小学六年级奥数教案—29运筹学初步三

合集下载

【最新】小学数学奥数基础教程(六年级)目30讲全

【最新】小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

运筹学教学案例

运筹学教学案例

《运筹学》教学案例管理科学与工程学院系统工程教研室二○○五年五月一日目录案例1 某集团摩托车公司产品年度生产计划的优化研究 (1)1 问题的提出 (1)2 市场调查与生产状况分析 (1)3 建模与求解 (2)4 结果分析 (4)5 方案调整分析 (5)案例2 年度配矿计划优化 (9)1 问题的提出 (9)2 分析与建模 (10)3 计算结果及分析 (10)案例3 某汽车修配厂钢板综合下料问题的研究 (13)1 问题的提出 (13)2 钢板下料现状分析及综合利用设想方案 (13)3 建模与求解 (15)4 结果分析与进一步讨论 (16)案例4 某配合饲料厂关于饲料配方的优化研究 (18)1 问题的提出 (18)2 饲料配方的现状分挤 (18)3 配方优化研究 (19)4 进一步的分析和讨论 (22)案例5 某设计项目人员指派方案的研究 (24)1 问题的提出 (24)2 基本情况分析 (24)3 建模与求解 (25)案例6 关于泗洪县110kV泗金线施工工期的探讨 (29)1 绪论 (29)2 工程概述 (29)3 确定目标任务并列出关系作业表 (30)4 绘制初始网络图 (30)5 计算网络时间参数,确定关键路线 (31)6 工程的时间优化与调整 (31)7 工程费用如下: (32)8 工期探讨摘要 (34)案例7 网络计划 (35)案例8 北方莱金属罐铸造厂生产计划的优化分析 (38)1 问题的提出 (38)2 生产主要过程及员优生产计划 (38)3 计算结果的简单分析 (40)4 生产计划的优化后分析(灵敏度分析) (40)5 结论及建议 (44)案例9 某白泥矿合理配车间题的研究 (46)1 问题的提出 (46)2 现状分析与研究思路 (46)3 建模及计算 (47)4 结果分析与进一步讨论 (48)案例10 运用PERT方法对某研究与开发计划项目进行优化 (51)案例11 火车调车场作业调度问题的分析 (54)1 问题的提出 (54)2 问题分析 (54)3 求解 (55)4 结果分析 (56)案例12 运输路线的最优化问题 (57)1 问题的提出 (57)2 资料及分布 (57)3 建模与求解 (58)4 分析与讨论 (59)案例1 某集团摩托车公司产品年度生产计划的优化研究1 问题的提出某集团摩托车公式是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验,近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

六年级奥林匹克数学基础教程 28 运筹学初步(二)

六年级奥林匹克数学基础教程 28 运筹学初步(二)

小学数学奥数基础教程(六年级)运筹学初步(一)本讲主要研究分配工作问题。

实际工作中经常会碰到分配工作的问题。

由于工作任务的性质不同,每个人的工作能力不同,因而完成这些任务所需的时间和花费的代价也不同。

我们希望通过合理分配工作,使所用时间最少或花费代价最小。

例1甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用16天生产上衣,14天做裤子,共生产448套衣服(每套上衣、裤子各一件);乙厂每月用12天生产上衣,18天生产裤子,共生产720套衣服。

两厂合并后,每月(按30天计算)最多能生产多少套衣服?分析与解:应让善于生产上衣或裤子的厂充分发挥特长。

甲厂生产上衣和裤子的时间比为8∶7,乙厂为2∶3,可见甲厂善于生产裤子,乙厂善于生产上衣。

因为甲厂 30天可生产裤子 448÷14×30=960(条),乙厂30天可生产上衣720÷12×30=1800(件),960<1800,所以甲厂应专门生产裤子,剩下的衣裤由乙厂生产。

设乙厂用x天生产裤子,用(30-x)天生产上衣。

由甲、乙两厂生产的上衣与裤子一样多,可得方程960+720÷18×x=720÷12×(30-x),960+40x=1800-60x,100x=840,x=8.4(天)。

两厂合并后每月最多可生产衣服960+40×8.4=1296(套)。

例2某县农机厂金工车间共有77个工人。

已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。

每3个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。

问:分别安排多少人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?分析与解:如果采用直接假设,那么就要用三个字母分别代替加工甲、乙、丙三种部件的人数,这已经超出了我们的知识范围。

由题目条件看出,每套成品中,甲、乙、丙三种部件的件数之比是3∶1∶9,因为是配套生产,所以生产出的甲、乙、丙三种部件的数量之比也应是3∶1∶9。

小学奥数讲座标准教案-学案-六年级第29讲 对策问题

小学奥数讲座标准教案-学案-六年级第29讲  对策问题

第29讲对策问题商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。

生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆”。

哪一方的策略更胜一筹,哪一方就会取得最终的胜利。

解决这类问题一般采用逆推法和归纳法。

例题1:两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。

挨到谁移走最后一根火柴就算谁输。

如果开始时有1000根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。

先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。

设先移的人为甲,后移的人为乙。

甲要取胜只要取走第999根火柴。

因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。

依次类推,甲取的与乙取的之和为8根火柴)。

由此继续推下去,甲只要取第983根,第975根,……第7根就能保证获胜。

所以,先移火柴的人要保证获胜,第一次应移走7根火柴。

1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。

每人每次可以拿1至3根,不许不拿,乙让甲先拿。

问:谁能一定取胜?他要取胜应采取什么策略?2、两人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。

问:先报数者有必胜的策略吗?例题2:有1987粒棋子。

甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。

现在两人通过抽签决定谁先取。

你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。

不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。

小学数学 奥数方法 小升初数学必备课件 教师教案 20-28

小学数学 奥数方法 小升初数学必备课件 教师教案 20-28

第22讲 两差法
【例题1】 某厂女职工人数是男职工人数的6倍,男职工比女职工少65人。 这个厂男女职工共有多少人?(适于四年级程度)
【思路导航】
根据“人数差÷倍数差=1倍数”,有: 65÷(6-1)=13(人) 那么,这个厂男女职工共有的人数是: 13×(6+1)=91(人)
第22讲 两差法
【例题2】小李买3本日记本,小华买同样的8本日记本,比小李多用2.75 元。小李、小华两人分别用去多少钱?(适于五年级程度) 【思路导航】 小华比小李多用2.75元(总价差),是因为小华比小李多买(8-3)本( 数量差)日记本,用这两个差求出每本日记本的价钱。
【思路导航】 题中盐的重量是不变的数量,盐的重量是: 20×15 % =3 (千克)
在盐水含盐10%时,盐的对应分率是10%,因此盐水的重量 是:3÷10%=30(千克)
加入的水的重量是:30-20=10(千克)
第21讲 守恒法
三、差数守恒法
当应用题中两个数量的差是不变的数量时,要抓住这个差,分析数量关 系解题
பைடு நூலகம்
5×9+14=59 (棵)……………………………棵数 同步教材免费视频
第22讲 两差法
【例题5】用一个杯子向一个空瓶里倒水。如果倒进3杯水,连瓶共重440 克;如果倒进 5 杯水,连瓶共重 600 克。一杯水和一个空瓶各重多少克? (适于五年级程度) 【思路导航】 解这类题,要先找出“暗差”的等量关系,再找解题的最佳方法。 这道题的“暗差”有两个:一个是5-3=2(杯), 另一个是 600-440=160(克)。这里两个暗差的等量关系是: 2 杯水的重 量=160克。 这样就能很容易求出一杯水的重量:160÷2=80(克) 一个空瓶的重量:440-80×3=200(克)

小学奥数最短路线问题(有答案)

小学奥数最短路线问题(有答案)

小学六年级奥数教案—运筹学初步本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。

例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为(10×3+15×2+24)+(12×2+20)=128(分)。

小学数学奥数基础教程 六年级 目 讲全

小学数学奥数基础教程 六年级 目 讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学六年级奥数教案

小学六年级奥数教案

小学六年级奥数教案教案标题:小学六年级奥数教案教案目标:1. 帮助学生提高数学思维能力和解题技巧,培养对数学的兴趣和自信心。

2. 通过奥数训练,培养学生的逻辑思维、问题解决能力和创新思维。

3. 提供学生与同龄人竞争的机会,激发学生的学习动力和积极性。

教学重点:1. 掌握奥数中常见的问题类型和解题方法。

2. 培养学生的逻辑思维和问题分析能力。

3. 培养学生的数学创新思维和解题策略。

教学准备:1. 教师准备奥数教材和题目。

2. 准备黑板、白板、投影仪等教学工具。

3. 分发练习册和纸笔给学生。

教学过程:一、导入(5分钟)1. 引入奥数的概念和重要性,激发学生的兴趣和学习动力。

2. 回顾上一堂课所学的奥数知识,检查学生的掌握情况。

二、知识讲解(15分钟)1. 介绍奥数中常见的问题类型,如逻辑推理、数列、几何等。

2. 分析每种问题类型的解题方法和策略,引导学生理解和掌握。

三、示范与练习(20分钟)1. 教师示范解答一个奥数题目,详细解释解题思路和步骤。

2. 学生进行小组或个人练习,解答几个类似的奥数题目。

3. 教师巡回指导,解答学生的疑问并给予肯定和鼓励。

四、拓展与创新(15分钟)1. 提供一些更具挑战性的奥数问题,鼓励学生进行思考和解答。

2. 引导学生尝试使用不同的解题方法和策略,培养数学创新思维。

五、总结与反思(5分钟)1. 总结本节课所学的奥数知识和解题方法。

2. 让学生分享他们在解题过程中的思考和体会。

3. 鼓励学生提出问题和困惑,解答学生的疑问。

六、作业布置(5分钟)1. 布置适量的奥数练习题,巩固和拓展学生的知识。

2. 鼓励学生积极参加奥数竞赛和活动,提供相关信息和报名方式。

教学反思:1. 教师应根据学生的实际情况和水平,调整教学内容和难度。

2. 教师要耐心指导学生解题,鼓励学生勇于尝试和思考。

3. 教师要及时给予学生反馈和鼓励,激发学生的学习兴趣和自信心。

最新小学数学奥数基础教程(六年级)目30讲全[1]

最新小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

运筹问题小学数学教案设计

运筹问题小学数学教案设计

运筹问题小学数学教案设计教案标题:运筹问题小学数学教案设计教学目标:1. 学生能够理解运筹问题的概念,并能够在实际问题中应用运筹思维解决问题。

2. 学生能够分析问题,提出合理的解决方案,并进行有效的计算和推理。

3. 学生能够培养团队合作和沟通能力,通过合作解决运筹问题。

教学重点:1. 运筹问题的概念和基本思维方式。

2. 运筹问题的解决方法和策略。

3. 运筹问题在实际生活中的应用。

教学准备:1. 教师准备:教案、教学素材、小组合作活动的任务卡。

2. 学生准备:学生教材、练习册、运算工具(如计算器)。

教学过程:一、导入(5分钟)1. 教师通过提问和讨论的方式引入运筹问题的概念,例如:“你们知道什么是运筹问题吗?它有什么特点?”2. 学生回答后,教师给予肯定的回应,并解释运筹问题的概念和基本思维方式。

二、知识讲解(15分钟)1. 教师通过示例和讲解的方式介绍运筹问题的解决方法和策略,例如:贪心算法、动态规划等。

2. 教师结合具体问题进行讲解,引导学生理解解决问题的思路和步骤。

三、小组合作活动(25分钟)1. 学生分成小组,每组4-5人,教师分发小组合作活动的任务卡。

2. 学生根据任务卡上的问题,运用运筹思维解决问题,并记录解决过程和结果。

3. 教师在活动过程中进行巡视和指导,帮助学生解决问题和提供反馈。

四、展示和总结(10分钟)1. 每个小组选派一名代表,向全班展示他们的解决方案和思考过程。

2. 教师引导学生进行讨论和总结,总结运筹问题的基本思维方式和解决方法。

3. 教师对学生的表现给予肯定和鼓励,提出改进意见和建议。

五、作业布置(5分钟)1. 教师布置相关的练习题,要求学生在家完成,并写下解题过程和思考。

2. 教师提醒学生复习运筹问题的概念和解决方法,为下节课做好准备。

教学反思:通过本节课的教学,学生能够了解运筹问题的概念和基本思维方式,并能够在小组合作活动中运用运筹思维解决问题。

教师在教学过程中及时给予学生指导和反馈,激发学生的学习兴趣和参与度。

运筹学基础教程教学设计

运筹学基础教程教学设计

运筹学基础教程教学设计一、教学目标本教学设计旨在通过系统地讲解运筹学基础,使学生掌握常用的运筹学方法和技巧,进而能够运用所学知识解决实际问题。

二、教学内容2.1 运筹学基础知识•运筹学的概念与作用•运筹学基本模型和方法•运筹学模型的求解技巧2.2 线性规划•线性规划的概念和基本形式•线性规划的图形解法和单纯形法求解•线性规划实例2.3 整数规划•整数规划的概念和基本形式•整数规划的求解方法•整数规划实例2.4 动态规划•动态规划的概念和基本原理•动态规划的应用实例本教学设计采用课堂讲授、案例分析和课堂互动等多种教学方法,旨在使学生在愉悦的氛围中学习和掌握运筹学基础知识。

3.1 课堂讲授教师结合运筹学基础知识,通过教材、PPT等多种形式,进行课堂讲授。

3.2 案例分析教师通过经典案例,引导学生理解和掌握运筹学的基本思想和方法,提高学生的解决问题的能力。

3.3 课堂互动教师引导学生进行讨论、思考,提高学生的思维能力和解决问题的能力。

四、教学评价4.1 启发式评价通过课堂互动、知识问答等方式,考察学生的学习成果和对知识的掌握情况。

4.2 个人作业评价对学生进行个人作业评价,通过作业的批改、点评等方式,提高学生的自我学习能力。

4.3 综合评价针对学生的综合实际能力,制定考试试卷,考察学生的实际应用能力。

五、教学时长本教学设计总时长为36个学时,分别为课堂讲授、案例分析和课堂互动等多个环节。

为了辅助学生学习,本教学设计将配备以下教学资源:•教材:《运筹学基础》•PPT:运筹学基础知识介绍、案例分析等PPT•视频:相关案例的讲解视频•作业:练习题、课后习题等七、教学反思本教学设计强调理论与实践相结合,引导学生掌握运筹学基础知识和解决实际问题的能力。

同时,本教学设计也需要在教学过程中针对学生的实际情况进行一定的调整和修改。

(完整)小学奥数最短路线问题(有答案)

(完整)小学奥数最短路线问题(有答案)

小学六年级奥数教案—运筹学初步 本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题 例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间? 分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共分钟(见下图)。

需60 例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题 例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间? 分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为 (10×3+15×2+24)+(12×2+20)=128(分)。

小学数学奥数基础教程(六年级)目30讲全[1]

小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学六年级奥数教案(完整30讲)

小学六年级奥数教案(完整30讲)

小学六年级奥数教案—01比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

也就是说,6.借助第三个数进行比较。

有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。

(2)对于分数m和n,若m-k>n-k,则m>n。

前一个差比较小,所以m<n。

(3)对于分数m和n,若k-m<k-n,则m>n。

注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。

(4)把两个已知分数的分母、分子分别相加,得到一个新分数。

新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。

利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全

小学数学奥数基础教程(六年级)目30讲全小学奥数基础教程(六年级) - 1 - 小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一) 第6讲工程问题(二) 第7讲巧用单位“1” 第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一) 第14讲立体图形(二) 第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

小学奥数基础教程(六年级) - 2 - 如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

(完整版)小学数学奥数基础教程(六年级)目30讲全

(完整版)小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

《运筹学》教案(3)

《运筹学》教案(3)
1 1
x2
10 8 6 4
d1d1+
A
B
d2+ d2x1
8
2 2
4 6
d3-
d3+
10
目标规划的图解法(续)
min z P1d1 P2 d 2 P3 (2d 3 d 4 ) x1 x2 d1 d1 40 x1 x2 d 2 d 2 50 x d d 24 1 3 3 x2 d 4 d 4 30 x , x 0, 1 2 d i , d i 0, d i d i 0, i 1,2,3,4.
j +
P2
1 -1 -1
2P3
-1 1
P3 b 26 10 24 -1 4 θ
XB x1 x2 d1 - d1+ d2- d2+ d3- d3+ d4 - d4 + 1
-1
[1]
1
-1
x1 d4 - P1 P2 P3
1
1 1 1 1 -1
1
1
-1
-1 1
1
1
1
目 标 规 划 的 练 习
某运输问题如下表所示。在尽量满足各点需求的前提下, 按重要程度提出下列目标: ⑴总运费尽量控制在40000元以下; ⑵保证对乙点的供应; ⑶甲与丙尽可能按其需求的比例压缩供应; ⑷发点Ⅱ尽可能供给甲1000个单位,履行合同; ⑸尽量减少Ⅰ对丙的供应量。 试制定调运方案。

收点 发点 Ⅰ Ⅱ 需求量
甲 10 8
乙 4 10
丙 12 3
供量
3000 4000 7000 2000 1500 5000 8500

小学六年级奥数教案—29运筹学初步三

小学六年级奥数教案—29运筹学初步三

小学六年级奥数教案—29运筹学初步三本教程共30讲运筹学初步(三)本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。

例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为(10×3+15×2+24)+(12×2+20)=128(分)。

运筹学教案

运筹学教案

《绪论》(2课时)【教学流程图】举例引入,绪论运筹学运筹学与数学模型的基本概念管理学课堂练习课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。

任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是xx活动内容的核心,在教学过程中,任务驱动被多次利用。

自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。

学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。

【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)xx马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1 战国初期,xx的国王要求xx和他赛马,规定各人从自己的xx、中马、下马中各选一匹xx比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。

当时xx的xx忌的马强,结果每年xx都要输掉三千两银子。

但xx给xx出主意,可使xx反输为赢。

试问:如果双方都不对自己的策略保密,当齐xx行动时,哪一方会赢?赢多少?反之呢?例1-2 有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。

求双方的最优策略。

乙囚犯抵赖坦白甲囚犯抵赖 -1,-1-10,0坦白 0,-10-8,-8定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。

它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。

二、学习运筹学的方法1、读懂教材上的文字;2、多练习做题,多动脑筋思考;3、作业8次;4、考试;5、EXCEL操作与手动操作结合。

二、学生练习(20分钟)三、课堂小结(5分钟)《线性规划及单纯形法》(2课时)【教学流程图】运筹学运筹学与线性规划的基本概念线性规划(结合例题讲解)线性规划的标准型目标函数结合例题讲解线性规划标准型的转化方法约束条件的右端常数约束条件为不等式课堂练习课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级奥数教案—29运筹学初步三
本教程共30讲
运筹学初步(三)
本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

当然,限于现有的知识水平,我们仅仅是初步探索一下。

1.统筹安排问题
例1星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?
分析与解:如果按照题目告诉的几件事,一件一件去做,要95分钟。

要想节约时间,就要想想在哪段时间里闲着,能否利用闲着的时间做其它事。

最合理的安排是:先洗脏衣服的领子和袖口,接着打开全自动洗衣机洗衣服,在洗衣服的40分钟内擦玻璃和收拾厨房,最后晾衣服,共需60分钟(见下图)。

例1告诉我们,当有许多事要做时,科学地安排好先后顺序,就能用较少的时间完成较多的事情。

2.排队问题
例2理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10,12,15,20和24分钟。

怎样安排他们的理发顺序,才能使这五人理发和等候所用时间的总和最少?最少要用多少时间?
分析与解:一人理发时,其他人需等待,为使总的等待时间尽量短,应让理发所需时间少的人先理。

甲先给需10分钟的人理发,然后15分钟的,最后24分钟的;乙先给需12分钟的人理发,然后20分钟的。

甲给
需10分钟的人理发时,有2人等待,占用三人的时间和为(10×3)分;然后,甲给需 15分钟的人理发,有 1人等待,占用两人的时间和为(15×2)分;最后,甲给需 24分钟的人理发,无人等待。

甲理发的三个人,共用(10×3+15×2+24)分,乙理发的两个人,共用(12×2+20)分。

总的占用时间为
(10×3+15×2+24)+(12×2+20)=128(分)。

按照上面的安排,从第一人开始理发到五个人全部理完,用了 10+15+24=49(分)。

如果题目中再要求从第一人开始理发到五人全部理完的时间最短,那么做个调整,甲依次给需10,12,20分钟的人理发,乙依次给需15,24分钟的人理发,总的占用时间仍是128分钟,而五人全部理完所用时间为
10+12+20=42(分)。

例3车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元。

现有两名工作效率相同的修理工,怎样安排才能使得修复的时间最短且经济损失最少?
分析与解:因为(18+30+17+25+20)÷2=55(分),经过组合,一人修需18,17和20分钟的三台,另一人修需30和25分钟的两台,修复时间最短,为55分钟。

上面只考虑修复时间,没考虑经济损失,要使经济损失少,就要使总停产时间尽量短,显然应先修理修复时间短的。

第一人按需17,18,20分钟的顺序修理,第2人按需25,30分钟的顺序修理,经济损失为
5×[(17×3+18×2+20)+(25×2+30)]=935(元)。

3.最短路线问题
例4 右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分)。

小明从A到B最快要几分钟?
分析与解:我们采用分析排除法,将道路图逐步简化。

从A到O有两条路,A→C→O用6分钟,A→F→O用7分钟,排除后者,可将FO抹去,但AF不能抹去,因为从A到B还有其它路线经过AF,简化为左下图。

从A到E还剩两条路,A→C→G→E用12分钟,A→C→O→E用10分钟,排除前者,可将CG,GE抹去,简化为右上图。

从A到D还剩两条路,A→C→O→D用12分钟,A→H→D用13分钟,排除后者,可将AH,HD抹去,简化为左下图。

从A到B还剩两条路,A→C→O→E→B用17分钟,A→C→O→D→B
用16分钟,排除前者,可将OE,EB抹去,简化为右上图。

小明按A→C→O→D→B走最快,用16分钟。

4.场地设置问题
例5 下图是A,B,C,D,E五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米)。

现在要在五村之中选一个村建立一所小学。

为使所有学生到学校的总距离最短,试确定最合理的方案。

分析与解:我们采用比较学校设在相邻两村的差别的方法。

例如比较A和 C,若设在 A村,则在 C村一侧将集结 20+20+35+50=125(人),
这些人都要走 AC这段路;若设在C村,则只有40人走AC这段路。

对这两种方案,走其余各段路的人数完全相同,所以设在C村比设在A村好。

从上面比较A和C的过程可以看出,场地设置问题不必考虑场地之间的距离,只需比较两个场地集结的人数多少,哪个场地集结的人数越多,就应设在哪。

同理,经比较得到C比B好,D比E好。

最后比较C和D。

若设在 C 村,则在 D村一侧将集结 35+ 50= 85(人);若设在 D村,则在C村一侧将集结 40+20+20=80(人)。

因为在D村集结的人数比C村多,所以设在D村比C村好。

经过上面的比较,最合理的方案是设在D村。

不难发现,本题的解法与第27讲例2的解法十分类似。

例6某天然气站要安装天然气管道通往位于一条环形线上的A~G七个居民区,每两个居民区间的距离如下图所示(单位:千米)。

管道有粗细两种规格,粗管可供所有7个居民区用气,每千米8000元,细管只能供1个居民区用气,每千米3000元。

粗、细管的转接处必须在居民区中。

问:应怎样搭配使用这两种管道,才能使费用最省?
分析与解:在长度相同的情况下,每根粗管的费用大于2根细管的费用,小于3根细管的费用,所以安装管道时,只要后面需要供气的居民区多于2个,这一段就应选用粗管。

从天然气站开始,分成顺时针与逆时针两条线路安装,因为每条线路的后面至多有两个居民区由细管通达,共有7个居民区,所以至少有3个居民区由粗管通达。

因为长度相同时,2根或1根细管的费用都低于1根粗管的费用,所以由粗管通达的几个居民区的距离越短越好,而顺时针与逆时针两条线路未衔接部份的距离越长越好。

经过计算比较,得到最佳方案:
(1)天然气站经G,F,E到D安装粗管,D到C安装2根细管,C
到B安装1根细管;
(2)天然气站到A安装1根细管。

此时总费用最少,为
8000×(3+12+8+6)+3000×2×5+3000×(9+10)=319000(元)。

练习29
1.早饭前妈妈要干好多的事:烧开水要15分钟,擦桌椅要8分钟,准备暖瓶要1分钟,灌开水要2分钟,买油条要10分钟,煮牛奶要7分钟。

如果灶具上只有一个火,那么全部做完这些工作最少需要多少时间?怎样安排?
2.甲、乙、丙三名车工准备在同样效率的3个车床上加工七个零件,各零件加工所需时间分别为4,5,6,6,8,9,9分钟,三人同时开始工作。

问:加工完七个零件最少需多长时间?
3.车间里有5台车床同时出现故障。

已知第一台至第五台修复的时间依次为15,8,29,7,10分钟,每台车床停产一分钟造成经济损失5元。

问:(1)如果只有一名修理工,那么怎样安排修理顺序才能使经济损失最少?(2)如果有两名修理工,那么修复时间最少需多少分钟?
4.下页左上图是一张道路图,每条路上的数是小王走这段路所需的时间(单位:分)。

小王从A到B,最快需要几分钟?
5.东升乡有8个行政村。

分布如右上图所示,点表示村庄,线表示道路,数字表示道路的长(单位:千米)。

现在这个乡要建立有线广播网,沿道路架设电线。

问:电线至少要架多长?
6.有七个村庄A1,A2,…,A7分布在公路两侧(见下图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?
7.有一个水塔要供应某条公路旁的A~F六个居民点用水(见下图,单位:千米),要安装水管,有粗细两种水管,粗管足够供应6个居民点用水,细管只能供应1个居民点用水,粗管每千米要7000元,细管每千米要2000元,粗细管怎样互相搭配,才能使费用最省?费用应是多少?
答案与提示练习29
1.22分。

提示:先烧开水后煮牛奶共需22分,其它事情可以在这个期间做,顺序是买油条,准备暖瓶,擦桌椅(水开时暂停,煮上奶),灌开水,继续擦桌椅。

2.17分。

3.(1)780元;(2)36分。

提示:(1)按修复时间需7,8,10,15,29分的顺序修理;(2)一人修需7分和29分的,另一人修需8,10,15分的。

4.48分。

提示:A→E→O→G→B。

5.50千米。

提示:架设的线路如下图。

6.D。

提示:本题可简化为“B,C,D,E,F处分别站着1,1,2,2,1个人(见下页图),求一点,使所有人走到这一点的距离和最小”。

7.从水塔到C点铺粗管,最后三个居民点铺细管,总费用为297000元。

提示:当长度相同时,四根细管的费用超过一根粗管,所以最后三个居民点用细管。

相关文档
最新文档