.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1 3.(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6 4.(2018•青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.(2018•镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35B.10:40C.10:45D.10:50 6.(2018•葫芦岛)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4 7.(2018•赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.8.(2018•宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.9.(2018•广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:5510.(2018•巴彦淖尔)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.12.(2018•湖北)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个13.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃14.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.15.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个16.(2018•邵阳)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠17.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.18.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小20.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱21.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7 22.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.23.(2017•巴彦淖尔)为积极响应市委、市政府提出的“绿色发展,赛过江南”的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.25平方米B.50平方米C.75平方米D.100平方米24.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是()A.B.C.D.25.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是()①方式一每月主叫时间为300分钟时,月使用费为88元②每月主叫时间为350分钟和600分钟时,两种方式收费相同③每月主叫时间超过600分钟,选择方式一更省钱A.①②B.①③C.②③D.①②③26.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,慢车先出发一段时间,这辆列车之间的距离y(km)与慢车行驶的时间x(h)之间的函数关系如图所示,则慢车出发8h时,两列车相距()A.525km B.575.5km C.600km D.660km二.填空题27.(2018•济南)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.28.(2018•巴中)函数y=+中自变量x的取值范围是.29.(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y 满足的关系式是.31.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x (kx+b)<0的解集为.32.(2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.33.(2018•杭州)某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.34.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.35.(2018•重庆)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.36.(2018•重庆)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.37.(2018•衢州)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.38.(2016•黄冈校级自主招生)如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.39.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.40.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B 地后,快递车再行驶h到达A地.答案与解析一.选择题1.【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.2.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.3.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.4.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.5.【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.【点评】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.6.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故选:A.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.8.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.9.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.【分析】A、利用图象①即可解决问题;B、利用图象②求出函数解析式即可判断;C、求出销售量以及每件产品的利润即可解决问题;D、求出第15天与第30天的日销售量比较即可;【解答】解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.【点评】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.12.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.13.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.14.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.15.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x 之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.18.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.【点评】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.19.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.21.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.22.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.23.【分析】根据休息后2小时的绿化面积100平方米,即可判断;【解答】解:休息后园林队每小时绿化面积为==50平方米.故选:B.【点评】本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.24.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.25.【分析】①根据待定系数法求出方式一,当x≥200时的一次函数解析式,再求出y=88时x的值即可求解;②得出两交点坐标即可求解;③观察函数图形即可求解.【解答】解:①当x≥200时,设方式一的一次函数解析式为y=kx+b,依题意有,解得.则当x≥200时,方式一的一次函数解析式为y=0.2x+18,当y=88时,0.2x+18=88,解得x=350.故方式一每月主叫时间为350分钟时,月使用费为88元.题干原来的说法是错误的;②观察图形可知两交点坐标分别是(350,88),(600,138),故每月主叫时间为350分钟和600分钟时,两种方式收费相同.题干原来的说法是正确的;③观察图形可知每月主叫时间超过600分钟,选择方式一更省钱.题干原来的说法是正确的.故选:C.【点评】考查了一次函数的应用,渗透了函数与方程的思想,关键是求出x≥200时的一次函数解析式.26.【分析】根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地.那么慢车8h时,两车的距离就是慢车8h的路程.【解答】解:根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地,所以慢车出发8h时,两车相距75×8=600km.故选:C.【点评】本题是一道典型的识图题,考查学生结合实际情况从图中挖掘信息的能力,知道图象中每个数据表示的意义是解题关键二.填空题27.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.28.【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.29.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6。
一次函数综合练习
一次函数应用综合练习题(1)1、已知函数y =8x -11,要使y >0,那么x 应取( )A 、x >B 、x <C 、x >0D 、x <2、已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A 、y >0 B 、y <0 C 、-2<y <0 D 、y <-2(第2题) (第4题) (第6题) 3、已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( ). A 、x >5 B 、x <C 、x <-6D 、x >-6 4、已知一次函数的图象如图所示,当x <1时,y 的取值范围是( ) A 、-2<y <0B 、-4<y <0C 、y <-2D 、y <-45、若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.6、如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.7、当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0. 8、已知2x -y =0,且x -5>y ,则x 的取值范围是________.9、若点(1,2)及(m ,3)都在正比例函数y=kx 的图象上,求m 的值.10、已知直线y=kx+b 经过点(-2,-1)和点(2,-3),求这条直线的函数解析式.11、某一次函数的图象平行于直线 ,且过点(4,7),求函数解析式.811811y kx b =+xy 21=12、一次函数y=(m-3)x+5的函数值随x的增大而减小,且一次函数y=(3+2m)x-3的函数值随x的增大而增大。
求同时满足上述两个条件时,m的取值范围。
13、某地市区打电话的收费标准为:3分钟以内(含3分钟)收费0.2元,超过分钟,每增加1分钟(不足1分钟,按1分钟计算)加收0.11元,那么当时间超过3分钟时,求:电话费y(元)与时间t(分)之间的函数关系式.14、为了加强公民的节水意识,某市制定了如下的用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,求y与x之间的函数关系式.15.小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?第15题图一次函数应用综合练习题(2)1、一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3 时,y 1<y 2中,正确的个数是( )A 、0B 、1C 、2D 、32、如图,直线交坐标轴于A ,B 两点,则不等式的解集是( ) A 、x >-2B 、x >3C 、x <-2D 、x <33、已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)(第1题) (第2题) (第4题)4、直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为( ) A 、x >-1B 、x <-1C 、x <-2D 、无法确定5、如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax-3的解集是_______________.6、如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A(3,2),则不等式(k 2-k 1)x+b 2-b 1>0的解集为__________.(第5题) (第6题)7、已知关于x 的不等式kx -2>0(k ≠0)的解集是x >-3,则直线y =-kx +2与x•轴的交点是__________.y kx b =+0kx b +>1y k x b =+2y k x =x 12kx b k x +>3Oy 2=x+ay 1=kx+bxb +xAy 1y 2yxOax -38、已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.9、已知两直线y=-23x+3和y=2x-1,求它们与y轴所围成的三角形的面积.(画图解决问题)10、已知一次函数y=(m-1)x+2m+1(1)若图象经过原点,求m的值;(2)若图象平行于直线y=2x,求m的值;(3)若图象交y轴于正半轴,求m的取值范围;(4)若图象经过一、二、四象限,求m的取值范围;(5)若图象不过第三象限,求m的取值范围;(6)若随的增大而增大,求m的取值范围.11.某单位计划10月份组织员工到外地旅游,甲、乙量旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.(1)求出当人数为x时,甲、乙旅行社所需要的费用(2)当x取何值时,甲、乙旅行社的费用相同12.人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社?甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每付定价20元,乒乓球每盒5元,现两家商店搞促销活动,甲店:每买一付球拍赠一盒乒乓球;乙店:按定价的9折优惠,某班级需要购球拍4付,乒乓球若干盒(不少于4盒).(1)、设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式.(2)就乒乓球盒数讨论去哪家商店购买合算?一次函数的图象与性质1.在一次函数y =(2-k )x +1中,y 随x 的增大而增大,则k 的取值范围为________.2.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1________y 2.(填“>”,“<”或“=”)3.设点(-1,m )和点(12,n )是直线y =(k 2-1)x +b (0<k <1)上的两个点,则m 、n 的大小关系为________.4.一次函数y =kx +b ,当1≤x ≤4,3≤y ≤6,则b k的值是________.5.如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图象相交于点A (2,1),当x <2,y 1__________y 2.(填“>”或“<”)第5题图 第6题图6.直线y =(3-a )x +b -2在直角坐标系中的图象如图所示,化简:|b -a |-a 2-6a +9-|2-b |=________.7.当k<0时,一次函数y =kx -k 的图象不经过...( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 8.若一次函数y =mx +n (m ≠0)中的m 、n 是使等式m =1n +2成立的整数,则一次函数y =mx +n (m ≠0)的图象一定经过的象限是( )A. 一、三B. 三、四C. 一、二D. 二、四9.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是 ( )10.若实数a ,b ,c 满足a +b +c =0,且a<b<c ,则函数y =cx +a 的图象可能是( )11若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )12.已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.13.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的解析式是( )A. y =2x +3B. y =x -3C. y =2x -3D. y =-x +3第13题图 第14题图14.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB ,若C (32,32),则该一次函数的解析式为______________. 15.将直线y =2x +1 平移后经过点(2,1),则平移后的直线解析式为______________.16.已知点P (1,2)关于x 轴的对称点为P ′,且P ′在直线y =kx +3上,把直线y =kx +3的图象向上平移2个单位,所得的直线解析式为_______________.17.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元.暑假期间,为了丰富广大师生的业余文化生活,剧院制定了两种优惠方案.方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别建立两种优惠方案中y 与x 的函数关系式; (2)请计算并确定出最节省费用的购票方案.18.某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择. 方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x (千克)和付款金额y (元)之间的函数关系式; (2)若你去购买一定量的种子,你会怎样选择方案?说明理由.一次函数的图象与性质1.在函数21-=x y 中,自变量x 的取值范围是 ( )A . x ≥2B . x>2C . x ≤2D . x<22.已知点(-4,y 1),(2,y 2)都在直线y= - 12x+2上,则y 1 y 2大小关系是( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较 3.下列各图给出了变量x 与y 之间的函数是 ( )4.直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>05.若直线22x y m +=与直线223x y m +=+(m 为常数)的交点在第四象限,则整数m 的值为( ).(用图像的方法)A .3-,2-,1-,0B .2-,1-,0,1C .1-,0,1,2D .0,1,2,36.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.给出下列对应:(1):(a )--(e );(2):(b )--(f );(3):(c )--(h );(4):(d )--(g )其中正确的是7.若一次函数()12+-=k kx y 是正比例函数,则k 的值为 。
中考数学五三习题整理-9-3.2一次函数
§3.2 一次函数A 组 2015—2019年山东中考题组考点一 一次函数的概念、图象与性质1.(2019临沂,12,3分)下列关于一次函数)0,0(><+=b k b kx y 的说法,错误的是( ) A.图象经过第一、二、四象限 B.y 随x 的增大而减小 C.图象与x 轴交于点),0(b D.当kbx ->时,0>y 2.(2019枣庄,4,3分)如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是 ( )A.4+-=x yB.4+=x yC.8+=x yD.8+-=x y 3.(2018枣庄,5,3分)如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为 ( )A.5-B.23 C.25 D.7 4.(2017泰安,13,3分)已知一次函数x m kx y 2--=的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是 ( )A.0,2><m kB.0,2<<m kC.0,2>>m kD.0,0<<m k 5.(2019潍坊,14,3分)当直线3)22(-+-=k x k y 经过第二、三、四象限时,k 的取值范围是 .6.(2019滨州,18,5分)如图,直线)0(<+=b b kx y 经过点A(3,1),当x b kx 31<+时,x 的取值范围为 .7.(2019烟台,16,3分)如图,直线2+=x y 与直线c ax y +=相交于点)3,(m P ,则关于x 的不等式c ax x +≤+2的解集为 .8.(2018济宁,12,3分)在平面直角坐标系中,已知一次函数12+-=x y 的图象经过),(111y x P 、),(222y x P 两点,若21x x <,则1y 2y .(填“>”“<”或“=”)考点二 一次函数的应用1.(2019聊城,10,3分)某快递公司每天上午00:10~00:9为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻为 ( )A.15:9B.20:9C.25:9D.30:92. (2017聊城,12,3分)端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y (m )与时间x (min )之间的函数关系式如图所示,下列说法错误的是 ( )A.乙队比甲队提前0.25 min 到达终点B.当乙队划行110 m 时,此时落后甲队15 mC.0.5 min 后,乙队比甲队每分钟快40 mD.自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 min /m 3.(2019青岛,22,10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y 件)与销售单价x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?收费方式 月通话费/元 包时通话时间/h 超时费/(元/min ) A 30 25 0.1 B 50 50 0.1 C100不限时(1)设月通话时间为x 小时,则方案A,B,C 的收费金额321,,y y y 都是x 的函数,请分别求出这三个函数解析式; (2)填空:若选择方式A 最省钱,则月通话时间x 的取值范围为 ; 若选择方式B 最省钱,则月通话时间x 的取值范围为 ; 若选择方式C 最省钱,则月通话时间x 的取值范围为 ;(3) 小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.5.(2018德州,23,12分)为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?6.(2018临沂,24,9分)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.B 组 2015—2019年全国中考题组 考点一 一次函数的概念、图象与性质1.(2019陕西,4,3分)若正比例函数x y 2-=的图象经过点)4,(-a ,则a 的值为 ( ) A.-1 B.0 C.1 D.22.(2018贵州遵义,7,3分)如图,直线3==kx y 经过点(2,0),则关于x 的不等式03>+kx 的解集是 ( )A. 2>xB.2<xC.2≥xD.2≤x3.(2018辽宁沈阳,8,2分)在平面直角坐标系中,一次函数b kx y +=的图象如图所示,则k 和b 的取值范围是 ( )A.0,0>>b kB.0,0<>b kC.0,0><b kD.0,0<<b k 4.(2018内蒙古呼和浩特,6,3分)若以二元一次方程02=-+b y x 的解为坐标的点),(y x 都在直线121-+-=b x y 上,则常数=b ( ) A.21 B.2 C.1- D.1 5.(2019贵州贵阳,10,3分)在平面直角坐标系内,已知点A(-1,0),点B(1,1)都在直线2121+=x y 上,若抛物线)0(12≠+-=a x ax y 与线段AB 有两个不同的交点,则a 的取值范围是 ( )A.2-≤aB.89<a C.891<≤a 或2-≤a D.892<≤-a 6.(2018陕西,7,3分)若直线1l 经过点(0,4),l2经过点(3,2),且l1与l2关于x 轴对称,则1l 与2l 的交点坐标为 ( )A.(2,0)B.(-2,0)C.(6,0)D.(-6,0) 7.(2016河北,5,3分)若0,0<≠b k ,则b kx y +=的图象可能是 ( )8.(2016内蒙古包头,11,3分)如图,直线432+=x y 与x 轴、y 轴分别交于点A 和点B,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点.PC+PD 值最小时点P 的坐标为 ( )A.)0,3(-B.)0,6(-C.)0,23(- D.)0,25(- 9.(2018河北,24,10分)如图,直角坐标系xOy 中,一次函数521+-=x y 的图象1l 分别与y x ,轴交于A,B 两点,正比例函数的图象2l 与1l 交于点C(m ,4).(1)求m 的值及l2的解析式; (2)求△BOC △AOC S S -的值;(3)一次函数1+=kx y 的图象为3l ,且321,,l l l 不能围成三角形,直接写出k 的值.10.(2018重庆A 卷,22,10分)如图,在平面直角坐标系中,直线3+-=x y 过点A(5,m )且与y 轴交于点B,把点A 向左平移2个单位,再向上平移4个单位,得到点C.过点C 且与xy 2=平行的直线交y 轴于点D.(1)求直线CD 的解析式;(2)直线AB 与CD 交于点E,将直线CD 沿EB 方向平移,平移到经过点B 的位置结束,求直线CD 在平移过程中与x 轴交点的横坐标的取值范围.考点二 一次函数的应用1.(2016黑龙江哈尔滨,10,3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图所示.则该绿化组提高工作效率前每小时完成的绿化面积是 ( )A.300 2m B.150 2m C.330 2m D.450 2m2.(2019重庆A卷,17,4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件.甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.o;又3.(2019陕西,21,7分)根据记录,从地面向上11 km以内,每升高1km,气温降低6 Co),设距地面的高度知道在距地面11 km以上的高空,气温几乎不变.若地面气温为m(Co).为x(km)处的气温为y(C(1)写出距地面的高度在11 km以内的y与x之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据o时,飞机距地面的高度为7 km,求当时这架飞机下方地面的气得知,飞机外气温为-26 C温;小敏想,假如飞机当时在距地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距地面12 km时,飞机外的气温.4.(2019吉林长春,21,8分)已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示.(1)乙车的速度为 千米/时,=a ,=b ; (2)求甲、乙两车相遇后y 与x 之间的函数关系式;(3)当甲车到达距B 地70千米处时,求甲、乙两车之间的路程.C 组 教师专用题组考点一 一次函数的概念、图象与性质1.(2018辽宁抚顺,6,3分)一次函数2--=x y 的图象经过 ( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限2.(2018湖北荆州,7,3分)已知:将直线1-=x y 向上平移2个单位长度后得到直线b kx y +=,则下列关于直线b kx y +=的说法正确的是 ( ) A.经过第一、二、四象限 B.与x 轴交于(1,0)C.与y 轴交于(0,1)D.y 随x 的增大而减小3.(2018陕西,4,3分)如图,在矩形AOBC 中,A(-2,0),B(0,1).若正比例函数kx y =的图象经过点C,则k 的值为 ( )A.2-B.21-C.2D.21 4.(2016济南,9,3分)如图,若一次函数b x y +-=2的图象交y 轴于点A(0,3),则不等式02>+-b x 的解集为 ( )A.23>x B.3>x C.23<x D.3<x 5.(2017四川眉山,16,3分)设点),1(m -和点),21(n 是直线)10()1(2<<+-=k b x k y 上的两个点,则n m ,的大小关系为 .6.(2016东营,15,4分)如图,直线b x y +=与直线6+=kx y 交于点P(3,5),则关于x 的不等式6+>+kx b x 的解集是 .7.(2016枣庄,16,4分)如图,点A 的坐标为(-4,0),直线n x y +=3与坐标轴交于点B,C, 连接AC,如果∠ACD=90°,则n 的值为 .8.(2016北京,21,5分)如图,在平面直角坐标系xOy 中,过点A(-6,0)的直线1l 与直线x y l 2:2=相交于点B(m ,4).(1)求直线1l 的表达式;(2)过动点P(n ,0)且垂直于x 轴的直线与1l ,2l 的交点分别为C,D,当点C 位于点D 上方时,写出n 的取值范围.考点二 一次函数的应用1.(2015湖北鄂州,9,3分)甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,45=t 或415, 其中正确的结论有 ( ) A.1个B.2个C.3个D.4个2.(2019辽宁大连,16,3分)甲、乙两人沿同一条直路走步,如果两人分别从这条路上的A,B 两处同时出发,都以不变的速度相向而行,图1是甲离开A 处后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲、乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象,则=-b a .3.(2019新疆,21,10分)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y (元)与销售量x (千克)之间的关系如图所示.请根据图象提供的信息完成下列问题: (1)降价前苹果的销售单价是 元/千克;(2)求降价后销售金额y (元)与销售量x (千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?3. (2019重庆A 卷,23,10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象. 同时,我们也学习了绝对值的意义:⎩⎨⎧<-≥=).0(),0(a a a a a 结合上面经历的学习过程,现在来解决下面的问题:在函数b kx y +-=3中,当2=x 时,4-=y ;当0=x 时,1-=y .(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质; (3)已知函数321-=x y 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.5.(2018云南,21,8分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地盛产的甲、乙两种原料开发A、B两种商品.为科学决策,他们试生产A、B 两种商品共100千克进行深入研究.已知现有甲种原料293千克,乙种原料314千克.生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示:甲种原料(单位:千克)乙种原料(单位:千克)生产成本(单位:元)A商品 3 2 120B商品 2.5 3.5 200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?6.(2018江西,21,9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.7.(2018河南,21,10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)8751 8751 875875注:日销售利润=日销售量×(销售单价-成本单价).(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)根据以上信息,填空:该产品的成本单价是 元.当销售单价=x 元时,日销售利润w 最大,最大值是 元;(3)公司计划开展科技创新,以降低该产品的成本.预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3 750元的销售目标,该产品的成本单价应不超过多少元?8.(2018四川成都,26,8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (2m )之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当3000≤≤x 和300>x 时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1 200 2m ,若甲种花卉的种植面积不少于200 2m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?9.(2017江西,19,8分)如图是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分的长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为x cm,双层部分的长度为y cm,经测量,得到如下数据:单层部分的长度x(cm) ... 4 6 8 10 (150)双层部分的长度y(cm) ...73 72 71 70 0(1)根据表中数据的规律,完成以上表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120 cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为l cm,求l的取值范围.10.(2018陕西,21,7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米商品红枣小米规格 1 kg/袋 2 kg/袋成本(元/袋) 40 38售价(元/袋) 60 54根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3 000 kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2 000 kg,其中,这种规格的红枣的销售量不低于600 kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.11.(2018黑龙江龙东地区,27,10分)为了落实党的“精准扶贫”政策,A 、B 两城决定向C 、D 两乡运送肥料以支持农村生产.已知A 、B 两城共有肥料500吨,其中A 城肥料比B 城少100吨.从A 城往C 、D 两乡运肥料的费用分别为20元/吨和25元/吨;从B 城往C 、D 两乡运肥料的费用分别为15元/吨和24元/吨.现C 乡需要肥料240吨,D 乡需要肥料260吨. (1)A 城和B 城各有多少吨肥料?(2)设从A 城运往C 乡肥料x 吨,总运费为y 元,求出最少总运费;(3)由于更换车型,使A 城运往C 乡的运费每吨减少a (60<<a )元,这时怎样调运才能使总运费最少?12.(2018湖南湘西,25,12分)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型电脑出厂价下调a (2000<<a )元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.13.(2017陕西,21,7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行整修改造.然后,1个大棚种植香瓜,另外2个大棚种植甜瓜.今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了.”最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜.他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚,才能使获得的利润不低于10万元.14.(2016烟台,21,9分)由于雾霾天气频发,市场上防护口罩出现热销.某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出.原料成本、销售单价及工人生产提成如下表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产量分别是多少万只;(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本).三年模拟A 组2017-2019年模拟基础题组1.(2019济南平阴一模,9)若函数b kx y -=的图象如图所示,则关于x 的不等式0)1(>--b x k 的解集为 ( )A.2<xB.2>xC.3<xD.3>x 二、填空题(每小题3分,共9分)2.(2019泰安东平一模,15)一次函数13+-=k kx y 的图象必经过一个定点,该定点的坐标是 .3.(2018青岛胶州期末,17)已知点P 在直线2+-=x y 上,且点P 到x 轴的距离为3,则点P 的坐标为 .4.(2018济宁任城二模,12)一次函数1)12(+-=x m y ,若y 随x 的增大而增大,则m 的取值范围是 . 三、解答题(共23分)5.(2019临清模拟,21)某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元. (1)设第一、二次购进草莓的箱数分别为a 箱、b 箱,求b a ,的值;(2)若商店对这40箱草莓先按每箱60元销售了x 箱,其余的按每箱35元全部售完. ①求商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式;②当x 的值至少为多少时,商店才不会亏本?(注:按整箱出售,利润=销售总收入-进货总成本)6.(2018济南天桥一模,24)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司的方案:每月的养护费用y(元)与绿化面积x平方米)的关系如图所示;乙公司的方案:绿化面积不超过1 000平方米时,每月收取费用5 500元;绿化面积超过1 000平方米时,超过的部分每月每平方米加收4元.(1)求y与x的函数表达式;(2)如果某学校目前的绿化面积是1 200平方米,那么选择哪家公司的服务比较划算?7.(2017临沂模拟,23)如图反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s(千米)和行驶时间t(小时)之间的关系,根据所给图象,解答下列问题:(1)写出甲的行驶路程s和行驶时间t(t≥0)之间的函数关系式;(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度?在哪一段时间内,甲的行驶速度大于乙的行驶速度?(3)从图象中你还能获得什么信息?请写出其中的一条.1.(2018济宁鱼台模拟,9)如图,已知直线834+-=x y 与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点'B 处,则直线AM 的解析式是 ( )A.821+-=x yB.831+-=x yC.321+-=x y D.331+-=x y 二、填空题(每小题3分,共6分)2.(2019济南市中区一模,17)如图是本地区一种产品30天的销售图象,图1是产品日销售量y (单位:件)与时间t (单位:天)的函数关系,图2是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,第27天的日销售利润是 元.3.(2019郯城一模,18)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为1y (km ),慢车离乙地的距离为2y (km ),慢车行驶时间为x (h),两车之间的距离为s(km ),1y ,2y 与x 的函数关系图象如图1所示,s 与x 的函数关系图象如图2所示.则下列判断:①图1中3=a ;②当815=x 时,两车相遇;③当23=x 时,两车相距60 km ;④图2中C 点的坐标为(3,180);⑤当85=x 或825时,两车相距200 km . 其中正确的有 (请写出所有正确判断的序号).4.(2018临沂沂水二模,24)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,用y (元)表示该店每天的纯收入.(1)若每份套餐售价不超过10元,①试写出y 与x 的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2) 该店把每份套餐的售价提高到10元以上,每天的纯收入能否达到1 560元?若不能,请说明理由;若能,求出每份套餐的售价定为多少元时,既能保证纯收入又能吸引顾客.5.(2019临沂沂水二模,24)某厂家在甲、乙两家商场销售同一商品所获利润分别为甲y ,乙y (单位:元),甲y ,乙y 与销售数量x (单位:件)的函数关系如图所示,请根据图象解决下列问题:(1)分别求出甲y ,乙y 与x 的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品时,厂家可获得的总利润是多少元?6.(2019临沂平邑一模,24)如图1所示,在A,B 两地之间有汽车站C,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的距离21,y y (千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A,B 两地相距 千米;(2)求两小时后,货车离C 站的距离2y 千米与行驶时间x (小时)之间的函数关系式;(3)客、货两车何时相遇?7.(2019济南外国语学校阶段测试,26)如图,一次函数b kx y +=与反比例函数xa y =的图象在第一象限交于A 、B 两点,B 点的坐标为(3,2),连接OA 、OB,过B 作BD ⊥y 轴,垂足为D,交OA 于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)在直线BD 上是否存在一点E,使得△AOE 是直角三角形?若存在,求出所有可能的E 点坐标;若不存在,请说明理由.8.(2018临沂兰陵二模,24)赛龙舟是端午节的习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距为米;(2)哪支龙舟队先到达终点? ;(填“甲”或“乙”)(3)分别求甲、乙两支龙舟队离开起点的距离y关于x的函数关系式;(4)甲龙舟队出发多长时间,两支龙舟队相距200米?。
2017中考数学专题训练三一次函数和反比例函数结合(供参考)
2017中考数学专题训练(三)一次函数和反比例函数结合纵观近5年中考试题,一次函数与反比例函数的综合是中考命题的重点内容.侧重考查用待定系数确定反比例函数和一次函数解析式及解决相关问题.利用待定系数法求一次函数及反比例函数的解析式【例1】如图,一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别交于A (1,0),B (0,-1)两点,且与反比例函数y =mx(m ≠0)的图象在第一象限交于C 点,C 点的横坐标为2.(1)求一次函数的解析式;(2)求C 点坐标及反比例函数的解析式.【解析】(1)将点A (1,0),B (0,-1)代入y =kx +b 即可.(2)将C 点的横坐标代入公式y =kx +b 即可求出纵坐标,再代入y =mx中即可.【学生解答】解:(1)由题意得⎩⎪⎨⎪⎧k +b =0,b =-1.解得⎩⎪⎨⎪⎧k =1,b =-1,一次函数的解析式为y =x -1;(2)当x =2时,y =2-1=1,所以C 点坐标为(2,1);又C 点在反比例函数y =m x (m ≠0)的图象上,∴1=m2,解得m =2.所以反比例函数的解析式为y =2x.1.(2016重庆中考)在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图形与反比例函数y =kx (k ≠0)的图象交于第二、四象限内的A ,B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH =3,tan ∠AOH =43,点B的坐标为(m ,-2).(1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.解:(1)由OH =3,tan ∠AOH =43,得AH =4.即A (-4,3).由勾股定理,得AO =OH 2+AH 2=5,△AHO 的周长=AO +AH +OH =3+4+5=12;(2)将A 点坐标代入y =kx(k ≠0),得k =-4×3=-12,反比例函数的解析式为y =-12x ;当y =-2时,-2=-12x ,解得x =6,即B (6,-2).将A ,B 两点坐标代入y =ax +b ,得⎩⎪⎨⎪⎧-4a +b =3,6a +b =-2,解得⎩⎪⎨⎪⎧a =-12,b =1,一次函数的解析式为y =-12x +1.2.(2016乐山中考)如图,反比例函数y =kx 与一次函数y =ax +b 的图象交于点A (2,2),B ⎝⎛⎭⎫12,n . (1)求这两个函数解析式;(2)将一次函数y =ax +b 的图象沿y 轴向下平移m 个单位长度,使平移后的图象与反比例函数y =k x 的图象有且只有一个交点,求m 的值.解:(1)∵A (2,2)在反比例函数y =k x 的图象上,∴k =4.∴反比例函数的解析式为y =4x .又∵点B ⎝⎛⎭⎫12,n 在反比例函数y =4x 的图象上,∴12n =4,解得n =8,即点B 的坐标为⎝⎛⎭⎫12,8.由A (2,2),B ⎝⎛⎭⎫12,8在一次函数y =ax +b 的图象上,得⎩⎪⎨⎪⎧2=2a +b ,8=12a +b ,解得⎩⎪⎨⎪⎧a =-4,b =10,∴一次函数的解析式为y =-4x +10; (2)将直线y =-4x +10向下平移m 个单位长度得直线的解析式为y =-4x +10-m ,∵直线y =-4x +10-m 与双曲线y =4x 有且只有一个交点,令-4x+10-m =4x,得4x 2+(m -10)x +4=0,∴Δ=(m -10)2-64=0,解得m =2或18.与面积有关的问题【例2】如图,在平面直角坐标系中,直线y =mx 与双曲线y =nx 相交于A (-1,a ),B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1.(1)求m ,n 的值; (2)求直线AC 的解析式.【解析】(1)因为A (-1,a ),所以B 的横坐标为1,即C (1,0).再由S △AOC =1,得A (-1,2),再代入y =mx与y =nx即可.(2)将A 、C 坐标代入即可.【学生解答】解:(1)∵直线y =mx 与双曲线y =nx 相交于A (-1,a ),B 两点,∴B 点横坐标为1,即C (1,0),∵△AOC 的面积为1,∴A (-1,2),将A (-1,2)代入y =mx ,y =nx可得m =-2,n =-2;(2)设直线AC 的解析式为y =kx +b ,由题意得⎩⎪⎨⎪⎧-k +b =2,k +b =0.解得k =-1,b =1,∴直线AC 的解析式为y =-x +1.3.(2016宜宾中考)如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于A (2,-1),B ⎝⎛⎭⎫12,n 两点,直线y =2与y 轴交于点C .(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.解:(1)把A (2,-1)代入反比例解析式得:-1=m 2,即m =-2,∴反比例解析式为y =-2x ,把B ⎝⎛⎭⎫12,n 代入反比例解析式得:n =-4,即B ⎝⎛⎭⎫12,-4.把A 与B 的坐标代入y =kx +b 中得:⎩⎪⎨⎪⎧2k +b =-1,12k +b =-4,解得⎩⎪⎨⎪⎧k =2,b =-5.则一次函数的解析式为y =2x -5;(2)设直线AB 与y 轴交于点E ,则点E 的坐标为(0,-5),∵点C 的坐标为(0,2),CE =2-(-5)=7,∵点A 到y 轴的距离为2,点B 到y 轴的距离为12,∴S △ABC =S △ACE -S △BCE =12×7×2-12×7×12=7-74=214.4.(2016泸州中考)如图,一次函数y =kx +b (k <0)与反比例函数y =mx 的图象相交于A 、B 两点,一次函数的图象与y 轴相交于点C ,已知点A (4,1).(1)求反比例函数的解析式;(2)连接OB (O 是坐标原点),若△BOC 的面积为3,求该一次函数的解析式.解:(1)∵点A (4,1)在反比例函数y =m x 的图象上,∴m =4×1=4,∴反比例函数的解析式为y =4x ;(2)将点A (4,1)代入一次函数的解析式中,即1=4k +b ,解得b =1-4k .∴y =kx +(1-4k ),令x =0,则y =1-4k ,∴C (0, 1-4k ).又⎩⎪⎨⎪⎧y =4x ,y =kx +(1-4k ),⇒kx 2+(1-4k )x -4=0.x A ·x B =-4k ,x A =4.∴x B =-1k ,S △OBC =12OC ·x B =3,∴k =-12,∴y =-12x +3.与最小(大)值有关的问题【例3】一次函数y =mx +5的图象与反比例函数y =kx (k ≠0)在第一象限的图象交于A (1,n )和B (4,1)两点,过点A 作y 轴的垂线,垂足为M .(1)求一次函数和反比例函数的解析式; (2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使P A +PB 最小.【解析】(3)作点A 关于y 轴的对称点N ,连接BN 交y 轴于点P ,则点P 即为所求.【学生解答】解:(1)将B (4,1)代入y =k x ,得1=k 4.∴k =4,∴y =4x ,将B (4,1)代入y =mx +5,得1=4m +5,∴m =-1,∴y =-x +5;(2)在y =4x 中,令x =1,解得y =4,∴A (1,4),∴S =12×1×4=2;(3)作点A 关于y 轴的对称点N ,则N (-1,4),连接BN 交y 轴于点P ,点P 即为所求.设直线BN 的关系式为y =kx +b ,由⎩⎪⎨⎪⎧4k +b =1,-k +b =4,解得⎩⎨⎧k =-35,b =175,y =-35x +175,∴P ⎝⎛⎭⎫0,175.5.(2016新疆中考)如图,直线y =2x +3与y 轴交于A 点,与反比例函数y =kx (x >0)的图象交于点B ,过点B作BC ⊥x 轴于点C ,且C 点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D (a ,1)是反比例函数y =kx (x >0)图象上的点,在x 轴上是否存在点P ,使得PB +PD 最小?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵BC ⊥x 轴于点C ,且C 点的坐标为(1,0),∴在直线y =2x +3中,当x =1时,y =2+3=5,∴点B 的坐标为(1,5),又∵点B (1,5)在反比例函数y =k x 上,∴k =1×5=5,∴反比例函数的解析式为y =5x ;(2)将点D (a ,1)代入y =5x,得:a =5,∴点D 坐标为(5,1),设点D (5,1)关于x 轴的对称点为D ′(5,-1),过点B (1,5)、点D ′(5,-1)的直线解析式为:y =kx +b ,可得:⎩⎪⎨⎪⎧k +b =5,5k +b =-1,解得⎩⎨⎧k =-32,b =132,∴直线BD ′的解析式为:y =-32x +132,根据题意知,直线BD ′与x 轴的交点即为所求点P ,当y =0时,得-32x +132=0,解得:x =133,故点P 的坐标为⎝⎛⎭⎫133,0.6.如图,在平面直角坐标系中,已知点A (8,1),B (0,-3),反比例函数y =kx (x >0)的图象经过点A ,动直线x=t (0<t <8)与反比例函数的图象交于点M ,与直线AB 交于点N .(1)求k 的值;(2)求△BMN 面积的最大值; (3)若MA ⊥AB ,求t 的值.解:(1)将A 点坐标(8,1)代入y =kx得k =8;(2)设直线AB 的解析式为y =mx +b ,将A 点坐标(8,1)和B 点坐标(0,-3)代入得⎩⎪⎨⎪⎧1=8m +b ,-3=b ,解得⎩⎪⎨⎪⎧m =12,b =-3,故直线AB 的解析式为y =12x -3,所以N ⎝⎛⎭⎫t ,t 2-3,又M ⎝⎛⎭⎫t ,8t ,故MN =8t -t 2+3,△BMN 面积为S =12⎝⎛⎭⎫8t -t 2+3t =-14t 2+32t +4=-14(t -3)2+254,所以当t =3时,△BMN 面积的最大值为254;(3)如图,过A 作AQ ⊥y 轴于Q ,延长AM 交y 轴于P ,又AM ⊥AB .所以△ABQ ∽△P AQ ,故AQ BQ =PQAQ ,即84=PQ 8,所以PQ =16,所以P (0,17).又A (8,1).所以直线AP 的解析式为y =-2x +17.所以-2x +17=8x ,解得x 1=12,x 2=8(舍去),所以t =12.与平移有关的问题【例4】如图,直线y =12x 与双曲线y =k x (k >0,x >0)交于点A ,将直线y =12x 向上平移4个单位长度后与y 轴交于点C ,与双曲线y =kx(k >0,x >0)交于点B ,若OA =3BC ,求k 的值.【解析】分别过点A 、B 作AD ⊥x 轴,BE ⊥x 轴,CF ⊥BE 于点F ,设A (3x ,32x ),可得B (x ,12x +4).【学生解答】解:∵将直线y =12x 向上平移4个单位长度后,与y 轴交于点C ,∴平移后直线的解析式为y =12x +4,分别过点A ,B 作AD ⊥x 轴,BE ⊥x 轴,CF ⊥BE 于点F ,设A ⎝⎛⎭⎫3x ,32x ,∵OA =3BC ,BC ∥OA ,CF ∥x 轴,∴CF =13OD ,又∵点B 在直线y =12x +4上,∴B ⎝⎛⎭⎫x ,12x +4,∵点A ,B 在双曲线y =k x (x >0)上,∴3x ×32x =x ×⎝⎛⎭⎫12x +4,解得x =1(x =0直接舍去),∴k =3×1×32×1=92.7.如图,已知函数y =43x 与反比例函数y =k x (x >0)的图象交于点A ,将y =43x 的图象向下平移6个单位长度后与双曲线y =kx交于点B ,与x 轴交于点C .(1)求点C 的坐标;(2)若OACB=2,求反比例函数的解析式.解:(1)点C 坐标为⎝⎛⎭⎫92,0;(2)作AE ⊥x 轴于E 点,BF ⊥x 轴于F 点,Rt △OAE ∽Rt △CBF ,∴OA CB =AE BF =OE CF =2,设A 点坐标为⎝⎛⎭⎫a ,43a ,则OE =a ,AE =43a ,∴CF =12a ,BF =23a ,∴OF =OC +CF =92+12a ,∴B 点坐标为⎝⎛⎭⎫92+12a ,23a ,∵点A 与点B 都在y =k x 的图象上,∴a ·43a =(92+12a )·23a ,∴a =3,∴点A 的坐标为(3,4),把A (3,4)代入y =kx 中,得k =3×4=12.∴反比例函数的解析式为y =12x.8.如图,直线y =mx 与双曲线y =kx 相交于A ,B 两点,点A 的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图象直接写出当mx >kx 时,x 的取值范围;(3)计算线段AB 的长.解:(1)把A (1,2)代入y =k x ,得k =2.即反比例函数的解析式是y =2x ;(2)把A (1,2)代入y =mx ,得m =2.即直线的解析式是y =2x .解方程组⎩⎪⎨⎪⎧y =2x ,y =2x ,得点B 的坐标是(-1,-2).∴当mx >kx时,x 的取值范围是-1<x <0或x >1;(3)过点A 作AC ⊥x 轴于点C .∵A (1,2),∴AC =2,OC =1.由勾股定理,得AO =22+12= 5.同理求出OB =5,∴AB =2 5.。
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (120)
(1)加油飞机的加油油箱中装载了多少油?将这些油全部加给战斗机需多长时间?
14.1
15.20
16.0.5,9,45,2
17.三
18.-2
19.( 3 ,0),(0,3), 9
2
4
20.2、180°;y、n
21.12;x,y
评卷人 得分
三、解答题
22.把
x
=
3
,
y
=
−2
代入
y y
= =
ax cx
+ −
b 3
,得
−2 −2
= =
3a 3c
+b −3
(1) ,把 x = 5 , y = 2 代入 (2)
浙教版初中数学试卷
2019-2020 年八年级数学上册《一次函数》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分)某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水 池以固定的流量把水全部放出,下面的图象能大致表示水的深度 h 和放水时间 t 之间的关 系的是 ( )
时,行驶的路程 y(km)与经过的时间 x(h)之间的函数关系.请根据这个行驶过程中的图象
填空:
汽车出发 h 与电动自行车相遇;电动自行车的速度为 /h;汽车的速度为
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (146)
30
分钟
后,骑自行车的同学就追上了长跑的同学
30.(1)y=-2x+3;(2) 3 4
y(千米)
10
L2 L1
8
60 10 20 30 40 50 60 4
x(分钟)
2
30.(6 分)已知一次函数的图象过点(-1,5),且与正比例函数 y = − 1 x 的图象交于点(2, 2
a),求: (1)求一次函数解析式; (2)这两个函数图象与 x 轴所围成的三角形面积,
【参考答案】***试卷处理标记,请不要删除
21. y = − 2 x + 2
3 22.4
23. y = 4.75x
24.6;Q、t 评卷人 得分
三、解答题
25.(1) l1 : t = 100x , l2 : t = 75x +1000 ; (2)3000,3250;
(3)6000,5500;
(4)40;
(5)大于 40,小于 40
26.图象略.
(不要求写出自变量的取值范围).
解答题
13.(3 分)已知关于 x 的函数同时满足下列三个条件:
①函数的图象不经过第二象限;
②当 x 2 时,对应的函数值 y 0 ;
③当 x 2 时,函数值 y 随 x 值的增大而增大.
你认为符合要求的函数的解析式可以是:
(写出一个即可).
14.(3 分)若直线 y = −x + a 和直线 y = x + b 的交点坐标为(m,8),则 a +b = .
15.(3 分)已知一次函数 y = kx + b (k≠0)的图象经过点(0,1),而且 y 随 x 的增大而增大,请
你写出一个符合上述条件的函数解析式
2019年秋浙教版初中数学八年级上册《一次函数》单元测试(含答案) (147)
2019-2020 年八年级数学上册《一次函数》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分) 如图 ,在凯里一中学生耐力测试比费中,甲、乙两名学生测试的路程 s (米)与 时间 t (秒)之间的函数关系图象分别为折线 OABC 和线段 OD,下列说法中,正确确的 是( ) A.乙比甲先到终点 B.乙测试的速度随时间增大而增大 C.比赛进行到 29.4 秒时,两人出发后第一次相遇 D.比赛全程甲的测试速度始终比乙的测试速度快
19.(3 分)已知一次函数 y = 2x + 4 的图象经过点(m,8),则 m= .
20.(3 分)已知直线 y = −x + k 与直线 y = 2x − k − 3 的交点在第二象限内,求 k 的取值范围. 2
21.(3 分)已知一次函数 y=-2x+7,当 y≤2 时,自变量 x 的取值范围是 .
(1)加油飞机的加油油箱中装载了多少油?将这些油全部加给战斗机需多长时间? (2)求加油过程中,战斗机的余油量 Ql(t)与时间 t(min)的函数解析式; (3)战斗机加完油后,以原速度继续飞行,需 10 h 到达目的地,油料是否够用?请说明理 由.
30.(6 分)已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工 程,盒内原有 55 元钱,两个月后盒内有 85 元钱. (1)求盒内钱数 y(元)与存钱月数 x(个)之间的函数解析式; (2)按上述方法,王明同学 6 个月后存到多少钱?几个月后能够存到 235 元钱?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、3一次函数练习题
1、直线y=kx+2过点(—1,0),则k 的值是 ( )
A.2
B.-2
C.-1
D.1
2。
直线62-=x y 关于y 轴对称的直线的解析式为 ( )
A.62+=x y B 。
62+-=x y C.62--=x y D 。
62-=x y
3、直线y=kx+2过点(1,—2),则k 的值是( )
A.4
B.—4 C 。
-8 D.8
4、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x (分钟)之间满足某种函数关系,其函数图象大致为( )
5。
点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.
6。
若1)7(0=-x ,则x 的取值范围为__________________.
7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、
四象限。
8、0(1)π- = 、
9、在函数2-=x y 中,自变量x 的取值范围是______。
10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________。
11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______。
12、在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点
13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点。
求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.
14。
如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB 。
当△COD 和△AOB 全等时,求C 、D 两点的坐标;
15、已知直线3y kx =-经过点M ,求此直线与x 轴,y
16、如图,直线1l 与2l 相交于点P,1l 的函数表达式y=2x+3,点P 的横坐标为—1,且2l 交y 轴于点A(0,-1)。
求直线2l 的函数表达式、
17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-
1,6).求:
(1)这个一次函数的解析式;
(2)一次函数图象与两坐标轴围成的面积;
参考答案
1、A 2。
C3 、B 4、D 5。
(—3,4) 6。
x ≠7 7。
0<k
1.8、1 9、
2x ≥ 10、y =错误!x +4 11、6
12、(-2,—3)
13(1)设一次函数解析式为b kx y +=,由题意,得 3549.
k b k b +=⎧⎨-+=-⎩,…………… 解之,得2,1.
k b =⎧⎨=-⎩…………………………
因此一次函数的解析式为12-=x y 。
…………………………
(2)将(a ,2)代入12-=x y ,得212=-a 。
…………………… 解得23=a 。
…………………………………………………… 14。
(1)由题意,得A (2,0),B (0,4),
即AO =2 OB =4. …………………………………………………2分
①当线段CD 在第一象限时,
点C (0,4),D (2,0)或C (0,2),D (4,0)。
………………
②当线段CD 在第二象限时,
点C (0,4),D (-2,0)或C (0,2),D (-4,0)。
……………
③当线段CD 在第三象限时,
点C (0,-4),D (-2,0)或C (0,-2),D (-4,0).……
④当线段CD 在第四象限时,
点C (0,-4),D (2,0)或C (0,-2),D (4,0) ……… 15、P120习题8改造题
解:由图象可知,点(21)M -,在直线3y kx =-上, 1分
231k ∴--=解得2k =-. ∴直线的解析式为23y x =--。
令0y =,可得32x =-. 令0x =,可得3y =-.
∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭
,,y 轴的交点坐标为(03)-,
16、解:设点P 坐标为(-1,y ),代入y=2x+3,得y=1,∴点P(-1,1)、
设直线2l 的函数表达式为y=kx+b,把P (-1,1)、A (0,-1)分别代入y=kx+b,得1=-k+b,—1=b,∴k=-2,b=—1、 ∴直线2l 的函数表达式为y=-2x-1、 8分
17、解:(1)依题意,当x=1时,y=2;当x=-1时,y=6,则 ⎩
⎨⎧+-=+=b a b a 62 ……………2分 解之得⎩
⎨⎧=-=42b a 、、、、、、、、、、、、、、4分 ∴一次函数解析式为:42+-=x y 、、、、、、、、、、、、、、8分
(2)一次函数图象与y 轴、x 轴分别相交于A 、B 两点,由42+-=x y ,得
A 点坐标(0,4),
B 点坐标(2,0)、、、、、、、、、、、、、、10分
即OA=4,OB=2
∴S △AOB =OB OA •21=242
1⨯⨯=4 即一次函数图象与两坐标轴围成的面积为4 ……。