10化学键与分子结构 ppt课件

合集下载

化学键与分子结构

化学键与分子结构

PART 2
化学键的类型
化学键的类型
化学键主要分为 共价键、离子键 和金属键三种类

共价键
共价键是指两个或多 个原子通过共享电子 对形成的相互作用。 这种相互作用使得原 子能够稳定地结合在 一起,形成稳定的分 子。共价键的形成主 要是由于原子之间的 电子云重叠
化学键的类型
离子键
离子键是指由正离子 和负离子之间形成的 相互作用。正离子失 去电子,负离子得到 电子,从而形成稳定 的离子。离子键的形 成主要是由于静电相 互作用
化学键与分子结构
-
1 化学键的定义 3 分子结构与化学键的关系 5 化学键的断裂与形成 7 总结
2 化学键的类型 4 总结 6 化学键与生命活动
PART 1
化学键的子或晶体中原 子或离子之间的相互作用, 这种相互作用使得原子或离 子能够稳定地结合在一起
化学键的形成是化学反应的 基础,也是生命活动的基础
分子结构与化学键的关系
分子的物理性质
分子的物理性质如熔点、沸点、导电性和透 明度等主要由其化学键的类型和强度决定。 例如,共价化合物的熔点和沸点通常比离子 化合物要高,而金属化合物的导电性和透明 度则受到金属原子的种类和数量的影响
分子结构与化学键的关系
分子的化学性质
分子的化学性质如反应活性、氧化还原性质等主要由其 化学键的类型和强度决定。例如,共价化合物的反应活 性通常比离子化合物要低,而金属化合物的氧化还原性 质则受到金属原子的种类和数量的影响
化学键的类型
化学键的类型
金属键
金属键是指金属原子之间形成的相互作用。 金属原子最外层电子很容易失去,从而形成 自由电子。这些自由电子在金属原子之间流 动,形成了金属键。金属键的形成主要是由 于自由电子的流动

无机化学_化学键与分子结构 PPT课件

无机化学_化学键与分子结构 PPT课件

主要以晶体形式存在
较高熔点和沸点
无 机
熔融或水溶解后能导电 ?
化 学
4.1.1
离子键的形成
电 子(1)离子键理论 1916 年德国科学家 Kossel ( 科塞尔 ) 提出
教 ① 当活泼金属的原子与活泼的非金属原子相互化合时,均有通
案 过得失电子而达到稳定电子构型的倾向;
对主族元素,稳定结构是指具有稀有气体的电子结构,如钠
时 ,配位数为 3 。
AB型化合物离子半径比与配位数和晶体类型的关系
r +/ r-
配位数 晶体类型
实例
无 机
0.225~0.414


电 子
0.414~0.732


4
ZnS型
ZnS, ZnO,
BeS, BeO,
CuCl, CuBr
6
NaCl型 NaCl, KCl, NaBr,
LiF, CaO, MgO,
无 机 化 学 电 子 教 案
4.1.3 离子的特征
(1)离子的电荷 ——相应原子的得失电子数
电荷高,离子键强。 +1, +2, +3, +4
无 机(2)离子的电子层构型

简单负离子的电子层构型一般都具有稳定的8电子结构如F-
学 电
正离子的电子层构型大致有 5 种

① 2电子构型,如 Li , Be 2 (1s2 )
无机化学

机 第四章 化学键与分子结构


电 Chapter 4 Chemical bond and

教 案
molecular structure
基本内容和重点要求

10化学键与分子结构-PPT课件

10化学键与分子结构-PPT课件

三方 a = b = c α=β=γ≠90°
Al2O3
NaCl
SnO2
I2
Al2O3
S
CuSO4.5H2O
Mg
自然界晶体和人工晶体,外形上很难和七 大晶系完全相同,但是晶轴夹角总是不变的,我 们只要测出晶轴夹角和晶轴长短,就能准确地确 定晶体所属晶系。
三、晶体的内部结构
1. 十四种晶格
2.
晶体的外形是晶体内部结构的反映,是构成
原子或离子半径是无法严格确定的。当正负离子
通过离子键形成离子晶体时,正负离子通过静电
引力和核外电子之间的排斥达到平衡,使正负离
子保持着一定的平衡距离,这个距离叫核间距,
用d表示。
如果近似将构成AB型离子晶体的质点 A+ 和B- 看作互相接触的球体,
r1 r2
d
则,d = r1 +r2
其中d 可以通过X- 射线衍射法测得,只
四、晶格能(P176)
离子键的强度通常用晶格能U的大小来度 量。所谓晶格能,是指相互远离的气态正离子和 负离子结合成离子晶体时所释放的能量,
m Mn+ (g) + n Xm- (g) MmXn (s) -△H = U 晶格能可用波恩~哈伯(Born-Haber)循环
法通过热化学计算求得。以NaCl为例,
4. 离子键的本质是静电作用力
q q f R2
4. 离子键的强度一般用晶格能U来代表。 5. 离子键没有方向性(P150) 6. 离子键没有饱和性 7. 离子键的离子性与元素的电负性有关。
电负性差越大,它们之间键的离子性也就越大。
Xa-Xb 离子性百分比(%)Xa-Xb 离子性百分比(%)
0.2
实例

《分子结构》课件

《分子结构》课件
氯化铁等。
生物分子
如蛋白质、核酸、糖类 等,具有复杂的空间结
构和功能。
02
共价分子结构
共价键的形成与类型
共价键的形成
原子间通过共享电子来形成共价 键,这些共享电子对构成了分子 中的共价键。
共价键的类型
根据电子云的偏移程度,共价键 可以分为非极性键、极性键和配 位键等类型。
分子轨道理论
分子轨道理论的基本概念
距离无关。
氢键
定义
氢键是一种特殊的分子间作用力,它是由一个氢原子与另一个原子的电负性较强的原子( 如氧、氮等)之间的相互作用。
形成条件
氢键的形成需要满足一定的条件,即氢原子与电负性较强的原子之间的距离要适中,一般 在200pm左右。同时,还需要考虑分子的几何构型和电子云的分布等因素。
特点
氢键是一种较强的分子间作用力,其作用力大小仅次于化学键。氢键的形成会影响分子的 性质,如熔点、沸点、溶解度等。在生物体系中,氢键的形成对于维持生物大分子的结构 和功能具有重要意义。
05
分子的振动与转动
分子的振动
分子振动是指分子中的原子或分子的运动,这种运动可以以不同的方式 进行,包括伸缩振动和弯曲振动等。
伸缩振动是指原子或分子的键长发生变化,导致分子整体形状发生变化 。弯曲振动则是指原子或分子的键角发生变化,导致分子整体形状发生
变化。
分子的振动频率和能量与分子内部的结构有关,因此通过研究分子的振 动可以了解分子的内部结构和性质。
共价分子的对称性和稳定性
分子的对称性和稳定性与其几何形状密切相关,某些形状的分子具有更高的稳定 性。
共价分子的极性
共价分子的极性定义
共价分子的极性是指分子中正负电荷中心不重合的现象,这 种现象会导致分子具有电偶极矩。

普通化学第十章 化学键与分子结构

普通化学第十章 化学键与分子结构

H2分子的形成
上页
下页
主页
13
第二节 共价键
结论:共价键形成的条件:
(1)成键原子中有单电子且自旋相反
(2)原子轨道要最大重叠。 二、价键理论的基本要点
(1)两原子中自旋相反的未成对电子互相接近时,电子配对形
成共价键。
(2)根据保里不相容原理,已经键合的电子不能再形成新的化
学键。一个原子含有几个未成对电子就只能与几个自旋
上页
下页
主页
7
第一节
10-1-3 离子的结构
离子化合 物的性质
离子键 取决于 的强度
离子键
正、负离 取决于 子的性质
一、离子的电荷 (1)正离子通常由金属原子形成,电荷等于中性原子失去电子的数目. (2)负离子通常只由非金属原子组成,其电荷等于中性原子获得电子 的数目;出现在离子晶体中的负离子还可以是多原子离子(SO42-).
杂化轨道:同一原子中能量相近的不同类型的原子轨道在成键 过程中混合组成新的原子轨道的过程称为轨道杂化,所组成的新轨 道称为杂化轨道。
一、杂化轨道理论的基本要点
(1)原子在形成共价键时,力图运用杂化轨道成键。 (2)杂化轨道的成键能力比原来的原子轨道成键能力增强。 (3)杂化成键有三个步骤:激发、杂化、键合。
对长周期为:d-s-p 或 s-p-d杂化,(n–1)d、ns、np、nd 轨道的 能量都相近 ( d2sp3、sp3d2、sp3d )
1、sp 杂化(sp hybridization)
同一原子中 ns-np 杂化成新轨道;一个 s 轨道和一个 p 轨道杂 化组合成两个新的 sp 杂化轨道。
上页
下页
FBF
H
F
上页

《化学键和分子结构》课件

《化学键和分子结构》课件

O
CH3 C O
O CH3 C
O
O-
CH3 C O
➢ 电负性大的元素接在共轭链端,使π电子向电负性 大的元素端离域叫吸电子共轭效应-C ;
+ [CH2=CH-CH2
+ CH2-CH=CH2 ]
δ-
δ-
CH2—CH—CH2
共轭体系能量降低
能 ΔH≈254KJ.mol-1

28KJ.mol-1 共轭能
取代羧酸的酸性与在烃基同一位置上引入-I基团的 数目有关,数目越多,酸性越强。加合性
取代羧酸的酸性与-I基团离羧基的距离有关,距离 越远,影响越小。 短程效应
O
H
X
C
O-
吸电子诱导效应(- I):
+
NR3 NO2
SO2R
CN
Br I OAr COOR
C = CR
C6H5
CH=CH2
SO2Ar
COOH
如:
为主。
三、超共轭效应
1. σ-π、 σ-p 超共轭体系
丙烯分子中的甲基可绕C- C σ键旋转,旋转到某一角 度时,甲基中C-H σ键轴与 π键P轨道近似平行,形成 σ-π超共轭体系。
C—H σ电子云与相邻自由 基碳上的p电子云部分重叠, 离域,形成σ-p超共轭体系。
2. σ-π、 σ-p 超共轭效应
反应活性比较
CH3CHO﹤, HCHO
HCN OH-
比较酸性大小
CH3CH2CH-CH2CH3
Cl
?
CH3CH2CH√2-CHCH3
Cl
O2N
COOH ﹥ HO
COOH
四. 场效应(field effects)

物质结构基础—化学键与分子结构(应用化学课件)

物质结构基础—化学键与分子结构(应用化学课件)
在键轴的两侧并对称于与键轴垂直的平面,这样形成的键称为π键,形成π键的 电子称为π电子。
zz
x
yy π pz-pz
通常π键形成时原子轨道重叠程度小于σ键,故π键没有σ键稳定。
当两原子间形成双键或叁键时,既有σ键又有π键。 例如N2分子:N原子的价层电子构型是2s22p3
小结: 1、σ键的形成及特点 2、π键的形成及特点
(1)键长(l) •键长(l)——分子内成键两原子核间的
平衡距离(即核间距)。单位为pm(皮米)。
键长(l)可用X射线衍射方法精确地测定。 例如:H—H键长0.74×10–10 m, C—C键长1.54×10–10 m 一般来说,两个原子之间所形成的键越短,键就越牢固,不易断裂。
• (2)键能(E)

432
C—H
347
C—N
611
C—O
837
159
C—Cl
142
N—H
158
O—H
244
S—H
192
150
S—S
键长l/pm
109 147 143 121 177 101 96 136
110
205
键能 E/kJmol–1
414 305 360 736 326 389 464 368
946
264
非金属元素的单质分子都是以共价键结合成的。如氯分
2、离子键的特征
活泼金属(如钾、钠、钙、镁等)与活泼非金属(如氯、溴、 氧、硫等)化合时,都能形成离子键。例如,氧化镁、溴化钾等 都由离子键所形成。
• 离子键的特
• (1)离子键的本质是静电作用 • (2)离子键没有方向性(电荷球形对称分布) • (3)离子键没有饱和性(空间许可)

(优质)化学键与分子结构PPT课件

(优质)化学键与分子结构PPT课件
一个形象的说法就是,在金属晶体中,金属原子整齐 的排列在一起,并浸泡在自由电子的海洋中。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
图:金属的电子海模型,带正电的球表示内层电子原 子核,周围的著色表示非定域电子构成的电子海
特点: 无方向性、无饱和性
金属特性:
•导电性:自由电子在外电场作用下可定向流动; •导热性:不断碰撞的自由电子可将热量交换和递; •延展性:金属可以在不破坏晶体结构,受力作用时整 层滑动。 •金属光泽:自由电子能够吸收并重新发射很宽波长范 围的光线,使金属不透明而具有金属光泽。
导体中存在导带,在电场作用下,导带中的电子很容易跃入导 带中的空分子轨道中去,从而导电。绝缘体和半导体中不存在导 带,这是它们的共同点,不同的是满带和空带之间的禁带的能量间 隔不同。一般绝缘体的能量间隔大,一般电子很难获得能量跃过禁 带;而一般半导体的能量间隔,在一定条件下,少数高能电子能跃 过禁带而导电。
(优质)化学键与分 子结构PPT课件
本章教学要求
基本要求: 掌握化学键和分子结构的基本概念和有关
理论,了解化学键的成键本质。 重 点: 共价键的基本理论。 难 点: 分子轨道理论。
2.1 化学键的分类 2.2 共价键的成键理论 2.3 分子间作用力
分子是物质能独立存在并保持其化学特性的 最小微粒,而分子又是由原子组成的。迄今,人 们发现112种元素。正是由这些元素的原子构成 分子,从而构成了整个物质世界。那么原子与原 子如何结合成分子;分子和分子又如何结合成宏 观物体?前者是化学键问题,后者是分子间力的 问题。

《化学键和分子结构》课件

《化学键和分子结构》课件
《化学键和分子结构》 PPT课件
# 化学键和分子结构
介绍化学键
化学键的定义和分类
了解不同种类的化学键及其特点,如离子键、共价键和金属键。
共价键和离子键的区别
探讨共价键和离子键之间的异同,包括电子分配和成键方式。
杂化轨道理论和分子轨道理论
介绍杂化轨道理论和分子轨道理论,解释化学键形成的原理。
共价键的形成
总结
化学键和分子结构的重要性
总结化学键和分子结构对化学特性和反应性的重要影响。
化学键及其能力的应用
讨论化学键及其能力在化学合成和分析中的广泛应用。
分子间相互作用的意义和应用
强调分子间相互作用在材料科学和生物科学领域的实际应用。
分子的性质和应用
探索分子性质对物质特性和应用 的影响,如药物活性和材料功能。
分子间的相互作用
1
分子间相互作用的影响
2
阐述分子间相互作用对物质性质和化学
反应速率的影响。
3
范德华力和氢键的概念
介绍范德华力和氢键的概念,以及它们 在分子间作用中的角色。
分子间相互作用的应用
探讨分子间相互作用在生物科学和材料 科学领域中的应用价值。
1
共价键的基本概念
理解共价键的本质和构成,包括电子共享和化学键的稳定性。
2
共价键的形成过程
描述共价键形成的步骤,如原子间的相互作用和电子的重排。
3
共价键的性Leabharlann 和分类探索共价键的性质,如键长、键能和键角,并介绍单、双、三键等的特点。
化学键的能力
1 化学键的能力和稳定 2 化学键的强度和解离 3 化学键的极性和电子


亲和力
讨论化学键对化合物稳定 性的影响,以及键长和键 强度之间的关系。

化学键与分子结构PPT课件 人教课标版

化学键与分子结构PPT课件 人教课标版

练习:
用电子式表示下列物质的形成过程:
H2O、CCl4、 CaO、 KCl
选择:下列化学式及结构式,从成键情况看 不合理的是 ( D) A.CH3N: B.CH4S: C.CH2SeO: D.CH4Si:
练习:下列各分子中,所有原子都满足 最外层为8电子结构的是 (C ) A. BeCl2 B. BF3 C. CCl4 D. PCl5 E. XeF2 F. NH3
9.CaC2
4.氢化铵(NH4H)与氯化铵结构相似,又 已知氢化铵与水反应有两种气体产生。 ⑴请写出氢化铵的电子式 ⑵写出与水反应的化学方程式 ⑶与水反应后的溶液呈酸性还是碱性?
5. 氮可形成多种离子,如N 3 - 、NH 2 - 、 N 3 - 、NH 4 + 、N 2 H 5 + 、N 2 H 6 2+ 等。已知N2H5+的形成过程类似于 NH4+的形成,N2H5+在碱性溶液中将生 成电中性分子和水,请回答下列问题:
练习2、下列事实与氢键有关的是 ( B) A. 水加热到很高的温度都难以分解 B. 水结成冰体积膨胀,密度变小 C. CH4、SiH4、GeH4、SnH4熔点随相对分子质 量增大而升高 D.HF、HCl、HBr、HI的热稳定性依次减弱
我站在新西兰文化节的演讲台上,声音有一点颤抖。我在宣布一个非常重大的事件,那消息经由我面前的话筒,变成振奋人心的一刻:属于新西兰华人的读书会终于成立,而我是会长 之一,带着作家的身份。我的身后是国会议员和文化领事,面前是令我睁不开眼的闪光灯。我闭上眼睛,真怕睁开眼又回到两年前的景象。那时我在新西兰的中餐馆里打工,顶着国内 优秀大学毕业生的头衔,人人掠过我的面孔,只关心面前的桌子有没有被我擦得锃亮。没文化的人最易拿金钱为人贴上阶级的标签,那一年我是最落魄也最沉默的那一个,温和软弱, 看起来并不需要被赋予什么过多的关怀,又能承受相当的欺侮。我在与朋友讲这段经历的时候,心中还颇有感慨:“人为什么可以这么冷漠?所有人都排挤我,逼得我在午休的时候独 守休息室的角落,看完一本又一本书,那成为我每日半个小时的逃离。”直到后来有了些积蓄,不必再去中餐馆用委屈换生存,每当遇到压力,朋友总是说:“去度假吧,去逛街吧, 不要这么压榨自己了!”我总是这样回复:“不,给我半个小时读书,那才是我需要的安全。”有多少孤独的时光,书籍赋予我绝对的安全。去上班的巴士上,午休的桌子前,等车的 间歇,或找一处清静的角落……一本书拨开沉重的孤独,让凌晨和午夜,雨天或晴天,都有了各自的美好。读书先是我的安全,后又成为我的成长。想起一次家庭聚餐,我那正读高中 的表妹曾说:“学习有什么用啊?我的同学辍学后去餐馆干活,几个月就当上了经理!每个月工资5000元!这不比考个好大学有用得多吗? 一席话令所有人停下杯箸。终于有长辈打 破平静:“读书有什么用呢?读书的用途,就在于让你看到,有些人,可能这辈子就只赚那5000元了。”我后来才知道,原来超出5000元的那部分,就是读书可以改变的命运。2有过 几年艰苦的时刻,在异乡独自打拼,整个人像浮萍一样四处漂泊,心也失去停靠的地方。没有亲人的拥抱,没有朋友的安抚,我唯一的坚持,就是读书。几年中读过很多本书,很多次 阅读都在碎片时间中发生还记得在求学时攒下课间时间飞速翻过几页书,还有在打工结束的夜路中奔回家去,一杯咖啡就着一本书的喜悦。我从那些为自己“偷”出来的阅读时光中, 读到了托尼和莫琳的坚持,读到了龙应台的温情,读到了欧· 亨利的睿智,读到了汪曾祺的真实,读到了卡佛的另类……读到了这世间别处的生活,还有那其中的希望。现在回想起来, 那为阅读去寻找的时光竟是如此珍贵,令我在几年后读到严歌苓在异国求学时的经历而无比动容——她曾因为在巴士上忘情读书而落下为友人买的礼物,而我则是因为读到某个精彩的 篇章坐过了一站又一站《当哈利遇见萨莉》的编剧诺拉· 埃夫隆谈起阅读曾俏皮地说:“有一种感觉叫‘深海眩晕,它指的是深海潜水员在海底停留太久而不知道海面在哪一个方向的感 觉。浮出水面后,他可能会得潜水病,这是一种从高气压骤然进入低气压环境而致身体一时无法适应的病症。当我从书的深海出到现实的水面时,也会得这种病。”其实,很多美妙的 想法是从阅读中来的。我开始重拾写作的梦想,在做餐馆女招待的其他时间,把零碎的想法写在小纸条上,我那第一篇描述异国生活的文字就从阅读中来。无论是那几年读的书,还是 坚持把两年没日没夜的拼搏拿去做读文凭的学费,两种读书的形式,都赋予我一定程度的智慧和修养:我的写作事业终于开始,一篇文字变成几篇文字再汇聚成一本书。我不用再做那 个手忙脚乱的女招待,我可以成为专心写作的小作者,在艳阳天的沙滩上构思文章,那些年读过的书带我去过另一种人生。我开始看到自己的书出现在畅销书的榜单上,开始接受合集 的邀请,开始看到有朋友请我为新书作序,开始听到“杨老师”这样的称呼,开始学习接受新的身份,也开始站在舞台中央,话筒的前面,成为聚光灯下的那个人物…这便是文字所给 予我的超越那5000元的命运。3无法想象若那些日子里没有知识的填补,现在的自己会过着怎样的人生,是否拎着抹布,拖着扫把,在老板的呵斥下小心翼翼,独自咽下委屈……太多 人对成功有种狭隘的认识,以为这只是金钱的另一种说法,然而成功却往往有着超越经济层次的意义,读书是性价比最高的成功之道,使人的物质与精神都渐渐走向丰盈,不再对自己 所喜爱的事物失去掌控权。有人问:“读了那么多书也记不住,怎么办?”说过:“读过的书,哪怕不记得了,却依然存在着,在谈吐中,在气质里,在胸襟的无涯,在精神的深远。” 深以为然。也许读书改变不了全部的命运,但可以改变一部分,请用我们有限的生命,去牢牢抓紧可以为之努力的事情,并且尽力使它成为,得以改变命运的那个部分吧。人生如逆旅, 我亦是行人。生活朝起暮落,尽管还有不舍,却没有人能够阻挡它前行的脚步,来不及细细品味,我们已踏上了新的旅程。走过的路,有过迷茫,有过心酸,但都只为了抵达。一个人 走过了青山绿水,经过了人情冷暖,体味过了五味杂尘,心中便多了一份厚重。人这一辈子能做到看山是山看,看水是水,一定是经过了一番酸甜苦辣的领悟,卸下鲜衣努马,开始理 解生活,化干戈为玉帛,懂得与这世界温柔相待。 无论是在平淡的日子里,还是在迷茫低落的时候,我都尽量靠近阳光,喜欢在阳光下眺望,只为寻一抹亮色,只要有阳光在,希望就在。生活难免会有高低浮沉,岁月总会有寒来暑往, 请相信命运给予的一切,都是最好的安排。无论是好的坏的,坚持住了,就会变成照亮你前行的灯盏。一个人在尘世中行走,无论多么坚强,都会有孤单无助的时候,于是便渴望被关 爱,但生活总是忽明忽暗,缘份总有聚散离合,谁又能真正参透,慢慢的学会了抱紧自己,苦而不言,痛而不语。林语堂说,我们最重要的不是去计较真与伪,得与失,名与利,贵与 贱,富与贫,而是如何好好地快乐度日,并从中发现生活的诗意。尽管日子很平淡,却也有闪光的,尽管会有一地鸡毛的琐事,却也会有开心和快乐,人生不如意事十之八九,如若我 们不抱怨,湖涂一些,烦恼就会少些,日子即便是平庸,但也活得踏实安不知从什么时候开始,生活多了一些责任。人到中年,与岁月已是隔着几重山水,曾经我们都想活成自己的模 样,却不得不向生活妥协,曾经我们都曾想用双手握紧光阴,却也不得不随波逐流。生活实苦,没有谁的天空永远阳光明媚,也许只有熬过了不如意,才能更好地拥抱诗和远方。活着, 只要今天比昨天有一点进步,就要懂得满足。如果你没有梅花的清香,牡丹的华贵,那就做一株向日葵,温暖向阳,简简单单,快快乐乐的过好每一天。人生最重要的,保特一份好心 情,做一个快乐的人。将美好收藏,不必纠结遗憾,也不要总是后悔彷徨,只有心胸宽广,才能释然,只有懂得取舍,才能接近幸福。岁月深重,阳光满目是日子,大雨倾城也是日子, 阴与晴,风景自在人心,微笑是一种力量,能选择微笑时,请一定不要忧伤。一个人,能做到不被环境左右,不被天气变化影响,始终与自己微笑明亮着,就是最好的修行。揽一份从 容,一起见证岁月的美,将心停泊在温暖明媚的地方,未来的路上,微笑向暖,安之若素。人生如逆旅,我亦是行人。生活朝起暮落,尽管还有不舍,却没有人能够阻挡它前行的脚步, 来不及细细品味,我们已踏上了新的旅程。走过的路,有过迷茫,有过心酸,但都只为了抵达。一个人走过了青山绿水,经过了人情冷暖,体味过了五味杂尘,心中便多了一份厚重。 人这一辈子能做到看山是山看,看水是水,一定是经过了一番酸甜苦辣的领悟,卸下鲜衣努马,开始理解生活,化干戈为玉帛,懂得与这世界温柔相待。 无论是在平淡的日子里,还是在迷茫低落的时候,我都尽量靠近阳光,喜欢在阳光下眺望,只为寻一抹亮色,只要有阳光在,希望就在。生活难免会有高低浮沉,岁月总会有寒来暑往, 请相信命运给予的一切,都是最好的安排。无论是好的坏的,坚持住了,就会变成照亮你前行的灯盏。一个人在尘世中行走,无论多么坚强,都会有孤单无助的时候,于是便渴望被关 爱,但生活总是忽明忽暗,缘份总有聚散离合,谁又能真正参透,慢慢的学会了抱紧自己,苦而不言,痛而不语。林语堂说,我们最重要的不是去计较真与伪,得与失,名与利,贵与 贱,富与贫,而是如何好好地快乐度日,并从中发现生活的诗意。尽管日子很平淡,却也有闪光的,尽管会有一地鸡毛的琐事,却也会有开心和快乐,人生不如意事十之八九,如若我 们不抱怨,湖涂一些,烦恼就会少些,日子即便是平庸,但也活得踏实安不知从什么时候开始,生活多了一些责任。人到中年,与岁月已是隔着几重山水,曾经我们都想活成自己的模 样,却不得不向生活妥协,曾经我们都曾想用双手握紧光阴,却也不得不随波逐流。生活实苦,没有谁的天空永远阳光明媚,也许只有熬过了不如意,才能更好地拥抱诗和远方。活着, 只要今天比昨天有一点进步,就要懂得满足。如果你没有梅花的清香,牡丹的华贵,那就做一株向日葵,温暖向阳,简简单单,快快乐乐的过好每一天。人生最重要的,保特一份好心 情,做一个快乐的人。将美好收藏,不必纠结遗憾,也不要总是后悔彷徨,只有心胸宽广,才能释然,只有懂得取舍,才能接近幸福。岁月深重,阳光满目是日子,大雨倾城也是日子, 阴与晴,风景自在人心,微笑是一种力量,能选择微笑时,请一定不要忧伤。一个人,能做到不被环境左右,不被天气变化影响,始终与自己微笑明亮着,就是最好的修行。揽一份从 容,一起见证岁月的美,将心停泊在温暖明媚的地方,未来的路上,微笑向暖,安之若素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.
说明Na+和Cl-之间有强的吸引力。
V吸引
q q
40R
V排斥AeR/
V总势能4q0qR AeR/
式中R为离子间距离,A和ρ为常数。
r >r0, 当 r 减小时, 正负离子靠静 电相互吸引, V减小, 体系稳定. r = r0 时, V有极小值, 此时体系 最稳定. 表明形成了离子键. r < r0 时, V 急剧上升, 因为 Na+ 和 Cl- 彼此再接近时, 相互之间 电子斥力急剧增加, 导致势能骤 然上升.
离子的电子构型不同,其离子间的作用力 不同。
一般来讲,离子电荷和半径大致相同的条件 下,不同构型的正离子对同种负离子的结合力大 小有如下规律:
8 电子层 < 8-17 电子层 <18 或 18+2 电子层
如Na+,K+,对应的Cu+,Ag+,它们氯化物性质 完全不同。
3. 离子半径
4.
由于电子云在核外没有确定空间,因此
1916年德国化学家科塞尔(Kossel)根据稀有气体具有 稳定结构的事实提出了能说明相同原子分子的形成(O2、H2等)。 1916年美国化学家路易斯(Lewis)提出了共价键理论,他 认为分子的形成是由原子间共享电子对的结果。
本章将在原子结构的基础上,重点讨论分子的形成过 程及有关化学键理论。
2. 所谓稳定结构,对于主族元素来讲,它们所生成 的离子多数都具有稀有气体结构,即p轨道为全充 满状态。
如:钠 氯
1s22S22p63s1
→ 1s22S22p6
1s22S22p63s23p5 → 1s22S22p63s23p6
对过渡元素,比较复杂,外层的 s 轨道和d 轨道 电子可以以不同数目失去。
§10-1 离子键理论(P173)
活泼金属原子与活泼的非金属原子所形成的化合 物,如,NaCl,CaO等,通常是离子型化合物。
其特点:以晶体形式存在, 有较高的熔点和沸点, 熔融状态和水溶液均能导电。
10-1、离子键的形成
离子键理论认为:
1. 电负性小的活泼金属原子和电负性大的非金属原 子相遇时,容易发生电子的得失而产生正、负离 子,达到稳定结构的倾向;
离子性百分比 (%)
1 4 9 15 22 30 39 47
Xa-Xb 离子性百分比(%)
1.8
55
2.0
63
2.2
70
2.4
76
2.6
82
2.8
86
3.0
89
3.2
92
electronegative
1-3、离子的特征(P174)
离子型化合物的性质与离子键的强度有关, 而离子键的强度又与正、负离子的性质有关。一 般离子具有三个重要的特征:离子的电荷、离子 的电子层结构和离子半径。
原子或离子半径是无法严格确定的。当正负离子
通过离子键形成离子晶体时,正负离子通过静电
引力和核外电子之间的排斥达到平衡,使正负离
子保持着一定的平衡距离,这个距离叫核间距,
用d表示。
如果近似将构成AB型离子晶体的质点 A+ 和 B- 看作互相接触的球体,
r1 r2 d
则,d = r1 +r2
其中d 可以通过X- 射线衍射法测得,只要确 定其中一个离子的半径,另一离子的半径就可以 计算:r1 = d – r2
推算离子半径的方法很多….
通常离子半径有如下的变化规律:
①、主族元素,从上→下,由于电子层数增多,半 径依次增大。Li+<Na+<K+<Rb+<Cs+
②、同一周期主族元素随着族数递增,正离子的电 荷数增大,离子半径依次减小,如Na+>Mg2+ >Al3+
在R0时,吸引和排斥达到平衡,体系能量最低,正 负离子间形成稳定化学键(离子键)。
这种由原子间发生电子的转移,形成正负离子,并通过静电作用而形成的 化学键叫离子键。
生成离子键的条件是: 1. 原子间电负性相差较大,一般大于1.7左右; 2. 易形成稳定离子; 3. 形成离子键, 释放能量大 .
10-2、离子键的特点
3. 原子间发生电子的转移而形成具有稳定结构的 正、负离子,从能量的角度上看,一定会有能
量吸收和放出,而且新体系的能量一般也是最 低的。
4.
5.
如:Na(g) – e →Na+(g) + 496 kJ.mol-1
6.
Cl(g) + e →Cl-(g)
kJ.mol-1
- 348.7
7. 而:Na(g) + Cl(g) →NaCl(g) 450kJ.mol-1
1. 离子键的本质是静电作用力
f
q q R2
2. 离子键的强度一般用晶格能U来代表。 2. 离子键没有方向性(P150) 3. 离子键没有饱和性 4. 离子键的离子性与元素的电负性有关。
电负性差越大,它们之间键的离子性也就越大。
Xa-Xb
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
2. 离子的电子层结构
3.
原子究竟能形成何种电子层构型的离
子,除决定于原子本身的性质和电子层构型本
身的稳定性外,还与其相作用的其它原子或分
子有关。
4.
一般简单的负离子( F-、Cl-、O2-)等,
其最外层都具有稳定的8电子结构。
对正离子情况复杂得多。
①、2电子构型: Li+,Be2+ ②、8电子构型: Na+,Mg2+ ③、18电子构型: Zn2+,Hg2+ ,Cu+,Ag+ ④、18+2电子构型:Pb2+,Sn2+ ⑤、8-18电子构型: Fe2+, Cr3+ ,Mn2+ 等。
1. 离子的电荷
2.
正离子的电荷数就是相应原子失去的电子数;负
离子的电荷数就是相应原子获得的电子数。
3.
一般对主族元素,元素得失电子数目是以生成稀
有气体的结构为准。所以正离子的电荷通常多为+1,+2,
最多为+3或+4,负离子电荷通常为-1,-2,而电荷为-3
或-4的多为氧酸根或配合离子。
离子的电荷对离子间的相互作用力影响很大, 离子电荷越高,与相反电荷间的吸引力越大, U越大,离子键越强,离子化合物的熔点和沸 点越高。
10化学键与分子结构 ppt课件
分子结构:
分子中原子间的强相互作用,即化学键问题 分子的几何构型 分子间力(范德华力)问题
物质的分子是由原子组成,原子之所以能结合成分 子,说明原子之间存在着相互作用力,那么是什么样的 作用力呢?直到19世纪末,电子的发现和近代原子结构 理论的建立以后,对化学键的本质才获得较好的阐明。
相关文档
最新文档