电子束焊及等离子弧焊特点
四种焊接技术的区别
四种焊接技术的区别
焊接技术有很多种,如电阻焊、氩弧焊、电了束焊、等离子焊等。
那么跟它们有什么区别和不同呢?
1)、电阻焊:它用来焊接薄金属件,在两个电极间夹紧被焊工件通过大的电流熔化电极接触的表面,即通过工件电阻发热来实施焊接。
工件易变形,电阻焊通过接头两边焊合,而激光焊只从单边进行,电阻焊所用电极需经常维护以清除氧化物和从工件粘连着的金属,激光焊接薄金属搭接接头时并不接触工件,再者,光束还可进入常规焊难以焊及的区域,焊接速度快。
2)、氩弧焊:使用非消耗电极与保护气体,常用来焊接薄工件,但焊接速度较慢,且热输入比激光焊大很多,易产生变形。
3)、等离子弧焊:与氩弧类似,但其焊炬会产生压缩电弧,以提高弧温和能量密度,它比氩弧焊速度快、熔深大,但逊于激光焊。
4)、电子束焊:它靠一束加速高能密度电子流撞击工件,在工件表面很小密积内产生巨大的热,形成小孔效应,从而实施深熔焊接。
电子束焊的主要缺点是需要高真空环境以防止电子散射,设备复杂,焊件尺寸和形状受到真空室的限制,对韩件装配质量要求严格,非真空电子束焊也可实施,但由于电子散射而聚焦不好影响效果。
电子束焊还有磁偏移和X 射线问题,由于电子带电,会受磁场偏转影响,故要求电子束焊工件焊前去磁处理。
X射线在高压下特别强,需对操作人员实施保护。
激光焊接则不需真空室和对工件焊前进行去磁处理,它可在大气中进行,也没有防X射线问题,所以可在生产线内联机操作,也可焊接磁性材料。
(完整版)等离子焊接理论、操作与故障处理
一、等离子弧焊接方法及工艺特点1.等离子焊接原理等离子态是除固态、液态、气态之外的第四种物质存在形态。
等离子焊接是从钨级氩弧焊的基础上发展起来的一种高能焊接方法。
钨级氩弧焊是自由电弧,而等离子电弧是压缩电弧。
等离子弧是离子气被电离产生高温离子化气体,并经过水冷喷嘴,受到压缩,从而导致电弧的截面积变小,电流密度增大,电弧温度增高。
等离子电弧能量密度可达105-106W/cm2,比自由电弧(约105W/cm2以下)高,其温度可达18000-24000K,也高于自由电弧(5000-8000K)很多。
因此,等离子电弧挺度比自由电弧好,指向性好,喷射有力,熔透能力强,可比自由电弧一次焊透更厚的金属。
因此,等离子电弧焊接与电子束(能量密度105W/mm2)、激光束(能量密度105W/mm2)焊接一同被称为高能密度焊接。
等离子焊接示意图如下图:等离子焊接原理示意图2.等离子电弧的种类等离子电弧主要分为三种类型:◆非转移型等离子电弧主要用于非金属材料的焊接。
◆转移型等离子电弧主要用于金属材料的焊接。
◆联合型等离子电弧主要用于微束等离子的焊接。
3.等离子基本焊接方法按焊缝成型原理,等离子焊接有两种基本的焊接方法:熔透型和小孔型等离子焊接。
◆熔透型等离子焊接在焊接过程中离子气较小,弧柱的压缩程度较弱,只熔透工件,但不产生小孔效应的等离子焊接方法。
其焊缝成型原理与氩弧焊类似,主要用于薄板焊接及厚板多层焊。
◆小孔型等离子焊接利用小孔效应实现等离子弧焊接的方法称为小孔型等离子焊接。
由于等离子具有能量集中﹑电弧力强的特点,在适当的参数条件下,等离子弧可以直接穿透被焊工件,形成一个贯穿工件厚度方向的小孔,小孔周围的液体金属在电弧力﹑液态金属表面张力以及重力下保持平衡,随着等离子弧在焊接方向移动,熔化金属沿着等离子弧周围熔池壁向熔池后方流动,并逐渐凝固形成焊逢,小孔也跟着等离子弧向前移动,如下图所示。
小孔效应示意图小孔效应的优点在于可以单道焊接厚板,一次焊透双面成型。
机械制造基础答案 第4章复习思考题答案
《机械制造技术基础》主编 李长河 第1章 金属材料概述
第4章 复习思考题及答案
5.焊条由哪几部分组成?各部分的作用是什么? 答: 焊条由中心部的金属焊芯和表面涂层药皮两部分组成。
焊芯:主要起到填充金属和传导电流的作用。药皮作用:(1) 药皮熔化时产生的熔渣及气体,使电弧空间及熔池与大气隔离;( 2)药皮的冶金作用,保证焊缝金属的脱氧、脱硫、脱磷,并向焊 缝添加必要的合金元素,使焊缝具有一定的力学性能;(3)使焊 条具有好的焊接工艺性。 6.碱性焊条与酸性焊条的性能有何不同? 答: 药皮熔化后形成的熔渣是以碱性氧化物为主的焊条就属于碱性焊 条。碱性焊条焊成的焊缝含氢量很低,抗裂性及强度好,适合焊接 重要的结构钢和合金结构钢,但是碱性焊条的工艺性能和抗气孔性 能差。
第4章 复习思考题及答案
3.什么是焊接电弧?焊接电弧的构造及形成特点如何? 答: 焊接电弧是在一定条件下,在电极之间的气体介质中有大量电
荷通过的强烈持久气体放电现象。 焊接电弧通常由阴极区、阳极区和弧柱区三部分组成。阴极区
指电弧紧靠负电极的区域,此区域很窄。阴极区由于发射电子,消 耗了逸出功,其发热量和温度都低于阳极;阳极区指电弧紧靠正电 极的区域,此区域较阴极区宽,阳极区产生的热量最大;弧柱区指 阴极区与阳极区之间的部分,弧柱内产生的热量虽然不多,但因散 热差,温度也可以达到很高。 4.什么是电弧的稳定性?影响电弧稳定性的因素有哪些? 答: 电弧的稳定性是指电弧在燃烧过程中,电压与电流保持一定, 且电弧能维持一定的长度、不偏吹、不摇摆、不熄弧的特性。
等离子弧焊适合于焊接难熔金属、易氧化金属、热敏感性强材料 以及不锈耐蚀钢等,也可以焊接一般钢材或有色金属。
电子束焊新技术和新工艺讲解
特种焊接——电子束焊新技术和新工艺目录1.前言2.电子束焊的特点3.电子束焊焊接方法的分类4.电子束焊的主要优缺点5.电子束焊的应用范围6.电子束焊的设备与装备7.电子束焊的焊接工艺8. 电子束焊的工艺参数9.获得深熔焊的工艺方法10.总结1.前言在各种产品制造工业中,焊接与切割(热切割)是一种十分重要的加工工艺。
据工业发达国家统计,每年仅需要进行焊接加工后使用的钢材就占钢总产量的45%左右。
金属焊接是指通过适当的手段,使两个分离的金属物体(同种金属或异种金属)产生原子(分子)间结合而连接成一体的连接方法。
焊接不仅可以解决各种钢材的连接,而且还可以解决铝、铜等有色金属及钛、锆等特种金属材料的连接,因而已广泛应用于机械制造、造船、海洋开发、汽车制造、石油化工、航天技术、原子能、电力、电子技术及建筑等部门。
随着现代工业生产的需要和科学技术的蓬勃发展,焊接技术不断进步。
仅以新型焊接方法而言,到目前为止,已达数十种之多。
特种焊接技术是指除了焊条电弧焊、埋弧焊、气体保护焊等一些常规的焊接方法之外的一些先进的焊接方法,如激光焊、电子束焊、等离子弧焊、扩散焊等。
生产中选择焊接方法时,不但要了解各种焊接方法的特点和选用范围,而且要考虑产品的要求,然后还要根据所焊产品的结构、材料以及生产技术等条件做出初步选择。
电子束焊是利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法。
电子束撞击工件时,其动能的96%可转化为焊接所需的热能,能量密度高达310~510KW/2cm ,而焦点处的最高温度达5953C 左右。
电子束焊是一种先进的焊接方法,在工业上的应用只有不到60年的历史,首先是用于原子能及宇航工业,继而扩大到航空、汽车、电子、电器、机械、医疗、石油化工、造船、能源等工业部门,创造了巨大的社会经济效益,并日益受到人们的关注。
2.电子束焊的特点电子束焊(electronic beam welding )是高能量密度的焊接方法,它利用空间定向高速运动的电子束,撞击工件表面并将动能转化为热能,使被焊金属迅速融化和蒸发。
电子束焊接知识
• S — 速度 是指焊接件在焊接室焊接过程中所移动的速 度,它对每单位焊接长度需输入的能量有 巨大的影响。钛焊常用量为 100英寸/每分 (或 42.3 毫米/平方)和 120 英寸/分(或 50.8 毫米/平方)
பைடு நூலகம்
四 电子束焊设备和装置
• 生产厂商:steigerwald strahltechnik(简称SST) • 电子束焊接设备全称:EBOCAM K 100-G 150 KM –CNC 高压真空电子束焊机 • 设备基本参数: • 真空室体积:11.3m3(2700*2100*2100) • 功率:15 kw • 电压:150KV • 电流;100mA • 工作距离:200-1500mm
长空洞及焊缝中部裂纹都是电子束深熔透焊接 时所特有的缺陷。降低焊接速度,改进材质有利 于消除此类缺陷。
• 焊接工艺参数: IB — 电子束流
电子束度是对电子击打组件次数的基本量度,它 与不断加速的潜力一起决定焊接所需的电力。电 子束度的大小是通过机器电路反馈来控制的,它 还调节由偏压量大小产生的磁源。Steigerwald K100机所用量是介于 0 至100mA之间
电子束焊接工作原理
• 电子束的产生、加速和会 聚成束都是由电子枪完成 的,通过阴极(灯丝)发 射电子,通过加速电压加 速,飞向阳极最终达到 (光速的30%-70%), 再经过电磁透镜(聚焦线 圈)的会聚,形成可控的 电子束焦距。高速运动的 电子束撞击工件表面,电 子的动能转变成热能,使 金属迅速熔化和蒸发。 (简图)
•
KV — 加速电压
在阴极与阳极之间加速电子。KV 越高,电流加速 越大,常用量为 130至 150KV
• IL — 透镜度 (聚焦电流) 用于控制电束的聚焦,比如电束能量度有多 聚集。在多数焊接过程中,聚焦点(强焦 点)位于焊接上。透镜度对焊宽和渐弱位 置(束能减至零的区位)的面貌有很大的 影响。 • WH — 工作室高度 通常是指从焊接室天花板到焊接处的距离。 它一般仅在对某种焊接件最初设焊接参数 时所用。
等离子弧焊
等离子弧焊等离子弧焊成品等离子弧焊是利用等离子弧作为热源的焊接方法。
气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。
它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。
形成等离子弧的气体和它周围的保护气体一般用氩。
根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。
目录基本信息工作方式过程特点应用等离子弧焊接和切割各种焊接方法及设备等离子弧焊设备国外焊接技术最新进展等离子弧焊的工艺参数等离子弧焊直接金属成形技术的工艺研究等离子焊优点等离子弧的特性合金材料的等离子弧焊•超薄壁管子的微束等离子弧焊安全防护技术基本信息缩写abbr. :PAW.[军] Plasma-Arc Welding, 等离子弧焊——简明英汉词典工作方式等离子弧有两种工作方式。
一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。
形成焊缝的方式有熔透式和穿孔式两种。
前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。
此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊接属于高质量焊接方法。
焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。
特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。
过程特点操作方式等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。
但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。
通过改变孔的直径和等离子气流速度,可以实现三种操作方式:1、微束等离子:0.1~15A在很低的焊接电流下,材苁褂梦⑹?壤胱踊<词乖诨〕け浠?怀??0mm时,柱状弧仍能保持稳定。
焊接基础知识:焊接的种类及应用
凸焊
爆炸焊
技术发展部
工艺室
三、焊接的种类及应用
凸焊
电 阻 焊
1、定义: 凸焊是点焊的一种变型形式,在一个工件上有预制的 凸点,凸焊时,一次可在接头处形成一个或多个熔核。
2、应用: 凸焊主要用于焊接低碳钢和低合金钢的冲压件,除板件 凸焊外,还有螺母、螺钉类零件的凸焊等。
技术发展部
工艺室
三、焊接的种类及应用
压焊
(2)特征:
压力
机械压力、气压力等。
技术发展部
工艺室
三、焊接的种类及应用
常用的压焊方法
电阻点焊 电阻焊 缝焊
压焊
摩擦焊
冷展部
工艺室
三、焊接的种类及应用
1、定义:工件组合后通过电极施加压力,利用电流 通过 接头的接触面及邻近区域产生的电阻热进行焊接的方法。 2、特点: 优点 1 )加热时间短,热量集中,变形与应力也小。 2 )焊接成本低。 3 )操作简单,易于实现机械化和自动化。 4 )生产率高,且无噪声及有害气体 缺点 1 )目前缺乏可靠的无损检测方法,焊接质量只能靠破 坏性试验来检查。 2 )设备功率大,成本较高,维修较困难。
电子枪中的阴极由于直接或间接加热而发射电子该电子在高压静电场的加速下再通过电磁场的聚焦就可以形成能量密度极高的电子束用此电子束去轰击工件巨大的动能转化为热能使焊接处工件熔化形成熔池从而实现对工件的焊接
焊接基础知识
技术发展部
工艺室
焊接的种类及应用
技术发展部
工艺室
三、焊接的种类及应用
按焊接时母材金属所处的状态对焊接进行分类:
技术发展部
工艺室
三、焊接的种类及应用
2、优点: 1)焊缝金属纯度高; 2)焊缝表面质量好,内部熔合性好; 3)热影响区小,精度高,不易变形; 3、应用: 电子束焊接广泛应用于航 空航天、军工、仪表等众多行 业,从精密的微型电子线路组件 到大型的导弹外壳都可以采用 电子束焊接。
焊接基础知识-焊接方法的简介
GTAW焊常用于焊接不锈钢和铝、镁、铜合金等非铁金属的薄板。相较于手工电弧焊 和气体保护金属极电弧焊,它更易于控制焊接处,提高焊接品质。然而,GTAW焊较为 复杂、难以精通,而且焊接速度明显比其他焊接法缓慢。另一种类似于GTAW焊的焊接 法:等离子弧焊,使用些微不同的焊炬,制造出更集中的焊接电弧,因此常被使用于自 动化工艺
钨极氩弧焊: 简介
钨极气体保护焊简称TIG或GTAW。属于非熔化极气体保护焊,是利用钨电极与工件之 间的电弧使金属熔化而形成焊缝。焊接中钨极不熔化,只起电极作用,电焊柜的喷嘴送 进氦气或氩气,起保护电极和熔池的作用,还可根据需要另外添加填充金属。是连接薄 板金属和打底焊的一种极好的焊接方法。 特点
等离子弧焊:是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高 速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、 发热量和温度都高的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、 氩或其中两者混合的混合气体的。
(4)激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可 在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。
(5)工件可放置在封闭的空间(经抽真空或内部气体环境在控制下)。 (6)激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件, (7)可焊材质种类范围大,亦可相互接合各种异质材料。 (8)易于以自动化进行高速焊接,亦可以数位或电脑控制。 (9)焊接薄材或细径线材时,不会像电弧焊接般易有回熔的困扰。 (10)不受磁场所影响(电弧焊接及电子束焊接则容易),能精确的对准焊件
焊接工艺的分类
图11-4 焊接变形形式(a)
图11-4 焊接变形形式(b)
图11-4 焊接变形形式(c)
图11-4 焊接变形形式(d)
• (三)预防和减小焊接应力及焊接变形的措施 • 1. 合理设计焊接结构 尽量减少焊缝及焊缝的长度和截面积, 并尽量使结构中的所有焊缝对称,避免交叉焊缝等,详见 焊接结构工艺性一节。 • 2. 焊前预热 焊前对焊件预热,可减少焊件各部分的温差, 对减小焊接应力与变形较为有效。重要焊件可整体预热, 还有局部预热即焊前选择焊件的合理部位局部加热使其伸 长,焊后冷却时,加热区与焊缝同时收缩。 • 3. 反变形法 根据实验或计算,确定工件焊后产生变形的方 向和大小,焊前将工件预先斜置或弯曲成等值反向角度, 以期达到焊后与所要求的工件角度正好吻合。
图11-2 低碳钢焊接热影响区的组织变化
二、 焊接热过程对焊接接头组织、性能的影响 • (一) 焊接热循环 • 焊接时,电弧沿焊件逐渐移动并对焊件进行局部加热。 焊件经焊接后所形成的结合部分称为焊缝。焊缝及其 邻近区域的总称叫焊缝区。 • 在焊接过程中,焊缝区金属从常温被加热到最高温度, 然后再逐渐冷却到常温。由于焊件上各点所处的位置 不同,其被加热的最高温度亦不相同;而热量的传递 需要一定的时间,故各点达到其最高温度的时间亦不 相同。在焊接热源作用下,焊件上某点的温度随时间 变化的过程称为焊接热循环。
• (3) 焊条型号 • 由国家标准分别规定各类焊条的型号编制方法。如标准规定碳 钢焊条型号为"E××××",其中,字母"E"表示焊条;前二位数 字表示熔敷金属抗拉强度的最小值;第三位数字表示焊接位置, "0"及"1"表示焊条适用于全位置(平焊、立焊、横焊、仰焊)焊 接,"2"为平焊及平角焊,"4"表示焊条适用于向下立焊;第三位 和第四位数字组合时表示焊接电流种类及药皮类型。在第四位数 字后附加"R"表示耐吸潮焊条;附加"M"表示耐吸潮和力学性能有 特殊规定的焊条;附加"-1"表示冲击性能有特殊规定的焊条。
焊接方法有哪几种
焊接方法焊接:通常是指金属的焊接。
是通过加热或加压,或两者同时并用,使两个分离的物体产生原子间结合力而连接成一体的成形方法。
分类:根据焊接过程中加热程度和工艺特点的不同,焊接方法可以分为三大类。
(1)熔焊。
将工件焊接处局部加热到熔化状态,形成熔池(通常还加入填充金属),冷却结晶后形成焊缝,被焊工件结合为不可分离的整体。
常见的熔焊方法有气焊、电弧焊、电渣焊、等离子弧焊、电子束焊、激光焊等。
(2)压焊。
在焊接过程中无论加热与否,均需要加压的焊接方法。
常见的压焊有电阻焊、摩擦焊、冷压焊、扩散焊、爆炸焊等。
(3)钎焊。
采用熔点低于被焊金属的钎料(填充金属)熔化之后,填充接头间隙,并与被焊金属相互扩散实现连接。
钎焊过程中被焊工件不熔化,且一般没有塑性变形。
焊接生产的特点:(1)节省金属材料,结构重量轻。
(2)以小拼大、化大为小,制造重型、复杂的机器零部件,简化铸造、锻造及切削加工工艺,获得最佳技术经济效果。
(3)焊接接头具有良好的力学性能和密封性。
(4)能够制造双金属结构,使材料的性能得到充分利用。
应用:焊接技术在机器制造、造船工业、建筑工程、电力设备生产、航空及航天工业等应用十分广泛。
不足:焊接技术也还存在一些不足之处,如焊接结构不可拆卸,给维修带来不便;焊接结构中会存在焊接应力和变形;焊接接头的组织性能往往不均匀,并会产生焊接缺陷等。
各种焊接技术介绍一、电弧焊电弧:一种强烈而持久的气体放电现象,正负电极间具有一定的电压,而且两电极间的气体介质应处在电离状态。
引燃焊接电弧时,通常是将两电极(一极为工件,另一极为填充金属丝或焊条)接通电源,短暂接触并迅速分离,两极相互接触时发生短路,形成电弧。
这种方式称为接触引弧。
电弧形成后,只要电源保持两极之间一定的电位差,即可维持电弧的燃烧。
电弧特点:电压低、电流大、温度高、能量密度大、移动性好等,一般20~30V的电压即可维持电弧的稳定燃烧,而电弧中的电流可以从几十安培到几千安培以满足不同工件的焊接要求,电弧的温度可达5000K以上,可以熔化各种金属。
焊接方法种类、特点、
1、焊接质量高且稳定;
2、熔深大,节省焊接材料; 3、无弧光,无金属飞溅,焊接烟雾少; 4、自动化操作,生产效率高。 5、设备昂贵,工艺复杂,适于长的直线焊缝和圆筒形 工件的纵、环焊缝的批量生产。
气体保护电弧焊
气体保护焊是利用保护性气体防止外界有害气体对
熔池进行侵害的特殊焊接方法。它适于一些化学性质活泼 的金属焊缝的焊接作业。
钎焊接头的形成过程
钎焊接头的形成包括两个过程:⑴ 钎料熔化和流
入、填充接头间歇形成钎料充满焊缝的过程;⑵ 液态钎 料与钎焊金属相互作用。
钎料填充焊缝过程示意图
液态钎料和固态金属之间的相互作用
软钎焊和硬钎焊
软钎焊
软钎焊是指使用的钎料熔点低于450℃的钎焊,通常
用烙铁加热。软钎焊的接头强度不高(<70MPa)。 含少量锑的锡铁合金钎料应用最广泛。
钢焊条焊接钢材时的焊接电弧
量的光和热。
手工电弧焊的焊接过程
焊 条 焊 芯 电 弧 药 皮 电 弧
手工电弧焊焊接 过程示意图
焊缝附近 基体金属
熔化
焊 缝
熔 渣
CO2↑
保护熔池
手弧焊工艺
(1)选择接头形式和坡口
根据焊件的结构形式、厚度和对焊缝质量要求不同进 行选择,对接接头使用最多。
(2)接头清理 易于引弧、稳定电弧燃烧,保证焊缝质量 (3)焊接位置
超声波焊、扩散焊、冷压焊等
钎焊
(固相兼液相)
软钎焊:锡焊
硬钎焊:铜焊、银焊等
一、 熔 化 焊
熔化焊是焊接最基本的焊接方法。根据焊接能源种
类、能源传递介质和方式的不同,熔化焊可分为电弧焊、 气焊、电渣焊、电子束焊、激光焊和等离子焊等。
焊接的三种焊接方法解释
焊接的三种焊接方法解释按照焊接过程中金属所处的状态及工艺的特点,可以将焊接方法分为熔化焊、压力焊和钎焊三大类。
一、熔化焊1、气焊气焊主要应用于薄钢板、低熔点材料(有色金属及其合金)、铸铁件和硬质合金刀具等材料的焊接,以及磨损、报废车件的补焊、构件变形的火焰矫正等。
2、电弧焊手工电弧焊可以进行平焊、立焊、横焊和仰焊等多位置焊接。
另外由于电弧焊设备轻便,搬运灵活,可以在任何有电源的地方进行焊接作业。
适用于各种金属材料、各种厚度和各种结构形状的焊接。
埋弧焊一般只适用于平焊位置,不适于焊接厚度小于1mm的薄板。
由于埋弧焊熔深大,生产率高,机械化操作的程度高,因而适于焊接中厚板结构的长焊缝。
埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金和铜合金等。
3、气电焊用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气电焊。
气电焊通常按照电极是否熔化和保护气体不同,分为不熔化极(钨极)惰性气体保护焊和熔化极气体保护焊,氧化混合气体保护焊、CO2气体保护焊和管状焊丝气体保护焊。
从被焊件材质上看,CO2气体保护焊可以焊接碳钢和低合金钢;从焊接位置上看,可以进行全位置焊接,也可以进行平焊、横角焊及其他空间位置的焊接。
钨极惰性气体保护焊可用于几乎所有金属和合金的焊接,但由于其成本较高,通常多用于焊接铝、镁、钛和铜等有色金属,以及不锈钢和耐热钢等。
钨极惰性气体保护焊GTAW所焊接的板材厚度范围,从生产率考虑以3mm以下为宜。
对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),为了保证高的焊接质量,也采用钨极惰性气体保护焊。
熔化极气体保护除具备不熔化极气体保护焊的主要优点(可进行各种位置的焊接;适用于有色金属、不锈钢、耐热钢、碳钢、合金钢绝大多数金属的焊接)外,同时也具有焊接速度较快,熔敷效率较高等优点。
4、等离子弧焊等离子弧广泛应用于焊接、喷涂和堆焊。
钛合金的主要焊接方法
钛合金的主要焊接方法钛合金是一种广泛使用的金属材料,被广泛用于航空航天、海洋工程、化工等领域。
其具有极高的强度、抗腐蚀、高温等特点,具有很好的应用前景。
由于钛合金的焊接性能较差,因此焊接过程中常常出现质量问题,因此只有选择正确的焊接方法,才能保证对于钛合金的加工质量和材料的使用寿命。
目前,钛合金的主要焊接方法有氩弧焊、激光焊、电子束焊和等离子弧焊等。
下面对这些焊接方法进行逐一介绍。
1.氩弧焊氩弧焊是钛合金常用的焊接方法之一。
其使用具有色素型或非色素型钨极,使用惰性气体(例如氩气)作为保护气体。
在焊接过程中,熔融的母材经过溶解和四周的冷却,从而形成一个均匀而结实的接头。
然而,氩弧焊的缺点是需要严格控制气氛,因为钛合金在高温下容易氧化,并将氧气与氮气吸入合金中,这将导致氢的存在,增加制造缺陷的可能性。
2.激光焊激光焊是将热源的密度集中在极小的区域中,通过加热达到熔化焊缝边缘来实现焊接的过程。
激光焊有着非常高的能量密度,可以快速地熔化焊接部分,从而实现快速、清洁和高精度的焊接效果。
然而,激光焊的缺点是,它无法消除氢气污染问题。
另外,激光焊是一种高成本的焊接方法,其设备和维护费用相对较高。
3.电子束焊电子束焊是一种类似于激光切割的焊接方法。
它使用电子束来熔化合金,从而实现材料的焊接。
这种方法可以有效消除氢气污染问题,能够焊接出极精密和高质量的接头,但是设备相对复杂和昂贵,能源成本也较高。
4.等离子弧焊等离子弧焊是一种比较新的焊接方法,它的特点是使用了高温等离子气体进行加热和熔化的过程。
这种方法具有较高的焊接速度、强度和均匀性,并且可以将氢气污染的问题消除。
总的来说,每种焊接方法都有各自的优点和缺点。
根据具体的要求,可以选择最合适的方案来实现钛合金材料的焊接。
焊接过程中,需要进行严格的质量控制,确保焊接接头的均匀性和稳定性,从而保证了应用时的可靠性和耐久性。
几种焊接方式
Gas shielded arc welding气体保护焊与其它焊接方法相比,具有以下特点:(1)电弧和熔池的可见性好,焊接过程中可根据熔池情况调节焊接参数。
(2)焊接过程操作方便,没有熔渣或很少有熔渣,焊后基本上不需清渣。
(3)电弧在保护气流的压缩下热量集中,焊接速度较快,熔池较小,热影响区窄,焊件焊后变形小。
(4)有利于焊接过程的机械化和自动化,特别是空间位置的机械化焊接。
(5)可以焊接化学活泼性强和易形成高熔点氧化膜的镁、铝、钦及其合金。
(6)可以焊接薄板。
缺点(7)在室外作业时,需设挡风装置,否则气体保护效果不好,甚至很差。
(8)电弧的光辐射很强。
(9)焊接设备比较复杂,比焊条电弧焊设备价格高。
气体保护焊除具有一般手工电弧焊的安全特点以外,还要注意以下几点:(l)气体保护焊电流密度大、弧光强、温度高,且在高温电弧和强烈的紫外线作用下产生高浓度有害气体,可高达手工电弧焊的4^-7倍,所以特别要注意通风。
(2)引弧所用的高频振荡器会产生一定强度的电磁辐射,接触较多的焊工,会引起头昏、疲乏无力、心悸等症状。
(3)氩弧焊使用的钨极材料中的牡、柿等稀有金属带有放射性,尤其在修磨电极时形成放射性粉尘,接触较多,容易造成各种焊工疾病。
CO2焊主要用于焊接低碳钢及低合金钢等黑色金属。
对于不锈钢,由于焊缝金属有增碳现象,影响抗晶间腐蚀性能。
所以只能用于对焊缝性能要求不高的不锈钢焊件。
此外,CO2焊还可用于耐磨零件的堆焊、钢铸件的焊补以及电铆焊等方面。
目前CO2焊已在汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门得到了广泛的应用。
Automatic submerged arc welding埋弧自动焊特点焊接生产率高埋弧自动焊所用焊接电流大,加上焊剂和熔渣的隔热作用,热效率高,熔深大,单丝埋弧焊在焊件不开坡口的情况下,一次可熔透20mm。
焊接速度高,以厚度8-10mm的钢板对接焊为例,单丝埋弧焊速度可达50-80cm/min,手弧焊则不超过10-13cm/min。
弧焊方法与设备期末复习题及答案
焊接方法与设备复习题一、名词解释:1. 焊接焊接是通过加热或加压,或两者并用,使用或不使用填充材料,使工件结合的方法。
焊接电弧焊接电弧是由焊接电源供给能量,在具有一定电压的两极之间或电极与母材之间的气体介质中产生的强烈而持久的放电现象。
电离在外加能量的作用下,使中性气体分子或原子分离成为正离子和电子的现象。
电子发射电极表面接受一定外加能量作用,使其内部的电子冲破电极表面的束缚而飞到电弧空间的现象称为电子发射。
复合正的带电粒子与负的带电粒子结合成中性的原子或分子。
2. 焊接电弧的最小能量消耗特性弧柱燃烧时,在电流和电弧周围条件一定时,稳定燃烧的电弧将自动选择一个确定的导电截面,使电弧的能量损失最小。
电弧的最小电压原理在电弧和周围条件一定的情况下,稳定燃烧的电弧将自动选择一适当的断面,以保证电弧的电场强度具有最小的数值,即在固定弧长上的电压最小。
3. 焊接电弧的固有自调节作用弧长受外界干扰发生变化时电弧本身具有自动恢复到原来弧长的能力。
焊接电弧的静特性在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时,焊接电流与电弧电压的变化关系。
弧焊电源的外特性在电源参数一定的条件下,改变负载时,电源输出的电压稳定值与输出的电流稳定值之间的关系。
4. 电焊机的负载持续率焊机负载工作时间与规定工作时间周期的百分比,是表示焊机工作状态的参数。
额定焊接电流指在规定的环境条件下,按额定负载持续率规定的负载状态工作,即在符合标准规定的温升限度下所允许的输出电流值。
5. 电弧自身调节作用弧长的调整不是依靠外界所加的强制作用,而是完全依靠弧长变化所引起的焊接参数变化,使焊丝的熔化速度产生相应的变化来达到恢复弧长的目的。
电弧电压反馈调节作用弧长的调整不是依靠电弧的自身调节作用,而是主要依靠电弧电压的负反馈作用来控制送丝速度,利用送丝速度作为调节量来调节弧长。
电弧焊的程序自动控制以合理的次序使自动电弧焊设备的各个部件进入特定的工作状态,从而使电弧焊设备的各环节能够协调的工作。
常见的17种焊接方法
1手弧焊手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。
它是以外部涂有涂料的焊条作电极和填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。
涂料在电弧热作用下一方面可以产生气体以保护电弧,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。
熔渣的更重要作用是与熔化金属产生物理化学反应或添加合金元素,改善焊缝金属性能。
手弧焊设备简单、轻便,操作灵活。
可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的焊接。
手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。
2钨极气体保护电弧焊这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。
焊接过程中钨极不熔化,只起电极的作用。
同时由焊炬的喷嘴送进氩气或氦气作保护。
还可根据需要另外添加金属。
(在国际上通称为TIG 焊)。
钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。
这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属。
这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。
3熔化极气体保护电弧焊这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接的。
熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。
以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊)。
以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。
熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。
熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。
第五章 高能密度焊方法与原理
发,材料表面蒸发走的原子的反作用力力图使液
态金属表面压凹。随着电子束功率密度的增加, 金属蒸气量增多,液面被压凹的程度也增大,并 形成一个通道。电子束经过通道轰击底部的待熔 金属,使通道逐渐向纵深发展,液态金属的表面
张力和流体静压力是力图拉平液面的,在达到力
的平衡状态时,通道的发展才停止,并形成小孔。
激光器 按激光工作物质的状态,激光器可分为固体激光 器和气体激光器。激光器一般由激光工作物质、 激励源、谐振腔、电源、控制和冷却系统、聚光
器(固体激光器特有)组成。用于焊接、切割等工
业加工的激光器主要是002气体激光器及钇铝石 榴石(YAG)固体激光器。
5.2.2
激光焊机理
按激光器输出能量方式的不同,激光焊分为脉冲激光焊和连续激光焊
可见,形成深熔焊的主要原因是金属蒸气的反作用力。
它的增加与电子束的功率密度成正比。实验证明,电子束 功率密度低于105W/cm2时,金属表面不产生大量蒸发
的现象,电子束的穿透能力很小。在大功率焊接中,电子
束的功率密度可达108W/cm2以上,足以获得很深的穿 透效应和很大的深宽比。
但是,电子束在轰击路途上会与金属蒸气和二次发射
后的电磁透镜(聚焦线圈)会聚,得到很小的焦点(其功率密 度可达104~109W· cm-2),轰击置于真空或非真空中
的焊件时,电子的动能迅速转变为热能,熔化金属,实现
焊接过程。为了控制电子束的运动轨迹,聚焦线圈后面还 设置一个偏转线圈。
2.电子束深熔焊机理
电子束焊时,在几十到几百千伏加速电压的作用下,
Ib、聚焦电流If 、焊接速度Vb及工作距离H。 (1)加速电压Ua 提高加速电压可增加焊缝的熔深,这是由于加速电压 升高时,除了电子束功率增大使功率密度增大外,还由于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子束焊
真空电子束焊接具有以下特点:
●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接
●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。
●最大的穿透深度,可达15MM
●最高的深宽比大于10:1。
●焊接直径可达400MM
●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。
●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。
●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。
●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。
也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态
●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。
●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。
熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。
●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。
等离子弧焊
1.1 等离子弧的产生:
(1)等离子弧的概念:
自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。
等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。
自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。
(2)等离子弧的产生
等离子弧发生装置如图6-4-1所示。
在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。
①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。
②热压缩效应——当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。
③电磁收缩效应——定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。
电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。
当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。
反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。
1.2 等离子弧焊接
1.2.1 基本知识
用等离子弧作为热源进行焊接的方法称为等离子孤焊接。
焊接时离子气(形成离子弧)和保护气(保护熔池和焊缝不受空气的有害作用)均为氩气。
等离子弧焊所用电极一般为钨极(与钨极氩弧焊相同,国内主要采用钍钨极和铈钨极,国外还采用锆钨极和锆极),有时还需填充金属(焊丝)。
一般均采用直流正接法(钨棒接负极)。
故等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。
1.2.2 等离子弧焊接的分类:
1.小孔型等离子弧焊
小孔型焊又称穿孔、锁孔或穿透焊。
利用等离子弧能量密度大、和等离子流力强的特点,将工件完全熔透并产生一个贯穿工件的
小孔。
被熔化的金属在电弧吸力、液体金属重力与表面张力相互作!用下保持平衡。
焊枪前进时,小孔在电弧后方锁闭,形成完全熔透‘的焊缝。
穿孔效应只有在足够的能量密度条件下才能形成。
板厚增加:所需能量密度也增加。
由于等离子弧能量密度的提高有一定限制,爵因此小孔型等离子弧焊只能在有限板厚内进行。
2.熔透型等离子弧焊
当离子气流量较小、弧抗压缩程度较弱时,这种等离子弧在焊接过程中只熔化工件而不产生小孔效应。
焊缝成形原理和钨极氢弧焊类似,此种方法也称熔入型或熔蚀法等离子弧焊。
主要用于薄板加单面焊双面成形及厚板的多层焊。
3.微束等离子弧焊
15 ^30A以下的熔入型等离子弧焊接通常称为微束等离子弧焊接。
由于喷嘴的拘束作用和维弧电流的同时存在,使小电流的等离子弧可以十分稳定,目前已成为焊接金属薄箔的有效方法。
为保证焊接质量,应采用精密的装焊夹具保证装配质量和防止焊接变形。
工件表面的清洁程度应给予特别重视。
为了便于观察,可采用光学放大观察系统。
1.2.3 等离子弧焊接的特点及应用:特点
(1)微束等离子弧焊可以焊接箔材和薄板。
(2)具有小孔效应,能较好实现单面焊双面自由成形。
(3)等离子弧能量密度大,弧柱温度高,穿透能力强,10~12mm厚度钢材可不开坡口,能一次焊透双面成形,焊接速度快,生产率高,应力变形小。
(4)设备比较复杂,气体耗量大,只宜于室内焊接。
应用
广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。
等离子弧的类型
按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。
(1)非转移型等离子弧钨极接电源负端,喷嘴接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。
(2)转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。
因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。
(3)联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。
非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。
主要用于微束等离子弧焊和粉末堆焊。
转移型等离子弧的产生方法
为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。
首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。
在正常工作状态下,喷嘴不带电,在开始引燃时产生的等离子弧,只是作为建立转移弧的中间媒介。
常用等离子弧焊的基本方法
常用的等离子弧焊基本方法有小孔型等离子弧焊、熔透型等离子弧焊和微束等离子弧焊三种。
(1)小孔型等离子弧焊使用较大的焊接电流,通常为50~500A,转移型弧。
施焊时,压缩的等离子焰流速度较快,电弧细长而有力,为熔池前端穿透焊件而形成一个小孔,焰流
穿过母材而喷出,称为“小孔效应”,其示意图见图25。
随着焊枪的前移,小孔也随着向前移动,后面的熔化金属凝固成焊缝。
由于等离子弧能量密度的提高有一定限制,因此小孔型等离子弧焊只能在有限厚板内进行焊接,见表2。
表2 小孔型等离子弧焊一次焊透厚度(mm)
不锈钢≤8
钛及钛合金≤12
镍及镍合金≤6
低合金钢≤7
低碳钢≤8
(2)熔透型等离子弧焊当等离子气流量较小、弧柱压缩程度较弱时,此种等离子弧在焊接过程中只熔化焊件而不产生小孔效应,焊缝成形原理与钨极氩弧焊相似,称为熔透型等离子弧焊,主要用于厚度小于2~3mm的薄板单面焊双面成形及厚板的多层焊。
(3)微束等离子弧焊焊接电流30A以下熔透型焊接称为微束等离子弧焊。
采用小孔径压缩喷嘴(ф0.6mm~ф1.2mm)及联合型弧,当焊接电流小至1A以下,电弧仍能稳定地燃烧,能够焊接细丝和箔材。