全等三角形的重难点
全等三角形、三角形全等的判定
教学课题 全等三角形、三角形全等的判定教学目标1.掌握全等三角形的概念、判定和性质,会用其性质和判定解决简单问题;2. 会运用全等三角形的性质和判定解决有关问题;教学重难点重点:全等三角形的概念和性质以及判定;难点:全等三角形性质和判定定理的灵活应用,强调书写格式;知识点一:全等三角形的认识与性质1.全等图形:能够完全重合的两个图形就是全等图形。
2.全等多边形:能够完全重合的多边形就是全等多边形。
相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角; 全等多边形的对应边、对应角分别相等;如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E 。
这里符号“≌”表示全等,读作“全等于”。
A'B'C'D'E'EDCBA3.全等三角形:能够完全重合的三角形就是全等三角形。
全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等; 全等三角形对应的中线、高线、角平分线及周长面积均相等;4.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形。
能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”;5.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。
6.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边常是对应边; (4)有公共角的,公共角常是对应角; (5)有对顶角的,对顶角常是对应角;(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角);要想正确地表示两个三角形全等,找出对应的元素是关键。
全等三角形知识归纳
【知识梳理】一、全等三角形教学的重点和难点:重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。
1、知识点回顾:(1)、内角和等于180(2)、三角形外角等于它不相邻的两个内角和(3)、等角的余角相等,等角的补角相等(4)、能够完全重合的两个三角形是全等三角形2、三角形全等条件:(1)、SSS:(2)、SAS:(3)、ASA:(4)、AAS:(5)、HL:3、不一定全等的条件:(1)、SSA: (2)、AAA:二、角平分线1、画法:2、性质:3、判定:热身题:1、如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:A、ΔABD和ΔCDB的面积相等B、ΔABD和ΔCDB的周长相等C、∠A+∠ABD =∠C+∠CBDD、AD//BC,且AD = BC第3题2.下列命题正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形是指面积相同的两个三角形C .两个周长相等的三角形是全等三角形D .全等三角形的周长、面积分别相等 3.如图,ΔABC ≌ΔADE ,∠B = 70º,∠C = 26º,∠DAC = 30º,则∠EAC = ( ) A .27º B .54º C .30º D .55º4.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.5.如图,△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°,∠BAD=40°,则∠BAC= °.期考题1、如图,AD A D '',分别是锐角三角形ABC 和锐角三角形A B C '''中,BC B C ''边上的高,且AB A B AD A D ''''==,.若使ABC A B C '''△≌△,请你补充条件___________.(填写一个你认为适当的条件即可) ABCD'A'B'D'C中考题2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( ) A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°例题3.已知:如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对例题4、如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上.例题5、用直尺和圆规作一个角等于已知角的示意图如图4,则要说明∠D ′O ′C ′=∠ DOC ,需要 证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是 (写出全等的简写)ABDC EO MNA OCB图2ADECB图3FG例题6、如图,长方形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC上,则∠ANB+∠MNC=____________;例题7、如图,AB=AD, AC=AE,∠BAE=∠DAC,求证:△ABC≌△ADE.(第15题)例题8、如图,BF⊥AC, CE⊥AB, BE=CF.求证: AD平分∠BAC.(第16题)例题9.如图,∠BDA=∠CEA, AE=AD.求证: AB=AC.(第9题)期考题10. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________。
12.1 全等三角形教案
12.1全等三角形一、教学目标1.了解全等形、全等三角形的概念,理解全等三角形中对应顶点、对应边、对应角的含义.2.经历实验、操作的过程,理解、掌握全等三角形的性质.二、教学重难点重点:全等三角形的概念与性质.难点:全等三角形中对应边、对应角的确定.教学过程一、情境引入在我们的周围,经常可以看到形状、大小完全相同的图形.通过多媒体展示下列实例:教材图12.1-1所示的例子中都有形状、大小完全相同的图形.【探究】把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?(1)你能找出生活实际中形状、大小完全相同的图形吗?说说你的理由.鼓励学生踊跃说出生活中的实例,并提问:大家举出的实例中,怎样能判别两个图形的形状、大小是完全相同的呢?学生通过同伴间的相互讨论、交流,在探索活动中逐渐体会:将两个图形重叠,看看它们是否能够完全重合,能完全重合的,它们的形状、大小就完全相同.在认识上形成两个图形完全重合的初步体验.(2)什么是“全等形”?在学生从“两个图形的形状、大小完全相同”到“两个图形完全重合”的知识建构的基础上,教师适时点题,提出“全等形”的概念.教师指出:能够完全重合的两个图形叫做全等形.追问:上述各实例中,哪些是全等形?动口说一说,为什么这些图形是全等形?你能再举些实际的例子,说明他们是全等形吗?教师期待学生能说出自己正确的生活体验或亲手制作的模型.教师适时地引导学生发散思维,回想和链接起生活中的全等形,并实现认识上从“两个图形的形状、大小完全相同”到“两个图形完全重合”再到“全等形”的飞跃.二、互动新授1.全等三角形将两个图形相互重叠,就可以发现它们是否完全重合,从而判别它们是不是全等形.那么,请同学们来说说看,什么是全等三角形呢?从“全等形”这个概念,导出“全等三角形”这个子概念,蕴含着思维上的逻辑推理,学生把“全等形”中的“图形”换成“三角形”,正好符合了“三段论式”的要求.这样导出“全等三角形”的概念就是水到渠成的事情.让学生说出什么是“全等三角形”,并进行讨论,让学生得到逻辑推理的初步体验.教师总结:能够完全重合的两个三角形叫做全等三角形.全等用符号“≌”表示,读作“全等于”.【思考】在教材图12.1-2(1)中,把△ABC沿直线BC平移,得到△DEF.在教材图12.1-2(2)中,把△ABC沿直线BC翻折180°,得到△DBC. 在教材图12.1-2(3)中,把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?(1)(2)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.例如教材图12.1-2(1)中的△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.指名个别同学说说图(2)(3)中的对应顶点,对应边和对应角.其他学生一起来评判是否正确.2.巩固应用【例题】如下图,用字母表示出各图中全等三角形的对应顶点、对应边和对应角.(1)(2)(3)【分析】根据“全等三角形中互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角”,利用三角形纸板模型找出两个三角形互相重合的过程、重合的边、重合的角,从而正确地找出全等三角形的对应边和对应角.【解】图(1)中,对应顶点:A与A,B与B,C与D;对应边:AB与AB,AC与AD,BC 与BD.对应角:∠BAC与∠BAD,∠C与∠D,∠CBA与∠DBA;图(2)中,对应顶点:A与A,B与C,D与E;对应边:AB与AC,AD与AE,BD与CE.对应角:∠A与∠A,∠B与∠C,∠ADB与∠AEC;图(3)中,对应顶点:A与B,B与A,C与D;对应边:AB与BA,BD与AC,AD与BC.对应角:∠BAD与∠ABC,∠ABD与∠BAC,∠D与∠C.3.反思与归纳通过上述的探索,你有哪些新的体会?若已经确定了对应顶点,你能快速地确定出对应边和对应角吗?同样,确定了对应边或对应角,能确定其他的对应元素吗?说说你的发现和体会.比如:(1)按相同对应点的顺序确定的边一定是对应边,按相同对应点的顺序确定的角一定是对应角;(2)对应边所夹角是对应角;对应角夹的边是对应边;(3)对应边所对的角是对应角;对应角所对的边为对应边.教师说明:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.这样,确定了对应顶点,就容易确定对应边和对应角了.【思考】教材图12.1-2(1)中,△ABC≌△DEF,对应边有什么关系?对应角呢?师生合作探究:从教材图12.1-2(1)中容易看出:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F.让学生观察教材图12.1-2(2)、(3),写出发现的结论.教师总结:全等三角形有这样的性质:全等三角形的对应边相等,全等三角形的对应角相等.三、课堂小结四、板书设计五、教学反思本节课的主要内容是全等三角形的概念和性质.重点要让学生学会正确确定全等三角形的对应顶点、对应边和对应角,养成按对应顶点的顺序表示三角形的习惯,同时,可提出全等三角形判定的说法,为后续内容的学习做好准备.课堂上,教师引导学生通过模型演示与想象结合,通过不断的探索活动,逐步积累学习的经验与体会.练习中让学生多动口、动手,积极参与探索活动,进而更好地理解和掌握知识.导学方案一.学法点津学生在理解全等三角形概念时,要突出两个三角形能够完全重合这一特性.在领会全等三角形性质及全等三角形的对应顶点、对应边、对应角时,要多从全等的三角形中体会哪两个顶点、哪两个角、哪两边会完全重合,从而正确地找出全等三角形的对应顶点、对应边、对应角.不但会说出全等三角形的对应顶点、对应边、对应角,而且还要写得对,如“点A 和点D是对应顶点”,或者“对应顶点是点A和点D”.而不能写成“A=B”之类的错误格式.二、学点归纳总结(一)知识要点总结1.全等三角形能够完全重合的两个三角形是全等三角形.2.全等三角形性质全等三角形的对应边相等,全等三角形的对应角相等.3.一个图形经过平移、旋转、翻折180°后,前后两个图形全等.(二)规律方法总结1.先确定全等三角形的对应顶点,然后按对应顶点的相同顺序就容易找出全等三角形的对应边和对应角.2.对应角所对的边是对应边,对应边所夹的角是对应角.课时作业设计一、选择题1.下列说法中,正确的个数是( ).(1)正方形都是全等形;(2)等边三角形都是全等形;(3)形状相同的图形是全等形;(4)大小相同的图形是全等形;(5)能够完全重合的图形是全等形.A.1个 B.2个C.3个D.4个2.下列说法中,正确的个数是( ).(1)全等三角形对应顶点所对应的角是对应角;(2)全等三角形对应顶点所对应的边是对应边;(3)全等三角形对应边所夹角是对应角;(4)全等三角形对应角夹的边是对应边. A.3 B.4 C.2 D.1二、填空题3.如图所示,△ABC≌△AED,点B和点E,点C和点D是两对对应顶点,∠B的对应角是__________,∠C的对应角是__________,AB的对应边是__________,BC的对应边是__________,AC的对应边是__________.4.如图所示,△ABC≌△DEF,∠A和∠EDF,∠C和∠F分别是两组对应角,如果AE=12cm,BD=3cm,则AB=________.第3题图第4题图三、解答题5.如右图,已知△ABC≌△DEF,A和D是对应顶点,∠B与∠E是对应角,写出图中其他的对应边和对应角.【参考答案】1.A2.B3.∠E∠D AE ED AD4.7.5cm5.对应边:AB与DE,BC与EF,CA与FD,对应角:∠A与∠D,∠ACB与∠DFE.。
全等三角形教案反思
全等三角形教案反思教案背景:一、教学目标1.知识与技能:(1)掌握全等三角形的定义及性质。
(2)能够运用全等三角形的性质解决实际问题。
2.过程与方法:(1)通过观察、操作、猜想、验证等方法,培养学生的几何直观和推理能力。
(2)通过小组合作,培养学生的团队协作能力和沟通能力。
3.情感态度与价值观:(1)激发学生对几何学习的兴趣,培养学生热爱数学的情感。
(2)培养学生严谨的科学态度和勇于探索的精神。
二、教学重难点1.教学重点:全等三角形的定义及性质。
2.教学难点:运用全等三角形的性质解决实际问题。
三、教学过程1.导入新课(1)引导学生回顾已学的三角形知识,为新课学习做好铺垫。
(2)提出问题:什么是全等三角形?全等三角形有哪些性质?2.探索新知(1)组织学生进行观察、操作、猜想、验证等活动,引导学生发现全等三角形的性质。
(2)通过实例讲解,让学生理解全等三角形的定义及性质。
3.实践应用(1)设置一些实际问题,让学生运用全等三角形的性质解决问题。
(2)组织小组讨论,让学生在合作中巩固所学知识。
(2)对学生的表现进行评价,鼓励学生继续努力。
四、教学反思1.优点:(1)在教学过程中,注重学生的主体地位,引导学生主动参与、积极探究。
(2)通过实例讲解和小组讨论,让学生在合作中学习,培养学生的团队协作能力。
(3)注重培养学生的几何直观和推理能力,提高学生的数学素养。
2.不足:(1)在课堂讲解中,对部分学生的关注不够,未能及时发现和解决他们的问题。
(2)课堂练习量不足,未能充分检验学生的学习效果。
(3)在小组讨论环节,部分学生参与度不高,讨论效果不佳。
3.改进措施:(1)在课堂教学中,增加互动环节,关注每个学生的表现,及时解答他们的疑问。
(2)增加课堂练习量,让学生在练习中巩固所学知识。
(3)优化小组讨论环节,提高学生的参与度,确保讨论效果。
重难点补充:教学过程:1.导入新课师:同学们,我们之前学过了三角形的基本概念和性质,谁能告诉我,三角形有几个角?几条边?生:三角形有三个角,三条边。
全等三角形教学目标和重难点
全等三角形教学目标和重难点一、教学目标1. 理解全等三角形的定义和性质;2. 掌握判定两个三角形是否全等的方法;3. 能够应用全等三角形的性质解决相关问题。
二、重难点分析1. 全等三角形的定义和性质;2. 判定两个三角形是否全等的方法;3. 应用全等三角形的性质解决相关问题。
三、全等三角形的定义和性质全等三角形是指具有相同形状和大小的三角形。
两个三角形全等的条件有:1. SSS 判定法:如果两个三角形的三边分别相等,则这两个三角形是全等的;2. SAS 判定法:如果两个三角形的两边和夹角分别相等,则这两个三角形是全等的;3. ASA 判定法:如果两个三角形的两角和夹边分别相等,则这两个三角形是全等的;4. RHS 判定法:如果两个直角三角形的斜边和一个锐角分别相等,则这两个三角形是全等的。
全等三角形具有以下性质:1. 对应角相等:如果两个三角形全等,则它们的对应角相等;2. 对应边相等:如果两个三角形全等,则它们的对应边相等;3. 任意一边等于另一边,两边夹角等于另一边,两边夹角相等的两个三角形全等。
四、判定两个三角形是否全等的方法1. SSS 判定法:比较两个三角形的三边长度是否相等,如果都相等,则两个三角形全等。
2. SAS 判定法:比较两个三角形的两边和夹角是否相等,如果都相等,则两个三角形全等。
3. ASA 判定法:比较两个三角形的两角和夹边是否相等,如果都相等,则两个三角形全等。
4. RHS 判定法:比较两个直角三角形的斜边和一个锐角是否相等,如果都相等,则两个三角形全等。
需要注意的是,判定两个三角形全等时,至少需要满足其中一种判定法。
五、应用全等三角形的性质解决相关问题1. 利用全等三角形的性质求解线段长度:如果两个三角形全等,可以利用对应边相等的性质求解未知线段的长度。
2. 利用全等三角形的性质证明两条线段平行:如果两个三角形全等,可以利用对应边平行的性质证明两条线段平行。
3. 利用全等三角形的性质证明两个角相等:如果两个三角形全等,可以利用对应角相等的性质证明两个角相等。
数学全等三角形教案8篇
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
八年级数学上册第十二章全等三角形重难点归纳(带答案)
八年级数学上册第十二章全等三角形重难点归纳单选题1、如图,若△ABC≌△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.5、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,{CE=BDBC=CB∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.6、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,,{DE=DCBD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.10、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.填空题11、如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为_____________________cm.答案:3.5分析:过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE得到11+DE=18-DE,从而可求出DE的长.解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,,{AC=ACCF=CE∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,{∠CBF=∠D∠CFB=∠CEDCF=CE,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+DE=18-DE,∴DE=3.5cm.所以答案是:3.5.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.12、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC =∠DAC∠D =∠B AC =AC,∴△ABC ≌△ADC (AAS ),所以答案是:∠D =∠B .小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .13、如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF,OA =OB ,则图中有__________对全等三角形.答案:3分析:根据角平分线的性质得到PE =PF ,根据全等三角形的判定定理判断即可.解:如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF ,∴∠1=∠2,在△AOP 和△BOP 中,{OA =OB ,∠1=∠2,OP =OP ,∴△AOP ≌△BOP (SAS ),∴AP =BP ,在Rt △EOP 和Rt △FOP 中,{PE =PF ,OP =OP,∴Rt △EOP ≌Rt △FOP (HL ),在Rt △AEP 和Rt △BFP 中,{PA =PB,PE =PF,∴Rt △AEP ≌Rt △BFP (HL ),∴图中有3对全等三角形.所以答案是:3.小提示:本题考查的是角平分线的性质、全等三角形的判定,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是________.答案:5分析:过D 作DE ⊥AB 于E ,由△DAE ≌△DAC 得到DE 的长,进而解答;解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE =∠DAC ,∠DEA =∠DCA =90°,DA =DA ,∴△DAE ≌△DAC (AAS ),∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =12×5×2=5,所以答案是:5;小提示:本题考查了角平分线的概念,全等三角形的判定(AAS )和性质;熟练掌握全等三角形的判定和性质是解题的关键.15、如图,在等腰Rt △ABC 中,AC =BC ,D 为△ABC 内一点,且∠BCD =∠CAD ,若CD =4,则△BCD 的面积为________.答案:8分析:由线段CD 的长求ΔBCD 的面积,故过B 作CD 的垂线,则由三角形面积公式可知:S ΔBCD =12×CD ×BE ,再由题中的∠BCD =∠CAD 和等腰直角三角形ABC ,即可求证ΔACD ≌ΔCBE ,最后由CD =BE =4即可求解. 解:过点B 作CD 的垂线,交CD 的延长线于点E∵∠ACB =90°∴∠BCD +∠ACD =90°∵∠BCD =∠CAD∴∠ACD +∠CAD =90°∴∠ADC =90°∵BE ⊥CD∴∠E =90°∴∠BCD +∠CBE =90°∴∠ACD =∠CBE∵AC =CB∴ΔACD ≌ΔCBE∴CD =BE =4∴SΔBCD=12×CD×BE=12×4×4=8故答案是:8.小提示:本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.解答题16、已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.答案:(1)68°;(2)见解析;(3)36分析:(1)由已知条件可得∠D=∠C=45°,对顶角∠AQD=∠CQF,则∠DAC=∠DFC,根据∠DAE=∠CAB即可的∠DFC=∠BAE;(2)过点B作ME的垂线交EM的延长线于N,证明△AEC≌△BNA,得AE=BN,进而可得AD=NB,再证明△DAM≌△BNM即可得证点M为BD中点;(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,先证明△ABE≌△ACD,进而证明△AEG≌△KCG,根据角度的计算以及三角形内角和定理求得∠BAD=∠KCA,进而证明△ABD≌△CAK,再根据∠CAG=∠ABD,∠BAC=90°,证明AH⊥BD,根据已知条件求得S△ABD最后证明S△AEC=S△ABD即可.(1)设DF交AC于Q,如图1,∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴∠D=∠C=45°∵∠AQD=∠CQF∵∠DAQ=180−∠D−∠AQD,∠QFC=180−∠C−∠CQF∴∠DAQ=∠QFC∵∠BAC=∠EAD=90°即∠BAE+∠EAQ=∠EAQ+∠QAD∴∠BAE=∠QAD∴∠DFC=∠BAE∵∠BAE=68°∴∠DFC=68°故答案为68°(2)如图2,过点B作ME的垂线交EM的延长线于N,∴∠N=90°∵∠AEC=90°∴∠N=∠AEC∵∠BAC=90°∴∠EAC+∠NAB=90°∵∠NAC+∠ACE=90°∴∠NAB=∠ECA∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AD=AE 又∵AC=AB∴△AEC≌△BNA∴NB=AE∵AE=AD∴AD=NB∵∠DAE=90°∴∠DAM=90°∴∠DAM=∠N又∵∠DMA=∠BMN∴△DAM≌△BNM∴DM=BM即M是BD的中点(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,如图∵∠BAC=∠EAD=90°即∠BAE+∠EAC=∠EAC+∠CAD∴∠BAE=∠CAD∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AE=AD在△ABE与△ACD中,{AE=AD∠BAE=∠CAD AB=AC∴△ABE≌△ACD(SAS)∴S△ABE=S△ABD,BE=CD∵G点是EC的中点∴EG=GC∵∠AGE=∠KGC,AG=GK∴△AGE≌△KGC(SAS)∴AE=CK,∠AEG=∠KCG∴AE=KC=AD,∠ACK=∠ACB+∠BCE+∠KCG=45°+∠AEC+∠BCE=45°+∠ABC+∠BAP=90°+∠BAE=∠BAD∴△AKC≌△ABD(SAS)∴BD=AK=18,∠CAK=∠ABD∵∠BAG+∠CAG=90°∴∠ABD+∠BAG=90°即∠AHB=90°∵AG=9,HG=5∴AH=AG−HG=9−5=4∴S△ABD=12BD⋅AH=12×18×4=36∵S△AEC=S△AEG+S△AGC=S△GCK+S△AGC=S△ACK=S△ABD=36∴S△AEC=36小提示:本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.17、如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,∠ABD=∠BCE,且AD=BE.(1)证明:①△ABD≅△ECB;②AD≌BC;(2)若BC=15,AD=6,请求出DE的长度.答案:(1)①证明见解析;②证明见解析(2)9分析:(1)①由ASA证明全等即可,②由①可证明;(2)由△ABD≌△ECB可证DE=BD-BE=15-6=9.(1)解:证明:①在△ABD和△ECB中,{∠A=∠BEC∠ABD=∠BCEAD=BE,∴△ABD≌△ECB(ASA),②由①得:△ABD≌△ECB∴∠ADB=∠EBC,∴AD∥BC;(2)∵△ABD≌△ECB,BC=15,AD=6,∴BD=BC=15,BE=AD=6,∴DE=BD-BE=15-6=9.小提示:本题考查了全等三角形的判定与性质、平行线的判定等知识,证明△ABD≌△ECB是解题的关键.18、如图1,已知ΔABC中,∠ACB=90°,AC=BC,BE、AD分别与过点C的直线垂直,且垂足分别为E,D.(1)猜想线段AD、DE、BE三者之间的数量关系,并给予证明.(2)如图2,当过点C的直线绕点C旋转到ΔABC的内部,其他条件不变,如图2所示,①线段AD、DE、BE三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若AD=2.8,DE=1.5时,求BE的长.答案:(1)DE=AD+BE,证明见解析(2)①发生改变,DE=AD−BE;②1.3分析:(1)证明ΔACD≅ΔCBE,可得AD=CE,CD=BE,即可求解;(2)①证明ΔACD ≅ΔCBE ,可得AD =CE ,CD =BE , 即可求解;②由①可得DE =AD −BE ,从而得到BE =AD −DE ,即可求解.(1)解:DE =AD +BE , 理由如下:∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD ≅ΔCBE (AAS ),∴AD =CE ,CD =BE ,∵ DE =EC +CD ,∴DE =AD +BE ;(2)解:①发生改变.∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD≅ΔCBE(AAS),∴AD=CE,CD=BE,∵DE=CE-CD,∴DE=AD−BE;②由①知:DE=AD−BE,∴BE=AD−DE=2.8−1.5=1.3,∴BE的长为1.3.小提示:本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.。
专题13 全等三角形重难点模型(五大模型)(解析版)
专题13全等三角形重难点模型(五大模型)模型一:一线三等角型模型二:手拉手模型模型三:半角模型模型四:对角互补模型模型五:平行+线段中点构造全等模型【典例分析】【模型一:一线三等角型】如图一,∠D=∠BCA=∠E=90°,BC=AC。
结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。
结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【解答】解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:(﹣2,3);(2)动点A在运动的过程中,c+d的值不变.理由:过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变.【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【解答】(1)①证明:∵△OBC和△ABD是等腰直角三角形,∴OB=CB,BD=AB,∠ABD=∠OBC=90°,∴∠ABD+ABO=∠OBC+∠A∠O,∴∠OBD=∠CBA,∴△OBD≌△CBA(SAS),∴AC=OD;②如图一、∵A(4,0),B(0,﹣3),∴OA=4,OB=3,过点D作DF⊥y轴于F,∴∠BOA=∠DFB=90°,∴∠ABO+∠OAB=90°,∵∠ABD=90°,∴∠ABO+∠FBD=90°,∴∠OAB=∠FBD,∵AB=BD,∴△AOB≌△BFD(AAS),∴DF=OB=3,BF=OA=4,∴OF=OB+BF=7,∴D(3,﹣7);(2)如图二、过点D作DF⊥y轴于F,则∠DFB=90°=∠CBF,同(1)②的方法得,△AOB≌△BFD(AAS),∴DF=OB,BF=OA=4,∵OB=BC,∴BC=DF,∵∠DEF=∠CEB,∴△DEF≌△CEB(AAS),∴BE=EF,∴BF=BE+EF=2BE=4,∴BE=2.【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【解答】解:(1)DE=BD+CE,理由如下:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立,理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠ADB=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由如下:由(2)得,△BAD≌△ACE,∴BD=AE,∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+FAC,即∠FBD=∠FAE,在△FBD和△FAE中,,∴△FBD≌△FAE(SAS),∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DFE为等边三角形.【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE =9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【解答】解:(1)∵∠BDA=∠AEC=∠BAC,∴∠BAD+∠CAE=∠BAD+∠ABD,∴∠CAE=∠ABD,∵∠BDA=∠AEC,BA=CA,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,故答案为:BD=AE,CE=AD;(2)DE=BD+CE,由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(3)存在,当△DAB≌△ECA时,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此时x=2;当△DAB≌△EAC时,∴AD=AE=4.5cm,DB=EC=7cm,∴t=,x=7÷=,综上:t=1,x=2或t=,x=.【模型二:手拉手模型】应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。
全等三角形教案【7篇】
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
全等三角形教学设计教案
全等三角形教学设计教案这是全等三角形教学设计教案,是优秀的数学教案文章,供老师家长们参考学习。
全等三角形教学设计教案第1篇一、教学目标【知识与技能】了解全等形和全等三角形的概念,掌握全等三角形的性质,能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。
【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,提高几何直觉和识图能力。
【情感态度与价值观】通过自主学习的发展体验获取数学知识的感受,提高勇于创新,多方位审视问题的创造技巧。
二、教学重难点【重点】全等三角形的概念、性质及对应元素的确定。
【难点】全等三角形对应元素的识别。
三、教学过程(一)导入新课欣赏一组图片,提出问题提问1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是另一个图形如何变化而来?他们能完全重合吗?你能列举出一些类似的例子吗?(二)生成新知由上图形成全等的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等三角形。
多媒体演示三中全等变换(全等、翻折、旋转)并提出问题:平移、翻折、旋转前后得到的三角形全等吗?接下来学生小组活动:多媒体投影要求:请你用事前准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;在练习本上画出这些图形,标上字母,并在小组内交流;指出这些图形中的对应顶点、对应边、对应角。
多媒体展示学生可能得到的图形,寻找对应元素有什么方法和规律吗?学生思考交流后师生共同总结归纳、板书。
提问:全等三角形的对应边、对应角有什么数量关系?(三)应用新知(1)写出其他对应边及对应角;(2)求线段NM及线段HG 的长度。
(四)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:想一想,生活中还有哪些事物是全等的?四、板书设计《全等三角形》教案五、教学反思全等三角形教学设计教案第2篇教学任务分析教学目标1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
专题复习:三角形全等
专题复习:三角形全等一、教材要求 (2)1、学习目标: (2)2、重点、难点: (2)3、考点分析: (2)4、知识点睛: (2)二、找相等边的方法 (3)1、利用等角对等边 (3)2、利用公共边相等 (3)3、利用等量代换 (4)4、利用三角形中线定理,或者等边三角形 (4)5、利用三角形角平分线定理 (5)6、旋转平移性质,角度不变,边长不变 (5)三、找相等角的方法 (6)1、利用平行直线性质 (6)2、巧用公共角 (6)3、利用等边对等角 (7)4、利用对顶角相等 (7)5、利用等量代换关系找出角相等 (7)6、结合旋转性质,即旋转图形角度不变,边长不变 (8)四、常见辅助线的做法 (9)1、找全等三角形的方法: (9)2、三角形中常见辅助线的作法: (9)3、常见辅助线的作法有以下几种: (9)一、教材要求1、学习目标:三角形全等找边相等的方法总结;三角形全等找角相等的方法技巧;归纳、掌握三角形中的常见辅助线;2、重点、难点:全等三角形相等边和相等角寻找思路;全等三角形的常见辅助线的添加方法。
掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。
3、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。
一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
4、知识点睛:全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.二、找相等边的方法1、利用等角对等边(注意:必须在同一个三角形中才能考虑)例1、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD2、利用公共边相等(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)例1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
全等三角形的重难点
全等三角形的重难点一、确定全等三角形的对应关系在全等三角形中正确地找出对应顶点、对应边、对应角,是解决与全等三角形相关的问题的关键.全等三角形有许多对应的元素,怎样寻找这些对应元素呢?1.根据全等符号暗示的信息找对应符号语言是数学思维的载体,教材中说,“记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上”,此要求同学们在学习中要严格遵循,养成按对应顶点表示全等三角形的习惯,并且按“对应顶点记位置”的特点找全等三角形的对应边、对应角,达到无需看图也能迅速找出两个全等三角形的对应边和对应角的目的.例1已知△ABC≌△BAD,如果AB=8,BD=9,AD=11,那么AC= .【分析】一般情况下,在用符号≌表示两个三角形全等时,我们是把表示对应顶点的字母写在对应的位置上,根据这个规则可知:对应位置上的字母就是表示对应顶点的字母,对应位置上的字母表示的线段就是对应边,表示的角就是对应角.由题设已知中所给△ABC≌△BAD符号表示可知:AC与BD是对应边(如图1),所以AC=BD=9.例2已知△ABC与△DEF全等,∠A=30°,∠B=50°,则∠D=().A.30°B.50°C.100°D.以上三种情况都有可能【分析】注意本题与上例的区别,题目只说△ABC与△DEF全等,并没有给出对应法则(即没有用全等关系的符号)表示,所以会出现三种可能,选择D.2.观察图形特征暗示的信息找对应①有公共边的,公共边是对应边;②有公共角的,公共角是对应角;③有对顶角的,对顶角是对应角;④两个三角形中,对应角所对的边是对应边,两个对应角的夹边是对应边;⑤两个三角形中,对应边所对的角是对应角,两条对应边的夹角是对应角;⑥两个三角形中,一对最长的边是对应边,一对最短的边是对应边;⑦两个三角形中,一对最大的角是对应角,一对最小的角是对应角.二、灵活选择运用判定方法三角形全等的证明有三条公理、一条推论以及直角三角形特有的斜边直角边公理.每个公理和推论都有自己的符号表示形式,如SAS、ASA、AAS、SSS、HL 等,在学习中可以充分考虑已知条件和图形的结构特点,利用公理及推论的字母表示形式去寻找解题思路,培养解题能力.如:(1)已知条件中有两边对应相等时,找两边的夹角或第三边对应相等(SAS、SSS);(2)已知条件中有两角对应相等时,找两角的夹边或任何一组等角的对边相等(ASA、AAS);(3)已知条件中有一边和一角对应相等时,找夹等角的另一组边对应相等,或任何一组角对应相等(SAS、AAS).例3如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为:.你得到的一对全等三角形是:.【分析】本例是一道条件探索型试题,需从结论出发,执果索因,考虑要图中存在全等三角形,现已有哪些条件,逆推还需添加什么条件,同时本例又是一道开放性试题,答案不唯一,从图中也可以直观地看出可能有△ACE与△ADE,△ABC与△ABD,△BCE与△BDE三对三角形全等.若要△ACE≌△ADE,现已有AC=AD,又AE=AE(公共边),故还需添加CE=DE(从边的角度考虑用SSS)或∠CAE=∠DAE(从角的角度考虑,已有两边,考虑两边的夹角用SAS);若要△ABC≌△ABD,现已有AC=AD,又AB=AB(公共边),故还需添加BC=BD或∠CAB=∠DAB;当然由△ACE≌△ADE或△ABC≌△ABD,也可推得△BCE≌△BDE.故所添条件为:CE=DE,或∠CAE=∠DAE(∠CAB=∠DAB),或BC=BD.由此得到的一对全等三角形是:△ACE≌△ADE,或△ABC≌△ABD,或△BCE≌△BDE.三、熟悉三角形全等的基本图形在全等三角形的学习中,有很多的基本图形,我们通过对两个全等三角形各种不同位置关系的观察分析,看出其中一个三角形是由另一个三角形经过平移、翻折、旋转变换后形成的,我们将常见的三角形全等的基本图形整理如下:1.平移型:图3的图形属于平移型图形.它们可看成是由对应相等的边在同一直线上移动所构成的,故该对应边的相等关系一般可由同一直线上的线段和或差而证得.2.对称型:图4属于对称型图形.它们的特征是可沿某一直线对折,且这直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点.3.旋转型:图5属于旋转型图形.它们可看成是以三角形的某一顶点为中心旋转所构成的,故一般有一对相等的角隐含在平行线、对顶角、某些角的和或差中.这些基本图形都是由三角形经过图形的运动得到的,只有熟悉了这些图形,才能学会从复杂的图形中分离出题目需要的基本图形,对今后解决有关问题是大有益处的.在具体解题时,如能抓住基本图形,就比较容易找到解决问题的途径和方法.四、复杂图形拆分为基本图形当图形复杂时,我们可把不需要的线段、角隐藏,也可将图形分离、涂色等.图形分离就是面对一个较为复杂的图形时,我们从解题的需要出发,在保持图形中各元素(点、线、角等)相对位置不变的情况下,提取出原图形的一部分来分析问题的解决方法.分离出来的基本图形比原图形简捷,少了许多来自不相干的图形元素的干扰,看着简化后的图形,结合基本知识,诸多问题可迎刃而解.例4如图6,已知AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、E在同一直线上,求证:BD=AE.【分析】BD是△BED或△BCD的边,AE是△ABE或△ACE的边,显然△BED和△ABE不全等,故转而考虑△BCD和△ACE,将△BCD和△ACE涂色,特别关注这两个三角形,它们有BC=AC,CD=CE,尚需一个条件,即BC和CD 的夹角与AC和CE的夹角是否相等.因∠BCD=60°+∠ACD=∠ACE,故△BCD≌△ACE,从而BD=AE.【点评】当我们利用全等三角形证明线段或角相等时,首先观察线段或角在哪两个可能全等的三角形中,将它们涂色后加以特别的关注,然后再分析等的这两个三角形中,已知什么条件,还缺少什么条件,想方设法证得所缺条件。
全等三角形的判定 重难点
全等三角形的判定1. 三角形全等的判定(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
表示方法:如图所示,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS)。
(2)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。
表示方法:如图所示,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA)。
(3)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。
表示方法:如图所示,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS)。
(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。
表示方法:如图所示,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
表示方法:如图所示,在R t△ABC和R t△DEF中,∵AB=DE,BC=EF,∴R t△ABC≌R t△DEF(HL)。
注意:①三角形全等的判定方法中有一个必要条件是:有一组对应边相等。
②两边及其中一边的对角对应相等的情况,可以画图实验,如下图,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,显然它们不全等。
③三个角对应相等的两个三角形不一定全等,如两个大小一样的等边三角形。
2. 全等三角形的基本图形在平面几何中,有很多问题都可以借助于三角形全等来解决,比如线段的相等、角的相等、平行、垂直关系等。
在运用三角形全等这一工具时,主要是找两个三角形,并找出它们满足全等的条件来;解题时经常需要通过观察图形的运动状况,把两个全等三角形中的一个看成是另一个的平行移动、翻折、旋转等方法得到的,这需要对常见的全等三角形做到心中有数,如下图列举了几个常见的基本图形。
掌握这些全等形的对应边和对应角的位置关系,对我们在复杂的几何问题中迅速、准确地确定全等三角形是至关重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的重难点
一、确定全等三角形的对应关系
在全等三角形中正确地找出对应顶点、对应边、对应角,是解决与全等三角形相关的问题的关键.全等三角形有许多对应的元素,怎样寻找这些对应元素呢?
1.根据全等符号暗示的信息找对应
符号语言是数学思维的载体,教材中说,“记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上”,此要求同学们在学习中要严格遵循,养成按对应顶点表示全等三角形的习惯,并且按“对应顶点记位置”的特点找全等三角形的对应边、对应角,达到无需看图也能迅速找出两个全等三角形的对应边和对应角的目的.
例1 已知△ABC≌△BAD,如果AB=8,BD=9,AD=11,那么AC= .
【分析】一般情况下,在用符号≌表示两个三角形全等时,我们是把表示对应顶点的字母写在对应的位置上,根据这个规则可知:对应位置上的字母就是表示对应顶点的字母,对应位置上的字母表示的线段就是对应边,表示的角就是对应角.由题设已知中所给△ABC≌△BAD符号表示可知:AC与BD是对应边(如图1),所以AC=BD=9.
例2 已知△ABC与△DEF全等,∠A=30°,∠B=50°,则∠D=().
A.30°
B.50°
C.100°
D.以上三种情况都有可能
【分析】注意本题与上例的区别,题目只说△ABC与△DEF全等,并没有给出对应法则(即没有用全等关系的符号)表示,所以会出现三种可能,选择D.
2.观察图形特征暗示的信息找对应
①有公共边的,公共边是对应边;
②有公共角的,公共角是对应角;
③有对顶角的,对顶角是对应角;
④两个三角形中,对应角所对的边是对应边,两个对应角的夹边是对应边;
⑤两个三角形中,对应边所对的角是对应角,两条对应边的夹角是对应角;
⑥两个三角形中,一对最长的边是对应边,一对最短的边是对应边;
⑦两个三角形中,一对最大的角是对应角,一对最小的角是对应角.
二、灵活选择运用判定方法
三角形全等的证明有三条公理、一条推论以及直角三角形特有的斜边直角边公理.每个公理和推论都有自己的符号表示形式,如SAS、ASA、AAS、SSS、HL等,在学习中可以充分考虑已知条件和图形的结构特点,利用公理及推论的字母表示形式去寻找解题思路,培养解题能力.如:(1)已知条件中有两边对应相等时,找两边的夹角或第三边对应相等(SAS、SSS);(2)已知条件中有两角对应相等时,找两角的夹边或任何一组等角的对边相等(ASA、AAS);(3)已知条件中有一边和一角对应相等时,找夹等角的另一组边对应相等,或任何一组角对应相等(SAS、AAS).
例3 如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为: .你得到的一对全等三角形是: .
【分析】本例是一道条件探索型试题,需从结论出发,执果索因,考虑要图中存在全等三角形,现已有哪些条件,逆推还需添加什么条件,同时本例又是一道开放性试题,答案不唯一,从图中也可以直观地看出可能有△ACE与△ADE,△ABC与△ABD,△BCE与△BDE三对三角形全等.
若要△ACE≌△ADE,现已有AC=AD,又AE=AE(公共边),故还需添加CE=DE(从边的角度考虑用SSS)或∠CAE=∠DAE(从角的角度考虑,已有两边,考虑两边的夹角
用SAS);
若要△ABC≌△ABD,现已有AC=AD,又AB=AB(公共边),故还需添加BC=BD或∠CAB=∠DAB;
当然由△ACE≌△ADE或△ABC≌△ABD,也可推得△BCE≌△BDE.
故所添条件为:CE=DE,或∠CAE=∠DAE(∠CAB=∠DAB),或BC=BD.
由此得到的一对全等三角形是:△ACE≌△ADE,或△ABC≌△ABD,或△BCE≌△BDE. 三、熟悉三角形全等的基本图形
在全等三角形的学习中,有很多的基本图形,我们通过对两个全等三角形各种不同位置关系的观察分析,看出其中一个三角形是由另一个三角形经过平移、翻折、旋转变换后形成的,我们将常见的三角形全等的基本图形整理如下:
1.平移型:图3的图形属于平移型图形.它们可看成是由对应相等的边在同一直线上移动所构成的,故该对应边的相等关系一般可由同一直线上的线段和或差而证得.
2.对称型:图4属于对称型图形.它们的特征是可沿某一直线对折,且这直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点.
3.旋转型:图5属于旋转型图形.它们可看成是以三角形的某一顶点为中心旋转所构成的,故一般有一对相等的角隐含在平行线、对顶角、某些角的和或差中.
这些基本图形都是由三角形经过图形的运动得到的,只有熟悉了这些图形,才能学会从复杂的图形中分离出题目需要的基本图形,对今后解决有关问题是大有益处的.在具体解题时,如能抓住基本图形,就比较容易找到解决问题的途径和方法. 四、复杂图形拆分为基本图形
当图形复杂时,我们可把不需要的线段、角隐藏,也可将图形分离、涂色等.图形分离就是面对一个较为复杂的图形时,我们从解题的需要出发,在保持图形中各元素(点、线、角等)相对位置不变的情况下,提取出原图形的一部分来分析问题的解决方法.分离出来的基本图形比原图形简捷,少了许多来自不相干的图形元素的干扰,看着简化后的图形,结合基本知识,诸多问题可迎刃而解.
例4 如图6,已知AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、E在同一直线上,求证:BD=AE.
【分析】BD是△BED或△BCD的边,AE是△ABE或△ACE的边,显然△BED和△ABE不全等,故转而考虑△BCD和△ACE,将△BCD和△ACE涂色,特别关注这两个三角形,它们有BC=AC,CD=CE,尚需一个条件,即BC和CD的夹角与AC和CE的夹角是否相等.因∠BCD=60°+∠ACD=∠ACE,故△BCD≌△ACE,从而BD=AE.
【点评】当我们利用全等三角形证明线段或角相等时,首先观察线段或角在哪两个可能全等的三角形中,将它们涂色后加以特别的关注,然后再分析等的这两个三角形中,已知什么条件,还缺少什么条件,想方设法证得所缺条件。