点动自锁组合控制电路

合集下载

点动自锁控制实训报告

点动自锁控制实训报告

一、实验目的1. 理解并掌握电动机点动自锁控制电路的工作原理和组成。

2. 学会点动自锁控制电路的实际操作和接线方法。

3. 培养动手实践能力和故障排除能力。

二、实验原理电动机点动自锁控制电路是一种常用的电动机控制方式,它通过控制电路实现对电动机的点动和自锁控制。

点动控制是指按下按钮后电动机只运行一段时间,自动停止;自锁控制是指按下按钮后电动机持续运行,直到再次按下停止按钮。

电路主要由以下元件组成:1. 电源:提供电动机所需的电压和电流。

2. 接触器:控制电动机的通断。

3. 按钮:实现点动和自锁控制。

4. 电阻:保护电路元件,防止电流过大。

5. 熔断器:保护电路,防止短路。

三、实验器材1. 电源:三相交流电源380V、220V2. 电动机:三相异步电动机1台3. 接触器:交流接触器1个4. 按钮:常开按钮1个,常闭按钮1个5. 电阻:1Ω电阻1个6. 熔断器:1A熔断器1个7. 电工工具:电工刀、螺丝刀、剥线钳等8. 导线:若干四、实验步骤1. 电路连接:- 将三相电源接入电动机。

- 将接触器的主触点接入电动机。

- 将按钮的常开点接入接触器的线圈。

- 将按钮的常闭点接入接触器的线圈。

- 将电阻接入电路,保护接触器线圈。

- 将熔断器接入电路,保护电路。

2. 电路检查:- 检查电路连接是否正确,确保没有短路或接触不良的情况。

- 使用万用表检测电路的通断,确认电路工作正常。

3. 点动控制:- 按下常开按钮,接触器线圈得电,电动机启动。

- 松开按钮,接触器线圈失电,电动机停止。

4. 自锁控制:- 在常开按钮前增加一个常闭按钮。

- 按下常开按钮,接触器线圈得电,电动机启动。

- 松开按钮,接触器线圈仍然得电,电动机继续运行。

- 按下常闭按钮,接触器线圈失电,电动机停止。

五、实验结果与分析通过本次实验,我们成功实现了电动机的点动和自锁控制。

实验过程中,我们掌握了以下要点:1. 电路连接正确,电路工作正常。

2. 点动控制实现电动机的短暂运行。

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2X作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。

实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1)按控制屏启动按钮,接通三相交流电源。

(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(3)按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(4)按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5)电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6)失压与欠压保护按起动按钮SB1 (或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。

按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告

三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2工作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。

实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1) 按控制屏启动按钮,接通三相交流电源。

(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。

按停止按钮SB3,使电动机停转。

(4) 按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6) 失压与欠压保护按起动按钮SB1(或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。

实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。

按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。

电器原理实验一——三相异步电机的点动、自锁与正反转控制

电器原理实验一——三相异步电机的点动、自锁与正反转控制

课程名称:电器原理指导老师:_ 孙丹_______成绩:__________________ 实验名称:三相异步电机的点动、自锁与正反转控制实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识;2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。

3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处;5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。

6.学会分析、排除继电--接触控制线路故障的方法.二、实验内容和原理1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环;(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类;(3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧;(4) 接线端子,反作用弹簧等。

2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。

要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。

使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。

为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。

三相电动机点动控制和自锁控制

三相电动机点动控制和自锁控制

三相电动机点动控制和自锁控制一、说明1.点动控制启动:按下启动按钮SB1,x0动触头闭合,Y3线圈通电,即接触器km4线圈通电。

0.1s后,Y0线圈通电,即接触器KM1线圈通电,电机通过星形连接启动。

按一次SB1,电机将运行一次。

2.自锁控制启动:按启动按钮sb2,x1的动合触点闭合,y3线圈得电,即接触器km4的线圈得电,0.1s后y0线圈得电,即接触器km1的线圈得电,电动机作星形连接启动。

只有按下停止按钮sb3时电机才停止运转。

二、实验面板图三、要求1、在操作箱设计输入输出接线2、编制梯形图程序。

3.打开主机并将程序下载到主机。

4.启动并运行程序,观察实验现象。

5.以书面形式编写PLC接线图,并提交书面梯形图。

试题二三相鼠笼式异步电动机联锁正反转控制一、实验描述启动:按启动按钮sb1,x0的动合触点闭合,y3线圈得电,m0的动合触点也闭合,延时0.1s后y0的线圈得电,电机作星形连接启动,此时电机正转;按启动按钮sb2,x1的动合触点闭合,y3线圈得电,m1的动合触点也闭合,延时0.1s后y0的线圈得电,电机作星形连接启动,此时电机反转。

当电机向前旋转时,反转按钮SB2不工作,只有在按下停止按钮Sb3时,电机才停止工作;当电机反转时,正向旋转按钮SB1不工作,只有在按下停止按钮Sb3时,电机才会停止工作。

2、实验面板图三、要求1.设计操作箱中的输入和输出接线2。

编写梯形图程序。

3、打开主机电源将程序下载到主机中。

4、启动并运行程序观察实验现象。

5、书面写出plc接线图,递交书面梯形图。

三相鼠笼式异步电动机延时正反向控制一、实验说明启动:按下启动按钮SB1,x0动触头闭合,Y3线圈通电,Y0线圈同时通电。

此时,电机向前旋转。

延时3S后,Y0线圈失电,Y1线圈通电。

此时,电机反转;按下启动按钮SB2,X1的动态触点闭合,Y3的线圈通电,同时Y1的线圈通电。

此时电机反转,延时4S,Y1线圈断电,Y0线圈通电,电机向前旋转;按下停止按钮Sb3以停止电机。

点动连续混合电路

点动连续混合电路

电路
控制电路
连动控制线路
点动控制线路
连动控制线路
点动、连续混合控制线路 点动、
复合按钮
点动、 点动、连动混合控制线路
点动:按住 点动:按住SB3→KM线圈得 线圈得 主触头闭合( 电→ KM主触头闭合(KM辅 主触头闭合 辅 助常开触点闭合, 助常开触点闭合, KM不能 不能 自锁, 自锁,因为 SB3 的常闭触点 已先断开) 电动机 电动机M转动 已先断开)→电动机 转动 →松开 松开SB3 →电动机 停止。 电动机M停止 松开 电动机 停止。 连动:按住 连动:按住SB2→KM线圈得 线圈得 主触头闭合+ 电→ KM主触头闭合 KM辅 主触头闭合 辅 常开触点闭合自锁→电动 助常开触点闭合自锁 电动 转动→松开 机M转动 松开 转动 松开SB1→电动 电动 继续转动。 机M继续转动。 继续转动 停止:按下 停止:按下SB1→ KM线圈 线圈 失电→ 主触头断开+ 失电 KM主触头断开 KM 主触头断开 辅助常开触点断开→电动机 辅助常开触点断开 电动机 M停止 松开 停止→松开 停止 松开SB1 →电动机 电动机 M停止。 停止。 停止

电动机点动和自锁控制电路

电动机点动和自锁控制电路

实验报告实验名称:电动机点动和自锁控制电路 学生姓名: 轻舞 学 号:XXXXXX 实验类型:口 验证 □综合口设计 口创新实验分组: 实验日期:实验成绩:1. 实训目的(1) 掌握点动和自锁运转控制的工作原理。

(2) 掌握点动和自锁运转控制的接线方法及工艺要求。

(3) 掌握点动和自锁运转控制线路的检查方法及通电运转过程。

(4) 掌握常用电工仪表、 低压电器的选择和使用方法。

2. 实验器材(1) 电工刀、尖嘴钳、钢丝钳、剥线钳、旋具各 1把。

(2) 四种颜色(BV 或BVV)、芯线截面为1.5mm2和2.5mm2的单股塑料绝缘铜线若干。

(3) 电动机控制实验台 1台。

(4) 三极自动开关1个、熔断器4个、交流接触器1个、三元件热继电器1个、按钮2 个。

(5) 功率为4kW 的三相异步电动机 DM01台3. 实验前的准备(1) 了解三相异步电动机运转控制电路的应用 ;(2) 熟练分析三相异步电动机点动和自锁运转控制电路的工作原理及动作过程; (3) 明确低压电器的功能、使用范围及接线工艺要求。

4. 实验内容1) 分析控制原理电动机点动和自锁运转控制电路是利用按钮、接触器来控制电动机朝单一方向运转的,其控 制简单、经济,维修方便,广泛用于大于 5.5kW 以上电动机间接启动的控制。

其控制线路如 图1、2所示。

专业班级:XXXXXXXXXXXXXXXXX(1)启动停止控制:合上电源断路器 QF,按下启动按钮SB1 f KM线圈得电T KM主触头闭合(辅助常开触头同时闭合)f电动机M启动并点动运行。

当松开SB1时,它虽然恢复到断开位置,在松开SB1时,电动机停止。

(2)接线时,先接主回路,它是从380V三相交流电源的输出端 U、V、W开始,经熔断器、交流接触器的主触头、热继电器到电动机上,用导线按顺序分清颜色串联起来。

主电路连接完整无误后,再连接控制电路。

它是从220V三相交流电源某输出端开始,经过熔断器、常开按钮 SB1接触器的线圈、热继电器的常闭触头到零线。

具有点动和自锁功能电路的结构和工作原理

具有点动和自锁功能电路的结构和工作原理

具有点动和自锁功能电路的结构和工作原理今天为大家分享几款同时具备点动和自锁功能的电路,希望对大家有一点帮助。

1,点动自锁控制电路(1),电路中各元件名称如下图电路中各原件的名称(2),电路的基本原理:按下自锁启动按钮SB1的瞬间,电流通过SB1接通交流接触器线圈,交流接触器线圈Km通电,交流接触器的主触点和辅助常开触点闭合,此时电流通过sb2的常闭触电和km的常开触点也可以接通km线圈,所以即使松开sb 1按钮,交流接触器KM 仍然会通电吸合,这是电路的第一个功能“自锁”。

按一下停止按钮SB 3,交流接触器km断电释放。

按下复合按钮SB 2,电流通过SB 2的常开触点接通线圈,Km的主触点和常开铺助触点闭合,由于复合按钮常开触点闭合时常闭触点断开,所以电流无法通过复合按钮的常闭触点和交流接触器的常开触点接通交流接触器的线圈,当松开复合按钮时,交流接触器会断电释放,这是电路的另一个功能“点动控制”2,点动和连续运行控制电路二点动自动控制电路原理图(1),主电路的结构:ABC 三相交流电,经过隔离开关QS,热熔断器FU,交流接触器主触点KM,热继电器FR,接电动机M。

(2),控制电路控制电路由点动按钮SB,停止按钮SB1,连续运行按钮SB 2,和交流接触器线圈,中间继电器线圈及辅助触点组成,完成对电动机点动和连续运行控制。

(3),电路的工作原理:按下连续运行按钮SB 2,中间继电器线圈得电,两个常开触点闭合,与SB 2并联的常开触点闭合后中间继电器自锁,与交流接触器线圈串联的常开触点闭合后,把交流接触器线圈接通,交流接触器主触点闭合,电动机连续运行。

电流接通线圈的示意图如下电流接通线圈示意图按下停止按钮SB1,中间继电器线圈ka断电,与交流接触器线圈圈串联的常开触点复位,交流接触器线圈KM断电,主触点断开,电动机停止运行,示意图如下停止运行示意图按下点动按钮SB,Km线圈通电,Km主触点闭合,电动机开始运行,松开SB,Km线圈断电,电动机停止运行。

点动自锁组合控制电路1

点动自锁组合控制电路1

点动自锁组合控制电路1简介点动自锁组合控制电路1是一种常用于电气控制领域中的电路设计方案。

其主要用途是实现对电机等电器设备的控制,既能够实现点动功能,也能够实现自锁与组合控制。

本文介绍了点动自锁组合控制电路1的构成、工作原理及其在实际工程中的应用。

构成点动自锁组合控制电路1主要由按钮、继电器、接触器、控制电路等组成。

按钮按钮是点动自锁组合控制电路1的重要组成部分,一般由两个按钮构成:前进和后退。

继电器继电器是点动自锁组合控制电路1中的重要逻辑元件,其作用是在按下按钮时进行状态切换。

继电器通常包含多个触点,其中开关量的触点用于启动/停止电器设备,另外还包含了一个AC/DC的控制电压输入端,用于控制继电器开关状态的转换。

接触器接触器是点动自锁组合控制电路1的另一个重要组成部分,其作用是通电,使电器设备运行。

控制电路控制电路是指连接按钮、继电器、接触器等元件的电路系统,它能够对电器设备实现点动、自锁、组合控制等功能。

该电路主要由电容、电阻器等元件构成。

工作原理点动自锁组合控制电路1的工作原理如下:1.按下前进按钮后,控制电路输出一个高电平信号,使继电器吸合,闭合继电器的触点,并通电给接触器,使电器设备开始运行。

2.当电器设备运行到需要停止时,按下停止按钮,继电器的触点弹开,电器设备停止运转。

3.按下后退按钮后,控制电路再次输出高电平信号,使继电器触点再次闭合,通电给接触器,但反向电流使电器设备发生反向运转。

应用点动自锁组合控制电路1广泛应用于电气控制领域。

其应用领域涵盖广泛,除了常见的电动机控制外,还可用于汽车电子、自动化生产、工控等方面。

例如,可以通过连接PLC、电机、制动器等组件来构建一个自动化生产线,实现电机设备的自动化控制。

点动自锁组合控制电路1是一种实现电器设备控制的重要技术方案,其结构简单、稳定可靠,被广泛地应用于工业、民生等多个领域。

在实际应用过程中,需要根据具体的需求进行相应的电路设计,充分发挥这种电路系统的应用优势,为广大用户带来更高效、更安全、更稳定的产品和服务。

点动和自锁控制线路

点动和自锁控制线路

2、检查无误后通电实验: (1) 合上Q1接通三相交流220V电源; (2) 按下起动按钮SB2,松手后观察电机M是否继 续运转;
(3) 运转半分钟后按下SB3,然后松开,电机M是 否停转;连续按下和松开SB3,观察此时属于什么 控制状态;
(4) 按下停止按钮SB1,松手后观察M是否停转。
2、线接好后按下列步骤进行实验: (1)按下控制屏上“启动”按钮; (2)先合上Q1,接通三相交流220V电源; (3)按下启动按钮SB1,对电动机M进行点动操作, 比较按下SB1和松开SB1时电动机M的运转情况。
三相异步电动机自锁控制线路:
1、三相异步电动机自锁控制线路: 按下控制屏上的“停止”按钮以切断三相交流电 源,按图接线。
2、检查无误后,启动电源进行实验: (1) 合上开关Q1,接通三相交流220V电源; (2) 按下起动按钮SB2,松手后观察电动机M运转 情况;
(3) 按下停止按钮SB1,松手后观察电动机M运转 情况。
三相异步电动机点动加自锁控制线路
1、三相异步电动机既可点动又可自锁控制线路: 按下控制屏上“停止”按钮切断三相交流电源后, 按图接线。
点动和自锁控制线路
三异步电动机点动控制线路:
1、接线时,先接主电路,它是从220V三相交流电 源的输出端U、V、W开始,经三刀开关Q1、熔断 器FU1、FU2、FU3、接触器KM1主触点到电动机 M的三个线端A、B、C的电路,用导线按顺序串联
起来,有三路。主电路经检查无误后,再接控制 电路,从熔断器FU4插孔W开始,经按钮SB1常开、 接触器KM1线圈到插孔V。

电动机点动与自锁控制电路的分析与安装

电动机点动与自锁控制电路的分析与安装

刀开关
(一)刀开关
刀开关是一种手动电器,在低压电路中用于不频繁地接通和分 断电路,或用于隔离电源,故又称 “ 隔离开关 ” 。
刀开关
刀开关
隔离开关HRT0系列-2(熔断式刀开关)
刀开关
刀开关的型号及符号
一定要记 牢呀!
刀开关
怎么选择刀 开关呢?
刀开关种类很多,有两极(额定电压250V)和三极( 额定电压380V)的刀开关,额定电流由10~100A不等。
通断能力 通断能力可分为最大接通电流和最大分断电流。
寿命及操
接触器的电气寿命是按规定使用类别的正常操作条件下, 不需修理或更换零件的负载操作次数。
作频率 额定操作频率(次/h)是指允许每小时接通的最多次数。
接触器
接触器的型号及符号
一定要记 牢呀!
接触器
怎么选择接触 器呢?
(1)接触器主触点的额定电压应大于或等于被控电路 的额定电压。
刀开关
知识目标
1
低压电器的种类
2 刀开关的结构
3
刀开关的型号及符号
4
刀开关的选用
刀开关
低压电器:交流 50Hz,额定电压1200V以下, 直流额定电压1500V以下
低压电器的分类
按工作方式分 按用途分 按种类分
•手控电器:如刀开关、按钮 •自控电器:如接触器、继电器 •低压控制电器:如刀开关 •低压保护电器:如熔断器 •低压断路器、接触器、继电器、 主令电器和自动开关等
(1)用于照明电路时可选用额定电压220V或250V,额定电流 等于或大于电路最大工作电流的两极开关。
(2)用于电动机的直接起动,可选用额定电压为380V或500V ,额定电流等于或大于电动机额定电流3倍的三极开关。

《电气控制与PLC综合应用技术》第3章

《电气控制与PLC综合应用技术》第3章

2.电动机自锁控制电路 .
3.电动机自锁控制程序 .
图3-38 电动机自锁控制程序
图3-37 电动机自锁控制电路
3.3 边沿脉冲指令与正反转控制程序
3.3.1 脉冲上升沿、下降沿指令EU、ED 脉冲上升沿、下降沿指令 、
表3-7 指令名称 脉冲上升沿指令 脉冲下降沿指令 梯 形 图 EU、ED指令 、 指令 指 令 表 EU ED 逻辑功能 在上升沿产生一个周期脉冲 在下降沿产生一个周期脉冲
图3-35 例题3.3程序
在图3-35中停止按钮釆用了常闭触点接法。在工业控制中,具有“停 中停止按钮釆用了常闭触点接法。在工业控制中,具有“ 在图 中停止按钮釆用了常闭触点接法 过载保护”等关系到安全保障功能的信号一般都应使用常闭触点, 止”和“过载保护”等关系到安全保障功能的信号一般都应使用常闭触点, 防止因不能及时发现断线故障而失去作用。 防止因不能及时发现断线故障而失去作用。
图3-11 已安装PC/PPI cable(通信电缆)
按钮, 按钮, (5)单击“Close”按钮,再单击“Ok”按钮,显示通信地址已设置好, )单击“ 按钮 再单击“ 按钮 显示通信地址已设置好, 如图3-12所示 如图 所示
图3-12 已设置好通信地址
3.1.4 编写、下载、运行和监控点动控制程序 编写、下载、 1.建立和保存项目 .
10.程序运行监控 .
图3-23 程序状态监控图
图3-22 “下载”对话框
3.1.5 仿真运行点动控制程序 1.导出文本文件 .
图3-24 导出文本文件
2.启动仿真程序 .
图3-25 启动仿真软件
3.选择CPU .选择
图3-26 选择CPU
4.CPU224仿真图形 . 仿真图形

PLC实验--电动机点动和自锁电路控制

PLC实验--电动机点动和自锁电路控制

1.实验目的
通过一个实验,实现以下内容的熟练操作和使用。

●电动机电动控制的方法
●自锁功能的作用及使用方法
●程序编译及调试
2.实验地点及设备
9B-301 西门子S7-1200PLC实验平台
3.实验内容及要求
(1)电动机点动控制
编写电机点动控制的启停程序,实现手动控制电机启动,松手电机停止的简单控制。

分配I/O,编写程序并调试。

(2)电动机自锁控制
编写电机自锁控制的程序,实现手动控制电机启动,松手后电机仍保持运行,按下停止按钮后电机停止。

分配I/O,编写程序并调试。

4.实验步骤
(1)首先,先根据要求在草稿纸上画出可以解决问题的电路图;
(2)根据电路图在TIA Portal v11 组态软件中画出电路图;
(3)在西门子S7-1200PLC实验平台上链接电路;
(4)下载并验证。

5.实验记录(分析)及讨论
(一)电路图
(由于没拍到程序图,用草稿上的电路图)
(二)分析
由程序段(1)知,当I0.0按动后,线圈Q0.0接通,LED常亮。

当松开I0.0,Q0.0不接通,LED熄灭。

由此实现点动功能。

由程序段(2)知,当I0.0按动后,线圈Q0.0接通,LED常亮,同时由于线圈Q0.0接通,常开开关Q0.0接通,使电路持续接通,实现了自锁。

当按下常闭开关I0.1,电路断开,即可使电机停止。

(三)结果
经过在实验台上连线验证,发现实验现象与分析相符合,即验证了我们的程序与分析是正确的。

点动、自锁控制线路 PPT

点动、自锁控制线路 PPT

问:热继电器为什么只能作过载保护,不能作短路保护? 因为热继电器的热惯性大,即热继电器的双金属片受热
膨胀弯曲需要一定的时间。当电动机发生短路时,由于短 路电流很大,热继电器还没来得及动作,供电线路和电源 设备可能就已经损坏。而在电动机启动时,由于启动时间 很短。热继电器还没来得及动作,电动机启动已经完毕。 满足电动机启动电流要求。所以,短路保护和过载保护不 能互相代替使用。
电动机在运行的过程中,如果长时间负载过大,或缺相运行, 都可能使电动机定子绕组的电流增大,超过其额定值。在这 种情况下,熔断器往往并不熔断,从而引起定子绕组过热, 使温度升高。若温度超过允许温度,就会造成绝缘损坏,缩 短电动机的使用寿命,严重时甚至会烧毁电动机的定子绕组。 因此必须对电动机采取过载保护。
交流
M
接触器
3~
KM
开关QS
熔断器FU 直 接 起 动 控 制 电 路
热继电器
FR
3~
停车按钮
SB2
起动按钮
SB1
松开 SB1
电机连
续运转
交流
M
接触器
3~
KM
开关QS
熔断器FU 直 接 起 动 控 制 电 路
热继电器
FR
3~
停车按钮
SB2
起动按钮
SB1
按SB2
电机
停转
交流
M
接触器
3~
KM
工作原理:
自锁:当启动按钮松开后,接触器通过自身的辅助 常开触头使其线圈保持得电的作用。
位置:与启动按钮并联
思考:
当按下图中的停止按 钮SB1,电动机失电 停转后,松开SB1使 其触头回复闭合,电 动机会不会自动重新 启动?为什么?

点动与连续混合控制线路

点动与连续混合控制线路

电动机继电控制线路安装与检修一体化课程教案编号:QE-75-14-01-02 C/0 序号:一体化课程电动机继电控制线路安装与检修学习任务皮带输送机控制线路安装点动与连续混合控制线路学时数12教学班级机电131116班教学时间 2014.10.20-10.24学习任务描述皮带传送是日常生活中常见的继电控制线路。

点动正转控制线路、接触器自锁控制线路,点动与接触器自锁混合线路,正反转控制线路都能运用到皮带传送中。

学习目标1、总结上两个学习活动,分析运行控制回路的特点。

2、结合数控机床,理解点动和连续控制回路的应用。

3、熟练的对该控制线路进行绘制,接线与调试。

学习内容1、对点动和连续控制回路进行总结归纳,分析运行特点。

2、认识数控机床,分析点动和连续在机床中的应用。

3、在点动和连续控制回路的基础上自己设计改造线路。

4、给出正确的控制线路连接,分析工作原理。

5、学生开始实训,照图配线。

学习重点难点学习重点:能结合数控机床的运行学习点动和连续运行控制线路。

学习难点:点动正转控制线路与连续正转控制线路怎样融合为连续与点动正转控制线路。

资源准备教案、多媒体、电拖实训室学习评价学生在学习数控机床的基础上能否联想到点动和连续控制线路的应用;能否叙述点动和连续制线路的工作原理;能否熟练的对控制线路进行绘制,配线与调试;教学反思教学组织流程学习活动及课时、上课时间学习环节及时间学习内容教师活动学生活动教学方法教学活动1:点动与连续混合控制线路(12课时)课前准备(5分钟)1、检点出勤情况;2、安全注意事项说明;3、查看劳保用品穿戴情况。

1、点名;2、强调安全注意事项;3、检查劳保用品穿戴情况。

1、注意安全注意事项;2、自查劳保用品穿戴情况。

总结点动与连续控制回路的特点(10分钟)1、教师引导学生回顾点动和连续控制线路学习活动。

提问:这两个学习活动中的联系?2、教师讲解点动和连续控制线路的特点。

1、学生能完整叙述点动和连续控制线路的工作原理。

点动自锁+交流接触器接线图

点动自锁+交流接触器接线图

点动自锁电路?电动机可逆运行控制电路的调试1、检查主回路路的接线是否正确,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

2、检查接线无误后,通电试验,通电试验时为防止意外,应先将电动机的接线断开。

故障现象预处理;1、不启动;原因之一,检查控制保险FU是否断路,热继电器FR接点是否用错或接触不良,SB1按钮的常闭接点是否不良。

原因之二按纽互锁的接线有误。

2、起动时接触器“叭哒”就不吸了;这是因为接触器的常闭接点互锁接线有错,将互锁接点接成了自己锁自己了,起动时常闭接点是通的接触器线圈的电吸合,接触器吸合后常闭接点又断开,接触器线圈又断电释放,释放常闭接点又接通接触器又吸合,接点又断开,所以会出现“叭哒”接触器不吸合的现象。

3、不能够自锁一抬手接触器就断开,这是因为自锁接点接线有误。

[music]411371|3|有没有人告诉你|11446|陈楚生[/music]电动机可逆运行控制电路为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制电路。

线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。

二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。

三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。

当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。

三相异步电动机点动和自锁控制实验三

三相异步电动机点动和自锁控制实验三

三相异步电动机点动和自锁控制实验三
实验目的:通过点动和自锁控制实验,了解三相异步电动机的工作原理和控制方法。

实验器材:
1. 三相异步电动机
2. 交流电源(三相)
3. 开关按钮
4. 控制开关装置
实验步骤:
1. 将三相异步电动机连接到交流电源上,确保电源接线正确。

同时将控制开关装置连接到电动机控制回路上。

2. 打开交流电源,调节其输出电压和频率,使其与电动机额定值相符。

3. 在控制开关装置上操作点动按钮,电动机应该只运行一段时间,然后自动停止。

4. 断开点动按钮,再次操作点动按钮,电动机应继续运行,直到按下停止按钮为止。

5. 切换到自锁按钮,按下该按钮后,电动机应该持续运行,直到按下停止按钮为止。

实验原理:
1. 点动控制:点动按钮起到一个开关的作用,按下按钮会让电动机运行一段时间,然后自动停止。

这是因为控制开关装置在启动时会提供一个持续的启动信号,然后在一段时间后停止该信号。

2. 自锁控制:自锁按钮起到一个锁定开关的作用,按下按钮后,电动机会持续运行,直到按下停止按钮为止。

这是因为控制开关装置会保持一个持续的运行信号,直到按下停止按钮才停止。

实验注意事项:
1. 在操作时,确保电动机和电源的额定电压和频率相符,以免对设备产生损坏。

2. 确保实验操作正确,不要随意操作,以免造成安全隐患。

3. 实验结束后,及时关闭电源,以免长时间运行产生不必要的能耗或损害设备。

4. 在进行实验时,应注意安全防护,避免触电或其他事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档