第3章+线性规划(运输问题)

合集下载

运筹学(第四版):第3章 运输问题

运筹学(第四版):第3章 运输问题

x11 x12 x1n x21 x22 x2n xm1 xm2 xmn
u1 1 1 1
u2
um
1
1
1
1
1
1
m行
v1 1
1
1
v2 1
vn
1
1
1
1
1
n行
5
第1节 运输问题的数学模型
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和 第m+j个为1以外,其余的都为零。即
21
2.2 最优解的判别
判别的方法是计算空格(非基变量)的检验数cij−CBB-1Pij, i,j∈N。因运输问题的目标函数是要求实现最小化,故当 所有的cij−CBB-1Pij≥0时,为最优解。下面介绍两种求空格 检验数的方法。 1.闭回路法; 2.位势法
22
2.2 最优解的判别
1.闭回路法
2.1 确定初始基可行解
第二步:从行或列差额中选出最大者,选择它所在行或列 中的最小元素。在表3-10中B2列是最大差额所在列。B2列 中最小元素为4,可确定A3的产品先供应B2的需要。得表311
销 地 B1 B2 B3 B4 产
加工厂

A1
7
A2
4
A3
6
9
销量 3 6 5 6
18
2.1 确定初始基可行解
销 地 B1 B2 B3 B4 产
加工厂

A1
A2
3
43 7
1
4
A3
6
39
销量
36 56
12
2.1 确定初始基可行解
用最小元素法给出的初始解是运输问题的基可行解,其理由为: (1) 用最小元素法给出的初始解,是从单位运价表中逐次地

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。

运筹学第三章 运输问题

运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij

运筹学 第三章 运输问题

运筹学 第三章 运输问题
(或者在同时划去Ai行与Bj列时,在该行或该列的任意空格处填加一 个0。)
这样可以保证填过数或零的格为m+n-1个,即保证基变量的个数为 m+n-1个。
2021/3/14
14
2.Vogel法
Vogel法的思想是:一地的产品如果不能按照最小运
费就近供应,就考虑次小运费,这就有差额,差额越大, 说明不能按最小运费调运时,运费增加得越多。因而差 额越大处,就应当采用最小运费调运。
同理可以求得 v4=10,u2= -1,等等见上表。
检验数的求法,即用公式 ijciju,i vj
如 1 1 c 1 1 u 1 v 1 3 0 2 1 。
2021/3/14
23
位势法计算检验数:
检验数: ijcijCBB1Pij
cijYiP jcij(u1,..u.m , ,v1,.v.n.)Pij
3
B4
ui
3 10
0
-1 8
-1
35
-5
10
B1
3
31
7
2
B2
11 9
64
9
B3
4(+1) 3 1 (-1) 2
10
3
B4
ui
3(-1) 10
0
+1 8
-1
35
-5
10
2021/3/14
26
调整运量后的新方案:
销地
产地
B1
A1
A2
3
A3
B2
B3
5
6
销量
3
6
5
B4
产量
2
7
1
4
3
9

第3章运输问题

第3章运输问题

ui + v j cij i = 1,2,..,m s.t. j = 1,..,n ui ,v j的符号不限
运输问题
解 的 最 优 性 检 验
检验数:目标函数的系数减去对偶变量之和
原问题检验数:σij=cij-(ui+vj) 特别对于m+n-1个基变量,有 σij=0
运输问题
B4 4 4 11 2 12 2 10 1 3 2 9 14 5 12 11 8 6 14 12 14
B2
B3 12
产量
16 10 22 48
ij 0, 此时的解为最优解。 z 8 2 14 5 12 4 4 11 2 9 8 6 244 246 2
运输问题
2.对偶变量法(位势法)
解 的 最 优 性 检 验
位势:设对应基变量xij的m+n-1个i、j , 存 在 ui,vj 满 足 ui+vj=cij,i=1,2,..,m; j=1,2 ,… ,n称这些ui , vj 为该基本可 行解对应的位势。
运输问题
2.对偶变量法(位势法)
解 的 最 优 性 检 验
运输问题
最小元素法举例
A1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
60 16 10 2 3 9 10 8 2 20 8 14 5 11 8 6 22 80 8 14 12 14 48 0 0 10 6 10
4
6
11
0
0
运输问题
最小元素法举例
A1 A2 A3
销量
B1 B2 B3 B4
4 12
2 列 罚 3 数 4
2
2

第3章 运输问题

第3章  运输问题

第3章 运输问题判断下列说法是否正确:03100011运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,无穷多最优解,无界解,无可行解; 03100021在运输问题中,只要给出一组含(m +N -1)个非零的ij x ,且满足1niji j xa ==∑,1mij j i x b ==∑,就可以作为一个初始基可行解;03100031表上作业法实质就是求解运输问题的单纯形法;03100041按最小元素法(或伏格尔法)给出的初始基可行解,从每一个空格出发可以找出而且仅能找出唯一的闭合回路;03100051运输问题就是指商品的调运问题;03100061产地数与销地数相等的运输问题时产销平衡运输问题; 03100071运输问题的数学模型是线性规划模型。

03100081运输问题中的产地产量之和与销地之和一定相等 03100091运输问题约束方程中独立方程个数少于m+n 个。

简答题03200011试述运输问题数学模型的特征,为什么模型(m +n )个约束中最多只能有(m +n -1)个是独立的?03200021、如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题?03200031.简述运输问题的特点03200041.试述表上作业法在运输问题的求解中的应用 03200051.“最小元素法”和“伏格尔”法的基本思想及基本操作。

03200061.闭合回路的构成以及利用闭合回路法求检验数的基本操作。

03200071.利用位势法求检验数以及利用闭合回路进行方案调整的基本操03301011 用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。

03301021用最小元素法求下列运价及供需表给出的运输问题的初始调运方案。

03301041 求解下列运输问题的最优解:03301071 应用最小元素法求解初始解的方法解下面的产销不平衡运输模型。

销地1的需求量必须03302011 考虑下列运输问题:(1(2)把问题化为线形规划问题,用单纯形法求解。

第3章 运输问题

第3章 运输问题

第三章运输问题一、选择1、运输问题在用表上作业法计算得时候,用闭回路法进行调整检验时,通过任一空格可以找到( )闭回路A、惟一B、多个 C、零个D不能确定2、在产销不平衡得运输问题中,如果产大于销,我们(B )把她变成一个产销平衡得运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法3、最小元素法得基本思想就就是( D)。

A依次供应B全面供应 C 选择供应D就近供应4、运输问题中在闭回路调整中,使方案中有数字得格为( C )。

A m B n C m+n D m+n-15、在表上作业法中,调运方案中有数字得格为( C )Am+n B m-n Cm+n-1 D m*n6、运输问题得数学模型中,包含有(D)变量。

A m+n Bm-n C m+n-1 Dm*n7、运输问题得数学模型中,包含有(A)个约束条件。

A m+nB m-n Cm+n-1 D m*n8、运输问题得数学模型中,系数矩阵中线性独立得列向量得最大个数为(C)Am+n B m-n C m+n-1 Dm*n9、运输问题得解中得基变量数一般为(C )A m+nB m-nC m+n-1D m*n10、运输问题中,在检验数表上所有检验数都(C ),此时运输表中给出得方案就就是最优方案。

A大于零B等于零C大于等于零D小于零11.在产销不平衡得运输问题中,如果销大于产时,可以在产销平衡表上( A),把她变成一个产销平衡得运输问题A 假想一个产地B 假想一个销地C 去掉一个产地D 没有办法12、运输问题数学模型得特点之一就是( )A一定有最优解B不一定有最优解C 一定有基可行解D不一定有基可行解13、运输问题得数学模型得约束条件得系数矩阵得元素由()组成。

A 0B1C0,1D不确定14、二、填空1、求解不平衡得运输问题得基本思想就是(设立虚供地或虚需求点,化为供求平衡得标准形式) 。

2、运输问题中求初始基本可行解得方法通常有(最小元素法)、(伏格尔法)两种方法。

《运筹学》第三章 运输问题

《运筹学》第三章 运输问题

二、表上作业法
计算步骤:
(1) 找出初始调运方案。即在(m×n)产销平衡表 上给出m+n-1个数字格。(最小元素法、西北角法 或伏格尔法) 确定m+n-1个基变量 (2) 求检验数。(闭回路法或位势法) 判别是 否达到最优解。如已是最优解,则停止计算,否 则转到下一步。 空格 (3)对方案进行改善,找出新的调运方案。 (表上闭回路法调整) (4) 重复(2)、(3),直到求得最优调运方案。
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4
3
6 6
1
3 5 6
9
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4 9
3
6 6
1
-1
3
5
6
B1 A1 A2 A3 销量 3 1 3
B2 2 1 6 6
B3 4 1
B4 3 -1 3
产量 7 4 9
(ui+vj)
- B2 9 8 4 B3 3 2 -2 B4 10 9 5
A3 -3
σij
B1 = A1 A2 A3 1 0 10 B2 2 1 0 B3 B4 0 0 0 -1 12 0
表中还有负数,说明 还未得到最优解,应 继续调整。 用位势法与用闭回路法 算出的检验数? 相同
3、解的改进
——闭合回路调整法(原理同单纯形法一样) 上例: min( σ ij 0 ) pq
m
n
系数列向量的结构: A ij ( 0, 0, 0 ,, 0, 0 ) 1, 0 1,
第 i个
第 ( m j )个

运筹学第三章 运输问题

运筹学第三章 运输问题
则称该运输问题为产销平衡问题;否则,称 产销不平衡。首先讨论产销平衡问题。
8
1.运输问题模型及有关概念
表4-3 运输问题数据表
销地
产地
A1 A2

Am
销量
B1 B2 … Bn
c11
c12 … c1n
c21
c22 … c2n
┇ ┇ ┇┇
cm1
cm2 … cmn
b1
b2 … bn
产量
a1 a2

am
设 xij 为从产地 Ai 运往销地 Bj 的运
式(4-8)中的变量称为这个闭回路的顶点。
22
1.运输问题模型及有关概念
例如,x13, x16, x36, x34, x24, x23 ; x23, x53, x55, x45, x41, x21 ; x11, x14, x34, x31等都是闭回路。
若把闭回路的各变量格看作节点, 在表中可以画出如下形式的闭回路:
得到下列运输量表:
4
1.运输问题模型及有关概念
Min Z s.t.
= 6x11+4x12+6x13+6x21+5x22+5x23 x11+ x12 + x13 = 200
x21 + x22+ x23 = 300
x11 + x21 = 150
x12 + x22 = 150
x13 + x23 = 200
2.每列只有两个 1,其余为 0,分别 表示只有一个产地和一个销地被使用。
7
1.运输问题模型及有关概念
一般运输问题的线性规划模型及求解思路
一般运输问题的提法:
假设 A1, A2,…,Am 表示某物资的m个 产地;B1,B2,…,Bn 表示某物资的n个销地; ai表示产地 Ai 的产量;bj 表示销地 Bj 的 销量;cij 表示把物资从产地 Ai 运往销地 Bj 的单位运价(表4-3)。如果 a1 + a2 + … + am = b1 + b2 + … + bn

第三章运输问题

第三章运输问题

5
设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n),由于从Ai运出的物资 总量应等于Ai的产量ai,因此xij应满足:
x
j 1
n
ij
ai
i 1,2, , m
6
运到Bj的物资总量应该等于Bj的销量bj,所以xij还 应满足:
m
第三章 运输问题
本章包含三部分的内容 运输问题及其数学模型 运输问题的表上作业法 运输问题的进一步研究
1
§1 运输问题及其数学模型
日常生活中,人们经常需要将某些物品由一个空间 位置移动到另一个空间位置,这就产生了运输,如 何判定科学的运输方案,使运输所需的总费用最少, 就是运输问题的模型需要解决的问题。
25
调 运
销地 量 B1
B2 90 150
X12
B3 70 100
X13
产量 200 250
产地
50
A1
X11
A2
销 量
50 80 X21
65
X22
200 75
X23
100
150
200
450
26
注:
能够作为表上作业法的基可行解的必要条件是
1. 基变量的个数为m+n-1个; 2. 在基可行解中不存在以非零元素为顶点的闭回 路。
5. 所有约束条件都是等式约束;
6. 各产地产量之和等于各销地销量之足所有约束条件
2. 基变量对应的约束方程组的系数列向量线性 无关。
3. 解中非零变量的个数≤m+n-1个 4. 为使迭代顺利进行,基变量的个数在进行迭 代过程中保持为m+n-1个 5. 将基可行解中基变量的值填入运输表中,非 基变量对应的格不填入数字,称为空格。

管理运筹学第三章运输问题

管理运筹学第三章运输问题

供 = 5 应 地 = 2 约 = 3 束 = 2 = 3 需 求 = 1 地 = 4 约 束 ≥ 0
第二节 表上作业法求初始解、 初始值 一、西北角法 (梯形下降)
运价 收点
(元/吨)
B1 B2 B3 B4
4 18 30 0 14 4 4
发量 (吨)
4
0 0 0
发点
A1
2
12 5 20 25
10
015 4 20
4
第二节 表上作业法求初始解、 初始值 初始解: 初始值:
X12=4吨 • S0=4×12+4×10+1×25+6×15 X14=4吨 • +4×14+1×18 X22=1吨 X23=6吨 •=48+40+25+90+56+18 X31=4吨 X32=1吨 • =277元<329元(起点优于西北角法) 变量个数=行数加列数减1 20吨
发量 5 (吨)
3 1 0《产大于需》增加源自5虚拟收点B1 B2 B3 B4 B
2 1
(元/吨)
4
A1 A2 A3
收 量(吨)
2 10 7
0
311
3
2 4
4
3 9 3 2 6 0
0 7 0 5 0 7
0
2
0
3 8
0
5 1
3 0
2 4
0
2
3
4
19
初 始 可 行 解 : 初 始 值 : S0=22+41+04+33+92+14 C 23 X11=2吨 +23=45元 C12 X14=1吨 =11-4+9-3>0; = 5-9+2-1=C 25 C13 3 X15=4吨 C 21 X22=3吨 =3-4+2-1=0 C31 ; = 0-0+4-9=5 C 32 C 35 X24=2吨 Cij C25 5; X25 进基 X33=4吨 =10-2+4-9>0; =7-2+4-2>0 X34=3吨

第3章+线性规划(运输问题)

第3章+线性规划(运输问题)
如果第一个工厂的生产量小于第一个销售点的需求量, 则先将第一个工厂的全部产品运往第一个销售点,不 足的需求由第二个补足。
18
销地
1
2
3
4 供应量
9 12 9
6
1
40
10
50 10

7 2

6 3
需求量 40
3
7
7
30
30
5
9 11
30
20
40 60 20
30
30
60 30 50
20
x11,x12,x22,x23,x33,x346个变量构成一个基本初始可行解。 19
1 2 3 … n 供应
1 c11
出2
发 地
c21 …
m cm1
成本 cij
c1n s1 c2n s2 ……
cmn sm
需求 d1
到达地 dn ∑
4
运输问题
引例:设某电视机厂有三个分厂,生产同 一种彩色电视机,供应该厂在市内的四个 门市部销售。已知三个分厂的日生产能力 分别是50,60,50台,四个门市部的日销量 分别为40,40,60,20台。从各个分厂运往 各门市部的运费如下表所示,试安排一个 运费最低的运输计划。
16
平衡运输问题的表上作业法
(一)运输问题初始可行解的获得
西北角法——从西北角的第一格开始安排运输 计划
具体步骤
17
平衡运输问题的表上作业法
具体步骤
取其相应的供应量和需求量中的最小值作为初始 基本可行解的第一个分量
如果第一个工厂的生产量大于第一个销售点的需求, 那么就由第一个工厂全部满足第一个销售点的需要, 工厂商品的剩余部分运八第二个销售点;

运筹学 第3章 运输问题

运筹学 第3章 运输问题

第三章运输问题在生产实际中,经常需要将某种物资从一些产地运往一些销地,因而存在如何调运使总的运费最小的问题。

这类问题一般可用线性规划模型来描述,当然可以用单纯形法求解。

但由于其模型结构特殊,学者们提供了更为简便和直观的解法—-表上作业法。

此外,有些线性规划问题从实际意义上看,并非运输问题,但其模型结构类似运输问题,也可以化作运输问题进行求解。

第一节运输问题及其数学模型首先来分析下面的问题。

例3。

1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。

三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。

已知各收购站到各纺织厂的单位运价如表3-1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。

表3—2由于总供应量等于总需求量,因此,一方面从某收购站运往各纺织厂的总棉花数量等该收购站的供应量,即x11+x12+x13 = 50x21+x22+x23 = 45x31+x32+x33 = 65另一方面从各收购站运往某纺织厂的总棉花数量等该纺织厂的需要量,即x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70因此有该问题的数学模型为min f= 4x 11+8x 12+5x 13+6x 21+3x 22+6x 23+2x 31+5x 32+7x 33x 11+x 12+x 13 = 50 x 21+x 22+x 23 = 45 x 31+x 32+x 33 = 65 x 11+x 21+x 31 = 20 x 12+x 22+x 32 = 70 x 13+x 23+x 33 = 70x ij ≥0,i=1,2,3;j=1,2,3 生产实际中的一般的运输问题可用以下数学语言描述。

管理运筹学讲义 第3章 运输问题(6学时)

管理运筹学讲义 第3章 运输问题(6学时)
m行 n行
... 1
其系数列向量的结构是:
A ij (0,..., 0,1, 0,..., 0,1, 0,..., 0) T , 除第i个和第(m j)个分量为 1外,其他分量全等于零。因此,运输问题具有以下特点: 约束条件系数矩阵的元素为0或1; 约束矩阵每一列都有两个非零元素,这对应于每一个变量在 前m个约束方程中出现一次,在后n个约束方程中出现一次。
Ai
Bj
表 3- 5
B1 x11 C11 x21
B2 x12 C12 x22 C22 x31 x32 C32 b2
运价表(元/吨) B4 产量
A3
需要量
3 5 4 5
2 3 1 7
6 8 2 8
3 2 9 3
10 8 5 23
解:设xij ( i =1,2,3;j =1,2,3,4)为i个产粮地 运往第j个需求地的运量,这样得到下列运输问题的数 学模型:
Min z = 3x11+ 2x12+ 6x13+ 3x14+ 5x21+ 3x22+ 8x23+ 2x24 + 4x31+ x32+ 2x33+ 9x34 x11 x12 x13 x14 10 x11 x21 x31 5 x x x 7 12 22 32 x x x x 8 21 22 23 24 x13 x23 x33 8 x x x x 5 31 32 33 34 x14 x24 x34 3
下表中填有数字的格为基变量,它们对应的约束 方程组的系数列向量线型无关:
B1
4
B2
12

管理运筹学 第3章 运输问题

管理运筹学 第3章 运输问题

运费 销地 单价 产地 A1 A2 销量
B1
B2
B3
产量 (件) 200 300
6 6 150
4 5 150
6 5 200
设xij表示从产地Ai调运到Bj的运输量(i=1,2;j=1,2,3)
Min f=6x11+ 4x12+ 6x13+ 6x21+5x22+ 5x23
x11+ x12+ x13=200 x21+ x22+ x23=300 x11+ x21=150 x12+ x22=150 x13+ x23=200 xij ≥0
运输 销地 单价 产地 1 2 3 4 销量
1
2
3
4
D
产量
10.8 M M M 10
10.95 11.10 11.25 11.10 11.25 11.40 M M 15 11.00 11.15 M 25 11.30 20
0 0 0 0 30
25 35 30 10 100 100
练习: 1. 某公司有甲乙丙丁四个分厂生产同一种产 品,产量为300、500、400、100吨,供应6个地区的 需要,需要量分别为300、250、350、200、250,150 吨.由于原料、工艺和技术的差别,各厂每千克产 品的成本分别为1.3元、1.4元、1.35元、1.5元,各 地区销售价分别为2.0、 2.2、1.9、2.1、1.8、2.3 元.已知各厂运往各销售地区每千克运价 如下表, 从上面知销大于产,如果要求第一第二个销地 至 少供应150吨,第五个销地的需求要必须全部满足, 第三、第四,第六个销地只要求供应量不超过 需 求量.试确定 一个运输方案使公司获利最多.

运筹学 第三章 运输问题

运筹学  第三章  运输问题
判别的方法是计算空格(非基变量)的检 验数,若所有的检验数都大于等于0,为最优 解。
1)闭环回路法: 在给出的初始调运方案表上,从每一空格 出发找一条闭环回路,它是以某空格为起点 ,用水平或垂直线向前划,每碰到一数字格 转90°后(回路的转角点必须是一个基变量 ) ,继续前进,直到回到起始空格为止。 从每一空格出发一定存在且只有唯一的闭 环回路。 从空格开始加减闭环各个顶点的运输单价 ,可得每个空格对应的检验数。
《运筹学》
第三章 运输问题
Slide 16
销地
B1
产地
A1
A2
3
A3
销量 3
B2 B3
4 1 6
65
B4 产量
37
4
39
6
销地
产地
B1 B2 B3 B4
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
空格 (11) (12) (22) (24) (31) (33)
闭环回路 (11)-(21)-(23)-(13)-(11) (12)-(32)-(34)-(14)-(12) (22)-(32)-(34)-(14)-(13) -(23)-(22) (24)-(14)-(13)-(23)-(24) (31)-(34)-(14)-(13)-(23) -(21)-(31) (33)-(34)-(14)-(13)-(33)
基变量:
X13 U1+V3=C13=3
X14 U1+V4=C14=10
X21 U2+V1=C21=1
1
3 10 U1=0
2
U2=-1
X23 U2+V3=C23=2
4

管理运筹学讲义 第3章 运输问题

管理运筹学讲义  第3章  运输问题

21
石家庄经济学院
管理科学与工程学院
§3.2.1 初始基本可行解的确定
与一般线性规划问题不同,产销平衡运输问题总是存在 可行解。不难验证
xij ai b j d

0 (i 1,2,, m; j 1,2,, n; d ai b j )
i 1 j 1
m
n
就是模型(3-1)的可行解。又因,目标函数值有下界, 故产销平衡的运输问题必有最优解。
A1、 A2、 A3 ,有四个销售点 B1、 B2、B3、 B4 销售
这种化工产品。各产地的产量、各销地的销量和各
产地运往各销地每吨产品的运费(百元)如下表所
示。
30 石家庄经济学院 管理科学与工程学院
产销平衡表
运价表
销 产
A1 A2
B1
B2
B3
B4
产量 75 40
B1 3 2
B2 8 9
B3 5 4
27
石家庄经济学院
管理科学与工程学院
销地 产地 A1 A2 A3 销量
B1 3 1 7 3
B2 11 9 4 6
B3 3 2 10 5
B4 10 8 5 6
产量 7 4 9 20 (产销平衡)
问应如何调运,可使得总运输费最小?
28
石家庄经济学院
管理科学与工程学院
产销平衡表
运价表
销 产 A1 A2 A3 需求
B4 9 8
A3
需求 35 40 55 65
80
195
6
3
7
5
问应如何调运,可使得总运输费最小?
31 石家庄经济学院 管理科学与工程学院
解:用西北角法求初始基本可行解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


需 求
3 d3=60
4 d4=20 7
运输问题线性规划模型
设xij为由第i个工厂运到第j个门市部的 电视机台数,cij为由第i个工厂运到第j 个门市部的运费,则原运输问题的线 性规划模型为:
.
8
Min Z= 9x11 +12x12 +9x13 +6x14 +7x21 +3x22+7x23+7x24 +6x31+5x32+9x33 +11x34
m
xij d j
i1
(j= 1,2,…,n) 需求约束
xij≥0,i=1,1,…,m; j=1,2,…,n 由 cij、si、dj 组成的 (m+1)×(n+1) 矩阵称为运输矩阵
.
12
约束方程共有m+n个,由于∑si=∑dj, 因此约束方程只有m+n-1个方程是线性
独立的。因此运输问题的基本可行解
如果第一个工厂的生产量小于第一个销售点的需求量, 则先将第一个工厂的全部产品运往第一个销售点,不 足的需求由第二个补足。
.
18
销地
1
2
3
4 供应量
9 12 9
6
1
40
10
50 10

7 2

6 3
需求量 40
3
7
7
30
30
5
9 11
30
20
40 60 20
60 30 50
20
30
30
x11,x12,x22,x23,x33,x346个变量.构成一个基本初始可行解19。
重复上述步骤,直到把所有的空格都划去为止。
如果这样选出的空格共有m+n-1个,则构成一 个初始基本可行解。
.
21
初前例始中:可最行小元解素法的求初获始得解
1
2
3
4
9
12
9
6
1
30
20
7 2
3
7
7
40
20
6
5
3
40
9
11
10
dj
40
40
60
20
0
0
40
0
10
.0
si 50 30 0 60 20 0 50 10 0
i1
n
x ij s i (i= 1,2,…,m)
j1
产小于销时约束条件
n
x ij s i (i= 1,2,…,m)
j1
m
x ij d j (j= 1,2,…,n)
i1
.
15
不平衡的运输问题
门市部
工厂
12
供应量总
3

1
9 12 9
50
2
737
60
需求量总计 40 40 60
.
16
平衡运输问题的表上作业法
第3章 运输问题
线性规划续
.
1
主要内容
运输问题的特点及模型描述
网络图 线性规划模型 表上作业
表上作业法
平衡运输问题 不平衡运输问题
.
2
一、运输问题的特点及模型
原问题:产地到销地之间运送货物的最佳 路径
特点:
多个产地和多个销地; 每个产地的产量不同,每个销地的销量也不同; 各产销两地之间的运价不同。
.
5
单位:元/台
门市部
工厂
1 2 3 4 供应量总计
1
9 12 9 6
50
2
7377
60
3
6 5 9 11
50
需求量总计 40 40 60 20
160
.
6
运输问题网络图
供应地
运价
量供 应
9
s1=50 1 12
9 6
7
s2=60 2
3 7
7
6
5
s3=50 3 9
11
.
需求地
1 d1=40
2
d2=40
1 2 3 … n 供应
1 c11
出2
发 地
c21 …
m cm1
成本 cij
c1n s1 c2n s2 ……
cmn sm
需求 d1
到达地
dn
.

4
运输问题
引例:设某电视机厂有三个分厂,生产同 一种彩色电视机,供应该厂在市内的四个 门市部销售。已知三个分厂的日生产能力 分别是50,60,50台,四个门市部的日销 量分别为40,40,60,20台。从各个分厂 运往各门市部的运费如下表所示,试安排 一个运费最低的运输计划。
m
n
产销平衡: Si d j
i 1
j 1
m
n
产大于销: Si d j
i 1
j 1
m
n
产小于销: Si d j
i 1
j 1
.
11
运输问题
产销平衡的运输问题模型
令xij为 从i地运到j地的数量
Min Z =
nn
cij xij
i1 j1
n
x ij si
j1
(Cij≥0) (i= 1,2,…,m) 供应约束
西北解法的特点
优点:简单易行,容易得到基本初始可行解; 缺点:没有考虑运费的因素,因此距离最优解
较远。
.
20
最小元素法(最小费用法):“就近供应”
从单位运价表中选取最低运价的空格开始供求 分配:
当供应量大于需求量,取值为需求量,划去该空格 所在的列
当供应量小于需求量,取值为供应量,划去该空格 所在的行
x11 +x12 +x13 +x14 x21
+x22 +x23 +x24
=50 供
=束60
应 地
s.t.
x31 +x32 +x33 +x34
=50 约
x11 x12 x13
+x21
+ x31
+x22
+x32
+x23
+x33
x14
+x24
+x34
=40 需
=40

=60
求 地

=20
xij ≥0
i= 1,2,3; j=1,2, 3,4
(一)运输问题初始可行解的获得
西北角法——从西北角的第一格开始安排运输 计划
具体步骤
.
17
平衡运输问题的表上作业法
具体步骤
取其相应的供应量和需求量中的最小值作为初始 基本可行解的第一个分量
如果第一个工厂的生产量大于第一个销售点的需求, 那么就由第一个工厂全部满足第一个销售点的需要, 工厂商品的剩余部分运八第二个销售点;
目标
合理组织调运,既满足各销地的要求,又使总 的运输费用(或里程、时间等)最小。
.
3
运输问题
设有同一种货物从m个出发地1,2,…,m运往n个到 达地1,2,…,n。第i个出发地的供应量(Supply) 为si(si≥0),第j个到达地的需求量(Demand)为 dj (dj≥0)。 每单位货物从产地 i 运到销地 j 的运价为Cij。 求一个使总运费最小的运输方案。
m×n个变量,. m+n个条件
9
运输问题的表格表示
cij xij
1
1
9
273Fra bibliotek6需求量 40
2 12 X11 3 X21 5 X31 40
3 9 X12 7 X22 9 X32 60
4 6 X13 7 X23 11 X33 20
供应量 50 X14 60 X24 50 X34
.
运输问题
三类运输问题:
有m+n-1个分量。
.
13
引例——方程组中方程的线性独立问题:
x1+x2+x3=3 2x1+x2+x4=6 3x1+2x2+x3+x4=9 系数的增广矩阵为:
11103
11103
21016 → 21016
32149
00000
.
14
运输问题
产销不平衡的运输问题模型
产大于销时约束条件
m
x ij d j (j= 1,2,…,n)
相关文档
最新文档