数学建模线性规划问题超全

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

大学生数学建模练习题

大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。

生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。

公司每天有24小时的机器时间和40小时的人工时间可用。

如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。

每名顾客的平均服务时间是5分钟。

假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。

请计算银行的平均排队长度和顾客的平均等待时间。

三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。

产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。

如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。

水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。

每个水库的供水能力不同,每个城市的需求也不同。

如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。

请考虑季节性因素和趋势,并给出预测的置信区间。

六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。

如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。

如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。

希望这些练习题能够帮助学生在数学建模的道路上更进一步。

数学建模线性规划上机题

数学建模线性规划上机题

例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。

每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。

现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。

它准备向生产这些钢板旳A1,A2,A3三家工厂订货。

该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。

而它们销售多种型号钢板旳价格如表4.3所示。

该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。

该怎样处理这个问题。

若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。

通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。

如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。

数学建模习题——线性规划

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此外还有表四问:(1)若该经理有1000万元资金,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A 的税前收益增加为4.5%,投资应否改变?若证券C 的税前收益减少为4.8%,投资应否改变?解:设利润函数为M(x),投资A 、B 、C 、D 、E 五种类型的证券资金分别为12345,,,,x x x x x 万元,则由题设条件可知12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400225 1.4()9154325(),,,,0M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045];A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3];b=[1000;-400;0;0]; Aeq=[]; beq=[];vlb=[0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:即12345218.1818,0,736.3636,0,45.4545x x x x x =====因此,应投资A 证券218.1818万元,B 证券0万元,C 证券736.3636万元,D 证券45.4545万元,最大利润为29.8364万元。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

数学建模测试题-线性规划部分

数学建模测试题-线性规划部分

313数学教育1、2班,510数学教育1、2、3班数学建模上机测试题,需要把运行结果写出来。

模型包括目标函数、约束条件,编写的程序和程序运行结果四部分内容。

写在作业本上。

按学号顺序做,如35号同学做习题35习题1:某厂计划生产甲、乙、丙三种零件,有机器、人工工时和原材料的限制,有关数据1、2、若原材料为2元/公斤,试建立获得最大利润生产计划的线性规划模型。

习题2:一塑料厂利用四种化工原料合成一种塑料产品。

这四种原料含A、B、C的成分见下表,这种塑料产品要求含A为25%,含B、C都不得少于30%。

问各种原料投放比例为习题3:建立以下线性规划模型1)某家具厂生产桌椅,每张桌子耗用木材0.28立方米、2小时人工,售价288元;每把椅子耗用木材0.13立方米、0.8小时人工,售价147元。

且1张桌子必须配4把椅子。

已知木材本月供应量不得超过52立方米,且每立方米成本价为500元。

本月人工工时上限为288小时,且每小时成本为20元。

(1)写出最大月收益线性规划模型;(2)写出月收益不低于8000元而动用木材最省的线性规划模型(其余条件不变)。

习题4 某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如右表。

问:该厂应如何安排生产,使利润收入为最大?习题5、某部门现有资金200万元,今后五年内考虑给以下的项目投资。

已知:项目A :从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B :从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不超过30万元;项目C :需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D :需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元;问:a.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大? b.应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?习题6 某公司计划在三年的计划期内,有四个建设项目可以投资:项目Ⅰ从第一年到第三年年初都可以投资。

线性规划经典例题

线性规划经典例题

线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。

产品A的利润为200元/件,产品B的利润为300元/件。

每天的生产量不能超过100件。

工厂希翼最大化每天的利润。

【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。

根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。

【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。

由于生产时间和产量限制,工厂无法达到每天生产更多的产品。

【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。

这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。

【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。

为了得到准确的结果,需要根据具体情况进行调整和求解。

数学建模,线性规划,运输为问题

数学建模,线性规划,运输为问题
X26 20.00000 0.000000
X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20

线性规划经典例题

线性规划经典例题

线性规划经典例题1. 问题描述假设我们有一个农场,种植两种作物:小麦和大豆。

农场有一定的土地和资源限制,我们需要确定如何分配这些资源,以最大化农场的利润。

我们知道每亩小麦的利润为1000元,每亩大豆的利润为2000元。

同时,我们还知道种植每亩小麦需要2个单位的肥料和3个单位的水,而种植每亩大豆需要4个单位的肥料和2个单位的水。

农场总共有100个单位的肥料和90个单位的水可用。

我们需要确定种植多少亩小麦和多少亩大豆,以最大化利润。

2. 数学建模为了解决这个问题,我们可以使用线性规划来建立数学模型。

假设我们种植x 亩小麦和y亩大豆,则我们的目标是最大化利润,即最大化目标函数Z = 1000x + 2000y。

同时,我们需要满足资源限制,即种植小麦和大豆所需的肥料和水不能超过总量。

因此,我们有以下约束条件:2x + 4y ≤ 100(肥料限制)3x + 2y ≤ 90(水限制)x ≥ 0,y ≥ 0(非负性约束)3. 求解方法我们可以使用线性规划的求解方法来找到最优解。

常见的方法有图形法、单纯形法和内点法等。

在这个例题中,我们使用单纯形法求解。

4. 求解过程首先,我们将约束条件转化为标准形式。

将不等式约束转化为等式,并引入松弛变量,得到以下等式约束:2x + 4y + s1 = 1003x + 2y + s2 = 90其中,s1和s2为松弛变量。

接下来,我们构建初始单纯形表格:基变量 | x | y | s1 | s2 | b |--------------------------------------s1 | 2 | 4 | 1 | 0 | 100 |s2 | 3 | 2 | 0 | 1 | 90 |--------------------------------------Z | -1000| -2000| 0 | 0 | 0 |其中,Z表示目标函数的系数,初始解为0。

我们选择最负的目标函数系数对应的列作为进入变量,即选择-2000对应的y列。

数学建模线性规划问题超全共54页文档

数学建模线性规划问题超全共54页文档
数学建模线性规划问题超全
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。—陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品分别需要使用两种原材料X和Y。

已知每种产品的利润和原材料的用量,求解最大利润的生产方案。

二、数据分析1. 产品A的利润为每单位100元,产品B的利润为每单位150元。

2. 产品A每单位需要用2单位的原材料X和1单位的原材料Y;产品B每单位需要用1单位的原材料X和3单位的原材料Y。

3. 公司每天可用的原材料X和Y的数量分别为10单位和15单位。

三、数学建模设产品A的生产数量为x,产品B的生产数量为y。

目标函数:最大化利润,即最大化目标函数Z = 100x + 150y。

约束条件:1. 原材料X的用量约束:2x + y ≤ 10。

2. 原材料Y的用量约束:x + 3y ≤ 15。

3. 非负约束:x ≥ 0,y ≥ 0。

四、求解过程1. 构建线性规划模型:最大化目标函数 Z = 100x + 150y约束条件:2x + y ≤ 10x + 3y ≤ 15x ≥ 0,y ≥ 02. 使用线性规划求解方法(如单纯形法)求解最优解。

五、最优解分析经过计算,得到最优解为:x = 5,y = 3,Z = 100*5 + 150*3 = 950。

六、结论为了实现最大利润,公司应生产5个单位的产品A和3个单位的产品B,此时可以获得最大利润950元。

七、敏感性分析通过敏感性分析可以了解目标函数和约束条件的变化对最优解的影响程度。

1. 原材料X的用量增加1单位,最优解变化情况:- 目标函数值:增加100元。

- 产品A的生产数量:不变。

- 产品B的生产数量:不变。

2. 原材料Y的用量增加1单位,最优解变化情况:- 目标函数值:增加150元。

- 产品A的生产数量:不变。

- 产品B的生产数量:不变。

3. 公司每天可用的原材料X的数量增加1单位,最优解变化情况:- 目标函数值:不变。

- 产品A的生产数量:不变。

- 产品B的生产数量:不变。

4. 公司每天可用的原材料Y的数量增加1单位,最优解变化情况:- 目标函数值:不变。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。

现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。

已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。

同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。

公司总共有40个资源X和30个资源Y可供使用。

二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。

2. 目标函数:最大化利润。

利润可以表示为10x + 15y。

3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。

通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。

四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。

同时,资源X还剩余28个,资源Y还剩余24个。

五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。

1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 8,y = 4,利润最大化为168元。

b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 4,y = 7,利润最大化为190元。

2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。

大学生数学建模:作业-线性规划的实验

大学生数学建模:作业-线性规划的实验

实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。

工作效率(个/人、天)如下表。

如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。

现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。

4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。

在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。

南方农庄联盟的全部种植计划都由技术协调办公室制订。

当前,该办公室正在制订来年的农业生产计划。

南方农庄联盟的农业收成受到两种资源的制约。

一是可灌溉土地的面积,二是灌溉用水量。

这些数据由下表给出。

注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。

南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。

农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。

三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。

所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。

对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。

5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述:某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要1小时的加工时间,产品B每件需要2小时的加工时间。

公司每天的总加工时间不能超过8小时。

产品A的利润为100元/件,产品B的利润为200元/件。

公司希望最大化每天的利润。

二、数学建模:设公司每天生产的产品A的件数为x,产品B的件数为y。

则目标函数为最大化利润,即:Maximize Z = 100x + 200y约束条件:1. 生产时间约束:x + 2y ≤ 82. 非负约束:x ≥ 0, y ≥ 0三、线性规划模型:Maximize Z = 100x + 200ySubject to:x + 2y ≤ 8x ≥ 0y ≥ 0四、求解方法:可以使用线性规划求解器进行求解,例如使用单纯形法或内点法等。

以下是使用单纯形法求解的步骤:1. 将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 100x + 200y约束条件:x + 2y ≤ 8x ≥ 0y ≥ 02. 引入松弛变量将不等式约束转化为等式约束:x + 2y + s1 = 8x ≥ 0y ≥ 0s1 ≥ 03. 构建初始单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | 0 | 0-----------------------------s1 | 1 | 2 | 1 | 84. 进行单纯形法迭代计算:a. 选择进入变量:选择目标函数系数最大的非基变量,即选择y进入基变量。

b. 选择离开变量:计算各个约束条件的最小比值,选择比值最小的非基变量对应的约束条件的基变量离开基变量。

在本例中,计算得到最小比值为4,对应的约束条件为x ≥ 0,所以x对应的基变量离开基变量。

c. 更新单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | -2 | -400-----------------------------s1 | 1 | 2 | 1 | 8d. 继续迭代计算,直到目标函数系数均为负数或零,达到最优解。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,每天可用的原料有限,而每种产品的制造需要不同数量的原料。

产品A每单位利润为10元,产品B每单位利润为8元。

产品A每天的制造时间为6小时,产品B每天的制造时间为4小时。

已知制造一个单位的产品A需要2小时,而制造一个单位的产品B需要1小时。

工厂的目标是最大化每天的利润。

二、数学建模1. 定义变量:- x1: 每天制造的产品A的单位数量- x2: 每天制造的产品B的单位数量2. 建立目标函数:目标函数为最大化每天的利润,即:Maximize Z = 10x1 + 8x23. 建立约束条件:- 原料的限制:每天可用的原料有限,产品A每单位需要2单位原料,产品B每单位需要3单位原料。

因此,原料的约束条件为:2x1 + 3x2 ≤ 原料数量- 时间的限制:每天的制造时间有限,产品A每单位需要2小时制造,产品B每单位需要1小时制造。

因此,时间的约束条件为:2x1 + x2 ≤ 制造时间- 非负约束:每天制造的产品数量不能为负数,因此,非负约束条件为:x1 ≥ 0x2 ≥ 0三、求解线性规划问题利用线性规划的求解方法,可以求解出最优解。

1. 图形法:通过绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。

通过迭代计算,找到目标函数的最大值所在的点。

四、数值计算为了方便计算,我们假设原料数量为20单位,制造时间为10小时。

1. 图形法:绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

在本例中,约束条件的直线为:2x1 + 3x2 ≤ 202x1 + x2 ≤ 10绘制直线后,找到目标函数的最大值所在的区域。

2. 单纯形法:利用单纯形法,可以求解出最优解。

根据约束条件和目标函数,可以构建如下的单纯形表格:| 基变量 | x1 | x2 | 原料数量 | 制造时间 | 目标函数 ||--------|----|----|----------|----------|---------|| x3 | 0 | 0 | 20 | 10 | 0 || x1 | 1 | 0 | 2 | 2 | 10 || x2 | 0 | 1 | 3 | 1 | 8 |通过迭代计算,可以得到最优解为:x1 = 5x2 = 0最大利润为:50元五、结果分析根据数值计算的结果,最优解为每天制造5个单位的产品A,不制造产品B,可以获得最大利润为50元。

线性规划题型整理与例题(含答案)

线性规划题型整理与例题(含答案)

积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

八种 经典线性规划例题(超实用)

八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可行域(Feasible regio指n决) 策变量取值时受到
最优解(Optimal
的各种资源条件的限制
soluti,o通n)常表达为含决策变
量的等式或不等式。
可行域中使目标 函数达到最优的 决策变量的值
满足约束条件的决 策变量的取值范围
上页 下页 返回
• 第1步 -确定决策变量
•设 x1 ——I的产量
max z = x1 2x2 + 3(x4 x5 ) + 0x6 + 0x7
x1 + x2 + (x4 x5 ) + x6 = 7
x1 x2 + (x4 x5 ) x7 = 2
3x1 + x2 + 2(x4 x5 )
=7
x1, x2, x4, x5, x6 , x7 0
C—价值向量 b—资源向量 X—决策变量向量
资.aa源 .1m.1.1.向 ...A......=..量 ....a..a.1..aan.m.1m.1.n1C..........-..=....a.价 .a.1.(nm.nP值 1,=P向 (2P1,,量 .P.2.X,,.P..3-,P)决 n ) 策00=变 = 量 .000.000....向量
上页 下页 返回
线性规划模型举例
(一) 运输问题 (二) 布局问题 (三) 分派问题 (四) 生产计划问题 (五) 合理下料问题
上页 下页 返回
“” 约束:加入非负松驰变量
例: max z = 2x1 + 3x2 + 0x3 + 0x4 + 0x5
x1 + 2x2 + x3
=8
4
x1

4 x2
+ x4 = 16 + x5 = 12
x1, x2 , x3, x4 , x5 0
上页 下页 返回
“” 约束: 减去非负剩余变量;
Max(min)z = c1x1 + c2 x2 + ... + cn xn
a11 x1 a21 x1
+ +
a12 x2 a22 x2
+ ... + + ... +
a1n xn a2n xn
(=, )b1 (=, )b2
...................................................
x2 ——II的产量
z ——利润
是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 定和控制。
x1
x2
上页 下页 返回
第2步 --定义目标函数
Max Z = x1 + x2
上页 下页 返回
ห้องสมุดไป่ตู้
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页 下页 返回
对我们有 何限制?
am1x1 + am2 x2 + ... + amn xn (=, )bm
x1, x2 ,..., xn 0
上页 下页 返回
线性规划问题的标准形式目标函数最大
标准形式为:
约束条件等式 决策变量非负
Max Z = c1x1 + c2 x2 + ...+ cn xn
a11x1 + a12 x2 + ...+ a1n xn = b1
上页 下页 返回
一般线性规划问题的标准化
min Z=CX 等价于 max Z’ = -CX
“” 约束:加入非负松驰变量
例:
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
上页 下页 返回
一般线性规划问题的标准形化
min Z=CX 等价于 max Z’ = -CX

产品 I
产品 2
上页 下页 返回
问题中要确定的未知量,表
•基本概念
明规划中的用数量表示的方 案、措施,可由决策者决定
和控制。
决策变量(Decision variables)
目标函数(Objective functi它on是)决策变量的函数 约束条件(Constraint conditions)
上页 下页 返回
– 简写为
n
max Z = c j x j i =1
n

aij x j = bi
j=1

x
j

0
i = 1,2,...m j = 1,2,...,n
上页 下页 返回
– 用矩阵表示
max Z = CX
max Z = CX
AX =AbX = b
X 0X 0
.a.2.1..x.1.
+ a22 x2 ...........
+ ...+ a2n xn = b2 ........................
am1x1 + am2 x2 + ...+ amn xn = bm
x1, x2 ,...,xn 0 b1, b2 ,...bm 0
上页 下页 返回
第3步 --表示约束条件
x1 + 2 x2 8
4 x1
16
4 x2 12
x1、 x2 0
I
设备 1 原材料 A 4 原材料 B 0
利润 2
II 资源限量 2 8 台时 0 16kg 4 12kg
3
上页 下页 返回
该计划的数学模型
目标函数 Max Z = 2x1 + 3x2
第一节 线性规划问题 及其数学模型
线性规划问题的提出 线性规划的基本概念 线性规划的数学模型 线性规划问题的标准形式
继续 返回
•问题的提出
例: 生产计划问题
I
设备
1
原材料 A 4 原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
上页 下页 返回
如何安排生产 使利润最大
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
x1 x2
上页 下页 返回
线性规划问题的共同特征
一组决策变量X表示一个方案,一般X大 于等于零。 约束条件是线性等式或不等式。 目标函数是线性的。 求目标函数最大 化或最小化
上页 下页 返回
线性规划模型的一般形式
• xk可正可负(即无约束);
Max
+ x6
例 : min z = x1 + 2x2 3x3
x1
+ x2 + x3 7 x7
x1
x2 + x3 2
3x1 + x2 + 2 x3 = 7
x1, x2 0, x3无约x束 3 = x4 x5
上页 下页 返回
解 :标准形为
相关文档
最新文档