图形的旋转PPT课件
合集下载
《图形的旋转》ppt课件

方向性
图形旋转具有方向性,顺 时针或逆时针方向不同, 会导致旋转后的图形位置 不同。
01
旋转的基本概念
点绕原点的旋转
绕原点旋转的定义
一个点绕原点旋转是指该点在平 面内按照某一角度旋转一定的角
度。
绕原点旋转的公式
假设点P(x, y)绕原点逆时针旋转θ 角度后到达点P'(x', y'),则x' = xcosθ - ysinθ,y' = xsinθ + ycosθ。
02
欧拉角表示法具有直观性和易用 性,但在某些情况下,可能会出 现万向锁现象,即旋转轴与旋转 角度的顺序有关。
绕轴旋转的公式
绕轴旋转的公式是用来描述一个物体 绕着一条固定轴旋转一定角度后的位 置和方向变化的数学表达式。
绕轴旋转的公式包括旋转矩阵和四元 数等,其中旋转矩阵是最常用的表示 方法,可以通过矩阵乘法来实现旋转 。
涡轮机、发电机、泵等旋转机械是工业生产和能源转换中的重要 设备。
旋转结构稳定性分析
在结构设计领域,对旋转结构的稳定性进行精确分析,确保其安 全可靠是至关重要的。
01
旋转的数学表达
欧拉角表示法
01
欧拉角是用来描述一个物体在三 维空间中绕着不同的轴旋转的角 度,通常采用绕着横轴、纵轴和 竖轴的旋转角度来表示。
绘制一个复杂的图形,如组合 图形或图案,并展示如何通过 旋转将其组合成一个完整的图 案。
绘制一个动态的图形旋转过程, 让学生更直观地理解旋转的概 念和过程。
分析旋转在现实生活中的应用源自分析时钟指针的旋转时钟指针的旋转是生活中常见的旋转现象,可以用来解释旋转的 基本概念和性质。
分析电风扇叶片的旋转
电风扇叶片的旋转可以用来解释旋转的速度和方向,以及旋转产生 的力和扭矩。
浙教版九年级上册 3.2 图形的旋转 课件(共24张PPT)

A
O
BB′
A′
说一说
如图所示,如果把钟表的指针看作四边形 AOBC,它绕O点按顺时针方向旋转得到四边 形DOEF.在这个旋转过程中:
1.旋转中心是什么?
2.经过旋转,点A,B, C 分别移动到什么位置?
3.AO与DO的长有什么关 系?BO与EO呢?
4.∠AOD与∠BOE有什 么大小关系? ∠COF呢?
A
(2)旋转了多少度?
M.
(3)如果M是AB的中点,那么经过
E
旋转后,点M转到了什么位置? B D
C
解:(1)旋转中心是点A; (2)旋转了60度;
(3)点M转到了AC的中点位置上. 解题心得: (1)旋转的角度可由某一个特殊的旋转角得出; (2)点的位置在旋转前后是相对应.
抢答
B
A
C
O
F
D
E
若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转
A
A
B
O
O
旋转变换的画图
例1、如图,O是△ABC外一点,以点O为旋转中心, 将△ABC按顺时针方向旋转60°,作出经旋转 变换后的像。
A
.
C
O
B
旋转变换的画图
如图,△ ABC绕点C旋转后,顶点A的对应点为 点D。试确定顶点B对应点的位置,以及旋转后的 三角形。
E
A
·D
B
C
△DEC就是△ABC绕C点旋转变换后的像.
图3-2-11
1、相同:都是一种运动;运动前 后不改变图形的形状和大小 2、不同
形状 大小
轴对称 不变 不变
方向 改变
平移 不变 不变 不变
旋转 不变 不变 改变
图形的旋转ppt课件

探索新知
和指针旋转方向一致的,叫做顺时针方向
探索新知
和指针方向相反的,叫做逆时针方向
小思考
根据我们总结的旋转具备的要素, 你能类比平移的定义,给出旋转的 定义吗?
我们把在平面内,将一个图形绕一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转。这个 定点称为旋转中心,转动的角称为旋转角。
方向,△ABC是按顺时针方向旋转的;最后找旋转的
角度,要想知道旋转的角度,就先要找到对应点,对 应点与旋转中心的连线所成的角就等于旋转角。如图, 点B的对应点为点E,那么∠BOE就是图形的旋转角。 所以旋转角为60度。
现在我们就可以说△ABC所做的运动是绕O点按 顺时针方向转动了60度,得到△DEF。
也是△ABC的旋转角。
A
CB O
A’ C’
B’
小思考
这就是我们今天学习的全部内容了, 纸上得来终觉浅,绝知此事要躬行。 让我们一起做两道题锻炼一下。
五角星可以看成由一个四边形旋转若干次而生成的, 则每次旋转的度数是( 72°)
我们把五角星看成是由四边形ABOC旋转而来。 即四边形ABOC绕点O,按顺时针方向转动一周,得 到五角星。
和我们之前学习过的图形的平移一样,旋转不改变 图形的形状和大个要素:旋转中心、 旋转角和旋转方向。
让我们一起来看这张图,你能尝试用刚才所说的旋转
的定义描述△ABC是如何运动到△DEF 的?
根据旋转的定义,我们先来看△ABC的旋转中心, 也就是旋转围绕的定点,发现是点O;再来看旋转的
1 23
3 2
1
解析:连接EE´,由旋转性质知BE=BE´, ∠EBE´=90°
∴EE′= 2 2. ∠BE´E=45° 在△EE´C中,EE´ = 2 2. E´C=1,EC=3, 由勾股定理逆定理可知∠EE´C=90°
23-1 图形的旋转 课件(共20张PPT)

按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在
同一条直线上,那么旋转角等于(C )。
A.55° B.70°
C.125° D.145°
解析:知道∠B=35°,∠C=90°,所以∠BAB1=55°。 也就是旋转角是180°-55°=125°。
教学新知
知识点2:旋转的性质特征。 (1)对应点对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 (3)旋转前、后的图象全等。
BC=5,BD=4。则下列结论错误的是( B )。
A.AE//BC
B.∠ADE=∠BDC
C.△BDE是等边三角形 D.△ADE的周长是9
小练习
解析:∵△ABC是等边三角形,∴∠ABC=∠C=60°, ∵将△BCD绕点B逆时针旋转60°,得到△BAE, ∴AEB=∠C=60°,∴AE//BC,故选项A正确; ∵△ABC是等边三角形,∴AC=AB=BC=5,∵△BAE由△BCD逆时针旋转60°得 出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°, BE=BD,∴△BDE是等边三角形,故选择C正确;∴DE=BD=4,∴△AED的周长 =AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∠ADE=∠BDC,∴ 结论错误的是B。
小练习
如图所示,已知△ABC是直角三角形,∠ACB=90°, AB=5cm,BC=3cm,△ABC绕点C逆时针方向旋转90°
后得到△DEC,则∠D=∠__A__,∠B=_∠_D__EC___, DE=__5__cm,EC=__3__cm,AE=_1__cm,DE与AB的 位置关系为_垂__直__。
初中旋转课件ppt

旋转的对称性
中心对称
面对称
当一个图形绕着某一点旋转180度后 ,它与自身重合,这种性质称为中心 对称。
当一个图形绕着垂直于平面的轴旋转 180度后与自身重合,这种性质称为 面对称。
轴对称
如果一个图形绕着一条直线旋转180 度后与自身重合,这种性质称为轴对 称。
旋转的几何意义
旋转的向量表示
在二维空间中,一个向量绕着原 点旋转一定角度后可以用一个新 的向量表示,该向量由原始向量
旋转木马的转动原理
旋转木马的转动原理主要基于机械和电力驱动。每个木马 或其他座位的支撑结构都装有一个转轴,转轴通过轴承与 中心轴相连。
当中心轴转动时,通过轴承带动转轴,从而使每个座位围 绕中心轴进行旋转。为了保持旋转的平稳和均匀,通常会 使用减速器和电机等传动装置进行驱动和控制。
旋转磁场的产生原理
旋转在日常生活中的应用
旋转机械
旋转机械是日常生活中常见的机械装置,如电动机、发电机、涡 轮机等,通过旋转来传递能量和动力。
旋转运动
旋转运动是许多体育项目中的基本动作,如滑冰、自行车赛、篮球 等,通过旋转可以改变运动方向和速度。
旋转门
旋转门是建筑入口的一种常见设计,通过旋转门可以控制人流的进 出,同时具有美观和节能的效果。
和旋转角度决定。
旋转的矩阵表示
在二维空间中,旋转也可以用一 个2x2的旋转矩阵来表示,该矩 阵描述了旋转的方向和大小。
旋转的性质
在二维空间中,旋转具有一些重 要的性质,如旋转不改变向量的 长度和方向、不改变图形的形状
和大小等。
2023
PART 03
旋转的应用
REPORTING
旋转在几何图形中的应用
2023
23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
图形的旋转ppt课件

钟表的指针在不停地转动,从3 时到5时,时针转动了多少度?
风车风轮的每个叶片在风的吹 动下转动到新的位置。
O
O
60°
图23.1-1
图23.1-2
以上这些现象有什么共同特点呢?
以上这些现象有什么不同特点呢?
旋转中心
O
O
60°
旋转 三要素
图23.1-1
图23.1-2
旋转方向
旋转角
像这样,把一个平面图形绕着平面内某一点O转动一个角度,
(2)旋转了60°
(3)AC中点M
2.如图,正方形A′B′C′D′是由正方形ABCD按顺时针方向旋转45° 而成的。
(1) 若AB=4,则S正方形A′B′C′D′=
;
(2) ∠BAB ′= ,
∠B′AD= 。
(3) 若连接BB′,
则∠ABB′=
。
3. 如图,已知正方形 ABCD 的边长为 3,E、F 分别是 AB、BC 边上
的点,且∠EDF = 45°,将△DAE 绕点 D 按逆时针方向旋转 9;
证明:∵△DAE 绕点 D 逆时针旋转 90° 得到△DCM,
∴DE = DM,∠EDM = 90°.
A
D
∵∠EDF = 45°,∴∠FDM = 45°.
∴∠EDF =∠FDM.
B
实践操作,再探新知
探究二
平面中三角形的旋转
改变旋转中心的位置旋转的性质是否仍然成立?
O
C
O
A
B
三角形边上
C
O
A
B
三角形内部
C
A
B
三角形外部
1组和2组
3组和4组
5组和6组
小组合作探究(时间5分钟)
图形的旋转ppt课件

具。
旋转的应用
在几何学中,旋转被广泛应用于 证明和求解各种问题,如证明三 角形全等、求解几何图形的面积
等。
在计算机图形学中,旋转是实现 三维图形变换的重要手段之一, 通过旋转可以创造出各种立体图
形和动画效果。
在日常生活中,旋转也被广泛应 用,如钟表指针的转动、车轮的 滚动等,都是旋转的具体应用实
例。
可视化算法与技术的创新
随着数据规模和复杂性的不断增加,需要不断探索新的可视化算法和技 术,以支持更高效、更灵活、更智能的数据可视化。
THANKS
考虑实际应用的优化方法
• 考虑实际应用:在旋转图形时,我们需要考虑实际应 用的需求。例如,在游戏开发中,我们需要根据游戏 场景的需求来调整图形的旋转方式和角度。在计算机 视觉中,我们需要根据图像的特征来选择合适的旋转 算法和参数。这些考虑因素需要根据实际应用来确定 ,以达到更好的效果和性能。
05
描述
齐次坐标模型可以用来表示旋转 和缩放操作,广泛应用于计算机 图形学和机器人学等领域。
旋转矩阵模型
定义
旋转矩阵是一个方阵,表示在某个坐 标轴上的旋转操作。
描述
旋转矩阵可以用来进行二维或三维旋 转操作,具有直观性和可操作性的优 点。在计算机图形学中,旋转矩阵是 常用的数学工具之一。
03
图形旋转的实现方法
通过将齐次坐标系中的点与旋转矩阵相乘 ,实现图形的旋转。
根据齐次坐标变换矩阵,利用矩阵运算实 现图形的旋转。
基于旋转矩阵模型的实现方法
1 2
定义旋转矩阵
一个3x3的方阵,用于描述图形的旋转状态。
建立旋转矩阵
通过指定旋转中心、旋转角度和旋转方向,构建 对应的旋转矩阵。
3
旋转的应用
在几何学中,旋转被广泛应用于 证明和求解各种问题,如证明三 角形全等、求解几何图形的面积
等。
在计算机图形学中,旋转是实现 三维图形变换的重要手段之一, 通过旋转可以创造出各种立体图
形和动画效果。
在日常生活中,旋转也被广泛应 用,如钟表指针的转动、车轮的 滚动等,都是旋转的具体应用实
例。
可视化算法与技术的创新
随着数据规模和复杂性的不断增加,需要不断探索新的可视化算法和技 术,以支持更高效、更灵活、更智能的数据可视化。
THANKS
考虑实际应用的优化方法
• 考虑实际应用:在旋转图形时,我们需要考虑实际应 用的需求。例如,在游戏开发中,我们需要根据游戏 场景的需求来调整图形的旋转方式和角度。在计算机 视觉中,我们需要根据图像的特征来选择合适的旋转 算法和参数。这些考虑因素需要根据实际应用来确定 ,以达到更好的效果和性能。
05
描述
齐次坐标模型可以用来表示旋转 和缩放操作,广泛应用于计算机 图形学和机器人学等领域。
旋转矩阵模型
定义
旋转矩阵是一个方阵,表示在某个坐 标轴上的旋转操作。
描述
旋转矩阵可以用来进行二维或三维旋 转操作,具有直观性和可操作性的优 点。在计算机图形学中,旋转矩阵是 常用的数学工具之一。
03
图形旋转的实现方法
通过将齐次坐标系中的点与旋转矩阵相乘 ,实现图形的旋转。
根据齐次坐标变换矩阵,利用矩阵运算实 现图形的旋转。
基于旋转矩阵模型的实现方法
1 2
定义旋转矩阵
一个3x3的方阵,用于描述图形的旋转状态。
建立旋转矩阵
通过指定旋转中心、旋转角度和旋转方向,构建 对应的旋转矩阵。
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转的性质:
1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的 角度都是旋转角,旋转角相等.
3、对应点到旋转中心的距离相等 绿色圃中小学教育网
2、不同
运动方向 平移
旋转
直线
顺时针 绿色圃中小学教育网 逆时针
运动量 的衡量 移动一定距离
转动一定的角度
性 质应 用
1.如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转
得到四边形DOEF. 在这个旋转过程中: (1)旋转中心是__旋转角___
(2)经过旋转,点A、B分别移动到什么位置?
A
说一说你是 怎样画的?
B
O
A` B`
绿色圃中小学教育网 旋转时要注意旋转的角度和距离。
当堂达 标
1.下列现象中属于旋转的有( ①③④⑤ )
①飞机螺旋桨的转动 ②电梯上下移动 ③开教室里的窗户
④旋转木马 ⑤摩天轮
C
⑥小朋友滑滑梯
2、四边形AD′C′B′是由正方形ABCD旋转而成.
绿色圃中小学教育网
P69 随堂练习:本图案可以看做是一个菱形 通过几次旋转得到的?每次旋转了多少度?
5次 600, 1200, 1800, 2400, 3000 也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度? 2次 1200 , 2400
绿色圃中小学教育网
解:
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针 360 旋转的角度为 20 120
60
绿色圃中小学教育网
(1)它的旋转中心是钟表的轴心;
性 质应 用
2画出三角形AOB 绕点O顺时针旋转900后的图形。
转180°,则点D所转过的路径长为
B
A O C
D
(
) A.4π cm B.3π cm
C
C.2π cm
D.π cm
绿色圃中小学教育网
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
绿色圃中小学教育网
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度? 3 个 1 1 次 180 6000 3 个 次
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
旋转的基本性质
(1)旋转不改变图形的大小和形状. (2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度 (3)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等.
绿色圃中小学教育网
例1:钟表的分针匀速旋转一周需要60 分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
绿色圃中小学教育网
绿色圃中小学教育网
自转与公转
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网
(3)AO与DO的长有什么关系?BO与EO呢? (4)∠AOD与∠BOE有什么大小关系?
绿色圃中小学教育网
旋 转 性 质 ---观察体会
o
性质1:旋转前、后的图形全等.
风车旋转前后,每个三角形的形状、大小、位置有什么变化?
绿色圃中小学教育网
绿色圃中小学教育网
在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
这个定点称为旋转中心,转动的角称 为旋转角。
A B
旋转角
o
绿色圃中小学教育网
旋转中心
平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
绿色圃中小学教育网
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
C'
B'
点A (1)旋转中心是______
B
D
45° (2)旋转的角度是______ (3) 若正方形的边长是1,
2 1 则C′D=_________
绿色圃中小学教育网
D'
A
当堂达 标
3. 如图,已知□ABCD的对角线
BD=4cm,将□ABCD绕其对称中心O旋
1、旋转不改变图形的大小和形状. 2、任意一对对应点与旋转中心的连线所成的 角度都是旋转角,旋转角相等.
3、对应点到旋转中心的距离相等 绿色圃中小学教育网
2、不同
运动方向 平移
旋转
直线
顺时针 绿色圃中小学教育网 逆时针
运动量 的衡量 移动一定距离
转动一定的角度
性 质应 用
1.如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转
得到四边形DOEF. 在这个旋转过程中: (1)旋转中心是__旋转角___
(2)经过旋转,点A、B分别移动到什么位置?
A
说一说你是 怎样画的?
B
O
A` B`
绿色圃中小学教育网 旋转时要注意旋转的角度和距离。
当堂达 标
1.下列现象中属于旋转的有( ①③④⑤ )
①飞机螺旋桨的转动 ②电梯上下移动 ③开教室里的窗户
④旋转木马 ⑤摩天轮
C
⑥小朋友滑滑梯
2、四边形AD′C′B′是由正方形ABCD旋转而成.
绿色圃中小学教育网
P69 随堂练习:本图案可以看做是一个菱形 通过几次旋转得到的?每次旋转了多少度?
5次 600, 1200, 1800, 2400, 3000 也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度? 2次 1200 , 2400
绿色圃中小学教育网
解:
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针 360 旋转的角度为 20 120
60
绿色圃中小学教育网
(1)它的旋转中心是钟表的轴心;
性 质应 用
2画出三角形AOB 绕点O顺时针旋转900后的图形。
转180°,则点D所转过的路径长为
B
A O C
D
(
) A.4π cm B.3π cm
C
C.2π cm
D.π cm
绿色圃中小学教育网
思考题:香港区徽可以看作是什么“基本图案” 通过怎样的旋转而得到的?
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
绿色圃中小学教育网
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度? 3 个 1 1 次 180 6000 3 个 次
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
旋转的基本性质
(1)旋转不改变图形的大小和形状. (2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度 (3)任意一对对应点与旋转中心的连 线所成的角度都是旋转角. (4)对应点到旋转中心的距离相等.
绿色圃中小学教育网
例1:钟表的分针匀速旋转一周需要60 分. (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
绿色圃中小学教育网
绿色圃中小学教育网
自转与公转
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网
(3)AO与DO的长有什么关系?BO与EO呢? (4)∠AOD与∠BOE有什么大小关系?
绿色圃中小学教育网
旋 转 性 质 ---观察体会
o
性质1:旋转前、后的图形全等.
风车旋转前后,每个三角形的形状、大小、位置有什么变化?
绿色圃中小学教育网
绿色圃中小学教育网
在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
这个定点称为旋转中心,转动的角称 为旋转角。
A B
旋转角
o
绿色圃中小学教育网
旋转中心
平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
绿色圃中小学教育网
(1)上面情景中的转动现 象,有什么共同的特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
C'
B'
点A (1)旋转中心是______
B
D
45° (2)旋转的角度是______ (3) 若正方形的边长是1,
2 1 则C′D=_________
绿色圃中小学教育网
D'
A
当堂达 标
3. 如图,已知□ABCD的对角线
BD=4cm,将□ABCD绕其对称中心O旋