封闭腔内水自然对流换热数值模拟

封闭腔内水自然对流换热数值模拟
封闭腔内水自然对流换热数值模拟

277中空玻璃空气夹层捏的自然对流换热

中空玻璃空气夹层内的自然对流换热 重庆大学 黄春勇 王厚华 摘要:本文从传热学的角度论述和分析了中空玻璃空气夹层内的自然对流换热。采用商业软件FLUENT 对中空玻璃空气夹层厚度为6mm 、9mm 、12mm 、14mm 、16mm 时的自然对流换热进行数值模拟,并将所获得的对流换热量与采用经验公式计算的结果作了对比分析。结果表明,在设定条件下,中空玻璃空气夹层对流换热在上述空气夹层厚度下可以近似作纯导热处理,误差不是很大。由此说明,自然对流换热经验公式对于计算中空玻璃空气夹层内的对流换热系数是能够很好地满足工程要求。 关键词:建筑节能 中空玻璃 空气夹层 对流换热系数 1 前言 随着国家标准《民用建筑热工设计规范》(GB50176-1993)及《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-1995)等技术法规的出台,民用建筑节能,已成为建筑设计中的一项重要内容。 从节能角度来讲, 整个建筑的能量损失中约50%是从门窗上损失,对于整幢建筑来说, 门窗的面积占建筑面积的比例超过20%, 玻璃在门窗中约占70%以上。而在建筑围护结构中,门窗的能耗约为墙 体的4倍,屋面的5倍,地面的20多倍,约占建筑围护结构总能耗的40%~50%[1] 。因此, 增强门窗的保温隔热性能, 减少门窗的能耗, 是改善室内热环境和提高建筑节能的重要环节, 而其中减少通过玻璃的能量损失尤为重要。 因此,中空玻璃作为一种节能环保型产品,在建筑上得到了越来越广泛的应用。 建设部2001年发布的《夏热冬冷地区居住建筑节能标准》(JGJ134- 2001)中, 对窗墙面积比大于0.45且小于0.5的外窗传热系数限制指标到了2.52 /W m K , 夏热冬暖地区这一指标在部分条件下 到了2.02 /W m K 。这对普通中空玻璃节能性能提出了更高的要求。 目前,中空玻璃的研究资料中普遍认为,当空气夹层厚度为12mm 时中空玻璃的节能效果最佳。随着住宅建筑低飘窗的面积不断增大,空气夹层的最佳厚度是否会发生变化呢?因此,本文主要通过经验公式和数值模拟寻找影响中空玻璃空气层内的对流换热因素,并通过计算对流换热量来考虑中空玻璃空气夹层的最佳厚度。 2 中空玻璃K 值计算方法 中空玻璃的主要热工性能参数包括传热系数K 值和遮阳系数SC 值。其中传热系数K 值是指单位时间、单位壁面积上,冷热流体间每单位温度差时传递的热量,也就是说,K 值是中空玻璃系统总热阻R 的倒数。中空玻璃系统的总热阻包括室外对流侧换热热阻、室外侧玻璃单片导热热阻、气体层热阻、室内侧玻璃单片导热热阻以及室内侧对流换热热阻,即: ,11 i g i out in R R R h h = +++∑∑ (1) 式中:out h 、in h ——玻璃系统室内、外侧对流换热系数,2 /()W m K ; i R ——空气层的热阻,2/m K W ;,g i R ——每层玻璃单片的导热热阻,2/m K W 。 因此,要计算中空玻璃的K 值,首先要解决玻璃内气体夹层的传热计算问题。从传热学的角度分

自然对流换热试验

自然对流换热实验报告 一、实验目的 (1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。 (2)测定单管(水平放置)的自然对流换热系数h 。 (3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出 Pr Gr 的范围。 二、实验原理 对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。即 r h c Φ-Φ=Φ (W ) 式中:)(f w c t t hA -=Φ;UI h =Φ;??? ???????? ??-??? ??=Φ4f 4w 0100T 100T A c r ε,所以 ? ?????????? ??-??? ??---=4 f 4w 0100T 100T )()(f w f w t t c t t A UI h ε[])(K /W ?m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,) (420K m /W 67.5?=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2?m 。 当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。 根据相似理论,自然对流换热的准则为 Pr),(Gr f Nr = 在工业中广泛使用的是比式更为简单的经验方程式,即 n Gr c Nr Pr)(= 式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。为

对流换热计算式

关系式 返回到上一层以下汇总了工程中最常见的几类对流换热问题的对流换热计算关系式,适用边界条件,已定准则的适用范围,特征尺寸与定性温度的选取方法。 一、掠过平板的强迫对流换热 应注意区分层流和湍流两种流态 ( 一般忽略过渡流段 ) ,恒壁温与恒热流两种典型的边界条件,以及局部 Nu 数和平均 Nu 数。 沿平板强迫对流换热准则数关联式汇总 注意:定性温度为边界层的平均温度,即。 二、管内强迫对流换热 (1) 流动状况不同于外部流动的情形,无论层流或者湍流都存在流动入口段和充分发展段,两者的长度差别很大。计算管内流动和换热时,速度必须取为截面平均速度。 (2) 换热状况管内热边界层也同样存在入口段和充分发展段,只有在流体的 Pr 数大致等于 1 的时候,两个边界层的入口段才重合。理解并准确把握两种典型边界条件 ( 恒壁温与恒热流 ) 下流体截面平均温

度的沿程变化规律,对管内对流换热计算有着特殊重要的意义。 (3) 准则数方程式要注意区分不同关联式所针对的边界条件,因为层流对边界条件的敏感程度明显高于湍流时。还需要特别指出,绝大多数管内对流换热计算式 5f 对工程上的光滑管,如果遇到粗糙管,使用类比率关系式效果可能更好。下表汇总了不同流态和边界条件下管内强迫对流换热计算最常用的一些准则数关联式。 (4) 非圆截面管道仅湍流可以用当量直径的概念处理非圆截面管道的对流换热问题。层流时即使用当量直径的概念也无法将不同截面形状管道换热的计算式全部统一。 常热流 层流,充分发展段, 常壁温 层流,充分发展段, 充 - 充分发展段,气体, - 充分发展段,液体, ; 紊流,充分发展段,

冷热圆管在封闭方腔内不同垂直位置的自然对流数值研究

2015年第34卷第6期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1595· 化工进展 冷热圆管在封闭方腔内不同垂直位置的自然对流数值研究 沈中将,虞斌 (南京工业大学机械与动力工程学院,江苏南京211816) 摘要:利用有限体积法对冷热圆管在封闭方腔内不同垂直位置的自然对流现象进行了数值研究。讨论了瑞利数Ra和冷热圆管间距δ对方腔内自然对流流动与换热的影响,其中瑞利数的变化范围为103~106,圆管间距变化范围为0.3~0.6。为了揭示冷热圆管间的相互作用和圆管与方腔间的相互作用对自然对流换热与流动的影响规律,比较分析了热圆管在上、冷圆管在下和热圆管在下、冷圆管在上两种情形下冷热圆管、方腔的自然对流换热能力的差异。研究表明:瑞利数的改变,对方腔内温度场分布和涡流结构有显著影响;热圆管在下、冷圆管在上这种情形更有利于自然对流换热的进行;增加圆管间距δ,热圆管和方腔的换热能力增强,但冷圆管的换热能力却有所减弱。研究结果为核电站安全壳非能动余热排出系统的性能研究提供了理论依据。 关键词:自然对流;方腔;冷热圆管;垂直位置;数值模拟 中图分类号:TK 124 文献标志码:A 文章编号:1000–6613(2015)06–1595–07 DOI:10.16085/j.issn.1000-6613.2015.06.015 A numerical study of natural convection with hot and cold cylinders at different horizontal positions vertically aligned in square enclosure SHEN Zhongjiang,YU Bin (School of Mechanical and Power Engineering,Nanjing Technology University,Nanjing 211816,Jiangsu,China)Abstract:A numerical simulation of natural convection with a pair of hot and cold cylinders at different horizontal positions vertically aligned in square enclosure was obtained using finite volume method. The main affecting factors natural convective flow and heat transfer,including the Rayleigh number Ra and hot-cold cylinders spacing δ were analyzed. The Rayleigh number ranged from 103 to 106 and the hot-cold cylinders spacing δ varied from 0.3 to 0.6. In order to investigate the interaction between the two cylinders and the interaction between the inner cylinders and the cold enclosure,two different cases were considered,including the case of the hot cylinder upper section and the cold cylinder lower section and the case of the hot cylinder lower section and the cold cylinder upper section. The results showed that the intensity of natural convection had a significant impact on distribution of temperature and vortex structure in the enclosure. The situation of the hot cylinder lower section and the cold cylinder upper section was more favorable to natural convection. Heat capacity of hot cylinder and square enclosure increased and that of cold cylinder decreased when cylinder spacing δ increased. The results provided a theoretical basis for the performance of nuclear power plant containment passive residual heat removal system. Key words:natural convection;square enclosure;hot and cold cylinders;vertical location;numerical simulation 封闭方腔内自然对流流动与换热特性在工程领域中有着广泛的应用。例如换热器、太阳能集热收稿日期:2014-10-28;修改稿日期:2014-12-08。 第一作者:沈中将(1989—),男,硕士研究生。联系人:虞斌,教授,主要从事高效传热传质设备研究。E-mail abyu@https://www.360docs.net/doc/361420153.html,。

圆管自然对流计算和模拟

水平管和竖直管自然对流计算汇总 1.计算工况表 温度工况 计算结果 100℃150℃200℃250℃300℃ 传热系数h () 2 W m K ?水平管7.958 9.115 10.045 10.803 11.527 竖直管 4.715 5.369 5.899 6.335 6.754 换热量φ W 水平管75.962 141.388 215.734 296.472 385.128 竖直管45.008 83.390 126.703 173.860 225.649 最大速度 max u m/s 水平管0.476 0.537 0.585 0.697 0.736 竖直管0.840 1.050 1.180 1.290 1.390 2.变化曲线图

圆管自然对流的计算和数值模拟 已知条件如图1所示:将一圆管分别水平放置和垂直放置在大空间中进行自 然对流换热,圆管外径38 D mm =,长度1000 L mm =,空气温度20 T C ∞ =,恒壁 温条件100,150,200,250,300 w T C =,求解自然对流换热系数和换热量以及对流换 热时的空气最大速度。 图1 一、数值计算 1.自然对流换热系数和换热量的计算 1)圆管水平放置计算 以壁温100 w T=℃为例,计算过程如下: 特征长度:0.038 D m =; 定性温度()() 21002060 m w t t t C ∞ =+=+=; 查空气物性:() 0.029W m K λ=?;-62 =20.110m ν?;Pr0.696 = 空气的体积膨胀系数:()()1 12731602731 v m t K α- =+=+= 格拉晓夫数Gr: 大空间自然对流的实验关联式为: ()Pr n Nu C Gr =(1-1)根据计算的格拉晓夫数Gr选择合适的常数C和n(表1): 表1 式(1-1)中的常数C和n 加热表面形流动情况示流态系数C和指数n Gr数适用范围 ()() 33 5 262 9.81/333100200.038 = 3.210 20.110 v w g t t D Gr α ν ∞ - -??-? ==? ? ()

自然对流强化换热

自然对流强化换热 班级:14040203 姓名:吴端 学号:2011040402121

1.概述 当前,对于自然对流换热问题的研究没有强迫对流研究那样开展得广泛。一方面是由于自然对流强化效果没有强迫对流换热强化效果好;另一方面是由于自然对流强化的途径少难度大,所以自然对流的研究进展缓慢。但自然对流应用有自己的领域,强迫对流又有其制约因素,尤其是随着电子集成电路的发展,自然对流强化换热的问题越来越受到学者的关注。 利用振动强化单相流体对流换热的方法可分为两种:一种是使换热面振动以强化换热;另一种是使流体脉动或振动以强化换热。研究表明,不管是换热面振动还是流体振动,对单相流体的自然对流和强制对流换热都是有强化作用的。振动可以增大流体间的扰动,干扰附面层的形成和发展,从而减小换热热阻,达到强化换热的目的。 2.原理 利用振动可以强化传热早已为人们所认识,在1923年就有关于在静止流体中振动换热面以增强传热效果的相关研究。早期研究的主要手段为传热实验,随着数值计算方法及计算机技术的发展,自80年代人们开始对振动对流换热问题进行数值分析。研究结果表明,换热面在流体中振动时,根据振动系统的不同,自然对流换热系数可提高30%~2000%。。传热实验中,采用的振动源形式主要有以下几种: 1)机械振动或电动机驱动偏心装置产生,早期的实验均采用该方法; 2)流体绕流诱导传热元件产生,如在换热器中的管束: 3)超声波激励换热元件产生。下面分别就这三个方面分别展开综述,其中,A表示振幅,厂表示振动频率,D表示管直径,U表示来流速度,尺P表示雷诺数,h表示表面传热系数。 机械振动为传热实验中最为常用的振动源,一般情况下,机械振动装置结构简单,并且能够比较方便调节振幅、频率等参数,这对于深入研究振动参数对传热的影响具有不可替代的作用。 表1.2、1.3分别为自然对流、强制对流条件下振动传热研究概况,表中

封闭方腔自然对流换热

封闭方腔自然对流换热 描述该物理模型的无量纲方程组为: 连续性方程:()() 0d U d U dx dy ρρ+= 动量方程:2222U V P U U U V X Y X X Y ?????+=-++????? 2222Pr U V P U U Ra U V X Y X X Y ?????+=-+++Θ????? 能量方程:22221Pr U V X Y X Y ?? ?Θ?Θ?Θ?Θ+=+ ??????? 其中,无量纲几何参数,x y X Y l l = = ;无量纲速度ul U v =,vl V ν = ;无量纲压力() 02 /p gy p v l ρρ+= ,无量纲温度0h c T T T T -Θ=-;普朗特数Pr p c v a l μ==;瑞利数 ()3h c g T T l Ra va β-=,空气的体胀系数1p T ρβρ??? =- ????,λ 为空气的导热系数。

、 具体模拟计算参数: 55 35 3,500,360,0.0033331.74510,Pr 0.712, 2.36101.11/, 1.9310h c L m T K T K v a kg m βρμ---=====?==?==? 对方腔划分网格,采取的是60?60网格,,壁面处加密。在FLUENT 软件中,使用分离求解器 求解控制方程组。材料的物性设置密度使用Boussinesq 假设。 本例主要分别计算了数为3 4456110 ,110,510,110,110?????的情况。压力插值方案选择Body Force Weighted 格式;压力-速度耦合方程用SIMPLE 算法;动量、能量方程选择二阶迎风格式。 有公式:()3h c g T T l Ra va β-=可得对应的g 入下表所示 本模拟与文献中的Nu 比较

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

对流换热与准则数

单相流体对流换热及准则关联式部分 返回一、基本概念 主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。 1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性? 答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。 2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗? 答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。3、简述边界层理论的基本论点。 答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大; 边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层; 流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域); 对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。 4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。

幂律流体方腔自然对流换热数值分析精品

【关键字】建议、意见、情况、方法、条件、进展、空间、领域、质量、地方、问题、机制、有效、充分、整体、现代、快速、发展、建立、提出、发现、掌握、了解、研究、合力、规律、特点、位置、关键、安全、稳定、网络、理想、思想、成果、精神、基础、需要、环境、工程、能力、方式、作用、结构、水平、速度、关系、设置、分析、简化、形成、丰富、严格、开展、保证、确保、指导、强化、帮助、支持、解决、优化、调整、取决于、适应、实现、提 学号 密级__________ 哈尔滨工程大学学士学位论文 幂律流体方腔自然对流换热数值分析 院(系)名称:核科学与技术学院 专业名称:核工程与核技术 学生姓名:XXX 指导教师:XXX 教授 哈尔滨工程大学 201X年X 月

学号 密级____________ 幂律流体方腔自然对流数值分析Numerical Analysis of Pow-law Fluid Natural Convection in Square Cavity 学生姓名:XXX 所在学院:核科学与技术学院 所在专业:核工程与核技术 指导教师:XXX 职称:教授 所在单位:哈尔滨工程大学 论文提交日期:201X年6月16日 论文答辩日期:201X年6月21日 学位授予单位:哈尔滨工程大学

摘要 封闭方腔自然对流问题对核反应堆的安全设计有着重要意义,但是目前已有研究大多围绕牛顿流体进行,而实际上自然界大多数流体为幂律流体,针对幂律流体在方腔内自然对流换热的研究是有实际意义的。 本文先对方腔建立了物理模型,然后利用GAMBIT软件对其进行网格划分。为了提高精度和减少计算时间,本文采用非均匀网格划分,将划分好的网格导入FLUENT 中后,通过FLUENT软件进行数值模拟。本文主要研究幂律指数和瑞利数对自然对流换热的影响。结果表明幂律指数和瑞利数对幂律流体方腔自然对流均有较大影响,且随着幂律指数和瑞利数的增大,方腔内的自然对流越来越剧烈。当幂律指数大于10时,方腔内的流动由层流转为湍流。 关键词:幂律流体;自然对流换热;方腔

实验8 空气横掠单管强迫对流换热系数测定实验

实验8 空气横掠单管强迫对流换热系数测定实验 一、实验目的 1. 测算空气横掠单管时的平均换热系数h 。 2. 测算空气横掠单管时的实验准则方程式13 Re Pr n Nu C =??。 3. 学习对流换热实验的测量方法。 二、实验原理 1对流换热的定义 对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。 2、牛顿冷却公式 根据牛顿冷却公式可以测算出平均换热系数h 。 即:h= )(f W t t A Q -Q A t =?? w/m 2·K (8-1) 式中: Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m 2 ; w t — 空气横掠单管时单管壁温 ℃; f t — 空气横掠单管时来流空气温度 ℃; t ?— 壁面温度与来流空气温度平均温差,℃; 3、影响h 的因素 1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况: 流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。

Re — 雷诺数, Re v ud = , 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。 上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。 3).物体的物理性质: Pr — 普朗特数,Pr= α ν = cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾 4、对流换热方程的一般表达方式 强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f = 自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。 自然对流公式为Nu=f (Gr ,Pr ) 1).Re=v ul = 雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。其中U 为速度特征尺度,L 为长度特征尺度,ν为运动学黏性系数。 2).Pr= α ν 定义:流体运动学黏性系数γ与导温系数κ比值的无量纲数 3).Nu=λ hd (努谢尔数) 4).Gr= 2 3 ν t gad ? 式中a 为流体膨胀系数,v 为流体可运动系数。 格拉晓夫数 ,自然对流浮力和粘性力之比 ,控制长度和自然对流边界层厚度之比 。 5、对流换热的机理 热边界层 热边界层的定义是:黏性流体流动在壁面附近形成的以热焓(或温度)剧变为 特征的流体薄层 热边界层内存在较大的温度梯度,主流区温度梯度为零。

对流换热公式汇总与分析..

对流换热公式汇总与分析 【摘要】流体与固体壁直接接触时所发生的热量传递过程,称为对流换热,它已不是基本传热方式。本文尝试对对流换热进行简单分类并对无相变对流换热公式简单汇总与分析。 【关键词】对流换热 类型 公式 适用范围 对流换热的基本计算形式——牛顿冷却公式: )(f w t t h q -= )/(2m W 或2Am 上热流量 )(f w t t h -=Φ )(W 上式中表面传热系数h 最为关键,表面传热系数是众多因素的函数,即 ),,,,,,,,(l c t t u f h p f w μαρλ= 综上所述,由于影响对流换热的因素很多,因此对流换热的分析与计算将分类进行,本文所涉及的典型换热类型如表1所示。 表1典型换热类型 1. 受迫对流换热 1.1 内部流动 对流换热 无相变换热 受迫对流换热 内部流动换热 圆管内受迫流动 非圆形管内受迫流动 外部流动 外掠平板 外掠单管 外掠管束(光管;翅片管) 自然对流换热 无限空间 竖壁;竖管 横管 水平壁(上表面与下表面) 有限空间 夹层空间 混合对流换热 — — — — 受迫对流与自然对流并存 相变换热 凝结换热 垂直壁凝结换热 水平单圆管及管束外凝结换热 管内凝结换热 沸腾换热 大空间沸腾换热 管内沸腾换热(横管、竖管等)

1.1.1 圆管内受迫对流换热 (1)层流换热公式 西德和塔特提出的常壁温层流换热关联式为 14 .03/13/13/1)()(Pr Re 86.1w f f f f l d Nu μμ= 或写成 14 .03/1)()(86.1w f f f l d Pe Nu μμ= 式中引用了几何参数准则 l d ,以考虑进口段的影响。 适用范围:16700Pr 48.0<<,75.9)(0044.0<

空气沿横管外表面自然对流换热实验

实验三、空气沿横管外表面自然对流换热实验 一、实验目的 1、测定无限空间内水平横管和空气间自由流动时的放热系数。 2、根据自由流动放热过程的相似分析,将实验数据整理成准则方程式。 3、通过实验加深对相似理论的理解,并初步掌握在相似理论指导下进行实验研究的方法。 二、实验原理 根据相似原理,空气自由流动放热过程准则方程由下式描述: )(γγP G f N u ?= 通常用幂函数形式来表示:n u P G c N )(γγ?= 通过实验确定准则方程式的函数形式,即确定准则 方程式中的系数C 和指数n 。 λ αd N u = 2 32 2υβνβγt d g t g G ?= ?= α ν γ=P ( P γ准则数也可以根据定性温度由书后附录查得) d —定型尺寸即横管外径; g —重力加速度: t m —定性温度。 t m = 2 w f t t + △t — △t=t w -t f v —空气运动粘度; λ—空气导热系数; β—空气容积膨胀系数,β= 1 m T 为了具体确定(1)式,根据相似定理,通过实验测得或者从书后附录中查得上述所有物理量。而放热系数α是通过计算求得的。 由热量平衡,水平横管内电加热器发出的热量等于横管上空气自由流动放热量加横管辐射换热热量。 电加热器发热量 Q=IV (W ) 横管上空气自由流动放热量 Q=αF (t w -t f ) (W ) 其中;F=dI π2 (m ) I 为计算管长(m )。 横管辐射换热量 Q=4 4[100100 f o T T C F ωε-( )() ] (W ) 其中: ε—横管表面黑度,查附录7,磨光的铬ε=0.058; Co —黑体辐射系数,Co=5.67(W/㎡?K 4 ) 由于: Q=Q 1+Q 2 即: IV=4[100f o T F t t C F ωωαω-+-4 f T ()()()]100 44 [] 100W O f T IV C F F t t ωεα--=-f T ()()100() W/㎡?℃ (2) 三、实验装置 实验装置有试验管(为降低辐射散热量的影响,试管表面镀铬抛光),放试验管的支撑架,转换开关盒等。测量仪表有电位差计,直流电源。试验管上有热电偶(4对)嵌入管壁,可反映出管壁的热电势;电位差计上的“未知”接线柱按极性和转换开关盒上的接线柱(红正黑负)相连,用于测量室内空气和管壁的热电势;直流电源可输入稳定的电压和电流,使加热功率保持恒定 四、实验步骤: 1、连接加热器线路,经验查无误后即可接同电源,调节变压器到所需电压,进行加热。 2、正确连接热电偶测温线路, 3、每隔十分钟测热电偶电势一次,当电势不再随时间而变时,加热达到了稳定工况,以连续二次测定的平均值为测定结果,记录下来。 4、测定远离水平管处的空气温度t f 。 5、调节变压器,以达到在另一个温度下的稳定工况,以取得另外一组实验数据。

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) * 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;

L i —传热管测量段的实际长度,m 。 、 由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) ~ 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要

自然对流与强制对流及计算实例

自然对流与强制对流及计算实例 热设计是电子设备开发中必不可少的环节。本连载从热设计的基础——传热着手,介绍基本的热设计方法。前面介绍的热传导具有消除个体内温差的效果。上篇绍的热对流,则具有降低平均温度的效果。 下面就通过具体的计算来分别说明自然对流与强制对流的情况。 首先,自然对流的传热系数可以表述为公式(2)。 热流量=自然对流传热系数×物体表面积×(表面温度-流体温度) (2) 很多文献中都记载了计算传热系数的公式,可以把流体的特性值带入公式中进行计算,可以适用于所有流体。但每次计算的时候,都必须代入五个特性值。因此,公式(3)事先代入了空气的特性值,简化了公式。 自然对流传热系数 h=2 .51C(⊿T/L)0.25(W/m2K) (3) 2.51是代入空气的特性值后求得的系数。如果是向水中散热,2.51需要换成水的特性值。 公式(3)出现了C、L、⊿T三个参数。C和L从表1中选择。例如,发热板竖立和横躺时,周围空气的流动各不相同。对流传热系数也会随之改变,系数C 就负责吸收这一差异。 代表长度L与C是成对定义的。计算代表长度的公式因物体形状而异,因此,在计算的时候,需要从表1中选择相似的形状。

需要注意的是,表示大小的L位于分母。这就表示物体越小,对流传热系数越大。 ⊿T是指公式(2)中的(表面温度-流体温度)。温差变大后,传热系数也会变大。物体与空气之间的温差越大,紧邻物体那部分空气的升温越大。因此,风速加快后,传热系数也会变大。 公式(3)叫做“半理论半实验公式”。第二篇中介绍的热传导公式能够通过求解微分方程的方式求出,但自然对流与气流有关,没有完全适用的理论公式。能建立理论公式的,只有产生的气流较简单的平板垂直放置的情况。因为在这种情况下,理论上的温度边界线的厚度可以计算出来。 但是,如果发热板水平放置,气流就会变得复杂,计算的难度也会增加。这种情况下,就要根据原始的理论公式,通过实验求出系数。也就是说,在公式(3)中,理论计算得出的数值0.25可以直接套用,C的值则要通过实验求出。 自然对流传热系数无法大幅改变

金属泡沫–水的自然对流换热实验研究

Advances in Porous Flow 渗流力学进展, 2016, 6(1), 1-8 Published Online March 2016 in Hans. https://www.360docs.net/doc/361420153.html,/journal/apf https://www.360docs.net/doc/361420153.html,/10.12677/apf.2016.61001 Experimental Investigation of Natural Convection in Metal Foam-Water Zhao Peng, Yang Pan, Weiyang Qian School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang Jiangxi Received: Mar. 6th, 2016; accepted: Mar. 28th, 2016; published: Mar. 31st, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/361420153.html,/licenses/by/4.0/ Abstract In this paper, an experiment apparatus filled with metal foam-water is set up to investigate the problem of natural convection about porous medium. A mechanism of natural convection of metal foam-water is investigated by experiments. Influences of heating power and angle of inclination on natural convection in the cavity filled with metal foam-water are discussed. It is found that the Nusselt number increases with heating power and decreases with the angle of inclination and pore density PPI of metal foam. A correlation of Nusselt number and Raleigh number is obtained when the cavity is horizontal with 5 PPI and 10 PPI. Keywords Metal Foam-Water, Natural Convection, Difference of Temperature, Pore Density 金属泡沫–水的自然对流换热实验研究 彭招,潘阳,钱维扬 华东交通大学土木建筑学院,江西南昌 收稿日期:2016年3月6日;录用日期:2016年3月28日;发布日期:2016年3月31日 摘要 本文针对多孔介质材料中的自然对流换热问题,通过搭建充满金属泡沫–水的实验装置,探究了金属泡

试验空气沿水平圆管外表面的自然对流换热系数

实验二、 空气沿水平圆管外表面的自然对流换热系数 一、实验目的 1.测定空气沿水平圆管外表面的自然对流换热系数。并将数据整理成准则方程式。 2.了解对流换热系数的实验研究方法,学会用相似准则综合实验数据的方法,认识相似理论在对流换热实验研究中的指导意义。 二、实验原理 实验研究的是受热体(圆管)在大空间中的自然对流换热现象。根据传热学和相似原理理论,当一个受热表面在流体中发生自然对流换热时,包含自然对流换热系数的准数关系式可整理为: ()n b b Gr c Nu Pr ?= (2-1) 式中: λal Nu =——努谢尔特准数; t v gl Gr ??=β23 ——葛拉晓夫准数; l —物体的特性尺寸,实验中为管径d ; α —对流换热系数(W/m 2 ·℃); λ —— 流体(空气)的导热系数(W/m 2·℃); v —— 流体(空气)的运动粘度(m 2/s ); m T /1=β——流体的体积膨胀系数(1/K)。 T m ——定性温度,实验中取()2732/0++=t t T w m ,t w 和t 0分别为圆管壁面温度和室内温度; 0t t t w -=?是过余温度(℃) ; c 、n ——待定实验常数,需根据实验数据用最小二乘法进行确定。 角标“b ”表示以边界层平均温度作为定性温度。 由于在一般情况下,实验管表面散失热量Q 以对流和辐射两种方式散发的。 r c Q Q Q += (2-2) 式中,Q — 表面散失热量 (W),;Q =IV ; Q c — 自然对流散失热流量 (W) Q r — 辐射散失热流量 (W)。 实验管可以被看做为被其他物体(房屋、地面)包围的面积很小的凸物体,它的辐射热量为 ??? ???????? ??-??? ??=44100100O W O s T T F C Q ε(W ) (2-3) 其中,εs 为系统黑度,本实验系统中即为实验管表面黑度,由实验室事先测定;

相关文档
最新文档