试验一斐波那契数列

合集下载

斐波那契数列的6大结论

斐波那契数列的6大结论

斐波那契数列的6大结论斐波那契数列,这个名字听起来就像是数学界的魔法。

没错,斐波那契数列的魅力就在于它看似简单,却藏着无尽的奥秘。

今天咱们就来聊聊这条神秘的数字之路,顺便带点幽默,轻松一下。

1. 斐波那契数列是什么?1.1 说白了,斐波那契数列就是这样一串数字:0、1、1、2、3、5、8、13、21,依此类推。

你可能会问,这数字有什么了不起的?其实,这串数字的产生规则非常简单:前两个数相加,得到下一个数。

就像做饭,先放盐再放胡椒,最后成了一道美味的菜。

1.2 你看,这数列不光是数学家们的心头好,艺术家、建筑师也爱得不得了。

比如,著名的“黄金比例”就跟它有千丝万缕的联系。

可以说,斐波那契数列就像是宇宙的乐谱,处处都能听到它的旋律。

2. 自然界的魅力2.1 斐波那契数列在自然界中无处不在,这可不是我随便说说。

你注意过向日葵的花瓣吗?它们的排列方式就遵循这个数列,真是神奇得让人赞叹不已。

就像大自然的设计师,精心安排了一切。

2.2 除了花瓣,松果、贝壳甚至是一些水果的种子分布也都跟斐波那契数列有关。

这让人不禁想,难道自然界也在暗自欣赏这串数字的美妙?就像人们欣赏一幅完美的画作,心里忍不住咯噔一下。

3. 斐波那契与生活3.1 在我们的日常生活中,斐波那契数列其实也无处不在。

比如说,咱们日常见到的许多设计和建筑,往往都运用了这个数列的美学原则。

你看看那些高楼大厦,有的外形简直就是一幅现代艺术画,背后其实都有数学的影子。

3.2 另外,许多经济学模型也利用了斐波那契数列来预测市场走势。

这就像在打麻将,灵活运用每一张牌,才能获得胜利。

数列的神秘力量在这里展露无遗,让人不禁感慨:数字背后藏着多少智慧呀!4. 学习与探索4.1 学习斐波那契数列,简直就像是一场冒险旅行。

起初可能有点不知所措,但随着深入,真的会发现不少惊喜。

就像走进一个藏满宝藏的洞穴,越走越想探索下去。

4.2 斐波那契数列的应用范围广泛,甚至可以帮助我们理解一些复杂的现象。

斐波那契数列

斐波那契数列

斐波那契数列一、简介斐波那契数列Fibonacci,又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展;故斐波那契数列又称“兔子数列”;斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字;这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2.兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子;按此规律,并假定兔子没有死亡,10个月后共有多少个兔子这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项;二、性质如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理;那么下面我们就通过初等代数的待定系数法计算出通项公式;令常数p,q满足F n-pF n-1=qF n-1-pF n-2;则可得:F n-pF n-1=qF n-1-pF n-2=q2F n-2-pF n-3=…=q n-2F2-pF1又∵F n-pF n-1=qF n-1-pF n-2∴F n-pF n-1=qF n-1-pqF n-2F n-1+F n-2-pF n-1-qF n-1+pqF n-2=01-p-qF n-1+1+pqF n-2=0∴p+q=1,pq=-1是其中的一种方程组∴F n-pF n-1= q n-2F2-pF1=q n-21-p=q n-1F n=q n-1+pF n-1=q n-1+pq n-2+pq n-3+…=q n-1+pq n-2+p2q n-3+…+p n-1不难看出,上式是一个以p/q为公比的等比数列;将它用求和公式求和可以得到:而上面出现了方程组p+q=1,pq=-1,可以得到p1-p=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+=,2=,p=±√+;随意取出一组解即可:这就是著名的斐波那契数列通项公式;有了它,斐波那契数列的一些性质也不难得出了;比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:根据斐波那契数列通项公式,可以得到因为n是趋向于正无限的,因此我们可以知道:那么我们就可以把分子和分母的第二项同时省略掉,即这就是斐波那契数列的魅力之一——它和黄金分割比有密切的关系;下面将给出斐波那契数列的几个性质及其证明;1F1+F2+F3+...+F n=F n+2-1证明:原式=F3-F2+F4-F3+...+F n+2-F n+1=F n+2-1.2F1+F3+F5+...+F2n+1=F2n+2证明:原式=F2+F4-F2+F6-F4+...+F2n+2-F2n=F2n+23F12+F22+...+F n2=F n F n+1证明:利用数学归纳法,显然n=1时满足,下面证明若n=k时满足,n=k+1时也满足.已知F12+F22+...+F n2=F n F n+1,F12+F22+...+F n+12=F n F n+1+F n+12=F n+1+F n F n+1=F n+1F n+2,因此n+1后仍然满足.上述公式成立.4F1F2+F2F3+...+F n F n+1=F n+22-F n F n+1-1/2证明:数学归纳法,n=1时满足.已知F1F2+F2F3+...+F n F n+1满足,那么F1F2+F2F3+...+F n F n+1+F n+1F n+2=F n+22-F n F n+1-1/2+F n+1F n+2=F n+22-F n F n+1+2F n+1F n+2-1/2=F n+22+2F n+1F n+2+F n+12- F n F n+1-F n+12-1/2=F n+32-F n+1F n+2-1/2,因此上式成立.5F n2=F n-1F n+1+-1n+1证明:数学归纳法,n=2时满足.已知前面的n都满足,那么F n2=F n-12+F n-22+2F n-2F n-1=F n-12+F n-3F n-1+-1n-1+2F n-2F n-1=F n-1F n+F n-12+-1n-1=F n-1F n+1+-1n+1,因此上式成立.6F n+m=F m-1F n+F m F n+1n>m>1证明:利用通项公式,设α=,β=1-α=注意到1/α+α=sqrt5=1/β+β,1/α+β=0=1/β+α,上式就变成了这就是上述公式的证明.三、斐波那契数列与自然斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数典型的有向日葵花瓣,蜂巢,蜻蜓翅膀,超越数e可以推出更多,黄金矩形、黄金分割、等角螺线,十二平均律等;斐波那契数还可以在植物的叶、枝、茎等排列中发现;例如,在的枝干上选一片叶子,记其为数0,然后依序点数叶子假定没有折损,直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数;叶子从一个位置到达下一个正对的位置称为一个循回;叶子在一个循回中的圈数也是斐波那契数;在一个循回中叶子数与叶子旋转圈数的比称为源自希腊词,意即叶子的排列比;多数的叶序比呈现为斐波那契数的比;图为斐波那契弧线;关于递推式的拓展研究一、错位排列问题有n个数,求有多少种排列使这n个数都不在原来的位置上;比如n=2时,有一种排列;设fn表示n个数的错位排列数量,分两种情况讨论:1.第n个数在第pp≠n个数的位置上,第p个数在第n个数的位置上,则此时共有fn-2种选择;由于p有n-1种值,则总共有n-1fn-2种排列方法;2.否则,共有n-1fn-1种排列方法;综上所述,fn=n-1fn-1+fn-2,f1=0,f2=1;那这个数列的通项公式是什么呢直接对这个数列不好进行操作,可以转化一下;设错位排列的概率函数为gn,其中g1=0,g2=;在fn的递推式两边同时除以n即可得到;两边同时乘n得到ngn=n-1gn-1+gn-2ngn-gn-1=gn-2-gn-1注意到e-1的泰勒展开式跟它好像有点像,是因此有如下的等式:同时,我们也可以得到了函数f的通项公式为:这就是一些关于错位排序的性质;二、类斐波那契数列的研究我们知道斐波那契数列递推式为fn=fn-1+fn-2,那么假如有更多项呢假设fn=fn-1+fn-2+fn-3,其中f1=f2=f3=1.我们暂时称这个数列为类斐波那契数列,那么它的通项公式又如何呢令a,b,c满足fn+afn-1+bfn-2=cfn-1+afn-2+bfn-3则得到c-a=1,ac-b=1,bc=1,消元得c3-c2-c-1=0,利用牛顿迭代可以计算出c=……,则a=……,b=……所以fn+afn-1+bfn-2=c n-31+a+b,记t=1+a+b,两边同时除以c n构造更多的常数项:为了方便,我们记,则:令p,q,r满足gn-pgn-1-q=rgn-1-pgn-2-q,则得到:这个方程会发现没有实数解,于是我们只能使用复数了:p= (i)q=...+ (i)r=...+ (i)继续上面的递推式,则有gn-pgn-1-q=r n-2g2-pg1-q;记T= g2-pg1-q,则:gn=pgn-1+r n-2T+q=ppgn-2+r n-3T+q+r n-2T+q=p n-1g1+p n-2T+p n-3rT+…+r n-2T+q+pq+…+p n-2q因此也就可以得到f的递推式了:不难得到,t=…,T=…+…i;递推式中的c,p,q,t,T都是常数,但除了c以外都是复数,因此计算上会比较困难;在附录中附上C++的程序,附复数计算的模板和使用递推式计算类斐波那契数列的程序;三、递推式和矩阵如果对于每个线性递推式都要先计算它的通项公式才能够快速地得到某一项,那这个方法太过于复杂了;于是我们可以使用矩阵来加速递推;比如斐波那契数列的递推式也可以写成:因此就有如下结果:其中矩阵的幂次方可以使用快速幂算法在Ologn的时间内解决,因此我们就可以在Ologn 的时间内计算出斐波那契数列的第n项排除高精度的时间,且精度要比虚数和小数精确的多;附录利用通项公式计算类斐波那契数列的代码:include<>include<>include<algorithm>include<>include<vector>include<>include<queue>include<set>include<functional>include<>using namespace std;const double EPS = 1E-15;struct Complex{double a, b;4lf+%.14lfi\n", a, b; }};Complex csqrt const Complex& c{Complex r = Complex1, 1, t = Complex;while r = t{t = r;r = r - r r - c / 2 / r;}return r;}Complex cpow Complex c, int e{Complex res = Complex1, 0;for ; e; e >>= 1{if e & 1 res = res c;c = c c;}return res;}int main{double c = 2, t = 0;while fabsc - t > EPS{t = c;c -= c c c - c c - c - 1 / 3 c c - 2 c - 1;}double a = c - 1, b = 1 / c;printf"%.14lf\n", 1 + a + b;t = 1 + a + b;Complex r = csqrt Complex a a / c / c - 4 b / c / c - a / c / 2;;Complex p = Complex-a / c - r, q = Complex t / c / c / c / Complex1 - r;, ;Complex T = Complex1 / c / c - Complex1 / c p - q;;int n = 7;scanf"%d", &n;Complex res = cpow Complex c, n cpowp, n - 1 / Complex c + T cpowr, n - 1 - cpowp, n - 1 / r - p + q cpowp, n - 1 - q / p - Complex1;;system"pause";return 0;}。

斐波那契数列与黄金分割

斐波那契数列与黄金分割
时间到!
答案是 6710。
4
这与“斐波那契数列”有关
若一个数列,前两项等于1,而从第三项 起,每一项是其前两项之和,则称该数 列为斐波那契数列。即:
1 , 1 , 2 , 3 , 5 , 8 , 13 , … …
5
一、兔子问题和斐波那契数列
1. 兔子问题 1) 问题 ——取自意大利数学家 斐波那契的《算盘书》 (1202年)
解:设跳到第n格的方法有 tn种。
由于他跳入第1格,只有一种方法;跳入 第2格,必须先跳入第1格,所以也只有一
种方法,从而 t1 t2 1
22
而能一次跳入第n格的,只有第 n 1
和第 n 2 两格,因此,跳入第 n 格的方法
数,是跳入第n 1格的方法数 tn1,加上跳入
第 n 2 格的方法数 tn2 之和。
2
再作
A(AE)交 AB于 C ,则
AC
AB
5 1 ,C 即
2
为 AB的黄金分割点。
D
5
E
1
A
C
B2Βιβλιοθήκη 38证:不妨令 BD 1 ,则 AB 2 , AD 22 1 5 , AE AD ED 5 1,
AC AE
AC 5 1,
5 1
AB 2
证完。
39
4. 黄金分割的美 黄金分割之所以称为“黄金”分割,是 比喻这一“分割”如黄金一样珍贵。黄金 比,是工艺美术、建筑、摄影等许多艺术 门类中审美的因素之一。认为它表现了恰 到好处的“合谐”。 例如:
如果把该连分数从第 n 条分数线截住,即
把第n 1条分数线上、下的部分都删去,就
得到该连分数的第n 次近似值,记作 un 。
vn

斐波那契数列应用

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。

数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议!这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。

要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。

问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。

我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。

多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。

用公式表示就是:。

其中表示正方形的面积,表示长方形的面积。

知道了这个事实,我们就可以自己构造类似于问题2的几何趣题.爬梯子问题(斐波那契数列应用)1。

小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法?这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法.既:楼梯的级数:12345678...上楼梯的走法:124713244481...这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和.。

斐波那契数列及其性质

斐波那契数列及其性质

裴波纳契数列及其性质在现实生活中,我们经常会遇到类似“数列”变化的一系列经济问题,裴波纳契数列出现在我们生活中的方方面面,一些问题不仅可以用裴波纳契数列表示,而且本质上就是裴波纳契数列,可见裴波纳契数列在很多数学分支都有很广泛的应用,因此研究裴波纳契数列非常必要。

本文通过探讨裴波纳契数列的性质,进一步掌握数列的数字排列、增减变化、波动趋势等数项之间的变化规律,继而给出一系列与裴波纳契数列相关问题的解决方案,特别是对中学数学教育中,如何让学生巧妙解题具有启发作用。

1. 裴波纳契数列的由来斐波那契,公元13世纪意大利数学家,在他的著作《算盘书》中记载着这样一个“兔子繁殖问题”:假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小兔子两个月后就具有繁殖能力。

假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子?问题的解答思路:将每个月的兔子总对数列出来即可(需考虑到每个月具有生殖能力的兔子的对数),如下:月份 1 2 3 4 5 6 7 8 9 10 111213小兔子数(对) 1 0 1 1 2 3 5 8 13 21345589大兔子数(对)0 1 1 2 3 5 8 13 21345589144兔子总数(对) 1 1 2 3 5 8 13 21345589144233所以一年后(即第13个月初),繁殖的兔子共有233对。

仔细观察,可以看出上面列出的兔子对数呈现出一个有趣的变化规律:即从第3个月起,每个月的兔子对数都是前两个月的兔子对数之和,把这些数字按照相同的规律推算到无穷多项,就构成了一列数列:1、1、2、3、5、8、13、21、34、55……,人们就把它称为裴波纳契数列,而将这个数列中的每一项称为“裴波纳契数”。

2. 生活中常见的裴波纳契数列数学模型:假如我们把设为裴波纳契数列,不难发现数列是由递推关系式:,,……,所给出的一个数列。

从而,我们就可以轻而易举地算出两年,三年……以后的兔子数。

斐波那契数列

斐波那契数列

斐波那契数列在数学的奇妙世界里,有一个充满魅力的数列,那就是斐波那契数列。

它看似简单,却蕴含着无尽的奥秘和广泛的应用,影响着我们生活的方方面面。

斐波那契数列是这样一组数字:0、1、1、2、3、5、8、13、21、34、55、89、144…… 从第三项开始,每一项都是前两项的和。

这个数列最初是由意大利数学家斐波那契在研究兔子繁殖问题时提出的。

想象一下,有一对刚出生的小兔子,一个月后它们长大成年,再过一个月就能生下一对小兔子。

假设兔子都不死,那么每个月兔子的数量就会按照斐波那契数列增长。

第一个月有 1 对兔子,第二个月还是 1 对,第三个月就变成 2 对,因为成年的兔子生下了 1 对新兔子,以此类推。

斐波那契数列的奇妙之处不仅在于它的起源,还在于它所展现出的一些独特的数学性质。

比如,随着数列项数的增加,相邻两项的比值会逐渐趋近于一个固定的数值,约为 1618,这个数值被称为黄金分割比。

黄金分割比在美学、艺术和自然界中都有着广泛的存在。

许多著名的艺术作品,如达芬奇的《蒙娜丽莎》,其构图就符合黄金分割的比例,给人以美的感受。

在建筑设计中,也常常运用黄金分割来确定建筑物的比例和尺寸,使其更加和谐美观。

在自然界中,斐波那契数列也随处可见。

例如,向日葵的花盘上,种子的排列呈现出斐波那契螺旋线的形式。

这是因为这样的排列方式能够最大程度地利用空间,使种子得到最充分的光照和生长条件。

菠萝表面的鳞片、松果的鳞片排列,也都遵循着斐波那契数列的规律。

斐波那契数列在计算机科学中也有着重要的应用。

它可以用于算法设计和优化,比如在搜索算法、排序算法中,斐波那契数列可以帮助提高算法的效率。

在密码学中,斐波那契数列也可以用于生成密钥,增加密码的安全性。

此外,斐波那契数列还与金融市场有着密切的关系。

一些技术分析方法会利用斐波那契数列来预测股票价格的走势和支撑阻力位。

虽然这种预测并不是百分之百准确,但它为投资者提供了一种思考和分析市场的工具。

斐波那契数列研究

斐波那契数列研究

斐波那契数列研究一、斐波那契生平斐波那契(1175年-1250年),意大利数学家,西方第一个研究斐波那契数,并将现代书写数和乘数的位值表示法系统引入欧洲。

有感使用阿拉伯数字比罗马数字更有效,斐波那契前往地中海一带向当时著名的阿拉伯数学家学习,约于1200年回国。

1202年, 27岁的他将其所学写进计算之书。

这本书通过在记帐、重量计算、利息、汇率和其他的应用,显示了新的数字系统的实用价值。

这本书大大影响了欧洲人的思想,可是在三世纪后印制术发明之前,十进制数字并不流行。

欧洲数学在希腊文明衰落之后长期处于停滞状态,直到12世纪才有复苏的迹象。

这种复苏开始是受了翻译、传播希腊、阿拉伯著作的刺激。

对希腊与东方古典数学成就的发掘、探讨,最终导致了文艺复兴时期(15~16世纪)欧洲数学的高涨。

文艺复兴的前哨意大利,由于其特殊地理位置与贸易联系而成为东西方文化的熔炉。

意大利学者早在12~13世纪就开始翻译、介绍希腊与阿拉伯的数学文献。

欧洲,黑暗时代以后第一位有影响的数学家斐波那契,其拉丁文代表著作《算经》、《几何实践》等也是根据阿拉伯文与希腊文材料编译而成的,斐波那契,早年随父在北非从师阿拉伯人习算,后又游历地中海沿岸诸国,回意大利后即写成《算经》。

《算经》最大的功绩是系统介绍印度记数法,影响并改变了欧洲数学的面貌。

现传《算经》是1228年的修订版,其中还引进了著名的“斐波那契数列”。

《几何实践》则着重叙述希腊几何与三角术。

斐波那契其他数学著作还有《平方数书》、《花朵》等,前者专论二次丢番图方程,后者内容多为菲德里克二世宫廷数学竞赛问题,斐波那契论证其根不能用尺规作出,他还未加说明地给出了该方程的近似解。

微积分的创立与解析几何的发明一起,标志着文艺复兴后欧洲近代数学的兴起。

微积分的思想根源部分(尤其是积分学)可以追溯到古代希腊、中国和印度人的著作。

在牛顿和莱布尼茨最终制定微积分以前,又经过了近一个世纪的酝酿。

二、《算盘原理》《算盘原理》中的“算盘”并非仅仅指罗马算盘或某种计算工具。

神奇的数列——斐波那契数列

神奇的数列——斐波那契数列

神奇的数列——斐波那契数列斐波那契数列之美斐波那契是一位数学家,生于公元1170年,籍贯大概是比萨,卒于1240年后。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

斐波那契数列因他解决兔子繁殖的应用题而引入,故又称为“兔子数列”。

除此之外,他对欧洲数学的另一大贡献就是引进阿拉伯数字,从而取代了复杂的罗马计数法。

有这样一个数列:1、1、2、3、5、8、13、21、34……前两个元素为1,其他元素均为前两个元素和。

在数学上以如下递归的方法定义:这就是斐波那契数列的数学定义。

奇妙的属性随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:f(0)+f(1)+f(2)+…+f(n)=f(n+2)-1f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-1[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+1f(m+n-1)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。

斐波那契数列

斐波那契数列

在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。

变式训练1 一只青蛙从宽5米的水田的一边要跳往另一边,它每次只能跳0.5米或1米,这只青蛙跳过水田共有多少种不同的方法?变式训练2 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同的取法?假定一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就能有生殖能力。

问:从一对大兔子开始,如果所有兔子都不死,一年后能繁殖成多少对兔子?这就产生了斐波那契数列:如果一对兔子每月生一对兔子;一对新生兔,从第二个月起就开始生兔子;假定每对兔子都是一雌一雄,试问一对兔子,一年能繁殖成多少对兔子?先看前几个月的情况:第一个月有一对刚出生的兔子,即F(1)=1;第二个月,这对兔子长成成年兔,即F(2)=1;第三个月,这对成年兔生出一对小兔,共有两对兔子,即F(3)=2;第四个月,成年兔又生出一对小兔,原出生的兔子长成成年兔,共有三对兔子,即F(4)=3;第五个月,原成年兔又生出一对小兔,新成年兔也生出一对小兔,共有五对兔子,即F(5)=5;……以此类推,可得每个月的兔子对数,组成数列:1,1,2,3,5,8,13,21,34,55,89,144,…,这就是著名的斐波那契数列,其中的任一个数,都叫斐波那契数。

题中本质上有两类兔子:一类是能生殖的兔子,称为成年兔子;新生的兔子不能生殖;新生兔子一个月就长成成年兔子。

求的是成年兔子与新生兔子的总和。

每月新生兔对数等于上月成年兔对数。

每月成年兔对数等于上个月成年兔对数与新生兔对数之和。

最后得关系式:F(1)=F(2)=1;F(n)=F(n-1)+F(n-2)(n≥3)。

法国数学家比内(Binet)证明了通项公式为2、斐波那契数列的性质斐波那契数列有很多有趣的性质,归纳如下:性质1:相邻的斐波那契数之平方和(差)仍为斐波那契数。

斐波那契数列 ppt课件

斐波那契数列  ppt课件

观察其中蕴涵的函数关系
查看代码
结论:曲线的形状确实象一条直线
ppt课件
16
3. 获得数据的近似函数关系式
Fibonacci数列的数据关系是指数函数, 取对数后是线性函数,即一阶多项式, 用一阶多项式拟合出取对数后的函数关系式
log(Fn ) 0.8039+0.4812n
得到Fibonacci数列通项公式的近似表达式:
1
(1 2
5)
5 1
2
Fn
1 [Gn (1)n1Gn ] 可以验证
5
F2 F4 F2n G F2n1 F3 F1
F3 F5
F2 n 1
F2 n 2
F4 F2
Lim Fn 5 1 G
F n n 1
2
/ppptl课a件y.asp?vodid=144217&e=301
ppt课件
5
四、背景知识
1、最小二乘和数据拟合
ppt课件
6
ppt课件
7
多项式拟合
当数据点 互异时
ppt课件
8
2、画图和多项式拟合命令
plot(x,y,’s’) :将所给的点列连接成一条折线 x-点列的横坐标,y-点列的竖坐标 s-图形的格式字符串
例:给定数据,x1=[1,3,4,5,6,7,8,9,10]; y1=[10,5,4,2,1,1,2,3,4];描绘其图形
代码:x1=[1,3,4,5,6,7,8,9,10]; y1=[10,5,4,2,1,1,2,3,4]; plot(x1,y1)
ppt课件
9
10
9
8
7
6
5
4
3
2
1

斐波那契数列与黄金分割

斐波那契数列与黄金分割

两千年前,希腊数学家考虑如下问题:
设线段 AB ,
A
在 AB 上找一点 C , 使得
C
B
令 x AB AC, 于是有 xA C C B 1C B 11,
AC CB
AC AC x
可化为一元二次方程 x2x10.
该方程的根为
1 5 x1 2 ,
x2
1 2
5
.
大自然中数学美---黄金分割 黄金比


称为黄金分割数.
黄金矩形
a : b = 1 : 1.618…
b
a
2、黄金三角形
A
C
B
底与腰 或腰与底 之比为0.618的三角形,称为黄金
三角形.
黄金梯形:在等腰梯形中, 当上底边长与下底边长之比 为黄金比且上底边长正好与 两条腰长相等 此时下底边 长正好与两条对角线长相等 时,这个梯形就称为黄金梯 形,
a1 a2 1, an1 an an1, n 2, 3, 4,...
斐波那契数列
斐波纳契数列的性质
1 1 2 3 5 8 13 21 34 55 89 144 ・・・
各項分别为前项的多少倍
后一项
前一项 的观察
1 < 1.5 < 1.6 < 1.6153 < 1.6176 < 1.6179 1 2 3 5 8 13 21 34 55 89 144 1 1 2 3 5 8 13 21 34 55 89 1.6180・・・
??
“十秒钟加数”的秘密
• 又例如:
右式的答案是: 610 11 = 6710
34 55 89 144 233 377 610 987 1597 + 2584 ????

斐波那契数列

斐波那契数列

斐波那契数列的探究如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子.假定在不发生死亡的情况下,由1对出生的小兔子开始,50个月后会有多少对兔子?每月底兔子对数是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……, 50个月后是12586269025 对.这就是著名的斐波那契数列.斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……●观察斐波那契数列项数之间有什么关系?从第三项开始每一项等于其前两项的和,即若用F n 表示第n 项,则有F n =F n -1+F n-2(n ≥3).通过递推关系式121(1,2)(3)n n n n F F F n --=⎧=⎨+≥⎩,可算出任意项,不过,当n 很大时,推算是很费事的.必须找到更为科学的计算方法.能否找到通项公式,并给予证明? 1730年法国数学家棣莫弗给出其通项表达式n a =n )251(+-n )251(-],19世纪初另一位法国数学家比内首先证明这一表达式,现在称之为——比内公式.1.下面研究一下该通项公式的来历已知:数列{a n }满足a 1=a 2=1, a 3=2,且a n+2 = a n+1+ a n (n≥3),求a n 证明:(利用等比数列性质求解)构造常数A 、B ,使之211()n n n n a Aa B a Aa +++-=-整理得:21()n n n a A B a ABa ++=+-与21n n n a a a ++=+比较得⎩⎨⎧=-=+11AB B A 解之得:A=251±、 B=251μ 不妨取A=251+、 B=251-得:211111()222n n n n a a a a +++++-=-∴1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以21a -=251-为公比的等比数列。

奇妙的裴波那契数列和黄金分割

奇妙的裴波那契数列和黄金分割

奇妙的裴波那契数列和黄金分割“斐波那契数列”的发明者,是意大利数学家列昂纳多斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《珠算原理》(Liber Abaci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/ 5)*{[(1+ 5)/2]^n - [(1- 5)/2]^n}(又叫“比内公式”,是用无理数表示有理数的一个范例。

)【 5表示根号5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【该数列有很多奇妙的属性】比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.87还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少(请自己验证后自己确定)1,每个偶数项的平方都比前后两项之积多(请自己验证后自己确定)1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6 等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

斐波那契数列

斐波那契数列

斐波那契数列在数学的奇妙世界里,有一个充满魅力和神秘色彩的数列,那就是斐波那契数列。

这个数列以其独特的规律和广泛的应用,吸引着无数数学家和爱好者的目光。

斐波那契数列的定义非常简单。

从 0 和 1 开始,后续的每一项都是前两项的和。

也就是说,数列的前几项是 0、1、1、2、3、5、8、13、21、34、55…… 这个看似简单的定义,却蕴含着无尽的奥秘。

斐波那契数列在自然界中有着惊人的呈现。

比如,植物的生长就常常遵循着斐波那契数列的规律。

我们观察向日葵的花盘,会发现其中的种子排列呈现出一种优美的螺旋结构。

仔细数数这些螺旋的数量,往往会是斐波那契数。

还有菠萝表面的凸起,以及松果鳞片的排列,都能找到斐波那契数列的影子。

这是为什么呢?从生物学的角度来看,这种排列方式能够最大程度地利用空间和资源,使得植物在生长过程中达到最优的状态。

比如向日葵花盘上的种子排列,能够让每颗种子都获得足够的阳光和养分,从而提高繁殖的成功率。

斐波那契数列在金融领域也有着重要的应用。

股票价格的波动、市场的周期变化,都有人尝试用斐波那契数列来进行分析和预测。

虽然不能说它能够完全准确地预测市场走势,但它为投资者提供了一种思考和分析的角度。

在计算机科学中,斐波那契数列也是一个经典的案例。

它经常被用于算法的教学和实践中,帮助初学者理解递归算法的概念。

通过编写计算斐波那契数列的程序,能够锻炼编程思维和逻辑能力。

我们再从数学的角度深入探究一下斐波那契数列。

它有着许多有趣的性质。

比如,相邻两项的比值会逐渐趋近于一个固定的值,这个值被称为黄金分割比。

黄金分割比在美学、艺术和建筑中都有着广泛的应用,被认为是一种最具美感的比例。

斐波那契数列还有一个奇妙的性质,就是它的通项公式。

虽然推导通项公式需要一定的数学知识和技巧,但一旦得到,就能够更方便地计算数列中的任意一项。

不仅如此,斐波那契数列还与许多数学概念和定理有着紧密的联系。

比如,它与组合数学中的一些问题相关,也在数论中有着特殊的地位。

有趣的斐波那契数列例子

有趣的斐波那契数列例子

斐波那契数列斐波那契的发明者,是数学家Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是;他被人称作“比萨的列昂纳多”;1202年,他了珠算原理Liber Abacci一书;他是第一个研究了和数学理论的人;他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学;他还曾在、、、和研究;斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和;斐波那契数列通项公式通项公式见图又叫“比内公式”,是用表示的一个范例;注:此时a1=1,a2=1,an=an-1+an-2n>=3,n∈N通项公式的推导斐波那契数列:1、1、2、3、5、8、13、21、……如果设Fn为该数列的第n项n∈N+;那么这句话可以写成如下形式:F0 = 0,F1=1,Fn=Fn-1+Fn-2 n≥2,显然这是一个递推数列;方法一:利用特征方程线性代数解法线性递推数列的特征方程为:X^2=X+1解得X1=1+√5/2,,X2=1-√5/2;则Fn=C1X1^n + C2X2^n;∵F1=F2=1;∴C1X1 + C2X2;C1X1^2 + C2X2^2;解得C1=1/√5,C2=-1/√5;∴Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1}√5表示5;方法二:待定系数法构造等比数列1初等待数解法设常数r,s;使得Fn-rFn-1=sFn-1-rFn-2;则r+s=1, -rs=1;n≥3时,有;Fn-rFn-1=sFn-1-rFn-2;Fn-1-rFn-2=sFn-2-rFn-3;Fn-2-rFn-3=sFn-3-rFn-4;……F3-rF2=sF2-rF1;联立以上n-2个式子,得:Fn-rFn-1=s^n-2F2-rF1;∵s=1-r,F1=F2=1;上式可化简得:Fn=s^n-1+rFn-1 ;那么:Fn=s^n-1+rFn-1;= s^n-1 + rs^n-2 + r^2Fn-2;= s^n-1 + rs^n-2 + r^2s^n-3 + r^3Fn-3;……= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1F1;= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1;这是一个以s^n-1为首项、以r^n-1为末项、r/s为公比的的各项的和;=s^n-1-r^n-1r/s/1-r/s;=s^n - r^n/s-r;r+s=1, -rs=1的一解为s=1+√5/2,r=1-√5/2;则Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1};方法三:待定系数法构造等比数列2初等待数解法已知a1=1,a2=1,an=an-1+an-2n>=3,求数列{an}的通项公式;解:设an-αan-1=βan-1-αan-2;得α+β=1;αβ=-1;构造方程x^2-x-1=0,解得α=1-√5/2,β=1+√5/2或α=1+√5/2,β=1-√5/2;所以;an-1-√5/2an-1=1+√5/2an-1-1-√5/2an-2=1+√5/2^n-2a2-1-√5/2a1`````````1;an-1+√5/2an-1=1-√5/2an-1-1+√5/2an-2=1-√5/2^n-2a2-1+√5/2a1`````````2;由式1,式2,可得;an=1+√5/2^n-2a2-1-√5/2a1``````````````3;an=1-√5/2^n-2a2-1+√5/2a1``````````````4;将式31+√5/2-式41-√5/2,化简得an=1/√5{1+√5/2^n - 1-√5/2^n};与黄金分割的关系有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的;而且当n时an-1/an越来越逼近数;1÷1=1,2÷1=2,3÷2=,5÷3=...,8÷5=,…………,89÷55=…,…………233÷144=…75025÷46368=…;..越到后面,这些比值越接近黄金比.证明:an+2=an+1+an;两边同时除以an+1得到:an+2/an+1=1+an/an+1;若an+1/an的极限存在,设其极限为x,则limn->∞an+2/an+1=limn->∞an+1/an=x;所以x=1+1/x;即x&sup2;=x+1;所以极限是黄金分割比;奇妙的属性斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数;比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值……从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1;注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通多了的一在哪如果你看到有这样一个题目:某人把一个88的方格切成四块,拼成一个513的,故作惊讶地问你:为什么64=65其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到;斐波那契数列的第n项同时也代表了{1,2,...,n}中所有不相邻正的个数;斐波那契数列fn,f0=0,f1=1,f2=1,f3=2……的其他性质:0+f1+f2+…+fn=fn+2-1;1+f3+f5+…+f2n-1=f2n;2+f4+f6+…+f2n =f2n+1-1;4.f0^2+f1^2+…+fn^2=fn·fn+1;0-f1+f2-…+-1^n·fn=-1^n·fn+1-fn+1;m+n-1=fm-1·fn-1+fm·fn;利用这一点,可以用程序编出时间复杂度仅为Olog n的程序;怎样实现呢伪代码描述一下7.fn^2=-1^n-1+fn-1·fn+1;2n-1=fn^2-fn-2^2;n=fn+2+fn-2;2n-2m-2f2n+f2n+2=f2m+2+f4n-2m n〉m≥-1,且n≥1斐波那契数列2n+1=fn^2+fn+1^2.在杨辉三角中隐藏着斐波那契数列将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f1=C0,0=1 ;f2=C1,0=1 ;f3=C2,0+C1,1=1+1=2 ;f4=C3,0+C2,1=1+2=3 ;f5=C4,0+C3,1+C2,2=1+3+1=5 ;f6=C5,0+C4,1+C3,2=1+4+3=8 ;F7=C6,0+C5,1+C4,2+C3,3=1+5+6+1=13 ;……Fn=Cn-1,0+Cn-2,1+…+Cn-1-m,m m<=n-1-m斐波那契数列的整除性与素数生成性每3个数有且只有一个被2整除,每4个数有且只有一个被3整除,每5个数有且只有一个被5整除,每6个数有且只有一个被8整除,每7个数有且只有一个被13整除,每8个数有且只有一个被21整除,每9个数有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657第19位不是斐波那契数列的素数无限多吗斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,,99875,27965,16730,33695,49325,72910…斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现;例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子假定没有折损,直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数;叶子从一个位置到达下一个正对的位置称为一个循回;叶子在一个循回中的圈数也是斐波那契数;在一个循回中叶子数与叶子旋转圈数的比称为源自希腊词,意即叶子的排列比;多数的叶序比呈现为斐波那契数的比;斐波那契—卢卡斯数列与广义斐波那契数列黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,斐波那契数列:|11-12|=|22-13|=|33-25|=|55-38|=|88-513|=…=1卢卡斯数列:|33-14|=|44-37|=…=5F1,4数列:|44-15|=11F2,5数列:|55-27|=11F2,7数列:|77-29|=31斐波那契数列这个值是1最小,也就是前后项之比接近最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列;卢卡斯数列的黄金特征是5,也是独生数列;前两项的独生数列只有斐波那契数列和卢卡斯数列这两个数列;而F1,4与F2,5的黄金特征都是11,是孪生数列;F2,7也有孪生数列:F3,8;其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列; 广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|22-15|=|55-212|=…=1该类数列的这种称为勾股特征;数列Pn的递推规则:P1=1,P2=2,Pn=Pn-2+2Pn-1.据此类推到所有根据前两项导出第三项的通用规则:fn = fn-1 p + fn-2 q,称为广义斐波那契数列;当p=1,q=1时,我们得到斐波那契—卢卡斯数列;当p=1,q=2时,我们得到佩尔—勾股弦数跟边长为整数的有关的数列集合;当p=-1,q=2时,我们得到等差数列;其中f1=1,f2=2时,我们得到自然数列1,2,3,4…;自然数列的特征就是每个数的平方与前后两数之积的差为1等差数列的这种差值称为;具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1;当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关的数学问题1.排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法;类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种答案是1/√5{1+√5/2^10+2 - 1-√5/2^10+2}=144种;2.数列中相邻两项的前项比后项的极限当n趋于无穷大时,Fn/Fn+1的极限是多少这个可由它的通项公式直接得到,极限是-1+√5/2,这个就是黄金分割的数值,也是代表的和谐的一个数字;3.求递推数列a1=1,an+1=1+1/an的通项公式由可以得到:an=Fn+1/Fn,将斐波那契数列的通项式代入,化简就得结果;3.兔子繁殖问题关于斐波那契数列的别名斐波那契数列又学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“”;一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来;如果所有兔都不死,那么一年以后可以繁殖多少对兔子我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔民数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0 1 2 3 4 5 6 7 8 9 10 11 12幼仔0 0 1 1 2 3 5 8 13 21 34 55 89成兔对数0 1 1 2 3 5 8 13 21 34 55 89 144 总体对数 1 1 2 3 5 8 13 21 34 55 89 144 233 幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列;这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项;这个数列是意大利数学家斐波那契在<算盘全书>中提出的,这个的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5{1+√5/2^n-1-√5/2^n}n=1,2,3.....数学游戏一位拿着一块边长为8英尺的地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯;”这位匠师对魔术师之差深感惊异,因为两者之间面积相差达一平方英尺呢可是魔术师竟让匠师用图2和图3的办法达到了他的目的这真是不可思议的事亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢实际上后来缝成的地毯有条细缝,面积刚好就是一平方英尺;自然界中的巧合斐波那契数列在自然科学的其他分支,也有许多应用;例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝;所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”;这样,一株树木各个年份的枝桠数,便构成斐波那契数列;这个规律,就是生物学上着名的“鲁德维格定律”;另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的的头部这些植物懂得斐波那契数列吗应该并非如此,它们只是按照自然的规律才进化成这样;这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉;叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的,每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是……的,而这种生长方式就决定了斐波那契螺旋的产生;向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条;数字谜题三角形的三边关系和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段n>2,每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少分析:由于形成三角形的是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边;截成的铁丝最小为1,因此可以放2个1,第三条就是2为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和,依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10;我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了;这里,三角形的三边关系定理和斐波那契数列发生了一个联系;在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了;影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的里它就作为一个重要的符号和情节线索出现,在魔法玩具城里又是在店主招聘会计时随口问的问题;可见此数列就像黄金分割一样流行;可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究;在电视剧中也出现斐波那契数列,比如:日剧考试之神第五回,义嗣做全国模拟考试题中的最后一道~社会文明中的斐波那契数列艾略特波浪理论1946年,艾略特完成了关于波浪理论的集大成之作,自然法则——宇宙的秘密;艾略特坚信,他的波浪理论是制约人类一切活动的普遍自然法则的一部分;波浪理论的优点是,对即将出现的顶部或底部能提前发出警示信号,而传统的技术分析方法只有事后才能验证;艾略特波浪理论对市场运作具备了全方位的透视能力,从而有助于解释特定的形态为什么要出现,在何处出现,以及它们为什么具备如此这般的预测意义等等问题;另外,它也有助于我们判明当前的市场在其总体周期结构中所处的地位;波浪理论的数学基础,就是在13世纪发现的费氏数列;波浪理论数学结构8浪循环图·8浪循环图说明·波浪理论的推动浪,浪数为51、2、3、4、5,调整浪的浪数为3a\b\c,合起来为8;·8浪循环中,前5段波浪构成一段明显的上升浪,其中包括3个向上的冲击波及两个下降的调整波;在3个冲击波之后,是由3个波浪组成的一段下跌的趋势,是对前一段5浪升势的总调整;这是艾略特对波浪理论的基本描述;而在这8个波浪中,上升的浪与下跌的浪各占4个,可以理解为艾略特对于股价走势对称性的隐喻;·在波浪理论中,最困难的地方是:波浪等级的划分;如果要在特定的周期中正确地指认某一段波浪的特定属性,不仅需要形态上的支持,而且需要对波浪运行的时间作出正确的判断;·换句话说,波浪理论易学难精,易在形态上的归纳、总结,难在价位及时间周期的判定;波浪理论的数字基础:斐波那契数列波浪理论数学结构——斐波那契数列与黄金分割率·这个数列就是斐波那契数列;它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的倍;前一个数字约是其后第二个数字的倍;后一个数字约是前一个数字的倍;后一个数字约是前面第二个数字的倍;·由此计算出常见的黄金分割率为和外:、、、、、、、、、·黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值;黄金分割比率在时间周期模型上的应用·未来市场转折点=已知时间周期×分割比率·已知时间周期有两种:1循环周期:最近两个顶之间的运行时间或两个底之间的运行时间2趋势周期:最近一段升势的运行时间或一段跌势的运行时间·一般来讲,用循环周期可以计算出下一个反向趋势的终点,即用底部循环计算下一个升势的顶,或用顶部循环计算下一个跌势的底;而用趋势周期可以计算下一个同方向趋势的终点或是下一个反方向趋势的终点;时间循环周期模型预测图时间趋势周期模型预测图时间周期与波浪数浪的数学关系·一个完整的趋势推动浪3波或调整浪3波,运行时间最短为第一波1浪或A浪的倍,最长为第一波的倍;如果第一波太过短促,则以第一个循环计算A浪与B浪或1浪与2浪;·及的周期一旦成立,则出现的行情大多属次级趋势,但行情发展迅速;·同级次两波反向趋势组成的循环,运行时间至少为第一波运行时间的倍;·一个很长的跌势或升势结束后,其右底或右顶通常在前趋势的或倍时间出现;黄金分割比率在价格幅度模型上的应用·如果推动浪中的一个子浪成为延伸浪的话,则其他两个推动浪不管其运行的幅度还是运行的时间,都将会趋向于一致;也就是说,当推动浪中的浪3在走势中成为延伸浪时,则浪1与浪5的升幅和运行时间将会大致趋同;假如并非完全相等,则极有可能以的关系相互维系;·浪5最终目标,可以根据浪1浪底至浪2浪顶距离来进行预估,他们之间的关系,通常亦包含有神奇数字组合比率的关系;·对于ABC调整浪来说,浪C的最终目标值可能根据浪A的幅度来预估;浪C的长度会经常是浪A的倍;当然我们也可以用下列公式预测浪C的下跌目标:浪A浪底减浪A乘;·在对称三角形内,每个浪的升跌幅度与其他浪的比率,通常以的神奇比例互相维系;黄金分割比率在价格幅度模型上的应用·:浪4常见的回吐比率、部份浪2的回吐比率、浪B的回吐比率;·:大部份浪2的调整幅度、浪5的预期目标、浪B的调整比率、三角形内浪浪之间比率;·:常见是浪B的调整幅度;·:浪3或浪4的回吐比率,但不多见;·与:·:浪3与浪1、浪C与浪A的比率关系;推动浪形态·推动浪有五浪构成;第一浪通常只是由一小部分交易者参与的微弱的波动;一旦浪1结束,交易者们将在浪2卖出;浪2的卖出是十分凶恶的,最后浪2在不创新低的情况下,市场开始转向启动下一浪波动;浪3波动的初始阶段是缓慢的,并且它将到达前一次波动的顶部浪1的顶部;推动浪浪5未能创新高低,市场将会出现大逆转推动浪的变异形态——倾斜三角形·倾斜三角形为推动浪中的一种特殊型态比较少见,主要出现在第5浪的位置;艾略特指出,在股市中,一旦出现一段走势呈现快速上升或赶底的状况,其后经常会出现倾斜三角形型态调整浪形态·调整是十分难以掌握的,许多艾略特交易者在推动模式阶段上赚钱而在调整阶段再输钱;一个推动阶段包括五浪;调整阶段由三浪组成,但有一个三角形的例外;一个推动经常伴随着一个调整的模式;·调整模式可以被分成两类:·简单的调整:之字型调整N字型调整·复杂的调整:平坦型、不规则型、三角形型调整浪的简单与复杂调整的交替准则调整浪的变异形态:强势三角形调整浪的变异形态:前置三角形各段波浪的特性·在8浪循环中,每段波浪都有不同的特点,熟知这些特点,对波浪属性的判断极有帮助,·第1浪:大部分第1浪属于营造底部形态的一部份,相当于形态分析中头肩底的底部或双底的右底,对这种类型的第1浪的调整第2浪幅度通常较大,理论上可以回到第1浪的起点;小部份第1浪在大型调整形态之后出现,形态上呈V形反转,这类第1浪升幅较为可观;在K线图上,经常出现带长下影线的大阳线;从波浪的划分来说,在5-3-5的调整浪当中,第1浪也可以向下运行,通常第1浪在分时图上应该显示明确的5浪形态;·第2浪:在强势调整的第2浪中,其回调幅度可能达到第1浪幅度的或,在更多的情况下,第2浪的回调幅度会达到100%,形态上经常表现为头肩底的右底,使人误以为跌势尚未结束;在第2浪回调结束时,指标系统经常出现超卖、背离等现象;第2浪成交量逐渐缩小,波幅较细,这是卖力衰竭的表现;出现传统系统的转向信号,如头肩底、双底等;·第3浪:如果运行时间较短,则升速通常较快;在一般情况下为第1浪升幅的倍;如果第3浪升幅与第1浪等长,则第5浪通常出现扩延的情况;在第3浪当中,唯一的操作原则是顺势而为;因为第3浪的升幅及时间经常会超出分析者的预测;通常第3浪运行幅度及时间最长;属于最具爆发性的一浪;大部分第3浪成为扩延浪;第3浪成交量最大;出现传统图表的突破信号,如跳空缺口等;·第4浪:如果第4浪以平坦型或N字型出现,a小浪与c小浪的长度将会相同;第4浪与第2浪经常是交替形态的关系,即单复式交替或平坦型、曲折型或三角形的交替;第4浪的低点经常是其后更大级数调整浪中A浪的低点;经常以较为复杂的形态出现,尤其以三角形较为多见;通常在第3浪中所衍生出来的较低一级的第4浪底部范围内结束;第4浪的底不会低于第1浪的顶;·第5浪:除非发生扩延的情况,第5浪的成交量及升幅均小于第3浪;第5浪的上升经常是在指标出现顶背离或钝化的过程中完成;在第5浪出现衰竭性上升的情况下,经常出现上升楔形形态;这时,成交量与升幅也会出现背离的情况;如果第1、3浪等长,则第5浪经常出现扩延;如果第3浪出现扩延浪,则第5浪幅度与第1浪大致等长;市场处于狂热状态;·第6浪A浪:A浪可以为3波或者5波的形态;在A浪以3波调整时,在A浪结束时,市场经常会认为整个调整已经结束;在多数情况下,A浪可以分割为5小浪;市场人士多认为市场并未逆转,只视为一个较短暂的调整;图表上,阴线出现的频率增大;·第7浪B浪:在A浪以3波形态出现的时候,B浪的走势通常很强,甚至可以超越A浪的起点,形态上出现平坦型或三角形的概率很大;而A浪以5波运行的时候,B浪通常回调至A浪幅度的至;升势较为情绪化,维持时间较短;成交量较小;·第8浪C浪:除三角形之外,在多数情况下,C浪的幅度至少与A浪等长;杀伤力最强;与第3浪特性相似,以5浪下跌;股价全线下挫;人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口;2000年科技泡沫达到繁荣的极限,到处都是财富神话然后盛极而衰,全球经济急转直下转入衰退、长期萧条;于是:911、阿富汗战争、伊拉克战争、SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴;这一切集中在一起接二连三地发生2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期;上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争;现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至2021年才会结束预测附在下面;后面是否又会发生被艾略特称之为的:底部战争至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方是否还记得那个着名的:1999年7月之上误差了2年恐怖大王从天而降911使安哥鲁摩阿大王为之复活美国发动反恐战争这期间由马尔斯借幸福之名统治四方唯一待验证社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果;1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条;2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点;3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点;到时绝大多数经济学家会一致悲观接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光;首先,列出一组计算公式:公元1937年–公元1932年X + 公元1982年= 公元2000年公元1966年–公元1942年/ + 公元1982年= 公元1999年公元1837年–公元1789年X + 公元1932年= 公元1998年公元1325年–公元950年X –公元1650年–公元1490年+ 公元1789年–公元1650年+ 公元1789年= 公元2000年其中:公元950年商业革命的起点公元1325年商业革命的结束点公元1490年资本主义革命的起点公元1650年资本主义革命的结束点公元1789年工业革命的起点公元1837年公元1789年后第一轮经济扩张的结束点公元1932年自公元1929年资本主义世界股灾的结束点公元1937 年公元1929年股灾后第一轮经济扩张的结束点公元1942年公元1929年股灾后第二轮经济扩张的起点公元1966年公元1929年股灾后第二轮经济扩张的结束点公元1982年70年代全球经济滞胀的结束点、、是斐波那契比率,来源于斐波那契数列前2个计算公式的含义:自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年;那么接着是一个调整期经济。

斐波那契数列隐周期性质

斐波那契数列隐周期性质

图形计算器研究斐波那契数列隐含周期性所在省市: ___________ 天津市___________作者姓名: ___________ 李元亨___________所在学校:_______ 天津耀华中学_________指导教师: ___________ 王洪亮___________一.简单背景介绍斐波那契数列,又称兔子数列,是一种最简单的递归数列;它的提出,首先在斐波那契的《算盘之书》中出现,有趣的是,斐波那契只是把这种简单的计算关系作为十进制数字比罗马数字简单的优越性的一个例子,这个例子又叫做兔子谜题,原题如下:一般而言,兔子在出生两个月后,就有繁殖能力。

一对兔子每个月能生出一对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?简单分析一下,可知:幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数= 本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。

这个数列有十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这样我们就得到了一个递归式:Fn =F(n-1)+F(n-2)(n>=2, n€ N*)三.关于斐波那契数列周期性性质的探究斐波那契数列的无穷递增的性质很容易根据图形计算器的图形得到探究。

我相信任何一个无穷递增数列的性质应当不仅仅与数列中每项的数字或数本身有关,也应当进行其在与数字进行其他运算方法的关系。

利用类比的数学思想,我认为,有许多种无穷递增数列,即使在每项本身没有较易发现的关系,在经过某种运算后也可以体现出特殊的性质一一体现周期性。

因此,我们有不太充分的理由可以相信,斐波那契数列经过一种或几种特殊的运算之后也应当可以体现出某种周期关系。

为了让一个递增数列体现出一种周期性,我们只可以使其失去递增的特点,否则永远无法继续上一个周期。

首先我只是认为斐波那契数列的末位数应当有周期关系(只要出现连续两项于前面的连续两项相等,后面必定具有周期性,证明从略)为了探讨这个问题,我将斐波那契数列一直用笔列至70项,使用了大量的时间,经过了巨大的运算量才发现了规律。

(常考题)人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)(4)

(常考题)人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)(4)
A. B. C. D.以上都不正确
13.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中随机取出3个球,用完后装回盒中,用 表示此时盒中旧球个数,则 的值为()
A. B. C. D.
二、解答题
14.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.
5.024
6.635
7.879
10.828
22.甲、乙、丙三名射箭选手每次射箭命中各环的概率分布如下面三个表格所示.
甲选手
环数
7
8
9
10
概率
0.1
0.2
0.4
0.3
乙选手
环数
7
8
9
10
概率
0.2
0.3
0.3
0.2
丙选手
环数
7
8
9
10
概率
0.1
0.4
0.4
0.1
(1)若甲、乙、丙各射箭一次,假设三位选手射箭所得环数相互独立,求这三位选手射箭所得总环数为28的概率;
(1)求这200名学生每周阅读时间的中位数 ( 的值精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为 , 的学生中抽取6名参加座谈会.
你认为6个名额应该怎么分配?并说明理由;
从这6名学生中随机抽取2人,求至多有一人每周读书时间在 的概率.
24.有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在[60,70),[90,100]的数据).

斐波那契数列隐周期性质

斐波那契数列隐周期性质

图形计算器研究斐波那契数列隐含周期性所在省市:天津市作者姓名:李元亨所在学校:天津耀华中学指导教师:王洪亮一.简单背景介绍斐波那契数列,又称兔子数列,是一种最简单的递归数列;它的提出,首先在斐波那契的《算盘之书》中出现,有趣的是,斐波那契只是把这种简单的计算关系作为十进制数字比罗马数字简单的优越性的一个例子,这个例子又叫做兔子谜题,原题如下:一般而言,兔子在出生两个月后,就有繁殖能力。

一对兔子每个月能生出一对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?简单分析一下,可知:幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。

这个数列有十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这样我们就得到了一个递归式:Fn =F(n-1)+F(n-2)(n>=2,n∈N*)三.关于斐波那契数列周期性性质的探究斐波那契数列的无穷递增的性质很容易根据图形计算器的图形得到探究。

我相信任何一个无穷递增数列的性质应当不仅仅与数列中每项的数字或数本身有关,也应当进行其在与数字进行其他运算方法的关系。

利用类比的数学思想,我认为,有许多种无穷递增数列,即使在每项本身没有较易发现的关系,在经过某种运算后也可以体现出特殊的性质——体现周期性。

因此,我们有不太充分的理由可以相信,斐波那契数列经过一种或几种特殊的运算之后也应当可以体现出某种周期关系。

为了让一个递增数列体现出一种周期性,我们只可以使其失去递增的特点,否则永远无法继续上一个周期。

首先我只是认为斐波那契数列的末位数应当有周期关系(只要出现连续两项于前面的连续两项相等,后面必定具有周期性,证明从略)为了探讨这个问题,我将斐波那契数列一直用笔列至70项,使用了大量的时间,经过了巨大的运算量才发现了规律。

后来,经过分析我认为斐波那契数列中每一项的末尾数即是每一项除以10的余数。

裴波那契数列的若干表现

裴波那契数列的若干表现

裴波那契数列的若干表现在各类竞赛中,各类小升初考试中相关的世界名题出现的概率极高,这是由小升初与数学竞赛的特点决定,这特点便是:知识性,趣味性,思想性相结合。

中世纪最有才华的数学家斐波那契(1175年~1259年)出生在意大利比萨市的一个商人家庭。

因父亲在阿尔及利亚经商,因此幼年在阿尔及利亚学习,学到不少时尚未流传到欧洲的阿拉伯数学。

成年以后,他继承父业从事商业,走遍了埃及、希腊、叙利亚、印度、法国和意大利的西西里岛。

斐波那契是一位很有才能的人,并且特别擅长于数学研究。

他发现当时阿拉伯数学要比欧洲大陆发达,因此有利于推动欧洲大数学的发展。

他在其他国家和地区经商的同时,特别注意搜集当地的算术、代数和几何的资料。

回国后,便将这些资料加以研究和整理,编成《算经》(1202年,或叫《算盘书》)。

《算经》的出版,使他成为一个闻名欧洲的数学家。

继《算经》之后,他又完成了《几何实习》(1220年)和《四艺经》(1225年)两部著作。

《算经》在当时的影响是相当巨大的。

这是一部由阿拉伯文和希腊文的材料编译成拉丁文的数学著作,当时被认为是欧洲人写的一部伟大的数学著作,在两个多世纪中一直被奉为经典著作。

在当时的欧洲,虽然多少知道一些阿拉伯记数法和印度算法,但仅仅局限在修道院内,一般的人还只是用罗马数学记数法而尽量避免用“零”。

斐波那契的《算经》,介绍了阿拉伯记数法和印度人对整数、分数、平方根、立方根的运算方法,这部著作在欧洲大陆产生了极大的影响,并且改变了当时数学的面貌。

他在这本书的序言中写道:“我把自己的一些方法和欧几里得几何学中的某些微妙的技巧加到印度的方法中去,于是决定写现在这本15章的书,使拉丁族人对这些东西不会那么生疏。

在斐波那契的《算经》中,记载着大量的代数问题及其解答,对于各种解法都进行了严格的证明。

下面是书中记载的一个有趣的问题:[例题1]有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试验一 斐波那契数列一、 实验目的与要求1.认识Fibonacci 数列,体验发现其通项公式的过程;2.了解matlab 软件中进行数据显示与数据拟合的方式;3.掌握matlab 软件中plot, polyfit 等函数的基本用法;4.提高对数据进行分析与处理的能力。

二、 问题描述某人养了一对兔,一个月后生育了一对小兔。

假设小兔一个月后就可以长大成熟,而每对成熟的兔每月都将生育一对小兔,且兔子不会死亡。

问:一年后共有多少对兔子?三、 问题分析这个问题,最早由意大利数学家斐波那契(Fibonacci),于1202年在其著作《珠算原理》中提出。

根据问题的假设,兔子的总数目是如下数列: 1,1,2,3,5,8,13,21,34,55,89,144,233,…问题的答案就是此数列的第12项,即一年后共有144对兔子。

这个数列通常被称为斐波那契(Fibonacci)数列,研究这个问题就是研究Fibonacci 数列。

把这个问题作更深入的研究,我们会问:第n 个月后,总共有多少对兔子?即Fibonacci 数列的第n 项是多少?这就需要我们探素Fibonacci 数列的通项公式。

根据问题的描述,我们知道第n+2个月后兔子的对数,等于第n+1个月后兔子的对数(表示原来就有的老兔子对数),加上第n 个月后兔子的对数(表示生育出来的新兔子对数)。

这样就得到关于Fibonacci 数列的一个递推公式:21n n n F F F ++=+利用matlab 软件的数据可视化功能将这些数据显示成平面曲线的形式后,我们可以观察到Fibonacci 数列的变化规律;通过matlab 软件的数据拟合功能,我们可以大概知道Fibonacci 数列的函数关系式,结合上面的递推公式,就可以推导出来Fibonacci 数列的通项公式。

四、 背景知识介绍1. 数据的可视化。

将离散的数据:1234,,,,,,n F F F F F ,看成平面坐标系里的点:1234(1,),(2,),(3,),(4,),,(,),n F F F F n F ,利用matlab 软件的plot 函数在平面坐标系里划出一个点列,就可以实现离散数据的可视化。

plot 函数的基本使用格式为:plot(y),其中参数y 表示竖坐标,即需要显示的数据。

例1 y=1:20;y=y.^3;plot(y)2. 数据的拟合。

数据拟合就是寻找一个目标函数,作为被拟合数据的近似函数关系。

目标函数的类型,可以是多项式、指数函数等。

作数据拟合,首先需要估计目标函数的类型,这一点可以通过数据可视化来观察得到,而一阶多项式是最常见的目标函数,此时称为线性回归。

确定拟合系数的原则是最小二乘法,即所有误差的平方和取最小值。

在matlab 软件中以多项式为目标函数作数据拟合的函数是polyfit ,它的基本使用格式为:polyfit (x,y,n)。

其中(x,y)是被拟合的数据,即平面上的一个点列,而n 是事先确定的多项式的阶数。

例2 x=[1,3,4,5,6,7,8,9,10];y=[10,5,4,2,1,1,2,3,4]; polyfit (x,y,2)结果:20.2676t - 3.6053t + 13.45973. 数列的通项公式。

寻找一个整标函数,使得它在n 处的函数值,等于数列的第n 项的值,这个函数就是数列的通项公式。

4. 黄金分割。

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比(如下图)。

其比值是一个无理数1)2-÷,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分协调美观,因此称之为黄金分割。

五、 实验过程本试验将Fibonacci 数列的有限项,看成是待处理的数据。

首先利用matlab 软件的可视化功能,将这些数据显示在平面坐标系中,观察其图形类似什么曲线,结论是:指数函数的曲线。

进一步,利用指数函数与对数函数的互逆关系,将原有数据取对数,再观察其曲线形状是否类似直线,以验证原来的观察是否正确。

通过观察到的目标函数,然后利用matlab 软件的数据拟合功能,得到Fibonacci 数列通项公式的近似关系。

最后,从近似关系出发,推导出来Fibonacci 数列的通项公式。

1. 观察数据的大概函数关系。

为了研究Fibonacci 数列的变化规律,我们取此数列的前30项来观察。

利用Matlab 软件的数据可视化功能,将这些数据显示在平面坐标系中,观察其中蕴涵的函数关系。

具体的实现流程为:(1)定义数组fn ;(2)显示数组fn 。

具体的代码如下:function plotfibo(n) %定义函数显示Fibonacci 数列前n 项fn=[1,1]; %将数列的前两项放到数组fn 中for i=3:n %fn 的第3项到第n 项AM:AB=MB:AMfn=[fn,fn(i-2)+fn(i-1)]; %将第i项添加到数组fn中end %循环结束plot(fn) %将装有数列前n项的数组显示出来这个函数的调用方式是:plotfibo(30),显示出来的图像为图1,经观察,觉得曲线的形状象指数函数的曲线,其数据无限增大。

可以改变参数n的值,反复观察。

图1 n=30 图2 n=50图3 n=500 图4 n=10002.进一步验证上一步得到的结论。

经过上一步的观察,觉得这些数据应该是指数函数的形式。

为了进一步验证这个结论是否正确,可以利用指数函数与对数函数的互逆关系。

如果这些数据确实是指数函数的形式,则经过取对数后应该是一个线性关系,即一阶多项式,从图形上看应该象一条直线。

因此,再利用Matlab软件的数据可视化功能,将这些数据取对数后显示在平面坐标系中,观察它是否象一条直线。

具体的实现流程为:(1)定义数组fn;(2)数组fn取对数;(3)显示数组fn。

具体的代码如下:function plotlnfibo(n) %显示取对数后的前n项fn=[1,1]; %将数列的前两项放到数组fn中for i=3:n %fn的第3项到第n项fn=[fn,fn(i-2)+fn(i-1)]; %将第i项添加到数组fn中end %循环结束fn=log(fn) %将原来的数据取对数plot(fn) %将装有数列前n 项的数组显示出来这个函数的调用方式是:plotlnfibo(30),显示出来的图像为图5,经观察,觉得它确实象一条直线。

可以改变参数n 的值,反复观察。

图5 n=30 图6 n=50图7 n=500 图8 n=10003. 获得数据的近似关系式。

经过以上第一步的观察,确定Fibonacci 数列的数据是指数函数的关系,第二步验证了第一步得到的结论,因此我们认为Fibonacci 数列的数据关系就是指数函数,取对数后就是线性函数,即一阶多项式。

利用Matlab 软件的数据拟合功能,通过取对数后的数据,用一阶多项式拟合出它的函数关系式,可以得到Fibonacci 数列通项公式的一个近似表达式。

具体的实现流程为:(1)定义数组fn ;(2)数组fn 取对数;(3)用一阶多项式拟合数组fn 。

具体的代码如下:function fitlnfibo(n) %根据取对数后的数据,拟合出线性表达式fn=[1,1]; %将数列的前两项放到数组fn 中for i=3:n %fn 的第3项到第n 项fn=[fn,fn(i-2)+fn(i-1)]; %将第i 项添加到数组fn 中end %循环结束xn=1:n; %定义横坐标fn=log(fn) %将原来的数据取对数polyfit(xn,fn,1) %拟合装有数列前n项的数组这个函数的调用方式是:fitlnfibo(30),运行后返回结果是:0.4799,-0.7768。

这两个数据就是一阶多项式的系数,即:F≈-log()0.7768+0.4799nn为了提高精度,可以加大n的值。

取n=1000时得到:F≈-log()0.8039+0.4812nn从上面的表达式,可以得到数列通项公式的近似:nF≈⨯0.4476 1.6180n4.观察拟合数据与原始数据的吻合程度。

经过第三步的拟合,得到了Fibonacci数列近似的通项公式,为了观察其吻合程度,我们将Fibonacci数列的拟合数据与原始数据的图形显示出来,进行对比观察。

具体的实现流程为:(1)定义数组fn1,fn2;(2)显示数组fn1,fn2。

具体的代码如下:function plotfibo2(n) %显示拟合数据与原始数据的前n项fn1=[]; %装拟合数据的数组for i=1:n %fn1的第1项到第n项fn1=[fn1,0.4476*1.618^i]; %将第i项添加到数组fn1中endfn2=[1,1]; %装原始数据的数组,前两项放到数组fn2中for i=3:n %fn2的第3项到第n项fn2=[fn2,fn2(i-2)+fn2(i-1)]; %将第i项添加到数组fn2中endx=1:n;plot(x,fn1,x,fn2,'r*') %显示, fn1―兰线,fn2-红星这个函数的调用方式是:fitlnfibo2(20),显示出来的图像为图9,或fitlnfibo2(50),显示出来的图像为图10。

图9 n=20 图10 n=505. 推导Fibonacci 数列的通项公式(1)。

通过以上的观察和分析,我们知道Fibonacci 数列的数据大概是指数函数的关系。

因此,我们猜测它的通项公式具有形式:n n F k r =⨯。

将这个表达式代入递推公式21n n n F F F ++=+中,得到:21n n n k r k r k r ++⨯=⨯+⨯。

经过简化得到:21r r =+这是一个一元二次的代数方程,其两个根形式如下:(12r =±÷考虑到Fibonacci 数列的数据无限增大,我们取(12r =+÷,于是得到通项公式如下:[(12]n n F k =⨯+÷上面的公式对吗?我们可以来验证。

取n=1和n=2代入上面的公式中计算,显然得不到121,1F F ==,因此它不是Fibonacci 数列的通项公式。

但这个公式并非一无是处,我们可以来考虑这个公式与Fibonacci 数列到底相差多少。

因此,我们引入以下一个数列:[(12]n n n T F k =-⨯+÷可以验证,这个新的数列也满足同样的递推公式:21n n n T T T ++=+,因此我们猜测它同样是指数函数的形式,可以假设其表达式为:n n T r λ=⨯,代入递推公式后,同样可以得到:21r r =+。

这里的r 显然不同于上面的r ,故这个r 取值为:(12r =-÷,从而得到:[(12]n T λ=⨯÷。

相关文档
最新文档