高强度硅橡胶生胶的合成与表征.
混炼硅橡胶用的生胶
混炼硅橡胶用的生胶混炼硅橡胶是制造各种橡胶制品的重要工艺过程之一。
而生胶是混炼硅橡胶的关键原料之一,它起到着增强硅橡胶的强度、耐磨性和耐候性的作用。
本文将探讨混炼硅橡胶用的生胶的特性及应用。
一、生胶的种类生胶是指天然橡胶通过采集、加工而成的胶体物质。
根据不同的加工方法和来源,生胶可以分为以下几类:1. 树胶:树胶是指从橡胶树干中采集得到的天然胶液。
它是一种乳白色胶体,含有丰富的橡胶颗粒。
树胶具有很好的弹性和延展性,适用于制造高强度橡胶制品。
2. 乳胶:乳胶是指通过乳化法将橡胶颗粒分散于水中形成的胶体。
乳胶具有良好的自粘性和黏附性,广泛应用于涂层、胶粘剂和医疗制品等领域。
3. 干胶:干胶是指将树胶或乳胶经过加热、干燥等工艺处理后得到的固态橡胶。
干胶具有良好的储存稳定性和易加工性,是橡胶制品生产中常用的生胶形式。
二、生胶的特性混炼硅橡胶用的生胶具有以下几个重要特性:1. 高弹性:生胶中含有丰富的橡胶颗粒,这使得混炼硅橡胶具有良好的弹性。
在应力作用下,橡胶能够迅速恢复原状,从而增强橡胶制品的拉伸和回弹性能。
2. 耐磨性:生胶中的橡胶颗粒形状规则且具有较高硬度,这赋予了混炼硅橡胶出色的耐磨性能。
硅橡胶制品在使用中不易磨损,能够长时间保持良好的外观和功能。
3. 耐候性:生胶中的橡胶颗粒含有丰富的天然橡胶成分,这赋予了混炼硅橡胶优异的耐候性。
它能够在恶劣的环境条件下长时间保持其物理和化学性能,不易老化和变质。
三、生胶的应用混炼硅橡胶用的生胶广泛应用于各个领域的橡胶制品中。
下面列举几个常见的应用:1. 轮胎:生胶是制造轮胎的重要原材料之一。
混炼硅橡胶用的生胶能够增加轮胎的抓地力和耐磨性,提高行驶安全性和寿命。
2. 密封件:生胶中的橡胶颗粒具有良好的黏附性,适用于制造密封件。
混炼硅橡胶制成的密封件能够有效防止水、气体和粉尘的渗透,保护设备和构件的正常运行。
3. 橡胶管:生胶中的橡胶颗粒具有良好的延展性,适用于制造橡胶管。
硅橡胶原位增强方法、机理及性能表征
硅橡胶原位增强方法、机理及性能表征硅橡胶原位增强方法,机理及性能表征/6川等?47?硅橡胶原位增强方法,机理及性能表征伍川,蒋剑雄,邱化玉,来国桥(杭州师范学院有机硅化学及材料技术教育部重点实验室,杭州310012)摘要基于溶胶一凝胶原理的有机硅橡胶原位增强新方法有效地解决了填料在聚合物基体中的分散和团聚问题,可得到具有更好机械性能和耐热性能的有机硅材料.根据填料性质的不同,详细介绍了各种原位增强方法,增强机理及表征手段,比较了25℃时未增强及不同浓度填料原位增强聚合物材料的应力一应变等温线,并简要描述了原住增强工艺的前景.关键词硅橡胶原位增强机理表征中图分类号:TQ333.4文献标识码:AIn-situReinforcementMethods,MechanismsandPropertiesTestofSiliconeRubber WUChuan,JIANGJianxiong,QIUHuayu,LAIGuoqiao (KeyLaboratoryofOrganosiliconChemistryandMaterialTechnologyofMinistryofEducat ion,HangzhouTeachersCollege.Hangzhou310012) AbstractAsanoveltechnology,thein-situreinforcementofsiliconepolymerviasol-gelproc essiseffective inpromotingthedispersionofvariousfillersinpolymermatrixandavoidingtheagglomeratio noffillers.Theobtainedin-situreincorcedsiliconerubberexhibitesevenmoreexcellentmechanicalandheat-resista ntpropertiesthanthosetra- ditionalreinforcedsiliconerubberwhichispreparedbyblendingfumedsilicaorprecipiatedsi licamanufacturedinprevi—OUSperiodintothepolyermatrix.Foreachkindoffillers,variousin-situreinforcementmeth ods,mechanismsandthetestmethodsareintroducedindetail.Thestress-strainisothermsinelongationat25℃forunfilledandin-siturein—forcedPDMSnetworksarecomparedandtheprospectiveofthein-situreinforcementtechnol ogyisalsobrifelydis—cussedKeywordssiliconerubber,in-situreinforcement,mechanism,propertiestest0前言硅橡胶是s()_si为主链的线性聚硅氧烷,由于s0键的键能(443.51d/mo1)大于C-C键的键能(355kJ/mo1),因而与普通的橡胶材料相比,硅橡胶具有非常好的热稳定性,低粘温系数,高渗透性,低表面张力,良好的介电性能,耐候性,耐释放及润滑性能,同时还具有良好的生物兼容性及光透过性等.在各种硅橡胶中,以聚二甲基硅氧烷(PDMs)为骨架的甲基硅橡胶最为重要且使用范围最为广泛.硅橡胶分子呈螺旋状构型,分子间内聚能密度低,导致硅橡胶生胶的机械强度极差,硫化后拉伸强度只有0.3~0.5MPa,无实用价值.通过添加补强填料,增量填料并促进填料在生胶中的分散,可使硅橡胶的拉伸强度达到14MPa以上.然而采用机械混合方法分散填料不仅耗时,耗能,而且难以确保填料颗粒的均匀分散,颗粒容易发生团聚,通常得到的是一个非均相的体系,影响了硅橡胶的机械性能和耐热性能.除了将先前制成的填料以机械混合方式对聚合物基体进行增强外,还可以利用烷氧基硅烷化合物水解缩聚反应的特性,在溶胶一凝胶过程中原位生成具有增强作用的填料颗粒.由于烷氧基硅烷化合物溶液可与聚合物基体形成均相溶液,烷氧基硅烷催化水解缩聚产生的原位增强填料可均匀地分散在聚合物网络中,从而避免了填料颗粒的团聚甚至是分级现象.此外,原位生成颗粒的粒度及其分布还可通过反应条件进行调节,得到粒度小(15~25nm),均匀分散且不聚结的填料颗粒,从而对聚合物基体发挥出最佳补强效果[2].按溶胶一凝胶过程中生成的颗粒种类,对Si02,Z及Ti02等无机原位增强PDMS,聚二苯基硅氧烷(PDPS)增强PDMS以及其它原位增强工艺进行介绍.1原位增强1.1无机增强1.1.1Sio2原位增强si02是硅橡胶中使用最为广泛的一种增强填料,在原位增强工艺中,它可以在正硅酸乙酯(TEOS)的溶胶一凝胶过程中通过以下的水解缩聚反应制备得到:Si(oc2H5)4十2H20一si0+4C2H50H(1)为加快反应速率,通常需要加入酸性或碱性催化剂,但不同种类的催化剂的催化机理不同,由此得到的Si02形态显着不同.酸催化过程中,缩聚产物容易连接在聚合物基体的两端,形成直链状的聚合物;碱催化时,缩聚反应极易在中间链节处进伍川:男,1970年生,副教授,博士,研究方向为有机硅材料Tel:0571—28867861E-mail:****************.cn48?材料导报2007年6月第21卷第6期行,形成紧凑且高度支化的颗粒.Mark等]首先使用两步法在PDMS网络中原位生成Si02,将羟基或乙氧基封端的PDMS通过常规的端基交联方式形成弹性体基体后,以TEOS溶胀弹性体,使TEOS吸附到弹性体基体中,再把吸附有TEOS的弹性体基体浸入冰醋酸中水解,从而在PDMS网络中原位生成Si02颗粒.为将醋酸根等活性基团转移到PDMS中,Mark等]发现使用四正丁基溴化磷等相转移催化剂可加速TEOS在PDMS网络中的原位沉淀. 但由于硅橡胶在高温下长时间与乙酸接触,容易引起PDMS链节的降聚,硅橡胶的机械性能并未有显着改善_5].为消除冰醋酸的危害,Jiang等l_6]采用相对湿度恒定条件下对TEOS进行水解的工艺,也得到了si02原位增强PDMS弹性体网络且其机械性能明显提高.此外,Ning等]也采用两步法的工艺,先将乙烯基封端的PDMS进行四官能度端基交联,然后用不同浓度的TEOS,乙基三乙氧基硅烷,二乙基二乙氧基硅烷或其混合溶液进行溶胀,再用三官能硅烷形成树脂状增强相.Sur等跚报道了羟基封端的PDMS经端基交联后,以TEOS,TMOS,四丙氧基硅烷或者四丁氧基硅烷进行溶胀,然后将样品浸渍到胺催化剂水溶液中硫化,得到碱催化的SiO原位增强的硅橡胶网络.两步法实现了Si02的原位增强,但工艺步骤多,工序繁杂且周期长.在此基础上,Mark等又提出了同时交联,同时原位沉淀的方法(一步法),将羟基封端的PDMS,TEOS与二丁基二月桂酸锡或乙基己酸亚锡等锡催化剂按不同的TEOS/ PDMS比例混合并在空气中交联.Tang等..将羟基封端的长链和短链PDMS构成的双峰分布的聚合物基体与2一乙基己酸亚锡,各种用量的TEOS混合后,在空气湿度中同时进行交联和填充,得到siO2原位增强双峰分布的PDMS弹性体,双峰分布网络的强度和硬度随交联硫化过程中TEOS量的增加出现最大值,使硅橡胶网络的机械性能得到改善,短链的PDMS对提高模量有利,长链的PDMS增加了硅橡胶的延伸性.Mark等_1将羟基封端的PDMS与2一乙基己酸亚锡,乙烯基三乙氧基硅烷,甲基三乙氧基硅烷或苯基三乙氧基硅烷按不同的烷氧基硅烷/PDMS比例混合,使样品在空气中交联,通过一步法工艺实现PDMS的原位增强.硅橡胶的性能除了与填料的种类,填料比表面积,填料表面羟基的数量以及填料在聚合物基体中的分散状态有关外,还与聚合物基体的性质有关.硫化过程中,填料表面的羟基与硅橡胶基体的端羟基缩合,在填料与聚合物基体之间形成稳定的si—O-Si键,将PDMS转化为高度交联的网状结构,从而使硅橡胶的机械性能和热性能得到显着提高.但硫化过程中,并非所有线性的PDMS都能交联成网状结构,Ning等口.研究了未交联的直链PDMS对聚合物机械性能的影响,将数均分子量为13000g/mol的四官能端基交联的PDMS用TEOS溶胀后,用2.0wt%的乙胺溶液催化TEOS水解,在PDMS网络中原位生成SiOz增强填料,对部分样品进一步采用THF-Eg醇溶液进行溶胀一萃取处理,发现经溶胀一萃取工艺处理后,硅橡胶的模量和强度高于未经溶胀一萃取工艺处理的样品,这可能是溶胀一萃取过程中,表面生成了更多的SiOH基团或部分吸附的小分子被除去,从而增加了颗粒一聚合物之间结合位点的数量.Si02原位增强过程中,作为二氧化硅来源的TEOS,其相对于羟基封端PDMS的用量应严格控制.如果使用过量的TEOS 交联羟基封端的PDMS链节,则对聚合物网络结构产生两方面的影响.一方面,过量的TEOS水解可生成原位增强的SiO填料;另一方面,过量的TEOS会引起聚合物链节的扩张.对于分子量呈双峰分布且羟基封端的PDMS,过量的TEOS对低分子量聚合物链节的影响更为显着l_1.因此通过原位沉淀方式对分子量双峰分布的聚合物网络进行增强时,尽管过量的TEOS对于PDMS的性能具有改善的作用,但不能忽视TEOS对于PDMS链节的扩张作用.原位沉淀过程中,生成的Si02粒径及其分布受多种因素影响.Breiner等口.采用小角X光散射的方法研究了两步顺序法,碱催化合成的一系列的si02一PDMS复合材料的颗粒尺寸与聚合物链长(分子量),原位生成的siO2浓度及催化剂浓度之间的关系,发现SiOz的数量是TEOS溶胀比和催化剂浓度的函数,在较高催化剂浓度下,得到较大直径的颗粒;SiO的粒径也与PDMS主链长度或分子量有关,随PDMS主链长度或分子量减小,SiOz粒径也减小,表明聚合物主链长度或分子量对siO2粒径具有制约关系.1.1.2TiO2原位增强TiO2是继SiOz后的又一种重要的补强填料,某些钛酸酯化合物溶液也可在溶胶一凝胶过程中发生水解缩聚反应,从而可在聚合物基体中原位生成T颗粒.尽管SiO对PDMS具有极其显着的补强效果,但近期的研究发现,SiO2的存在削减了PDMS自身的高温稳定性能.例如,纯PDMS的非氧化热降解温度可以高达350℃,但对于siO2增强的硅橡胶,siO2表面的羟基会引发PDMS断链和降聚,降低了硅橡胶的使用温度. TiO2不会使PDMS链裂解,采用TiO2增强的硅橡胶,即使在纯三甲基硅基封端的PDMS降聚温度(350℃)下,材料的热稳定性仍然很好,因而TiO2在耐高温硅橡胶中发挥出重要作用. Wang等口将羟基封端,数均分子量为18000g/tool的PDMS与TEOS进行端基交联,将所得网络薄片用THF萃取3 天后,再将称重的样条置于正丙基钛酸盐[(C3HO)Ti-]溶液中,正丙基钛酸盐吸附到样品内并使样品溶胀,然后将溶胀的样条在室温下浸入HC1,NHOH或(C2Hs)zNH水溶液中水解12h,得到TiOz增强的甲基硅橡胶.该反应的机理非常复杂,其化学反应方程式如式(2)所示:(C3H7O)4Ti+2H2O——TiO2+4C3H7OH(2)经TiO2原位增强的PDMS网络的机械强度得到明显提高,与SiO2原位增强相比,在相同断裂伸长率m下,TiO原位增强PDMS网络的断裂能和断裂模量增加了2.5倍,显示出TiO2具有良好的增韧效果_1.TiOz不仅对PDMS网络具有增强效果,同时也对线性聚甲基苯基硅氧烷(PMPS)具有增强效果.Clarson等将重均分子量为186000g/mol的PMPS溶于甲苯,然后用1.88wt%的过氧化苯甲酰进行交联,对弹性体进行进一步处理除去可溶性杂质及甲醇退溶胀后,在过量的异丙氧基钛酸酯((CHa)zCHO)Ti)中浸渍不同时间,然后在2wt的乙胺溶液中水解,得到不同TiO2沉淀量的PMPS弹性体.为控制原位生成的TiO2的粒径,Murugesan等口]以2一乙基己氧基化钛为原料进行溶胶一凝胶反应,在PDMS网络中原位生成5wt%的TiO2颗粒.与正丙氧基化钛相比,2一乙基己氧基化钛具有很长硅橡胶原位增强方法,机理及性能表征/伍川等?49?的主链和一个乙基侧基,水解速度更慢,可降低Ti02颗粒的形成速度;另一方面,水解过程中生成的2一乙基己醇的分子尺寸大于正丙基钛酸盐水解产生的丙醇,其在PDMS网络中难以分散而包裹在原位生成的Ti02表面,导致颗粒弯曲,从而得到更小粒径的Ti02颗粒.与si02原位增强PMPS弹性体相同,该弹性体的模量也随Ti02量的增加而增加,但由于PMPS与Ti02填料之间作用力较弱,Ti02增强PMPS体系的应力一应变等温线并不像si02原位增强PMPS体系那样呈现出滞后效应,因而其应力一应变曲线不随伸长率增加而向上弯曲,如图1所示.由于PMPS弹性体是非等规,无定形的聚合物,不经历应力一应变产生的诱导结晶, 对于si02原位增强的PMPS聚合物在高伸长率下所具有的增强效果,Clarson等[】]认为这可能是由于聚合物主链上吸附了不止1个的填料颗粒,特别是通过二氧化硅颗粒表面羟基与聚合物主链产生了相互作用.对于硫化成型的PMPS聚合物,其玻璃化温度不随Si02和Ti02等增强填料的加入方式(机械混合或原位增强)及加入量而变化,即使通过反应条件控制原位生成的si02与Ti02具有相同粒径(20rim左右).但在PMPS网络中,si02与Ti02的分散性差别很大,si02可均匀分散,但Ti02分散较差,PMPS网络中随处可见富集Ti02和缺乏Ti02 的相,并可以见到大区域相分离的Ti02聚集体.因而原位生成的Ti02填料虽然提高了有机硅聚合物的高温性能,但对聚合物机械性能的改善不如原位生成的si02填料,若同时采用si02和Ti02两种填料对有机硅聚合物进行增强,利用Ti02提高聚合物的延展性和耐高温性能,利用si02改善聚合物的机械性能,则有可能获得具有高温高强的有机硅材料.图1未填充及不同浓度1原位增强羟基封端PDMS(^=186000g?mol)聚合物的应力一应变等温线(25℃)Fig.1Stress-strainisothermsat25℃forunfilledand1in-situfilledhydroxyl-terminatedPDMSnetworkswith=186000g?mol一'1.1.3ZrO2原位增强利用丁氧基化锆的溶胶一凝胶反应也可在PDMS网络中原位生成Zr02颗粒.Murugesan等[】]研究发现,填充到PDMS 中的ZrO2为带状,与PDMS之间相互结合紧密,而Ti02不具有带状的结构,因而zrO2的增强效果比Ti02强.小角x散射数据表明:颗粒粒度随水解反应的进行而增大,一直持续到1O ~12h,此后,颗粒粒度减小,这可归结于ZK:h能与反应副产物正丁醇形成牢固的配位化合物,从而使颗粒在周围弯曲,因此12h后的粒度降低,同样,颗粒也具有聚集的趋势.原位ZrO2和Ti增强的PDMS网络的机械性能尤其是硬度都得到很大提高,但ZrO2的效果最为显着,这与ZrOz填料所具有的带状结构直接相关.与球形的Ti02颗粒相比较,带状结构的zr02颗粒比表面更大,其与PDMS网络的结合更为紧密,从而具有更好的增强效果.1.2有机增强1.2.1原位聚合虽然利用原位生成的sjO2,ZrOz或02等无机填料可对有机硅聚合物进行增强,提高材料的高温热稳定性和机械性能, 但无机填料与有机聚合物分子结构差异较大,相容性较差.近年来,利用耐高温的苯基有机硅材料对PDMS进行增强逐渐引起人们关注.Wang等[】8]考察了聚二苯基硅氧烷(PDPS)对PDMS网络的增强效果,聚二苯基硅氧烷通过两种方式引入到PDMS网络中,一种是将已制成的PDPS与PDMS进行溶液混合,另一种是将二苯基硅二醇与PDMS基体进行溶液混合后,再在PDMS网络中原位聚合形成PDPS.上述两种方法中, PDM=S均与Tl06反应后进行端基交联.溶剂萃取实验表明,利用第一种方法引入的PDPS被完全除去,而通过原位聚合方式生成的PDPS只有10wt被移走,因而通过原位聚合,PDMS弹性体与PDPS填料之间的结合更为紧密.SEM研究发现,虽然原位聚合得到的颗粒粒径(O.5~4.0gra)大于溶液混合法(O.1~0.5/~m),但前者的粒度分布更均匀,且随PDPS重量百分数增加,颗粒数量密度增加,但粒径变化不大.应力一应变测试数据表明,原位聚合生成的PDPS对PDMs聚合物网络的模量具有最佳的改善效果,如图2所示.与si02增强材料相比,原位PDPS增强PDMs网络显着提高了有机硅材料的高温稳定性, 不像si02那样在高温下易引起PDMS链节的降解.图2未填充及不同浓度PDPS原位聚合增强羟基封端PDMS (^=18000g?mol)聚合物的应力一应变等温线(25℃)Fig.2Stress-strainisotherrasat25℃forunfilledandPDPSin-situ~inforcedhydroxyl-terminatedPDMSnetworkswith=18000g?mol一'1.2.2硅树脂增强为改善PDMS网络的耐溶胀性能和热稳定性,Burnside等[】9]将重均分子量为18000g/mol的PDMS和SouthernClay Products公司生产的S04682有机硅树脂进行超声波室温处理后,加入TEOS和2一乙基己酸亚锡,然后再用超声波进行分散处理,采用熔融处理工艺合成了PDlMSi02纳米复合材料.通过调节有机硅树脂与聚合物之间的相互作用,使原位生成的si02颗粒首先在聚合物基体中进行分层,然后再进行交联.为促进si02颗粒的分层,还向上述体系中加入一定数量的水,加入的水量相应于在表面上形成了单层覆盖.由此制得的纳米复合材料的耐溶胀性能得到提高,其热稳定性也有所改善.Burn-50材料导报2007年6月第21卷第6期side等[19]认为耐溶胀性能的增加可归因于增强材料与基体之间的强烈相互作用,以及通过分层并将si0z颗粒分散在聚合物基体中所获得的巨大表面积.1.3其它增强方法原位沉淀和原位交联过程中,生成的副产物C2Hs0H和未反应的TEOS都需要通过扩散控制过程从体系中移出,从而导致聚合物体积显着减小,产生收缩形变,限制其在某些领域中的应用.Ning等[2o]先将TEOS与乙烯基封端的PDMS进行混合,使TEOS在酸或者碱催化剂作用下水解生成si0z,得到均匀分布乙烯基封端的PDMS-SiOz悬浮溶液,然后在铂催化剂作用下,将Si(OSi(CH.)zH)与聚合物一填料悬浮溶液中乙烯基封端的PDMS进行硅氢加成,避免了交联过程中聚合物网络体积的收缩.Ning等L2o]还发现,通过原位沉淀方式引入的si0z填料,对于不同分子量的PDMS聚合物具有不同的效果,高分子量聚合物体系中引入填料后模量的增加程度比低分子量聚合物体系模量的增加更为显着.2原位增强机理研究Leezenberg等L2u将羟基封端的PDMS与三官能烷氧基硅烷的混合物进行端基交联,然后将1-(二甲氨基)一5一萘一磺酰氯(dansy1)引入到交联点,根据si0z原位沉淀前后dansyl稳定状态荧光发射波谱的变化,对交联点附近局部环境进行了研究,考察了影响si0z原位增强PDMs分子复合材料结构的各种因素,如催化剂类型,样品浸渍时间,沉淀剂种类以及不同溶剂中复合材料的溶胀等.如果亲水性si0z表面附近存在一层吸附的聚合物,荧光发射带就将发生一定范围内的移动;如果界面呈憎水性,则不存在dansyl发射带.si0z相的小角x光散射结果表明,碱性条件下得到离散si0z颗粒,酸催化条件下s与硅氧烷聚合物之间形成互穿网络结构.碱催化下增强效果更好,而聚合物与填料界面之间的化学作用对弹性体模量影响较小. dansyl稳定状态荧光发射波谱的研究结果证实,聚合物链节的动力学强烈依赖于si0z的表面活性,若si0z呈现亲水性, 其表面存在厚度为1~2nm的吸附层,即使在玻璃化温度以上,Si-O-Si链节的运动仍然局限在边界层内,而在此区域以外的Si-()_Si链节则是移动的.此外,边界层内还存在缓慢的吸附和脱附过程.对于憎水性的si0z表面则不存在聚合物边界层. Dewimille等[22J通过溶胀性和热性能(尤其是结晶过程)分析考察了碱催化原位生成的si0z与PDMS链之间的相互作用,利用HNMR对颗粒表面的吸附层进行了研究.碱催化下原位生成的si0z颗粒均在聚合物相中得到均匀分散,但采用不同催化剂时,生成的si0z具有不同的结构.使用乙二胺时,得到粒径约为25nm的球形si0z颗粒,其粒径大于以二月桂酸二丁基锡为催化剂时得到的si0z颗粒,这说明对于不同的催化剂,s具有不同类型的生长过程.Dewimille等还使用固态的器SiMASNMR波谱对相同含量的气相法si0z和原位生成的s中曲Si原子的化学环境进行了研究,发现原位生成的si0z表面的孤立硅醇基团(Q3)的数量比气相法si0z表面的Q3要多,但在不同类型催化剂作用下,原位生成的Si0z表面Q3相差很大,碱催化下si0z的Q3较少,表明在此条件下生成了具有更紧凑和致密结构的二氧化硅.Kumudinie等田]用TEM,TGA及抗撕能量测量方法对si0z原位增强的PDMS弹性体进行了表征.电镜显示原位生成的si0z粒径分布很窄,为15~25nm,分散良好且未发生聚结.TGA分析结果表明,这些增强的颗粒提高了网络的热性能,不仅热分解起始温度随填料数量的增加而升高,而且原位si0z增强的PDMS弹性体经800℃处理后,样品的残留分数也越高.抗撕实验结果表明,原位si0z增强的PDMS弹性体在高速撕裂时呈现出不稳定的撕裂(粘滑运动撕裂),撕裂途径从直线向前方向转变为曲线方向,遇到填料颗粒时停止,随后紧接着又形成了一种新的撕裂,然后上述撕裂过程不断重复,而未增强的PDMS弹性体呈现出稳定撕裂.与此同时,si0z原位增强PDMs弹性体的撕裂能明显大于未填充的PDMS弹性体,但Si0z的浓度应控制在适当范围,当Si0z含量从0增加至10wt时,撕裂强度显着增加,继续增加Si0z含量时,撕裂强度增幅减小.3机械性能表征交联固化的有机硅聚合物机械性能主要通过应力一应变测量数据进行表征,以揭示聚合物材料的应力,模量与伸长率之间的关系以及断裂能与断裂伸长率之间的关系.通常在室温下对测试样条进行拉伸,同时测量样条的应力一应变数据,直至样品断裂.应力一应变测量时的拉伸力为,,未发生形变的样条的横断面面积为A,则公称压力,为:f一f?A(模量定义为:Ef]一,(a--a)(4)式中:a=L/L,为测试样品的伸长率或相对长度,L为测试样品的瞬态长度,L为测试样品的初始长度.材料模量随伸长率变化的关系通常用Mooney-Rivlin半经验公式进行关联:[,]一2C1+2C2?口(5)式中2C,2C2是与a无关的常数.对于si0z原位增强的PDMS网络,其模量[,]随伸长率的增加逐渐减小,当伸长率增加到一定程度后,模量又逐渐增加,模量Efvs伸长率a曲线上出现拐点,表明填料具有良好的增强效果;而对于机械混合的,非原位生成的si0z增强的PDMS网络,模量[,]随伸长率增加单调下降[,如图3所示.图3未填充及不同浓度SiO2原位增强羟基封端PDMS【M=11300g?mol)聚合物的应力一应变等温线(25℃)隐3Stress-s~-eumisothermsat25℃forunfilledandSi0in-silurdledhydroxyl-terminatedPDMSnetworkswithM_=11300g?molTi0z和zr02原位增强PDMS,PDPS或PMPS弹性体的硅橡胶原位增强方法,机理及性能表征/伍川等?51?模量[,]随伸长率变化曲线仅仅呈现出单调下降趋势,而不会出现拐点",如图1所示;同样,由图2可见,PDPS原位聚合增强PDMS网络的模量If]也随伸长率呈现出单调变化的趋势,这可能是由于siO2表面羟基与硅氧烷聚合物骨架之间的相互作用不同于02,ZrO2或PDPS与PDMS聚合物骨架之间的相互作用L8J.4结语聚硅氧烷弹性体原位增强的方法有效地解决了气相法si02或非原位生成的沉淀法siO2在弹性体网络中的混合及分散难题,并对弹性体网络的机械性能具有较显着的改善.与si02相比较,Ti02原位增强及PDPS原位聚合增强PDMS网络的耐高温性能得到提高.虽然选择适宜水解速率的烷氧基硅烷,可水解的钛酸酯盐或锆盐并控制反应条件可原位生成增强填料,但原位沉淀过程中,一方面,烷氧基硅烷等可水解的化合物需传递到聚硅烷氧网络中进行水解缩聚反应,另一方面,网络中水解缩聚反应的副产物(如甲醇,乙醇等)也需及时传递到弹性体界面,并在后处理工艺中被脱除.这两个过程均为扩散控制过程,扩散速率不仅与烷氧基硅烷,醇类分子大小有关,也取决于聚合物基体的性质, 同时也与基体厚度有关,基体越薄,质量传递所需时间越短,原位沉淀所需时间也越短,醇类等低分子也容易脱除,得到性能优良的增强材料;基体越厚,则不利于上述两个扩散过程的进行, 一方面因可水解的盐类无法渗透到聚合物基体中,无法获得原位沉淀的填料,另一方面即使烷氧基硅烷等化合物扩散到聚合物基体中并有效地进行了水解缩聚反应,倘若反应产生的醇类不能及时脱除,最终也无法获得性能优良的聚合物材料,因此, 目前原位增强研究多以硅橡胶薄片作为样片,对于高分子量聚硅氧烷及较厚的聚合物基体,上述扩散控制的影响更为显着. 普通硅橡胶的原位增强工艺还有待进一步研究,但在国防,军工,航空航天等尖端领域,为了制备满足超薄高强等特殊性能的硅橡胶材料,原位增强工艺的研究逐渐引起关注.参考文献1YuanQWendy,MarkJamesEReinforcementofpoly (dimethylsiloxane)networksbyblendedandinsitugenera—tedsilicafillershavingvarioussizes,sizedistributions,and modifiedsurfacesFJ].MacromohecularChemPhys,1999,200(1):2062SohoniGB,MarkJEThermalstabilityofinsitufilledsi- loxaneelastomers[J].JApplPolymSCI,1992,45(10):17633MarkJE,PanSJ.Reinforcementofpolyaiimethylsiloxane networksbyin-situprecipitationofsilica:Anewmethod forpreparationoffilledelastomers[J].MakromolChemRapidCommun,1982,3:6814MarkJE,PanSJ.Reinforcementofpoly(dimethylsilox-ane)networksbyin-situprecipitationofsilica:anewmeth—odforpreparingfilledelastomers[J].PolymPreprints(A- merieanChemicalSociety,DivisionofPolymerChemistry), 1982,23(2):1915姜承永.硅橡胶就地填充补强的新方法[J].合成橡胶工业, 1991,14(2):1406JiangCY,MarkJETheeffectofrelativehumidityonthe hvdtrolytieprecipitationofsilicaintoaJ1elastomericnetwock EJ].CollPolymSci,1984,262:7587NingYP,RIGBIZ,MarkJEHydrolysisofseveralJethyl—ethoxysilanestoyielddeformablefillerparticles[J].Polym Bull,1985,13:1538SurGS.MarkJEComparisonsamongdometetra-alko:x- ysilanesinthehyarolytieprecipitationofsilicajntoelasto- mericnetworks[J].MakromolChem,1986,187:28619MaLrkJE,JiangCY,TangMY.Simultaneouseuringand fillingofelastomers[J1.Macromolecules,1984,17:261310TangMY.MarkJEElastomericpropertiesofbimoda]【networkspreparedbyasimultaneouscuring-fillingtechnique [J].PolymEngSci,1985,25(1):2911MarkJE,SurG&Reinforcingeffectsfromsilica-typefill—erscontaininghydrocarbongroups[J].PolymBull,1985,14:32512NingYP.MarkJETreatmentoffiller-reinforcedsilicone elastomerstomaximizeincreasesiLnultimatestrength[J]. PolymBuLll(Berlin,Germany),1984,12(5):40713BreinerJM,MarkJE,BeaueageG.Dependenceofsilica particlesizesonnetworkchainlengths,silicacontents,and。
流动性高强度加成型液体硅橡胶的制备与研究
流动性高强度加成型液体硅橡胶的制备与研究【摘要】本文主要介绍了流动性高强度加成型液体硅橡胶(LHPC)的制备,以及它的研究进展。
首先,介绍了流动性高强度加成型液体硅橡胶的结构和物理化学性质,然后详细阐述了高强度加成型液体硅橡胶的制备工艺:采用水热法或热压法,硅橡胶与硅助剂混合,经过煮沸溶解,再加入助剂,最后进行热液化处理,形成流动性高强度加成型液体硅橡胶。
此外,介绍了LHPC的应用,如用于防水,绝缘,消音和节能等领域。
最后,介绍了对LHPC的未来研究方向,包括改善制备工艺,提高性能和扩大应用范围等。
【Introduction】流动性高强度加成型液体硅橡胶(LHPC)是用热加压的方法从硅橡胶中提取的一种新型硅橡胶。
它由硅橡胶、硅助剂、助剂和水组成,具有可流动性、耐腐蚀性、高拉伸强度、热稳定性、低密度等特点,可以作为一种功能材料广泛应用于建筑、电子、航空、通讯、汽车及仪表等领域。
目前,LHPC在研究和应用中取得了较大的进展,但由于缺乏有效的制备工艺,性能和应用范围还有待提高。
【Preparation of LHPC】尽管LHPC的制备工艺复杂,但以技术的发展,人们已经发展出许多制备LHPC的工艺。
主要有水热法和热压法两种。
1.热法:采用水热法,将硅橡胶粉末通过水热溶解的方法,添加助剂并用高温搅拌均匀,形成高强度加成型液体硅橡胶溶液。
此外,还可以加入硅助剂以改善液体硅橡胶的流动性和拉伸强度。
2.压法:热压法常用于制备具有高硬度的流动性高强度加成型液体硅橡胶。
它是将硅橡胶、硅助剂和助剂混合后,经过热压处理形成的。
根据体系的不同,如采用不同的助剂,可以调节流动性高强度加成型液体硅橡胶的流动性和硬度。
【Application of LHPC】流动性高强度加成型液体硅橡胶具有良好的流动性、耐腐蚀性、高拉伸强度、热稳定性、低密度,因此,它可以用于许多领域,如建筑、电子、航空、通讯、汽车及仪表等。
1.水:LHPC具有耐水、耐腐蚀、防潮、高流动性和耐高温的特点,可以用于建筑和地下室的防水外层。
《硅橡胶混炼胶高抗撕、高强度》
硅橡胶混炼胶高抗撕、高强度》国家标准征求意见稿编制说明合盛硅业股份有限公司二〇一五年八月二十五日《硅橡胶混炼胶高抗撕、高强度》国家标准征求意见稿编制说明1工作简况1.1项目背景和立项意义硅橡胶是特种合成橡胶中的重要品种之一,是一种分子主链为Si-O-Si 的无机结构,侧链为有机取代基(主要是甲基) ,兼具无机和有机性能的高分子材料.与一般的有机橡胶相比,具有非常优良的耐热性、耐寒性和耐候性以及电气特性,在航天、航空、汽车、电子电器工业等领域都有广泛的应用。
硅橡胶混炼胶是以线性高聚合度聚有机硅氧烷生胶,添加填料、各种助剂加工而成。
聚有机硅氧烷以Si-O-Si 键为主链,Si 原子上连有甲基和少量乙烯基,分子柔性大,未加补强剂时,分子间作用力弱,物理机械性能较差,尤其是撕裂强度只能达到5~10KN/m,拉伸强度仅有0.4MPa。
这样的缺点使得硅橡胶制品在需要高拉伸强度,高撕裂强度的应用领域使用受限。
从而制约了硅橡胶的广泛使用。
因此,为了能充分利用硅橡胶的上述特性和进一步扩大其在尖端技术领域的应用,高强度硅橡胶的开发成了一项重要的研究课题。
目前国内外专家学者提高硅橡胶拉伸强度和撕裂强度的途径基本都是从硅橡胶生胶、硅橡胶补强填料白炭黑、助剂硅油等三个方面来进行研究。
在研究硅橡胶生胶对硅橡胶拉伸强度和撕裂强度方面,何颖2等人研究得出生胶的分子量越大,硅橡胶的拉伸强度越大。
郭建华3等人研究了生胶的乙烯基含量对硅橡胶撕裂强度的影响。
研究结果显示(1) 高乙烯基含量和低乙烯基含量的硅橡胶并用,当并用胶的乙烯基摩尔分数低于0.15 %时,选用合适的并用比会明显提高并用胶的抗撕裂性能。
当乙烯基摩尔分数为0.15 %的硅橡胶和乙烯摹摩尔分数为0.06 %的硅橡胶按50/50 并用时,并用胶的乙烯基摩尔分数为0.105 %,此时撕裂强度最高,达到45.8 kN/m 。
当并用胶中乙烯基摩尔分数超过0.15 %时,硅橡胶并用比对硫化胶的撕裂性能影响不大。
高强度硅橡胶的制备
高强度硅橡胶的制备、加工与性能测试【实验目的】1、了解硅橡胶的原料及中间体的合成和分析表征手段2、了解硅橡胶的混炼加工工艺、硅橡胶的成形方法3、了解高强度硅橡胶的性能测试【实验原理】高强度硅橡胶系由普通甲基乙烯基硅橡胶生胶,配合补强填料、交联剂、催化剂等各种添加剂,并加入低分子量的多乙烯基硅油混合而成。
采用普通的有机橡胶的加工方法,在混练机上混炼成均相胶料——混炼胶,然后将混炼胶在高温下硫化即可使其从高粘滞塑性态转变成硫化胶弹性态,即得高强度硅橡胶。
普通的甲基硅橡胶或甲基乙烯基硅橡胶,在硫化时其交联点可认为是平均分配的,比较分散,因此抗撕裂力较差。
而高强度抗撕裂硅橡胶由于在普通的乙烯基硅橡胶中加入了低分子量的多乙烯基硅油(C胶),因多乙烯基硅油易被过氧化物所引发,使其在硫化时产生不均匀的“集中交联”或“一处多联”。
C胶所到之处即形成高度交联的“据点”,当撕裂时,一旦碰到据点上,则受到较大的阻力,难以撕破,从而大幅度提高了硅橡胶的抗撕裂强度。
在硅橡胶的配方中,常常有硅氮烷。
环硅氮烷是一种活性助剂,可以提高补强剂分散性,改进加工性能,并可提高硅橡胶的抗撕裂强度。
这是由于环硅氮烷易与白炭黑表面上的羟基反应而使二甲基硅基连到白炭黑表面,从而提高白炭黑的分散性。
未反应的硅氮键还可以与生胶末端的羟基反应,使硅橡胶与白炭黑连在一起,如:(SiO2)—OH+[MeSiNH]4+HO—生胶→(SiO2)—OSiMe2[NHSiMe2]2NHSiMe2O—生胶+NH3【仪器试剂】1、仪器:500mL三口瓶,1000mL四口瓶,250mL恒压滴液漏斗,100℃、200℃、300℃温度计,回流冷凝器,强力搅拌器,变压器,搅拌棒,水浴锅,1000mL分液漏斗,铁架台,100mL、500mL锥形瓶,50mL、250mL量筒,500mL烧杯,三角漏斗,控温加热套,减压装置,减压蒸馏装置,精馏装置,电吹风机,250mL U形试管,乌氏粘度计,恒温槽,洗耳球,秒表,分析天平,25mL容量瓶,橡胶混炼机,平板硫化机,材料性能测试机,烘箱。
高强度苯基硅橡胶的制备及性能研究
杭 州 师 范 大 学 学 报 (自 然 科 学 版 )
JournalofHangzhouNormalUniversity(NaturalSissn.1674232X.2019.06.002
Vol.18 No.6 Nov.2019
硫化后硅橡胶的拉伸强度、撕裂强度、伸长率分别按 GB/T528—2009、GB/T529—2008及GB/T531.1— 2008进 行 测 定;硫 化 后 硅 橡 胶 的 低 温 性 能 采 用 DSC 进 行 测 定;生 胶 的 相 对 分 子 质 量 及 挥 发 份 按 HG3312—2000标准测试,其中的犽 及α数值采 用 甲 基 苯 基 硅 橡 胶 对 应 的 数 值;相 对 分 子 质 量 分 散 系 数 采用凝胶渗透色谱(GPC)进行 测 试,GPC 曲 线 在 Waters160C 上 测 定,溶 剂 为 甲 苯,聚 硅 氧 烷 为 标 样,流 速 为 1.2 mL/min. 1.3 样 品 制 备 1.3.1 生 胶 制 备
570
杭 州 师 范 大 学 学 报 (自 然 科 学 版 )
2019 年
1.2 分 析 测 试 仪 器 核磁共 振 仪:400 MHzBrukerAVANCEII型,BrukerBioSpin 公 司;差 示 扫 描 量 热 (DSC)测 试 仪:
Q100型,美国 TA 公司;真 空 捏合 机:NHZ5 实验 型捏合 机,佛山市 金银 河机械 设备有限 公司;电 子 拉 力 机:GT7001HC6,高铁检测仪器(东 莞)有 限 公 司;平 板 硫 化 机:QLB50D/Q,上 海 双 翼 橡 塑 机 械 有 限 公 司;鼓风烘箱:DGG9140型,上海森信实验仪 器 有 限 公 司;邵 氏 硬 度 计:LXA,江 都 市 真 威 实 验 机 械 有 限 公司.
高强度硅橡胶生胶的合成与表征
高强度硅橡胶生胶的合成与表征冯圣玉【实验说明】从最基本的原料--氯硅烷制备高强度硅橡胶将涉及氯硅烷水解和低聚物制备,低聚物的真空裂解及环硅氧烷的制备,混合环硅氧烷高效精馏分离,甲基乙烯基硅橡胶生胶的合成,硅橡胶配方复合与胶料混炼、热处理、返炼,橡胶成形与硫化等。
甲基乙烯基硅橡胶生胶是制备高强度硅橡胶制品的基础聚合物。
通过该实验可以对甲基乙烯基硅橡胶生胶(聚硅氧烷)的合成和表征有一个全面、深入的认识。
【实验目的】1.了解、学会甲基乙烯基硅橡胶生胶的合成; 2.了解甲基乙烯基硅橡胶生胶的分析表征手段; 3.学习几种甲基乙烯基硅橡胶生胶的表征技术。
【实验原理】硅橡胶具有多种优异性能,其耐热性、耐寒性、耐臭氧性、耐候性、电绝缘性、生理惰性等,都是其他橡胶所不能比拟的。
因而在航空航天、电子电气、机械建筑、交通运输、医疗卫生、日常生活等方面均已得到了广泛的应用,已经成为国民经济中必不可少的新型高分子材料。
硅橡胶的种类很多。
高强度硅橡胶系由普通甲基乙烯基硅橡胶生胶,配合补强填料(白炭黑)、交联剂、催化剂等各种添加剂,并加入低分子量的多乙烯基硅油(C 胶)混合,采用普通有机橡胶的加工方法,在混炼机上混炼成均相胶料——混炼胶,然后将混炼胶在高温(一般在150~200℃)下硫化即可使其从高粘滞塑性态转变成硫化胶弹性体。
甲基乙烯基硅橡胶生胶是将八甲基环四硅氧烷(D 4)和四甲基四乙烯基环四硅氧烷(D 4Vi),在阴离子催化剂(如四甲基氢氧化铵硅醇盐)催化下开环聚合而得:D 4 + 90~110℃,甲基乙烯基硅橡胶生胶该反应为平衡反应,副产物为低分子物(环硅氧烷混合物)。
反应结束后,减压将低分子物除去,即得甲基乙烯基硅橡胶生胶。
【实验内容】一、甲基乙烯基硅橡胶生胶的制备 【仪器和试剂】1. 仪器:250mL 三口烧瓶,200℃、250℃温度计,N 2导管,真空泵,14口、19口温度计套管,加热套,直形冷凝管,真空接引管,100ml 单口瓶,减压蒸馏头,胶管,止水夹,铜丝。
硅橡胶的合成与性能研究
硅橡胶的合成与性能研究硅橡胶是一种高分子聚合物材料,具有优异的机械和化学性能。
它由二氧化硅(SiO2)和有机硅化合物(通常为二甲基二苯基硅烷)通过加成聚合反应合成而成。
在合成过程中,有机硅化合物通过与二氧化硅发生加成反应,形成硅链的骨架结构,随后通过交联反应形成硅橡胶。
硅橡胶具有许多显著的性能,其中包括高温稳定性、耐热性、耐候性、耐臭氧性和耐化学腐蚀性。
这些性能使其在广泛的应用领域中得到了应用。
首先,硅橡胶在高温环境中仍然具有良好的机械性能和弹性,因此被广泛应用于制造汽车和航空航天等高温环境下的密封件。
其次,硅橡胶具有优异的电绝缘性能,因此常用于电子产品的绝缘材料。
此外,硅橡胶还具有耐臭氧、耐候和耐化学腐蚀等性能,因此可以用于户外设备、食品加工、化工等领域。
除了以上的性能之外,硅橡胶还具有良好的可加工性和可回收性。
由于硅橡胶分子链结构的特殊性质,使其具有良好的可加工性,可以通过挤出、注射、压延等方法制造成各种形状的制品。
此外,硅橡胶的可回收性也非常好,可以通过物理或化学方法进行回收再利用,减少了资源和能源的浪费,有助于环境保护。
尽管硅橡胶具有诸多优点,但其也存在一些不足之处。
首先,硅橡胶的成本相对较高,制造过程中需要使用特殊的原料和工艺,因此造价较高。
此外,硅橡胶的抗撕裂性和耐磨损性相对较差,容易在长时间使用后出现裂纹和磨损现象。
为了改善硅橡胶的性能,许多研究都聚焦于改进其结构和配方。
例如,引入不同的有机硅化合物可以改变硅橡胶的力学性能和耐热性。
另外,掺入不同的填充剂(如二氧化钛、碳黑等)可以提高硅橡胶的强度和抗撕裂性。
此外,通过改变交联剂的类型和含量,可以调节硅橡胶的硬度和弹性。
除了结构和配方的优化外,也可以利用纳米技术、高温处理等方法来改善硅橡胶的性能。
总而言之,硅橡胶具有许多优秀的性能,但也存在一些待改进的领域。
通过对其结构和配方的研究与优化,可以进一步提高硅橡胶的性能,使其在更广泛的应用领域中发挥重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高强度硅橡胶生胶的合成与表征
冯圣玉
【实验说明】
从最基本的原料--氯硅烷制备高强度硅橡胶将涉及氯硅烷水解和低聚物制备,低聚物的真空裂解及环硅氧烷的制备,混合环硅氧烷高效精馏分离,甲基乙烯基硅橡胶生胶的合成,硅橡胶配方复合与胶料混炼、热处理、返炼,橡胶成形与硫化等。
甲基乙烯基硅橡胶生胶是制备高强度硅橡胶制品的基础聚合物。
通过该实验可以对甲基乙烯基硅橡胶生胶(聚硅氧烷)的合成和表征有一个全面、深入的认识。
【实验目的】
1.了解、学会甲基乙烯基硅橡胶生胶的合成; 2.了解甲基乙烯基硅橡胶生胶的分析表征手段; 3.学习几种甲基乙烯基硅橡胶生胶的表征技术。
【实验原理】
硅橡胶具有多种优异性能,其耐热性、耐寒性、耐臭氧性、耐候性、电绝缘性、生理惰性等,都是其他橡胶所不能比拟的。
因而在航空航天、电子电气、机械建筑、交通运输、医疗卫生、日常生活等方面均已得到了广泛的应用,已经成为国民经济中必不可少的新型高分子材料。
硅橡胶的种类很多。
高强度硅橡胶系由普通甲基乙烯基硅橡胶生胶,配合补强填料(白炭黑)、交联剂、催化剂等各种添加剂,并加入低分子量的多乙烯基硅油(C 胶)混合,采用普通有机橡胶的加工方法,在混炼机上混炼成均相胶料——混炼胶,然后将混炼胶在高温(一般在150~200℃)下硫化即可使其从高粘滞塑性态转变成硫化胶弹性体。
甲基乙烯基硅橡胶生胶是将八甲基环四硅氧烷(D 4)和四甲基四乙烯基环四硅氧烷(D 4Vi
),在阴离子催化剂(如四甲基氢氧化铵硅醇盐)催化下开环聚合而得:
D 4 + 90~110℃,
甲基乙烯基硅橡胶生胶
该反应为平衡反应,副产物为低分子物(环硅氧烷混合物)。
反应结束后,减压将低分子物除去,即得甲基乙烯基硅橡胶生胶。
【实验内容】
一、甲基乙烯基硅橡胶生胶的制备 【仪器和试剂】
1. 仪器:250mL 三口烧瓶,200℃、250℃温度计,N 2导管,真空泵,14口、19口温
度计套管,加热套,直形冷凝管,真空接引管,100ml 单口瓶,减压蒸馏头,胶管,止水夹,铜丝。
2. 试剂:八甲基环四硅氧烷,四甲基四乙烯基环四硅氧烷,四甲基氢氧化铵硅醇盐,
氮气。
【实验步骤】
分别称取60g D4和0.09g D4Vi投入装有温度计、N2导管和蒸馏装置的250mL三口烧瓶中,关闭N2入口,在真空度约6666.1Pa(50 mmHg)、40℃下脱水0.5h,小心回复常压。
然后加入0.6g 1%四甲基氢氧化铵硅醇盐。
小心地开启N2,在聚合体系中成不连续的气泡,由尾气管放空。
缓慢升温至70℃,聚合约0.5h,粘度显著增加;继续提高温度至100℃,反应2h (注意温度不要超过130℃),此时体系粘度很大,鼓泡比较困难。
提高温度至150℃,维持0.5h以分解破坏催化剂。
小心地逐渐开启真空装置减压至6666.1Pa(50 mmHg),再渐渐升温至180℃保持约0.5h脱去低沸物,至无液滴流出为止。
降温后停泵,回复到常压,结束反应。
称重,计算产率。
注:生胶分子量的大小对硅橡胶的物理力学性能有显著影响,一般分子量越大,其强度越高。
生胶分子量受下列几种因素影响:①D4的纯度;②催化剂用量,触媒本身是一个链终止剂,用量太大会影响分子量的增长。
一般用量为0.06-0.1%;③反应体系含水量,包括D4、触媒及设备吸附水气程度等因素。
在整个反应过程中尽量脱去体系中的水分是关键。
二、甲基乙烯基硅橡胶生胶红外光谱分析
【仪器和试剂】傅里叶变换红外光谱仪,压片机,红外灯,研钵;溴化钾粉末。
甲基乙烯基硅橡胶生胶红外光谱分析方法见附录A。
三、甲基乙烯基硅橡胶生胶乙烯基含量测定
【仪器和试剂】棕色滴定管,棕色容量瓶,振荡器,锥形瓶,量筒,分析天平;四氯化碳,溴化碘溶液,碘化钾溶液(质量分数10%),硫代硫酸钠标准溶液
(0.1mol/L),淀粉指示液(质量分数为0.5%),磷酸钾溶液(质量分数4%)。
甲基乙烯基硅橡胶生胶乙烯基含量测定方法见附录B。
四、甲基乙烯基硅橡胶生胶分子量的测定
【仪器和试剂】10ml容量瓶,乌氏黏度计,吸耳球,恒温仪;甲苯。
甲基乙烯基硅橡胶生胶分子量的测定方法见附录E。
思考题
1.合成生胶时为什么温度不要超过130℃?使用电热套加热时应注意什么?
2.用乌式黏度计法测定生胶分子量时应注意什么?
3. 进行甲基乙烯基硅橡胶生胶的红外光谱分析时应注意什么?
参考文献
1.冯圣玉张洁李美江朱庆增编著,有机硅高分子及其应用,化学工业出版社,2004。
2.中华人民共和国国家标准:GB/T28610-2012。
编写人:冯圣玉
附录A 甲基乙烯基硅橡胶生胶红外光谱分析
A1实验仪器与试剂
傅里叶变换红外光谱仪,KBr粉末,压片机,红外灯,研钵。
A2实验步骤
1. 打开电源,启动红外光谱仪和控制电脑,打开红外灯。
2. 在红外灯下研磨溴化钾晶体,尽量研细。
研磨过程中尽量不要对其呼气,以免带进水汽。
将研好的粉末取适量放进压片磨具里,用压片机压片。
压力约为10MPa,并在该压力下保持15s。
从磨具中取出压好的KBr片应是一个透明的薄片。
3. 启动OPUS软件,检查仪器信号。
信号正常,保存信号。
在测试选项中修改文件路径和文件名,然后将压好的KBr片放进红外光谱仪样品仓的样品架上。
扫描背景通道光谱。
4. 在KBr片上小心涂上一层甲基乙烯基硅橡胶生胶。
分子量较大的生胶不是很好涂,小心多涂几次,注意不要弄破KBr片。
只要KBr片上有薄薄一层即可,样品量过多会出现杂峰。
5. 将涂好的KBr片放进样品仓进行测试。
6. 测试得到的红外图谱的处理:
(1)若光谱图基线倾斜,可以在“谱图处理”选项卡中找到“基线校正”选项对谱图进行校正;
(2)若在红外谱图中2350cm-1处有明显的CO2吸收峰,可以在“谱图处理”选项卡中的“产生一段直线”选项,找到相应部分去掉CO2的峰;
(3)若红外谱图噪音明显,可以在“谱图处理”选项卡中找到“平滑”选项对谱图进行平滑处理;
(4)若红外光谱谱图信号太强,有明显的平头峰,可能是因为样品量太多,需要减少样品用量重新测量;同样,信号太弱则应该适当增加样品量进行测量。
最好的状态是谱图中的最大吸收峰吸光度在10-20%。
7. 保存数据和谱图,关闭仪器和电源,将用过的仪器和试剂放归原位。
进行谱图分析,找出峰位归属。
甲基乙烯基硅橡胶生胶的红外光谱图
附录B. 甲基乙烯基硅橡胶生胶乙烯基含量测定
CH 3
Si-Me
Si-O-S
Si-Me
附录E.甲基乙烯基硅橡胶生胶分子量的测定。