泛函分析知识点

合集下载

泛函分析复习与总结

泛函分析复习与总结

泛函分析复习与总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和线性算子的学科。

它的研究对象不再是有限维线性空间上的向量,而是函数或者函数空间,包括无限维的函数空间。

泛函分析在数学中有着广泛的应用,例如在微分方程的理论研究中,泛函分析有助于研究解的连续性、唯一性和存在性等问题;在概率理论中,泛函分析有助于研究随机过程的性质等。

下面将对泛函分析的重要内容进行复习和总结。

1.线性空间与拓扑空间线性空间是指具有线性结构的集合,泛函分析研究的对象就是线性空间上的函数或者函数空间。

拓扑空间是指在集合中引入一个拓扑结构,使得可以定义连续性和收敛性等概念。

泛函分析的研究对象通常是拓扑线性空间,即同时具有线性结构和拓扑结构的空间。

2.赋范空间与完备空间赋范空间是指在线性空间上定义了一个范数(或称规范),从而使得该空间成为一个度量空间。

范数的引入使得我们可以定义距离,并且可以定义收敛性。

完备空间是指其中的Cauchy列总是收敛于该空间中的点。

泛函分析中,赋范空间和完备空间是重要的概念,在研究函数的连续性和收敛性时起到了关键的作用。

3.内积空间与希尔伯特空间内积空间是指在线性空间上定义了一个内积,从而可以定义长度和夹角。

希尔伯特空间是指满足内积空间中所有Cauchy列都收敛于该空间中的点的空间。

内积空间和希尔伯特空间在泛函分析中具有重要的作用,特别是在研究函数的正交性和投影等问题时。

4.线性算子与连续算子线性算子是指将一个线性空间映射到另一个线性空间的映射。

连续算子是指在拓扑空间上保持连续性的线性算子。

泛函分析中,线性算子和连续算子是重要的研究对象,它们可以用来描述函数之间的关系和映射。

5. Banach空间与可分空间Banach空间是指在完备的范数空间上定义了一个范数,从而构成一个完备空间。

可分空间是指线性空间中存在可数稠密子集的空间。

Banach空间和可分空间是泛函分析中重要的类别,它们在研究最优性,特别是最优解的存在性和表示性时起到了关键的作用。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间与赋范线性空间;二、有界线性算子与连续线性泛函;三、内积空间与希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间与赋范线性空间(一)度量空间度量空间在泛函分析中就是最基本的概念,它就是n 维欧氏空间n R (有限维空间)的推广,所以学好它有助于后面知识的学习与理解。

1.度量定义:设X 就是一个集合,若对于X 中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)就是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义就是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为就是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 与度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 与2d ,则我们认为(X, 1d )与(X, 2d )就是两个不同的度量空间。

⑶ 集合X 不一定就是数集,也不一定就是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X ” 。

第二章 泛函分析

第二章 泛函分析
满足定义中的三个条件,这里要说明的是
d (x,y) min x(t) y(t) 并非距离。因它不满足第 a t b
一个条件。即当min x(t) y(t) =0时,并不能说明 a t b
x(t)=y(t)。我们可以通过下图来说明这个问题。
a
b
2、距离空间的完备性
(1)距离空间中的收敛列与柯西列
n
由此可设 x = i i 1
(2)算子空间B( X,Y )
B(X,Y ) T | T : X Y为有界线性算子,则可证B(X,Y )
关于算子加:(T1 T2 )x T1x T2x,算子数乘(T )x Tx,是
线性空间。其中的零元即零算子:把任意的x映射成0。
定义(X 有限维)Q X 有限维,可设其基为x1……xn,
则对任意x X,有x 1x1 …… n xn Tx T (1x1 …… n xn )
T线性 1Tx1 …… nTxn
1 Tx1 …… n Txn C( 1 …… n )
收敛
柯西列
完备性
距离 空间
lim
n
d
(
xn,x)

0
lim
n,m
d
( xn,xm
)

0
任意柯 西列均
赋范 空间
lim
n
xn x
0
lim
n,m
xn xm
0
收敛
二、有界线性算子与泛函 1、有界性算子与算子空间 (1)有界性算子 # 算子:即映射T : X Y,其中X 和Y是实线性空间。
n
1 n

0。
一般的,在距离( X,d )中,设点列xn X,若有x X,

(完整)泛函分析知识总结,推荐文档

(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。

在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。

泛函分析广泛应用于数学、物理学、工程学等领域。

1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。

线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。

泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。

2.范数与内积:范数和内积是泛函分析中常用的两个概念。

范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。

范数可以用来度量向量的大小。

内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。

3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。

完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。

紧性是指一个空间内的每个序列都存在收敛的子序列。

紧性常用于分析序列在空间内的收敛性。

4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。

常用的函数空间有连续函数空间、可积函数空间等。

函数空间还可以定义内积、范数等结构。

对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。

5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。

在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。

类似地,我们还可以定义泛函的收敛性。

6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。

线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。

算子可以是线性差分方程、微分算符等。

7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。

泛函分析知识点

泛函分析知识点

泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节 度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义 若{x n }⊂X, ∃x ∈X, s 、t 、 ()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 就是可分空间。

第三节 连续映射1、定义 设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节 柯西(cauchy)点列与完备度量空间1、定义 设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March泛函分析一,距离空间定义设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。

设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。

(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y 的数列收敛到y,则这个距离关于x,y的二元函数也收敛。

(利用三角不等式证明)开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。

有界集:称A为有界集,若存在一个开球,使得A属于这个开球。

内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。

开集:称G为开集,若G中的每一个点都是它的内点。

闭集:开集的补集就是闭集。

(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。

)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。

全空间和空集即使开集也是闭集。

任意个开集的并是开集,有限个开集的交是开集。

任意个闭集的交是闭集,有限个闭集的并是闭集。

等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。

连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。

若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。

映射T是连续的等价于值域里的开集的原像仍然是开集。

泛函分析第二讲

泛函分析第二讲

x R :
x
r,F x
x3
第二章 泛函分析
第一节 距离空间
四、压缩映射原理
定理4 (Banach不动点定理)设 X 是完备的距 离空间,T 是 X 上的压缩映射,那么 T 有且只有
一个不动点.
例6 证明隐函数存在定理:设二元函数 f (x, y)在
带状区域{(x, y) a x b, y }中处处连续,
定义7 设映射T:X X ,如果有 x X ,使 Tx x ,
称 x为映射T 的不动点.
定义8 设X , d 是一个距离空间, T:X X. 如果存在一个常数 0 1,使对所有 x, y X,
成立 dTx,Ty dx, y,则称 T 是压缩映射.

设 0r
1 3
,
Sr 0
定义6 如果距离空间 X 中任何Cauchy均收敛,
则称 X是完备的.
定理2 完备距离空间 X中的任何闭子空间 Y 也是完备的.
第二章 泛函分析
第一节 距离空间
三、完备性
例3 空间 Rn是完备距离空间.
证明 设 xk 是 Rn 中的任一Cauchy列,
xk = 1k ,2k , ,nk k 1, 2, ,
(1)对于任一 x X ,当 xn X 且收敛于 x 时,
有f (xn )收敛于 f (x);
(2)对于 Y 中任意开集 G ,它的原像f 1(G)是X中
的开集;
(3)对于 Y 中任意闭集 F ,它的原像f 1(F )是X中
的闭集;
第二章 泛函分析
第一节 距离空间
三、完备性
Cauchy收敛准则
xn 收敛
且处处有关于 y的偏导数 fy (x, y) .如果存在常数 m, M 满足0 m fy (x, y) M ,则方程 f (x, y) 0 在区间[a,b]上必有唯一的连续函数解 y (x) ,使得

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。

解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。

⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。

注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。

这个经常被⽤来证明。

例如,开映射定理、闭图像定理等。

2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。

导集是集合所有聚点组成的集合,不包含孤⽴点。

所以闭包是集合导集和孤⽴点组成的集合。

3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。

4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。

不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。

5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。

e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。

然后再除以对应范数,进⾏单位化。

6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。

(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。

7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

泛函分析知识总结汇总

泛函分析知识总结汇总

泛函分析知识总结汇总
一、函数的概念
函数是把特定的输入映射到特定的输出的规律。

常用的函数有:实数
函数、复数函数、多元函数和函数序列等。

二、函数的极限
极限是指当自变量的值向其中一数趋近时,函数的值向另一数趋近。

极限可以用来推导函数的行为,它也对定义微积分有着重要的意义。

三、函数的微分
微分是指将函数的变量的值变化一点点,函数值也发生一点点的变化。

微分是运用微积分最基本的操作,也是后续科学研究的基础。

四、函数的积分
积分是指将函数的不断变化的变量值,加以积分,求出函数的总积分,又称为定积分。

在实际应用中,经常使用积分来解决一些问题,如了解随
机变量的概率分布、求参数方程的解等。

五、函数的反函数
反函数就是由变量x的函数f(x)的一个变量y取得,满足条件
f(x)=y的一个函数。

反函数也是函数的一种,它的研究也是微积分的重
要内容之一
六、函数的条件积分
条件积分是指由两变量函数给定的函数在满足其中一种条件的情况下,确定它的积分。

在现实应用中,条件积分也是常用的一种积分方法,用以
求解参数方程的解等。

七、函数的级数
级数是由一系列的数序列组成的,并且它们满足其中一特定的规律。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函知识点总结

泛函知识点总结

泛函知识点总结一、泛函的基本概念1.1 泛函的定义泛函是函数的一个推广概念,它是对函数的一种广义的抽象和概括。

在数学中,泛函一般被定义为一个把函数空间中的函数映射到实数域或复数域的映射,这种映射被称为泛函。

泛函可以看作是一个“函数的函数”,它对函数进行了更高级别的抽象和泛化。

1.2 泛函的表示泛函通常用一般形式的积分或者其他函数操作来表示,这样的表示形式更加抽象和一般,可以适用于更广泛的函数空间和函数类别。

例如,一个泛函可以表示为关于函数f(x)的某种积分形式,如:\[J[f]=\int_{a}^{b} L(x,f(x),f'(x))dx\]其中L(x,f(x),f'(x))是关于函数f(x)及其导数的某种函数,称为被积函数,这种形式的泛函被称为积分型泛函。

1.3 泛函的性质泛函具有一般函数所具有的性质,如可微性、极值性、泛函空间的完备性等。

另外,泛函还具有一些特有的性质,如泛函运算的线性性、变分性等。

这些性质对于泛函的研究和分析具有重要意义。

二、泛函的理论基础2.1 变分法变分法是泛函研究的重要方法和基础理论,它是求解泛函的极值问题的一种基本工具。

变分法通过对函数的微小变动进行分析,得到泛函的极值条件和解的存在唯一性等结论,它在物理学、工程学等领域中具有重要应用。

2.2 泛函空间泛函空间是泛函分析的基本研究对象,它是一种特殊的函数空间,其中的元素是泛函。

泛函空间通常具有一定的结构和性质,如线性空间结构、度量空间结构等,它是研究泛函和泛函运算的重要工具和理论基础。

2.3 函数空间的拓扑结构函数空间是泛函空间的特殊情况,它是泛函研究中的另一个重要对象。

函数空间通常具有一定的拓扑结构,如紧性、连续性、收敛性等,这些拓扑性质对于泛函的收敛性和连续性等问题具有重要意义。

2.4 泛函分析的基本理论泛函分析是对泛函和泛函空间进行研究和分析的一个重要分支,它是泛函研究的基本理论之一。

泛函分析主要研究泛函空间的结构、性质和运算规律等问题,它为泛函的研究和应用提供了重要的理论基础和工具。

泛函分析部分知识点汇总

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°的充要条件为x=y 2°对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。

x 中的元素称为点。

2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。

(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义(4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列是(X ,d ) 中的收敛点列,x 是点列 的极限。

收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。

(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。

(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列, 即:按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。

泛函分析部分知识总结

泛函分析部分知识总结

泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。

2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。

例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。

2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。

泛函分析知识点总结

泛函分析知识点总结

泛函分析一,距离空间定义1.1.1设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。

1.2设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。

1.3d(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y的数列收敛到y,则这个距离关于x,y的二元函数也收敛。

(利用三角不等式证明)2.1开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。

有界集:称A为有界集,若存在一个开球,使得A属于这个开球。

内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。

开集:称G为开集,若G中的每一个点都是它的内点。

闭集:开集的补集就是闭集。

(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。

)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。

全空间和空集即使开集也是闭集。

任意个开集的并是开集,有限个开集的交是开集。

任意个闭集的交是闭集,有限个闭集的并是闭集。

等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。

连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。

若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。

映射T是连续的等价于值域里的开集的原像仍然是开集。

接触点:点x0称为A的接触点,若存在一个x0的开球与A的交不为空集。

(点x0可以属于A,也可以不属于A)聚点:点x0称为点A的聚点,若存在点x0的任意一个开球与A\{x0}的交不为空集。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结讲解泛函分析是数学的一个分支,研究无限维空间中的函数与函数序列的性质以及它们之间的关系。

它是实数分析和复数分析的推广与深化,是现代数学的基石之一,对于几乎所有分支的数学都具有极高的重要性。

以下是对泛函分析的知识总结和讲解。

1.范数空间与内积空间:泛函分析的基础概念是线性空间,进一步的,我们将线性空间中的向量赋予一定的范数或内积,得到范数空间和内积空间。

范数空间是指一个线性空间中存在一个范数,满足向量加法、标量乘法和范数运算的线性性质。

常见的范数空间有欧几里得空间、无穷范数空间和Lp空间等。

内积空间是指一个线性空间中存在一个内积,满足线性性质、对称性和正定性。

内积定义了向量之间的夹角和长度,并且可以衡量向量的相似度和正交性。

常见的内积空间有欧几里得空间和希尔伯特空间等。

2.完备性与紧性:完备性是指一个度量空间中的柯西序列在该空间中有一个极限点。

具有完备性的空间被称为“完备度量空间”或“巴拿赫空间”。

典型的完备度量空间包括实数集和复数集。

紧性是指一个度量空间中存在一个有限的覆盖,可以从中选取有限个开球覆盖整个空间。

紧性是度量空间的一个重要性质,表明空间的元素具有收敛性质。

3.可分性与连续性:可分性是指一个度量空间中存在一个可数的稠密子集。

可分性是度量空间的一个重要性质,表明空间的元素可以用可数个元素逼近。

连续性是指线性空间和范数空间中的映射保持了基本的运算和距离的一致性。

连续性是一个重要的概念,它描述了元素的连续变化和收敛性质。

4.泛函与算子:泛函是指一个线性空间到实数或复数的映射。

泛函可以是线性的,也可以是非线性的,常见的泛函有线性泛函和连续泛函等。

算子是指一个线性空间到另一个线性空间的映射。

算子可以是线性的,也可以是非线性的。

常见的算子有线性算子和连续算子等。

5.特征空间与对偶空间:特征空间是指一个线性算子的定义域,它是算子的作用空间的一种表达形式。

特征空间可以是有限维空间,也可以是无限维空间。

91国优教材:泛函分析讲义

91国优教材:泛函分析讲义

91国优教材:泛函分析讲义泛函分析讲义一、泛函分析的基本概念1、定义泛函分析又称为泛函相似性。

它是一种数学的技术,可以在极端情况下精准地求解和分析复杂的函数关系。

2、概念向量空间,空间中所有向量的集合;泛函,一个函数的集合,可以表述成 f: 某特定的n 向量变量集合→某特定的m 向量变量值集合,其中 n,m>0;泛函分析,对于给定的一个泛函 f 和泛函中多个变量空间 Xi (i=1,2,3,..m),求解 f 中部分变量取特定值下另外部分变量的取值范围。

3、性质(1)泛函分析属于泛函理论的应用,它可以求解复杂的函数关系。

(2)泛函分析可以帮助我们对于复杂系统中的变量进行有针对性的分析。

(3)泛函分析可以有效地提高系统的分析效率和精确度。

二、泛函分析法的特点1、函数可以没有限制地拓展泛函分析法不仅可以求解多元函数,还可以求解多项式函数,甚至是非常大的函数。

当有不同复杂度函数相互连接时,也可以采用泛函分析方法。

2、精确度较高泛函分析的结果能接近实际的变量取值情况。

3、适用范围广泛泛函分析可以应用到许多不同领域,比如机械、电子、建筑等等。

1、应用于元件分析泛函分析可以用于分析电路元件及其特性参数,以便精确地计算出所需要的结果。

2、应用于系统模拟泛函分析可以用来模拟系统的特性参数,预测系统性能,以优化系统的整体结构和设计。

3、用于参数估算泛函分析可以用于分析复杂的系统结构,在给定的参数的情况下,估算出系统的性能状态。

4、用于控制设计泛函分析可以帮助设计及优化某一系统的控制算法,便于提高系统的应用性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间 1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, s.t. ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

如果度量空间(X,d )中每个柯西点列都在 (X,d )中收敛,那么称(X,d )是完备的度量空间.【注意】(1)Q 不是完备集 (2)nR 完备(3)cauchy 列不一定收敛,但收敛列一定是cauchy 列. (4)C[a,b]完备2.定理 完备度量空间X 的子空间M 是完备空间的充要条件为M 是X 中的闭子空间. 第五节 度量空间的完备化1.定义 设(X,d ),( ~X ,~d )是两个度量空间,如果存在X 到~X 上的保距映射T ,即()()~,,d Tx Ty d x y =,则称(X,d )和( ~X ,~d )等距同构,此时T 称为X 到~X 上等距同构映射。

2.定理1(度量空间的完备化定理) 设X=(X,d )是度量空间,那么一定存在一完备度量空间~X =( ~X ,~d ),使X 与~X 的某个稠密子空间W 等距同构,并且~X 在等距同构意义下是唯一的,即若( ^X ,^d )也是一完备度量空间,且X 与~X 的某个稠密子空间等距同构,则( ~X ,~d )与( ^X ,^d )等距同构。

3.定理1’ 设X=(X,d )是度量空间,那么存在唯一的完备度量空间~X =( ~X ,~d ),使X 为~X 的稠密子空间。

第六节 压缩映射原理及其应用1.定义 设X 是度量空间,T 是X 到X 中的映射,如果存在一个数α,0<α<1,使得对所有的,x y X ∈,()(),,d Tx Ty d x y α≤,则称T 是压缩映射。

2.定理1(压缩映射定理)(即Barnach 不动点定理) 设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有一个不动点(就是说,方程Tx=x,有且只有一个解). 补充定义:若Tx=x,则称x 是T 的不动点。

x 是T 的不动点⇔x 是方程Tx=x 的解。

3.定理2 设函数(),f x y 在带状域 ,a x b y ≤≤-∞<<∞中处处连续,且处处有关于y 的偏导数()',y f x y .如果还存在常数m 和M 满足()'0,,y m f x y M m M <≤≤<,则方程(),0f x y =在区间[],a b 上必有唯一的连续函数()y x ϕ=作为解: ()()[],0,,f x x x a b ϕ≡∈第七节 线性空间1.定义1 设X 是一非空集合,在X 中定义了元素的加法运算和实数(或复数)与X 中元素的乘法运算,满足下列条件:(1)关于加法成为交换群,即对任意x,y ∈X ,存在u ∈X 与之相对应,记为u=x+y,称为x 和y 的和,满足 1)x y y x +=+;2)()()(),,x y z x y z x y z X ++=++∈任何;3)在X 中存在唯一元素θ,使对任何x X ∈,成立x x θ+=,称θ为X 中零元素;4)对X 中每个元素x ,存在唯一元素x X '∈,使x x θ'+=,称x '为x 的负元素,记为x -; (2)对于X 中每个元素x X ∈,及任意实数(或复数)a ,存在元素u X ∈与之对应,记为u ax =,称为a 与x 的数积,满足 1)1x x =;2)()()a bx ab x =对任意实数(或复数)a 和b 成立;3)()(),a b x ax bx a x y ax by +=++=+,则称X 按上述加法和数乘运算成为线性空间或向量空间,其中的元素称为向量。

如果数积运算只对实数(复数)有意义,则称X 是实(复)线性空间。

例1 R n ,对R n 中任意两点x=(ξ1,ξ2,…,ξn ),y=(η1,η2,…,ηn)和任何实(复)数a,定义x+y=(ξ1 +η1,ξ2 +η2,…,ξn +ηn ), ax=(a ξ1 ,a ξ2,…,a ξn ).容易验证R n 按上述加法和数乘运算成实(复)线性空间.2.定义2 设x 1 ,x 2,…,x n 是线性空间X 中的向量,如果存在n 个不全为零的数α1,α2,…,αn ,使α1 x 1 +α2 x 2 +…+αn x n =0, (1)则称x 1,x 2 ,…,x n 线性相关,否则称为线性无关.不难看出,x 1,x 2,…,x n 线性无关的充要条件为,若10ni i i x α==∑,必有α1 =α2 =…=αn =0.3.定义3 设M 是线性空间X 的一个子集,如果M 中任意有限个向量都线性无关,则称M 是X 中线性无关子集.设M 和L 为X 中两个子集,若M 中任何向量与L 中任何向量都线性无关,则称M 和L 线性无关.4.定义4 设X 是线性空间, M 是X 中线性无关子集,如果·spanM= X,则称M 的基数为X 的维数,记为dim X, M 称为X 的一组基.如果M 的基数为有限数,则称X 是有限维线性空间,否则称X 是无限维线性空间.如果X 只含零元素,称X 为零维线性空间.第八节 赋范线性空间和巴拿赫(Banach )空间1.定义1 设X 是实(或复)的线性空间,如果对每个向量x ∈X,有一个确定的实数,记为‖x ‖与之对应,并且满足:1°‖x ‖≥0,且‖x ‖=0等价于x=0; 2°‖αx ‖=|α|‖x ‖其中α为任意实(复)数; 3°‖x+y ‖≤‖x ‖+‖y ‖,x,y ∈X,则称‖x ‖为向量x 的范数,称X 按范数‖x ‖成为赋范线性空间. 2. 引理1(H ӧlder 不等式) 设p>1, 111p q+=,[][],,,p q f L a b g L a b ∈∈那么f(t)g(t)在[a,b]上L 可积,并且()()bpq af tg t dt fg ≤⎰3引理2(Minkowski 不等式) 设p ≥1,f,g ∈L p [a,b],那么f+g ∈L p [a,b],并且成立不等式‖f+g ‖p ≤‖f ‖p +‖g ‖p4.定理1 当p ≥1时,L p [a,b]按(6)中范数‖f ‖p 成为赋范线性空间.5.定理2 L p [a,b](p ≥1)是Banach 空间.6.定理3 设X 是n 维赋范线性空间,{e1,e2,…,en}是X 的一组基,则存在常数M 和M ′,使得对一切1nk k k x e ξ==∑成立1221nk k M x M x ξ=⎛⎫'≤≤ ⎪⎝⎭∑.7.推论1 设在有限维线性空间上定义了两个范数‖x ‖和‖x ‖1 ,那么必存在常数M 和M ′,使得M ‖x ‖≤‖x ‖1 ≤M ′‖x ‖.8. 定义2 设(R 1,‖x ‖1 )和(R 2 ,‖x ‖2 )是两个赋范线性空间.如果存在从R 1 到R 2 上的线性映射φ和正数c 1 ,c 2,使得对一切x ∈R 1,成立c 1 ‖φx ‖2 ≤‖x ‖1 ≤c 2 ‖φx ‖2则称(R 1 ,‖x ‖1)和(R 2,‖x ‖2 )这两个赋范空间是拓扑同构的.8.推论2 任何有限维赋范空间都和同维数欧氏空间拓扑同构.相同维数的有限维赋范空间彼此拓扑同构.(二)有界线性算子和连续线性泛函第一节 有界线性算子和连续线性泛函定义1 设X 和Y 是两个同为实(或复)的线性空间,D 是X 的线性子空间,T 为D 到Y 中的映射,如果对任何x,y ∈D,及数α,有T(x+y)= Tx+ Ty, (1)T(αx)=αTx, (2)则称T 为D 到Y 中的线性算子,其中D 称为T 的定义域,记为D(T),TD 称为T 的值域,记为R(T),当T 取值于实(或复)数域时,就称T 为实(或复)线性泛函.定义2 设X 和Y 是两个赋范线性空间,T 是X 的线性子空间D(T)到Y 中的线性算子,如果存在常数c,使对所有x ∈D(T),有‖Tx ‖≤c ‖x ‖, (3)则称T 是D(T)到Y 中的有界线性算子,当D(T)= X 时,称T 为X 到Y 中的有界线性算子,简称为有界算子.对于不满足条件(3)的算子,称为无界算子.本书主要讨论有界算子.定理1 设T 是赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 为有界算子的充要条件为T 是X 上连续算子.定理2 设X 是赋范线性空间,f 是X 上线性泛函,那么f 是X 上连续泛函的充要条件为f 的零空间N(f)是X 中的闭子空间定义3 T 为赋范线性空间X 的子空间D(T)到赋范线性空 间Y 中的线性算子,称()0supx x D T TxT x≠∈= (4) 为算子T 在D(T)上的范数.引理1 设T 是D(T)上有界线性算子,那么()()11sup sup x D T x D T x x T Tx Tx ∈∈=≤== (6)Ⅲ. 有界线性算子和连续线性泛函的例子例6 赋范线性空间X 上的相似算子Tx=αx 是有界线性算子,且‖T ‖=|α|,特别‖I X ‖=1,‖O ‖=0.第二节 有界线性算子空间和共轭空间 Ⅰ. 有界线性算子全体所成空间定理1 当Y 是Banach 空间时,B(X →Y)也是Banach 空间. Ⅱ. 共轭空间定义1 设X 是赋范线性空间,令X ′表示X 上连续线性泛函全体所成的空间,称为X 的共轭空间.定理2 任何赋范线性空间的共轭空间是Banach 空间.定义2 设X 和Y 是两个赋范线性空间,T 是X 到Y 中的线性算子,并且对所有x∈X,有‖Tx‖=‖x‖,则称T是X到Y中的保距算子,如果T又是映射到Y上的,则称T是同构映射,此时称X与Y同构.Welcome To Download !!!欢迎您的下载,资料仅供参考!。

相关文档
最新文档