图形的旋转一说课 PPT
合集下载
《图形的旋转》ppt课件
方向性
图形旋转具有方向性,顺 时针或逆时针方向不同, 会导致旋转后的图形位置 不同。
01
旋转的基本概念
点绕原点的旋转
绕原点旋转的定义
一个点绕原点旋转是指该点在平 面内按照某一角度旋转一定的角
度。
绕原点旋转的公式
假设点P(x, y)绕原点逆时针旋转θ 角度后到达点P'(x', y'),则x' = xcosθ - ysinθ,y' = xsinθ + ycosθ。
02
欧拉角表示法具有直观性和易用 性,但在某些情况下,可能会出 现万向锁现象,即旋转轴与旋转 角度的顺序有关。
绕轴旋转的公式
绕轴旋转的公式是用来描述一个物体 绕着一条固定轴旋转一定角度后的位 置和方向变化的数学表达式。
绕轴旋转的公式包括旋转矩阵和四元 数等,其中旋转矩阵是最常用的表示 方法,可以通过矩阵乘法来实现旋转 。
涡轮机、发电机、泵等旋转机械是工业生产和能源转换中的重要 设备。
旋转结构稳定性分析
在结构设计领域,对旋转结构的稳定性进行精确分析,确保其安 全可靠是至关重要的。
01
旋转的数学表达
欧拉角表示法
01
欧拉角是用来描述一个物体在三 维空间中绕着不同的轴旋转的角 度,通常采用绕着横轴、纵轴和 竖轴的旋转角度来表示。
绘制一个复杂的图形,如组合 图形或图案,并展示如何通过 旋转将其组合成一个完整的图 案。
绘制一个动态的图形旋转过程, 让学生更直观地理解旋转的概 念和过程。
分析旋转在现实生活中的应用源自分析时钟指针的旋转时钟指针的旋转是生活中常见的旋转现象,可以用来解释旋转的 基本概念和性质。
分析电风扇叶片的旋转
电风扇叶片的旋转可以用来解释旋转的速度和方向,以及旋转产生 的力和扭矩。
23-1 图形的旋转 课件(共20张PPT)
按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在
同一条直线上,那么旋转角等于(C )。
A.55° B.70°
C.125° D.145°
解析:知道∠B=35°,∠C=90°,所以∠BAB1=55°。 也就是旋转角是180°-55°=125°。
教学新知
知识点2:旋转的性质特征。 (1)对应点对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图象全等。
BC=5,BD=4。则下列结论错误的是( B )。
A.AE//BC
B.∠ADE=∠BDC
C.△BDE是等边三角形 D.△ADE的周长是9
小练习
解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°, ∵将△BCD绕点B逆时针旋转60°,得到△BAE, ∴AEB=∠C=60°,∴AE//BC,故选项A正确; ∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE由△BCD逆时针旋转60°得 出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°, BE=BD,∴△BDE是等边三角形,故选择C正确;∴DE=BD=4,∴△AED的周长 =AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴ 结论错误的是B。
小练习
如图所示,已知△ABC是直角三角形,∠ACB=90°, AB=5cm,BC=3cm,△ABC绕点C逆时针方向旋转90°
后得到△DEC,则∠D=∠__A__,∠B=_∠_D__EC___, DE=__5__cm,EC=__3__cm,AE=_1__cm,DE与AB的 位置关系为_垂__直__。
图形的旋转一ppt课件
针旋转90°后的线段。 针旋转90°后的线段。
15
4.如图,点 P 是 线段MN上的一点,请按下列要求分别画图。
⑴将线段M N 绕 点 P 顺
⑵将线N段’M N 绕 点 P 逆
时针旋转90°。
M’
时针旋转90°。
M’
N’
16
我能设计
用线段的旋转设计一幅图(注 意点、方向、度数)
17
18
3
4
逆时针旋转 12
顺时针旋转
9
3
6
5
时针、分针旋转的方向就是顺时针方向, 相反的方向就是逆时针方向。
逆时针
顺时针
6
1.横杆的收起和放下是绕着哪一点进行的? 2.横杆在两次旋转过程中有什么相同点和不同点?
7
8
顺逆时针旋转了90°。
9
1.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O(顺时针)
方向旋转了( 90 )度。
10
2.⑴下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
11
2.⑵从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
90°
120° 12
如右图,指针从点A开始,绕点O逆
时针旋转( )0到点B;指针从点C
A
开始,绕点O逆时针旋转( )0 到
点D;指针从点B开始,绕点O逆时 B
o
D
针旋转900到点( );指针从点D
开始,绕点O顺时针旋转900到点
C
( )。
13
⑴ 画出线段AB绕点B顺时针旋转90°后的线段。 ⑵ 画出线段AB绕点A逆时针旋转90°后的线段。
15
4.如图,点 P 是 线段MN上的一点,请按下列要求分别画图。
⑴将线段M N 绕 点 P 顺
⑵将线N段’M N 绕 点 P 逆
时针旋转90°。
M’
时针旋转90°。
M’
N’
16
我能设计
用线段的旋转设计一幅图(注 意点、方向、度数)
17
18
3
4
逆时针旋转 12
顺时针旋转
9
3
6
5
时针、分针旋转的方向就是顺时针方向, 相反的方向就是逆时针方向。
逆时针
顺时针
6
1.横杆的收起和放下是绕着哪一点进行的? 2.横杆在两次旋转过程中有什么相同点和不同点?
7
8
顺逆时针旋转了90°。
9
1.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O(顺时针)
方向旋转了( 90 )度。
10
2.⑴下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
11
2.⑵从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
90°
120° 12
如右图,指针从点A开始,绕点O逆
时针旋转( )0到点B;指针从点C
A
开始,绕点O逆时针旋转( )0 到
点D;指针从点B开始,绕点O逆时 B
o
D
针旋转900到点( );指针从点D
开始,绕点O顺时针旋转900到点
C
( )。
13
⑴ 画出线段AB绕点B顺时针旋转90°后的线段。 ⑵ 画出线段AB绕点A逆时针旋转90°后的线段。
23.1图形的旋转教学课件(共35张PPT)
线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
图形的旋转(第1课时)课件
学生作品展示与评价
作品展示
挑选部分学生的练习作品进行展示, 让学生互相学习。
评价与建议
对学生的作品进行点评,给出建议和 改进方向,帮助学生提高。
THANKS
感谢观看
动画的应用场景
01
02
03
04
旋转动画可以应用于各种场景 ,如产品展示、广告宣传、教
育演示等。
在产品展示中,旋转动画可以 全方位地展示产品的外观和特 点,增强观众对产品的认知和
兴趣。
在广告宣传中,旋转动画可以 吸引观众的注意力,提高广告
的传播效果和转化率。
在教育演示中,旋转动画可以 直观地展示抽象的概念和过程 ,帮助学生更好地理解和掌握
02
动画制作需要将静态图像按照一 定的时间间隔进行分解,并逐帧 绘制出每个状态,然后通过连续 播放形成动态效果。
旋转动画的实现
使用图形软件(如Adobe After Effects、Flash等)或动画 制作软件(如Toon Boom、Animate等)进行旋转动画的制 作。
在软件中导入需要旋转的图形,设置旋转中心点、旋转角度 、旋转速度等参数,然后逐帧绘制旋转过程,最后导出为视 频或GIF格式。
旋转的分类
等角度旋转
图形绕旋转中心按相等的角度进 行旋转,每次旋转的角度是相同 的。
变角度旋转
图形绕旋转中心按不同的角度进 行旋转,每次旋转的角度是不同 的。
02 旋转的数学表达
旋转矩阵
旋转矩阵是用于描述图形旋转 的数学工具,它由三个元素组 成:旋转角度、旋转轴和旋转 方向。
旋转矩阵的作用是将原始坐标 系中的点映射到新坐标系中, 实现图形的旋转。
知识。
05 课堂互动与练习
课堂互动环节设计
《图形的旋转》ppt课件
▪ (3)图1绕点“O”顺时针旋转( 置;
)到达图4的位
▪ (4)图2绕点“O”顺时针旋转( 置;
)到达图4的位
▪ (5)图2绕点“O”顺时针旋转90度到达图( )的 位置;
▪ (6)图4绕点“O” 逆时针旋转90度到达图( )
的位置。
3
2
O 1
4
这节课你有什么收获?
旋转要素: 旋转中、旋转方向、旋转度数。
4
2
自学检测二
1A 3
(1)图形1绕A点( )旋转90。到图形2。 (2)图形2绕A点( )旋转90。到图形3。 (3)图形4绕A点顺时针旋转( )到图形2。 (4)图形3绕A点顺时针旋转( )到图形1。
▪ 3、先观察下图,再填空。
▪ (1)图1绕点“O”逆时针旋转90度到达图( )的 位置;
▪ (2)图1绕点“O”逆时针旋转180度到达图( ) 的位置;
) )=
10 20
9 18
=
9 18
÷( ÷(
9 9
) )=
1 2
2.在下面的括号里填上适当的数。
1 5
=(135 )
15 20
=(
3 4
)
9 18
=(
3 6
)
1 4
=(132)
8 16
=(
4 8
)=(
1 2
)
2 9
=(148)=(267)=
(10 45
)
4 18
4 18
45
18 5
2
9
这节课我们学习了什么?
分数缩小到原来的
1 10
1、一个分数,分母比分子大14,它与三 分之一相等,这个分数是多少?
图形旋转 ppt课件
使用数学公式进应用
描述
通过数学公式进行旋转计算,可以实 现精确的旋转控制。这种方法适用于 需要高精度旋转的应用,如科学计算 、工程设计等。但需要较高的数学水 平和对旋转公式的理解。
THANKS FOR WATCHING
感谢您的观看
详细描述
在PPT课件中,可以利用动画效果让图形进行旋转展示,如让三角形、平行四边 形等图形进行旋转动画演示,让学生更加深入地理解图形旋转的原理和应用。
旋转在三维建模中的应用
总结词
介绍图形旋转在三维建模中的应用,让学生了解其在现实生活和工程领域的重要性。
详细描述
在PPT课件中,可以展示一些利用图形旋转进行三维建模的示例,如机械零件、建筑设计等,让学生了解图形旋 转在三维建模中的实际应用和作用。同时,可以引导学生思考如何在自己的学习和生活中运用图形旋转的知识。
物理效果
在模拟现实物理效果时,图形旋转技术用于表现 物体的旋转运动。
建筑设计
建筑模型
在建筑设计过程中,通过旋转建筑模型,可以更好地观察建筑的 外观和结构。
室内设计
在室内设计中,旋转图形可以帮助设计师更好地展示家具和装饰品 的摆放效果。
工程制图
在工程制图中,旋转图形有助于更准确地绘制和标注复杂的机械部 件。
05
图形旋转的实现方法
使用图形软件进行旋转
总结词
直观易用,适合初学者
详细描述
使用图形软件如Photoshop、GIMP等,可以直接在软件中选中图形,然后通过界面上的旋转工具进 行旋转。这种方法不需要编程知识,操作简单直观,适合初学者。
使用编程语言实现旋转
总结词
功能强大,适合专业开发
详细描述
使用编程语言如Python、Java等,可以通过编写代码来实现 图形的旋转。这种方法功能强大,可以实现各种复杂的旋转 效果,但需要一定的编程基础。
《图形的旋转》公开课PPT课件
旋转角度
2021
将等边△ABC绕着点o按某个方向旋转900后得
到△A1B1C1
B1
A
A1
C1
B
.0
C
2021
旋转的基本性质
(1)旋转不改变图形的大小和形状. 旋转前、后的图形全等. (2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度
(3)任意一对对应点与旋转中心所连 线段的夹角等于旋转角.
(2)以点B为中心旋转的图
形是( ①)
(3)以点C为中心旋转的图
形是( ③)
2021
3、如图,△ A′O B′是△AOB绕点O按 顺时针方向旋转45°角度所得的。
这里定点点是O 旋转中心,旋转角是45°的角度 为 ∠AOA′。,∠BOB′ 点B的对应点是点_B_'_
A
B A'
O
B'
线段OB的对应线段是线段0_B_’_ ∠A的对应角是_∠__A_' 线段AB的对应线段是线段A__′B__′__
(4)对应点到旋转中心的距离相等.
2021
1. 从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
90°
120°
2021
2、转一转,说一说这些三角形是以哪个点为中心旋转
的。
A
B
c
A
c
B
B
c
A
c
B
C
A
A
B
①
②
③
(1)以点A为中心旋转的图
形是( ②)
2021
思考:
旋转到底和什么有关呢?
2021
验证(一)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.如图,点P是线段MN上的一点,请按下列要求分别
画图⑴。将线段MN绕点P顺
时针旋转90°。
⑵将线段MN绕点P逆
时针旋转90°。
1、你学到了什么? 2、你还有什么疑惑?
图形的旋转(一)
旋转三要素
点(不动) 方向 角度
顺时针 逆时针
谢谢
一、说教材
图形的旋转(一)这部分教学内容在《数学课程标准》中属于“空间与图形”领域的知识。 经过前面的学习,学生已经初步感知了生活中的旋转现象,本课将进一步从旋转中心,旋转方向 ,旋转角度等方面认识旋转,教材注意创设情景,引导学生探究和发现,发展学生的空间观念。 学好这部分知识是今后进一步学习简单图形旋转知识的基础。
⑴ 画出线段AB绕点B顺时针旋转90°后的线段。 ⑵ 画出线段AB绕点A逆时针旋转90°后的线段。
1.⑴下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
1.⑵从9时到12时,时针绕中心点顺时针方向旋转 了多少度?从12时到16时,时针绕中心点顺时 针方向旋转了多少度?
在探究过程中,培养学生合作意识,动手实践能力;提高学生的应用意识,培养学生的自主 探究能力。
⒊ 情感态度与价值观目标:
使学生在自主参与活动的过程中,进一步体验学习成功带来的快乐,实现自主发展。
本课的教学重点是:理解顺时针旋转与逆时针旋转的含义,准确描述物体的旋转过程;
教学难点是:能在方格纸上画出线段旋转后的图形。
二、说教法:
课堂教学首先是情感成长的过程,然后才是知识成长的过程。 学生的学习过程是一个主动构建、动态形成的过程,教师要激活学生 的原有经验,激发学生的学习热情,让学生在经历、体验和运用中真正感 悟新知。数学学习过程理应成为学生享受教师服务的过程。 因此,根据教学内容的特点,为了更好地突出重点、突破难点,按照 学生的认知规律,遵循教师为主导、学生为主体、训练为主线的指导思想 。我在教学中采用以情景教学法、观察发现法为主,以多媒体演示法为辅 的教学方法。在教学中我注意创设情景,设计启发性思考问题,引导学生 思考。并适时运用电教媒体化静为动,让学生更直观地学到知识,从而激 发学生探究知识的欲望,使学生始终处于主动探究问题的积极状态,培养 学生的思维能力。
三、说学法 六年级的学生已有一定的知识储备,并且大部分学
生已养成良好的学习习惯,能在课堂上大胆地表达自己 的见解。因此,在这节课中我将: ⒈ 根据自主性和差异性原则,让学生在探究学习的过程 中,自主参与知识的发生、发展和形成过程,使学生掌 握知识。达到人人学数学的目的。 2. 改变学生的学习方式,让学生合作学习,培养学生的 合作意识。给学生充足的空间,开展探究性学习,让他 们进行独立思考,并与同伴交流,互相取长补短,为学 生创设一个轻松愉快的学习环境,易于学生积极主动获 得新知并体会学习的乐趣。
根据这一部分教学内容在教材中的地位与作用,结合教材以及学生的年龄特点,我制定以下
教学目标:
• 1. 知识与技能目标:
让学生联系实际和利用生活经验,通过观察、想象、操作等学习活动,理解顺时针旋转与逆 时针旋转的含义,准确描述物体的旋转过程,能够画出线段旋转后的图形,并能运用所学知识解 决问题。
⒉ 过程与方法目标:
2.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O( )
方向旋转了( )度。
3.画一画。
⑴画出线段AB绕点A顺时
针旋转90°后的线段。
⑵画出线段AB绕点B逆时
针旋转90°后的线段。
4、判断是否属于旋转现象
(1)工作中的电风扇。( 是 ) (2)地下水位逐年下降。( 否 ) (3)飞机的螺旋桨。( 是 ) (4)拉动抽屉。( 否 )
5、精心选一选
(1)时针从3:00走到9:00是围绕钟面中心旋转了(B )。
A. 90° B. 180°
C.360°
(2) 围绕 . 按顺时针方向旋转90°形成的图形是( A)
A.
B.
C.
D.
Hale Waihona Puke 始6、转转盘,领礼物。o
(1) 从开始起,指针绕点o顺时针旋转( 180°),能领到小鹿。 (2)从开始起,指针绕点o( 顺 )时针旋转( 90°),能领到小兔。 (3)从开始起,指针绕点o( 顺 )时针旋转( 3 )次90°能领到小鸡。