高中数学会考模拟试题(A)

合集下载

(完整word版)高中数学会考模拟试题(A).doc

(完整word版)高中数学会考模拟试题(A).doc

高中数学会考模拟试题( A )一选择题(共20 个小题,每小题 3 分,共 60 分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件M {1} {1,2,3} 的集合M的个数是A4 B3 C 2 D 12.sin 6000的值为A3 3 1D1 2B C22 23." m 1" 是“直线(m+2)x+3my+1=0 与直线 (m-2)x+(m+2)y-3=0 相互垂直的2A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数f ( x) log a x( a 0, a 1) 的图象过点(1,– 3),则 a 的值8A2 B – 2 C1D1 –2 2∥5.直线 a 平面 M, 直线 a⊥直线 b,则直线 b 与平面 M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是A y x 2 1B y sin xC y log 2 ( x 5)D y 2x 3 7.点( 2,5)关于直线x y 1 0 的对称点的坐标是A ( 6, 3)B( -6, -3)C(3, 6)D( -3, -6)8.1 cos2 值为126 3 2 3C 3D7A4 B4 449.已知等差数列{ a n}中,a2 a8 8,则该数列前9 项和S9等于A 18B 27C 3 6D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为 2 , 1 ,现甲、乙两人各投篮 1 次5 2A 1 3 9 4B C10D5 10 511.已知向量a和b的夹角为120 0 rrr, a 3, a b 3,则b等于A 1 B2 2 32C D3 312.两个球的体积之比是8: 27,那么两个球的表面积之比为A 2:3B4: 9C 2 : 3D8 : 27 13.椭圆短轴长是2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离8 5 4 5C 8 3 4 3A5 B3D5 3x 2 2 cos( 为参数 ) ,那么该圆的普通方程是14.已知圆的参数方程为1 2 sinyA ( x 2)2 ( y 1)2 2B ( x 2)2 ( y 1)2 2C ( x 2)2 ( y 1)2 2D ( x 2) 2 ( y 1)2 215.函数y13) 的最小正周期为sin( x2A2B C 2 D 4 16.双曲线x2 y2 1 的离心率为A2B 3C 21 2D217.从数字1, 2, 3, 4, 5 中任取 3 个,组成没有重复数字的三位数中是偶数的概率1B 3C1 2A5 4 D5 518.圆x2 y 2 2x 4y 20 0 截直线5x 12 y c 0 所得弦长为8,则 C 的值为A10 B-68 C 12 D 10 或 -6819. 6 名同学排成一排,其中甲、乙两人必须排在一起的不同排法有A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100 送 20 ,连环送活动”即顾客购物每满100 元,就可以获赠商场购物券 20 元,可以当作现金继续购物。

浙江省杭州市高三数学1月普通高中会考模拟考试试题新人教A版

浙江省杭州市高三数学1月普通高中会考模拟考试试题新人教A版

1月 普通高中会考模拟考试高三数学试题卷考生须知:1.全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ.试卷共6页,有四大题,42小题,其中第二大题为选做题,其余为必做题,满分为100分.考试时间120分钟.2.本卷答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.3.请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,请用钢笔或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上.4.参考公式:球的表面积公式:S =4R2球的体积公式:334R V π=(其中R 为球的半径)试 卷 Ⅰ一、选择题(本题有26小题,每小题2分,每小题3分,共58分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.设全集U ={1,2,3,4,5},则集合A ={1, 3,5},则C U A = (A){1, 4} (B){3, 4} (C){2, 4} (D){2, 3}2.函数x x f +=1)(的定义域是 (A)),1[+∞(B)(0,+∞)(C)),0[+∞(D)(∞,+∞)3.直线032=++y x 的斜率是 (A) 21- (B)21(C) 2-(D) 24.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是 (A)球 (B)圆锥 (C)圆柱 (D)圆台 5.已知角α的终边与单位圆相交于点),21,23(-P 则αsin 等于(A)23- (B)21- (C) 23 (D) 216.已知函数11)(+=x x f ,g (x )=x 2+1,则f [g (0)]的值等于(A )0 (B )21(C )1 (D )27.椭圆192522=+y x 的焦点坐标是 (A)(3,0),(3,0) (B)(4,0),(4,0) (C)(0,4),(0,4) (D)(0,3),(0,3) 8.在等差数列{}n a 中,首项,21=a 公差2=d ,则它的通项公式是(A) n a n 2= (B) 1+=n a n (C) 2+=n a n (D) 22-=n a n9.函数)62cos()(π-=x x f ,x ∈R 的最小正周期为(A)4π (B)2π(C)(D)210.函数xx x f 2)(+= (A)是奇函数,但不是偶函数 (B)是偶函数,但不是奇函数 (C)既是奇函数,又是偶函数 (D)既不是奇函数,又不是偶函数 11.右图是某职业篮球运动员在连续11场比赛中得分的茎叶统计图,则该组数据的中位数是 (A)36 (B)35 (C)32 (D)31 12.已知向量),4,(),2,1(x ==且⊥,则实数x 的值是(A)2- (B)2 (C)8 (D) 8- 13.若非零实数a , b 满足a >b ,则(A)b a 11< (B)2211ba > (C)a 2>b 2 (D)a 3>b 314.同时抛掷两枚质地均匀的硬币,出现两枚都是正面朝上的概率为(A)41 (B)31(C) 21 (D) 4315.若x x x f 2ln )(+=的零点个数是(A)0 (B)1 (C)2 (D)3 16.已知=+-=-∈)4tan(,54sin ),0,2(πααπα则 (A)71(B)71- (C) 7 (D) 7- 17.在空间直角坐标系中,设A (1,2,a ),B (2,3,4),若|AB |=3,则实数a 的值是(A)3或 5 (B)3或 5 (C)3或 5 (D)3或518.某几何体的三视图如图所示,则该几何体的体积是(A)π34(B)2 (C)π38(D)π31019.空间中,设n m ,表示直线,γβα,,表示平面,则下列命题正确的是(A)若,,γβγα⊥⊥ 则α∥β (B)若 ,,βα⊥⊥m m 则 α∥β1 2 3 4 5 2 55 46 5 1 9 77 1(第11题)正视图俯视图侧视图2(C),,βαβ⊥⊥m 则 m ∥α (D) ,,α⊥⊥n m n 则 m ∥α 20.函数f (x )=log 2(1x )的图象为21.如图,在三棱锥S -ABC 中,SA =SC =AB =BC ,则直线SB 与AC 所成角的大小是 (A)30º (B)45º (C)60º(D)90º22.数列{}n a 中,),(1.,41,212221*++∈=++==N n a a a a a a n n n n 则65a a +等于(A) 43 (B) 65 (C) 127(D)151423.若log 2x +log 2y =3,则x +2y 的最小值是(A)24(B)8(C)10(D)1224.右图是某同学用于计算S =sin1+sin2+sin3+…+sin2012值的程序框图,则在判断框中填写(A)k <2011?(B)k <2012?(C)k >2011? (D)k >2012?25.设圆C :(x 5)2+(y 3)2=5,过圆心C 作直线l 与圆交于A ,B 两点,与x 轴交于P 点,若A 恰为线段BP 的中点,则直线l 的方程为 (A) x 3y +4=0,x +3y 14=0 (B)2x y 7=0,2x +y 13=0(C) x 2y +1=0,x +2y 11=0(D)3x y 12=0,3x +y 18=026.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤++≤--≥+-0012012a y x y x y x,所围成的平面区域面(A)(第23题)ACS(第20题)积为23,则实数a 的值是 (A)3(B)1(C)1(D)3二、选择题(本题分A 、B 两组,任选一组完成,每组各4小题,选做B 组的考生,填涂时注意第27-30题留空;若两组都做,以27-30题记分. 每小题3分,共12分,选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)A 组27.在复平面内,设复数33i 对应点关于实轴、虚轴的对称点分别是A ,B ,则点A ,B 对应的复数和是(A)0(B)6(C)32-i (D)632-i28.设x ∈R ,则“x >1”是“x 2>x ”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件29.直线y =kx +1与双曲线191622=-y x 的一条渐近线垂直,则实数k 的值是(A)54或54- (B)45或45- (C)43或43- (D)34或34- 30.已知函数b xaax x f ++=)((a ,b ∈R )的图象在点(1,f (1))处的切线在y 轴上的截距为3,若f (x )>x 在(1,+∞)上恒成立,则a 的取值范围是(A)]1,0((B)]891[,(C)),89(+∞(D)),1[+∞B 组31.若随机变量X 分布如右表所示, X 的数学期望EX =2,则实数a 的值是(A)0 (B)31 (C)1 (D)2332.函数y =x sin2x 的导数是 (A)y '=sin2x x cos2x (B)y '=sin2x 2x cos2x (C)y '=sin2x x cos2x(D)y '=sin2x +2x cos2x(第33题)33.二项式6(x 展开式中的常数项为 (A)240- (B)160 (C)160- (D)24034.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方体内部及面上的两个动点,则⋅的最大值是 (A)21 (B) 1(C)23 (D)45 试 卷 Ⅱ请将本卷的答案用钢笔或圆珠笔写在答卷Ⅱ上. 三、填空题(本题有5小题,每小题2分,共10分) 35.不等式x2x-6<0的解集是 ▲36.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 的样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时的人数为12人,则n = ▲37.已知非零向量b a ,满足|a |=1,3||=-b a ,a 与b 的夹角为120º,则|b |= ▲38.已知函数00,1,)(2≤>⎩⎨⎧-=x x x x x f ,则f (x )的值域是 ▲39.把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C变换成椭圆C ',称之为椭圆的一次“压缩”. 按上述定义把椭圆C i (i =0,1,2,…)“压缩”成椭圆C i +1,得到一系列椭圆C 1,C 2,C 3,…,当短轴长于截距相等时终止“压缩”. 经研究发现,某个椭圆C 0经过n (n ≥3)次“压缩”后能终止,则椭圆C n 2的离心率可能是:①23,②510,③33,④36中的 ▲ (填写所有正确结论的序号) 四、解答题(本题有3小题,共20分)40.(本题6分)在锐角ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求ABC 的面积及a 的值.(第37题)41.(本题6分)如图,由半圆)0(122≤=+y y x 和部分抛物线)0,0)(1(2>≥-=a y x a y 合成的曲线C 称为“羽毛球形线”,且曲线C 经过点(2,3)。

最新-2018学年高二数学会考模拟试题(A)人教版新课标精品

最新-2018学年高二数学会考模拟试题(A)人教版新课标精品

2( x ) 因为 2(x ) 的最小值为 4
a
x
x
1
1
所以
4 即 a 0或 a
a
4
2
y1
3
22
( 2)将 l : y kx 2 代入双曲线中得 (1 3k ) x 6 2 kx 9
27.( 1)证明设 0 x1 x2
12
1 2 2 2 2(x 2 x1 )
f ( x1 ) f ( x2) (
)(
)
a x1
a x2
x1 x 2
x1 x2
f ( x1 ) f ( x 2 ), f ( x) 在 ( 0, ) 上为减函数
21.直线 y
3 x 与直线 x 1的夹角
3
22.直角坐标系 xoy 中若定点 A ( 1, 2)与动点( x,y)满足 op oA
方程为
23.平面内三点 A ( 0, -3 ), B ( 3, 3), C( x, -1 )若 AB ∥ BC ,
24.已知函数
f ( x)
1 ,则 f [ f ( x)] 的定义域为
0
120 ,
a
3, a b
3 ,则 b 等于
A
1
2
23
B
C
D
3
3
12.两个球的体积之比是
8: 27 ,那么两个球的表面积之比为
A 2: 3
B 4:9
C 2: 3
D 8 : 27
13.椭圆短轴长是 2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离
85
A
5
45
B
5
83
C
3
43
D
3

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D)3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2(B )2-(C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m << (C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π- (B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是(A ) (B ) (C )(D )11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 (A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质: (1)定义域是{x | x ∈R ,且x ≠0}; (2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是 (A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55 (C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2(B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-4CADB20.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____. 23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。

高中数学会考模拟试题(A)

高中数学会考模拟试题(A)

高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是A 4B 3C 2D 1 2.0600sin 的值为A 23B 23- C 21- D 213."21"=m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数()log (0,1)a f x x a a =>≠的图象过点(18,–3),则a 的值A 2B –2C – 12D 125.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是 A 12+=x yB x y sin =C )5(log 2+=x yD 32-=xy7.点(2,5)关于直线01=++y x 的对称点的坐标是A (6,3)B (-6,-3)C (3,6)D (-3,-6)8.21cos12π+值为A634+ B 234+ C 34 D 749.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=- ,则b 等于A 1 B23 C 23 D 212.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C3:2 D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558 B 554 C 338 D 334 14. 已知圆的参数方程为22()12x y θθθ⎧=⎪⎨=⎪⎩为参数,那么该圆的普通方程是A 22(2)(1)2x y -+-=B 22(2)(1)2x y +++=C 22(2)(1)2x y -+-= D 22(2)(1)2x y +++= 15.函数)321sin(+=x y 的最小正周期为 A2πB πC π2D π4 16.双曲线122=-y x 的离心率为A22B 3C 2 D2117.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A51 B 53 C 41 D 52 18.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为A 10 B-68 C 12 D 10或-6819.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。

高中数学会考模拟试题(A)

高中数学会考模拟试题(A)

高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分) 在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件}3,2,1{}1{=⋃M 的集合M 的个数是 A4B3 C2D1 2.0600sin 的值为A18B27 C36D4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次则两个人都投进的概率是 A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=-,则b 等于A1B23D2 12.两个球的体积之比是8:27,那么两个球的表面积之比为 A2:3B4:9 C 3:2D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558B 554C 338D 334 14A (x -C (x -15A 2πB 16A2217A 511819.20元,场购物,最多可以获赠购物券累计 A120元B136元C140元D160元二填空题(共4小题,每小题3分,共12分) 21.直线x y 33=与直线1=x 的夹角 22.直角坐标系xoy 中若定点A (1,2)与动点(x,y )满足4=⋅oA op ,则点P 的轨迹方程为 23.平面内三点A (0,-3),B (3,3),C (x ,-1)若AB ∥BC ,则x 的值24.已知函数11)(+=x x f ,则)]([x f f 的定义域为 三:解答题(3小题,共28分)25.如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC ,E 是PC 的中点O 为⊥所以DE ⊥面PBC(2) 作EF ⊥PB 于F ,连DF ,因为DE ⊥面PBC 所以DF ⊥PB 所以EFD ∠是二面角的平面角 设PD=DC=2a,则DE=a DF a 362,2=又DE ⊥面PBC (已证) DE ⊥EF 所以23sin =∠EFD 即060=∠EFD26.(1)解:设双曲线方程为)0,0(12222>>=-b a b y a x因为13,1,4,2,322222=-∴=∴=+==y x b b a c a(2)将2:+=kx y l 代入双曲线中得0926)31(22=---kx x k由直线与双曲线交与不同两点的⎪⎩⎪⎨⎧>-=-+=∆≠-0)1(36)31(36)26(0312222k k k k 即k 设A 得1x 即k 27.(1)(1x f ∴(2) 12(3所以41≤a 即0<a 或41≤a。

高中数学会考模拟试题(附答案)

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

安徽省普通高中会考数学真题及答案A

安徽省普通高中会考数学真题及答案A

安徽省普通高中会考数学真题及答案A一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题目要求,多选不给分.)1. 已知集合{1,0,1},{1,0}A B =-=-,则A B =( )A .{1}-B .{0}C .{1,0}-D .{1,0,1}-2. 如图放置的几何体的俯视图为( )A .B .C .D .3. 一人连续投掷硬币两次,事件“至少有一次为正面”的互斥事件是( ) A .至多有一次为正面 B .两次均为正面 C .只有一次为正面D .两次均为反面4. 下列各式:①222(log 3)2log 3=;②222log 32log 3=; ③222log 6log 3log 18+=; ④222log 6log 3log 3-=.其中正确的有( ) A .1个B .2个C .3个D .4个5. 执行程序框图如图,若输出y 的值为2,则输入x 的值应是( ) A .2-B .3C .2-或2D .2-或36. 已知3sin 5α=,且角α的终边在第二象限,则cos α=( ) A .45-B .34-C .34D .457. 若,a b c d >>且0c d +<,则下列不等式一定成立的是( ) A .ac bc >B .ac bc <C . ad bd >D . ad bd <8. 在2与16之间插入两个数a 、b ,使得2,,,16a b 成等比数列,则ab =( ) A .4B .8C .16D .329. 正方体上的点P 、Q 、R 、S 是其所在棱的中点,则直线PQ 与直线RS 异面的图形是( )第5题图A .B .C .D .10. 已知平面向量(,3)a λ=-与(3,2)b =-垂直,则λ的值是( ) A .-2B .2C .-3D .311. 下列函数中既是奇函数又在(0,2π)上单调递增的是( ) A .y x =- B . 2y x = C .sin y x = D .cos y x = 12. 不等式组0,10x x y ≥⎧⎨-+≥⎩所表示的平面区域为( )A .B .C .D .13. 某学校共有老、中、青职工200人,其中有老年职工60人,中年职工人数与青年职工人数相等.现采用分层抽样的方法抽取部分职工进行调查,已知抽取的老年职工有12人,则抽取的青年职工应有( ) A .12人B .14人C .16人D .20人14. 已知1cos 2α=-,则sin(30)sin(30)αα++-的值为( ) A .12-B .14-C .12D .1415.不等式31x x --<0的解集是( ) A . {|13}x x -<<B .{|13}x x <<C .{|13}x x x <->或D .{|13}x x x <>或16如图,P 是△ABC 所在的平面内一点,且满足BA BC BP +=,则( ) A .BA PC =B .BC PA = C .BC CP BP +=D .BA BP AP -=.17. 函数2()f x x ax =-的两零点间的距离为1,则a 的值为( ) A .0B .1C .0或2D .1-或118. 已知函数22y x x =-++的最小值为m ,最大值为M ,则mM的值为( ) A .14B .12C .22D .32第Ⅱ卷(非选择题 共46分)题 号 二三总 分2324 25 得 分注意事项:1.答题前,请将密封线内的项目写清楚,并在本页右上角“座位序号”栏中填写座位号最后两位数字.2.第Ⅱ卷共4页,用钢笔或圆珠笔直接在试卷上答题,不得将答案写在密封线内.二、填空题(本大题共4小题,每小题4分,满分16分,把答案填在题中的横线上.)19. 函数3sin(2)3y x π=-的最小正周期是______________.20. 已知直线1:21l y x =+,2:30l kx y --=,若1l ∥2l ,则k =______________.21. 从3张100元,2张200元的上海世博会门票中任取2张, 则所取2张门票价格相同的概率为______________.22. 如图,在离地面高200m 的热气球上,观测到山顶C 处的仰角为15º、山脚A 处的俯角为45º,已知∠BAC=60º,则山的高度BC 为_______ m.第16题图三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.)23.(本小题满分10分)求圆心C 在直线2y x 上,且经过原点及点M (3,1)的圆C 的方程. 【解】第22题图24.(本小题满分10分)如图,四边形ABCD为正方形,PD⊥平面ABCD,E、F分别为BC和PC的中点. (1)求证:EF∥平面PBD;【证】(2)如果AB=PD,求EF与平面ABCD所成角的正切值. 【解】第24题图第23题图25.(本小题满分10分)皖星电子科技公司于2019年底已建成了太阳能电池生产线.自2019年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y (万元)与月份x 之间的函数关系式为:265621020x y x -⎧=⎨-⎩**(15,)(512,)x x N x x N ≤≤∈<≤∈ . (1)2019年第几个月该公司的月利润最大?最大值是多少万元? 【解】(2)若公司前x 个月的月平均利润w (x w x=前个月的利润总和)达到最大时,公司下个月就应采取改变营销模式、拓宽销售渠道等措施,以保持盈利水平. 求w (万元)与x (月)之间的函数关系式,并指出这家公司在2009年的第几个月就应采取措施. 【解】数学参考答案与评分标准一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题目要求,多选不给分.)19. π 20. 2 21.2522. 300 三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.) 23. 解:设圆心C 的坐标为(,2a a ),则||||OC OM =,即2222(2)(3)(21)a a a a +=-+-,解得1a =.所以圆心(1,2)C ,半径r =故圆C 的标准方程为:22(1)(2)5x y -+-=.24.证:(1)在△PBC 中,E 、F 为BC 和PC 的中点,所以EF ∥BP.因此EF PBEF PBD EF PBD PB PBD ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面∥∥. (2)因为EF ∥BP,PD ⊥平面ABCD,所以∠PBD 即为直线EF 与平面ABCD 所成的角. 又ABCD 为正方形AB,所以在Rt △PBD 中,tan 2PB PBD BD ∠==. 所以EF 与平面ABCD所成角的正切值为2. 25. 解:(1)因为2656y x =-*(15,)x x N ≤≤∈单增,当5x =时,74y =(万元);21020y x =-*(512,)x x N <≤∈单减,当6x =时,90y =(万元).所以y 在6月份取最大值,且max 90y =万元.(2)当*15,x x N ≤≤∈时,(1)302621343x x x w x x--+⋅==-. 当*512,x x N <≤∈时,(5)(6)11090(5)(20)640210200x x x w x x x--+-+⋅-==-+-. 所以w =134364010200x x x -⎧⎪⎨-+-⎪⎩**(15,)(512,)x x N x x N ≤≤∈<≤∈. 当15x ≤≤时,w ≤22; 当512x <≤时,6420010()40w x x=-+≤,当且仅当8x =时取等号. 从而8x =时,w 达到最大.故公司在第9月份就应采取措施.。

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A卷(解析版)

2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(本大题共19个小题,每小题3分,共57分;在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合P={0,2,4},Q={0,1,3,5},则P∪Q=A){0} B){7} C){0,1,2,3,4,5} D)φ 2.函数y =A)[2,+∞) B )[-2,+∞) C)(-∞,-2] D)(-∞,2] 3.在正方体ABCD -A1B1C1D1中,BC1与AC 所成角为A)30° B)45° C)60° D)90°4.函数11||y x =-A)是奇函数但不是偶函数 B)是偶函数但不是奇函数 C)既是奇函数又是偶函数 D)既不是奇函数又不是偶函数 5.已知数列{}n a 满足11a =,12n n a a +=+,则4a =A)5 B)6 C)7 D)86.函数cos()42xy π=-的最小正周期为A)2πB)π C)2π D)4π7.圆22210x y x ++-=的圆心和半径为A)(1,0),2B)(-1,0),2C)(1,0),2 D)(—1,0),2 8.1tan 151tan 15-+的值为A)3 B)33C)1 D)229.设0b a >>,则下列各式中正确的是A)2a b a b+>>>B)2a b b a+>>>C)2a b a b +>>>D)2a b b a +>>>10.函数21(0)y x x =+<的反函数为A))y x R =∈B) )y x R =∈C)1)y x =≥D) 1)y x =≥11.已知数列{}n a 满足前n项和21()nn sa n N *=-∈则3a =A)2 B)4 C)8 D)1612.已知向量()1,sin a θ=- ,1,cos 2b θ⎛⎫= ⎪⎝⎭ ,若a b ⊥ ,且θ为锐角,则θ= A)12πB)6πC)4π D)3π13.“0ab <”是“方程22ax by c +=表示双曲线”的 A) 充分不必要条件 B)必要不充分条件 C)充要条件 D)既不充分也不必要条件14.由数字0,1,2,3,4,5组成没有重复数字的五位数中,偶数的个数为A)120 B)240 C)96 D)312 15.在(1-x)4展开式的各项中,系数最大是A)—4 B)4 C)—6 D)6 16.已知G为△ABC所在平面上一点,若GCGB GA ++=0 ,则G 为△ABC 的A)内心 B)外心 C)重心 D)垂心17.将函数()y f x =的图象按(,2)4a π=-- 平移得到函数sin y x =的图象,则函数()f x 为 A)sin()24x π++ B)sin()24x π+-C)sin()24x π-+ D)sin()24x π--18.椭圆2214xym+=的离心率为0.5,则m的值为A)3 B)316 C)3或316 D)-3或-31619.从甲口袋内摸出1个白球的概率是31,从乙口袋内摸出1个白球的概率是21,从两个口袋内各摸出1个球,至少有一个是白球的概率为A)61B)23 C)65 D)21第Ⅱ卷(非选择题,共43分)二、填空题(本大题共5个小题,每小题3分,共15分;请直接在每小题的横线上填写结果) 20.已知球面的表面积为36π,则此球的半径为21.已知3cos 5θ=,且θ∈(—2π,0),则sin2θ=________22.61⎛⎝的展开式的常数项为_________(用数字作答)23.函数f (x) =2-x -x1(x>0)的最大值为________24.过点A(—1,1)的一束光线射向x 轴,经反射后与圆()2211x y -+=(相切,则入射线所在直线的方程为______________三、解答题(本大题共4小题,共28分;要求写出必要的文字说明、演算步骤或推理过程) 26.(本题满分6分)甲、乙二人独立地破译一个密码,他们能译出密码的概率分别为13和14,求: (Ⅰ)恰有1人译出密码的概率; (Ⅱ)至多有1人译出密码的概率.参考答案选择题CDCBC , DBBBD , BCADD , CCCB 填空题:20.3; 21.2425-; 22.52-; 23.0; 24.4310x y ++=解答题26.解:设甲、乙二人独立破译密码分别为事件A 、B.则11(),()34P A P B ==(Ⅰ)恰有1人译出密码概率为11115()()()()()(1)(1)343412P A B A B P A P B P A P B +=⋅+⋅=⋅-+-⋅=(Ⅱ)至少有1人译出密码的概率为11111()1()()13412P A B P A P B -⋅=-⋅=-⋅=。

云南省2023年高中数学会考模拟卷

云南省2023年高中数学会考模拟卷

云南省2023年高中数学会考模拟卷一、填空(每小题2分,共20分)1.小明买了4块橡皮,每块a元,需要()元。

当a=1.5时,需要()元。

2.在()里填上“小于号”、“大于号”或“等于号”。

3.78÷0.99()3.78;2.6×1.01()2.67.2×1.3()7.2÷1.3;9.7÷1.2()9.7-1.23.在()里填上合适的数。

2.05吨=()吨()千克3升50毫升=()升4.一个两位小数保留一位小数是2.3,这个两位小数最大是(),最小是()。

5.一个数的小数点先向左移动两位,再向右移动三位后是0.123,这个数是()。

6.一个平行四边形的底是2.6厘米,高是4厘米,面积是(),一个三角形的底是2.5厘米,面积是10平方厘米,高是()。

7.一条裤子n元,一件上衣的价格是一条裤子的6倍,则一件上衣需要()元,买一套服装共需()元。

8.501班进行1分钟跳绳测试,六位学生的成绩分别是:137个、142个、136个、150个、138个、149个,这组数据的平均数是(),中位数是()。

9.正方体的六个面分别写着1——6,每次掷出“3”的可能性是(),每次掷出双数的可能性是()。

10.一辆汽车开100公里需要8升汽油,开1公里需要()升汽油,1升汽油可以开()公里。

二、判断(每小题1分,共5分)1.被除数不变,除数扩大100倍,商也扩大100倍。

()2.a的平方就是a×2。

()3.大于0.2而小于0.4的数只有0.3一个。

()4.两个等底等高的三角形一定可以拼成一个平行四边形。

()5.一组数据的中位数和平均数可能相等。

()三、选择(每小题1分,共5分)1.2.695保留两位小数是()。

A.2.69B.2.70C.0.702.已知0.35×170=59.5,那么3.5×1.7的积是()A.0.595B.5.95C.59.53.在一个位置观察一个长方体,一次最多能看到它的()。

高级中学届高三数学会考试卷(模拟卷)

高级中学届高三数学会考试卷(模拟卷)

高级中学20XX 届高三数学会考试卷(模拟卷)试卷Ⅰ一、选择题(本题有26小题1-20小题每题2分,21-26小题每题3分,共58分,每小题中只有一个符合题意的正确选项,不选、多选、错选均不得分)1. 设集合{|1}X x x =>-,下列关系式中成立的为 ( )A .0X ⊆B .{}0X ∈C .X φ∈D .{}0X ⊆2. 函数x y sin =是 ( )A .增函数B .减函数C .偶函数D .周期函数3.椭圆221916x y +=的离心率是( )A .45B .35C D4.已知锐角α的终边经过点(1,1),那么角α为 ( )A .30B .90C . 60D . 455. 直线21y x =-+在y 轴上的截距是 ( )A .0B .1C .-1D .216.lg1lg10+ =( )A .1B .11C .10D .07.已知集合{}2|4M x x =<,{}2|230N x x x =--<,则集合M N 等于() A .{}|2x x <-B .{}|3x x >C .{}|12x x -<<D .{}|23x x <<8. 函数x y =的定义域是 ( )A .(,)-∞+∞B .[0,)+∞C .(0,)+∞D .(1,)+∞9.“1x >”是“21x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10.已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( )A .(5,10)--B .(4,8)--C .(3,6)--D .(2,4)--11. 已知命题:①过与平面α平行的直线a 有且仅有一个平面与α平行;②过与平面α垂直的直线a 有且仅有一个平面与α垂直.则上述命题中( )A .①正确,②不正确B .①不正确,②正确C .①②都正确D .①②都不正确12.如图,在平行四边形ABCD 中成立的是( ) A .AB =B .AB =C .=D .= 13.根据下面的流程图操作,使得当成绩 不低于60分时,输出“及格”,当成绩 低于60分时,输出“不及格”,则( ) A .1框中填“Y”,2框中填“N” B .1框中填“N”,2框中填“Y” C .1框中填“Y”,2框中可以不填 D .2框中填“N”,1框中可以不填14.已知53()8f x x ax bx =++-,且(2)10f -=A .-26B .-18C .-10 15. 计算:2(2)i +=( )A .3B .3+2iC .3+4iD .5+4i16. 在等比数列{}n a 中,若354a a =,则26a a =( )A ..2 C ..417.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置 关系是( )A .异面B .相交C .平行D .不能确定18.曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B .32y x =-+C .43y x =-+D .45y x =-19.圆224460x y x y +-++=截直线50x y --=所得的弦长等于( ) A .6B .225C .1 D .5 20.已知三个平面两两互相垂直并且交于一点O ,点P 到这三个平面的距离分别为1、2、3,则点O 与点P 之间的距离是( ) A .14B .2C .6D .32(第12题图)A B CD21.函数||log 3x 22.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2223a c b ac +-=,则角B 的值为( )A.6πB.3πC.6π或56πD.3π或23π 23.函数)sin(ϕω+=x y 的部分图象如右图,则ϕ、ω可以取的一组值是( ) A. ,24ππωϕ== B. ,36ππωϕ== C. ,44ππωϕ== D. 5,44ππωϕ== 24.若椭圆116222=+b y x 过点(-2,3),则其焦距为(A.25B.23C. 43D. 4525. 不等式x1)>1的解集是( ) A.{}|0x x < B.{}|1x x <- C.{}|1x x >- D.{}|10x x -<<26. 不等式24222x x ax a -+>对一切实数x 都成立,则实数a 的取值范围是( ) 二、选择题(本题有A 、B 两组题,任选其中一组完成,每组各4小题,每小题3分,满分12分)A 组27. i -2的共轭复数是( )A.2+iB.2-iC.-2+iD.-2-i28. 已知0a >,函数3()f x x ax =-在[1,+∞)上是单调增函数,则a 的最大值是 ( )A.0B.1C.2D.329.双曲线122=-y x 的渐近线方程是( ) A.±=x 1 B.y = C.x y ±= D.x y 22±=30. 对,a b ∈R ,记max {,a b }=,,a a b b a b ≥⎧⎨⎩<,函数()f x =max{|1|,|2|}()x x x R +-∈的最小值是( )A .0B .12C .32D .3B 组27. 四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB ,EF ⊥AB ,则EF 与CD 所成的角等于( )A .30°B .45° C .60° D .90° 28.7)1(xx -展开式的第四项等于7,则x 等于( ) A .-5 B .51- C .51 D .5 29. 设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是( )A .0.1E ξ=B .01D ξ∙=C .10()0.010.99k k P k ξ-==D .1010()0.990.01k k k P k C ξ-==30. 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为( )A .61 B .365 C .121D .21 试卷Ⅱ 三、填空题(本题共5小题,每小题2分,共10分)31.已知xx y x 432,0--=>函数的最大值是▲ 32.已知数列{}n a 的前n 项的和2n S n =,则5a = ▲33.已知直线3230x y +-=与610x my ++=相互平行,则它们之间的距离是▲34.函数2sin(4)6y x π=+的图像的两条相邻对称轴间的距离是▲ 35.设x 、y 满足约束条件021x x y x y ≥⎧⎪≥⎨⎪-≤⎩,则32z x y =+的最大值是▲四、解答题(本题有3小题,36、37每题6分,38题8分,共20分)36.在等比数列{}n a 中142,54a a ==-,求n a 及前n 项和n S .37.已知函数32()39f x x x x a =-+++,(1)求()f x 的单调递减区间;(2)若()f x 在区间[-2,2]上的最大值为20,求它在该区间上的最小值.38.设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程.(2)证明∠PFA=∠PFB.。

高三会考数学模拟试卷

高三会考数学模拟试卷

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若函数f(x) = 2x - 3在区间[1, 2]上是增函数,则函数f(x)在区间[-2, -1]上是()A. 增函数B. 减函数C. 先增后减D. 先减后增2. 下列各数中,无理数是()A. √4B. 3.14C. √9D. √163. 已知等差数列{an}的前三项分别是2, 5, 8,则该数列的公差是()A. 1B. 2C. 3D. 44. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^35. 已知函数f(x) = x^2 - 4x + 3,则函数f(x)的对称轴是()A. x = 1B. x = 2C. x = 3D. x = 46. 若复数z = a + bi(a, b ∈ R)满足|z - 1| = |z + 1|,则复数z的实部a等于()A. 0B. 1C. -1D. 27. 下列各对数式中,正确的是()A. log2(8) = 3B. log2(16) = 2C. log2(32) = 5D. log2(64) = 48. 若等比数列{an}的首项a1 = 2,公比q = 3,则数列{an}的第5项an等于()A. 18B. 27C. 54D. 819. 已知函数f(x) = (x - 1)^2,则函数f(x)的图像关于直线x = 1对称,这个结论()A. 正确B. 错误10. 若方程x^2 - 4x + 3 = 0的解是x1和x2,则x1 + x2的值等于()A. 2B. 3C. 4D. 5二、填空题(本大题共5小题,每小题10分,共50分。

)11. 已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S10 =________。

12. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则该函数的顶点坐标是________。

高中数学会考模拟试题一

高中数学会考模拟试题一

5.直线Q 与两条直线y = 1, (1,—1),那么直线Q 的斜率是 23 A. - B. - C. 32) 23 - D.—— 32兀6.为了得到函数y = 3sin2x , x e R 的图象,只需将函数y = 3sm (2x - -3), x e R 的9.如果a = (—2,3), b = (x , — 6),而且a 1 b ,那么x 的值是( )C. 9D. —9 a 2 二 3,a 7 =13,则 $ 1。

等于()高中数学会考模拟试题(一)一. 选择题:(每小题2分,共40分) 1.已知I 为全集,P 、Q 为非空集合,且P 5 Q ^ I ,则下列结论不正确的是( )A. P u Q = IB. 2.若 sin(180o+a ) = 3 P u Q =Q C. P c Q =。

D .P c Q =。

贝 U cos(2700+a )=( ) 1 A. 3 1 B. - 3 2%: 2 2<2C. ——D.——— 33 x 2 3,椭圆天十乙J 标是( ) y 2y = 1上一点P 到两焦点的距离之积为m 。

则当m 取最大值时,点P 的坐A. (5,0)和(—5,0) 卢3V 巨、工,5 3工;3、B. (2,)和(2,一下)C. (0,3)和(0, — 3) z 5;3 3、 / D .(—,2) 和 ( 4,函数y = 2sin x - cos x +1 - 2sin 2 x 的最小正周期是5 <3 3二,2)() 兀A.一 2B.九C. 2兀D. 4兀 x - y — 7 = 0分别交于P 、 Q 两点。

线段PQ 的中点坐标为图象上所有的点( )兀A.向左平行移动y 个单位长度兀C.向左平行移动下个单位长度 611 A.30。

B.45。

8.如果a > b则在①11C.1兀B.向右平行移动y 个单位长度兀D.向右平行移动下个单位长度61160o D. 90o② a 3 > b 3,③ lg(a 2 +1) > lg(b 2 +1),④ 2 a > 2 b中,正确的只有 ( B. ) ①和③ C. ③和④ D. ②和④ A. 4 B. —410.在等差数列{a j 中,A. 19B. 50C. 100D. 12011 . a > 1,且 \ > :是 log |x |> log bl 成立的()I xy 丰 0 a aB. 必要而不充分条件 D. 既不充分也不必要条件12 .设函数 f (xg (x ) = lg1-x ,则()21 + xA. 3或 9 B. 6 或 9 C, 3 或 6 D. 6 14 .函数y = - ;x 2-1 (x < -1)的反函数是()…、x +1..................... ,、15 .若 f (x ) = ,g (x ) = f -1(—x ),贝U g (x )( )x -1A.在R 上是增函数 B,在(-8 , -1)上是增函数 C.在(1, +8)上是减函数 D.在(-8,-1)上是减函数16 .不等式log 1 (x + 2) > 10g l x 2的解集是()22A. { x I x < -1 或 x > 2 }B. { x I -1 < x < 2 }C. { x I -2 < x < -1}D. { x I -2 < x < -1 或 x > 2 }17 . 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( )A. 12B. 24C. 36D. 2818 .若a 、b 是异面直线,则一定存在两个平行平面a 、p ,使( )A. a u a , b u pB. a ±a , b ± pC. a //a , b ± PD. a u a , b ± P—b-19.将函数 y = f (x )按 a = (-2,3)平移后,得到 y = 4x2-2x +4,则 f (x )=()A . 4x 2+2x +4 + 3B . 4 x 2 -6x +12 + 3C . 4x 2-6x +12 - 3D . 4 x 2-6x +920.已知函数f (x ) , x e R ,且f (2 - x ) = f (2 + x ),当x > 2时,f (x )是增函数,设 a = f(1.2。

2023年普通高中学业水平考试数学模拟试卷带答案解析

2023年普通高中学业水平考试数学模拟试卷带答案解析

2023年普通高中学业水平考试数学模拟试卷带答案解析前言本试卷为2023年普通高中学业水平考试数学模拟试卷,共分为选择题和解答题两部分。

本试卷中,选择题占50分,解答题占50分。

考试时间为120分钟。

选择题1. 下列哪个不等式的解集是$x\in(0,\frac{\pi}{2})$?A. $\sin{x}<0$B. $\sin{x}<\frac{1}{2}$C. $\cos{x}>\frac{\sqrt{3}}{2}$D. $\tan{x}<1$答案:B解析:由于 $\sin{\frac{\pi}{6}}=\frac{1}{2}$,且 $\sin{x}$ 在$x\in(0,\frac{\pi}{2})$ 内单调递增,因此选项 B 正确。

2. 某公司购进一批产品,销售利润率为 $p%$。

如果售价上涨$n%$,利润率降低 $m%$,则售价应上涨(精确到元):答案:$\frac{100+p}{100-p}*\frac{100-m}{100+n}*C$解析:设进价为 $C$,售价为 $x$,则 $x=(1+p\%)C$。

涨价后,售价为 $(1+n\%)x=(1+p\%)(1+n\%)C$,利润率为$$\frac{(1+p\%)(1-m\%)}{(1+n\%)(1-p\%)}-1$$根据比例关系,有 $(1+n\%)x=\frac{100+p}{100-p}*(1+m\%)(1-p\%)C$。

因此涨价后的售价为 $\frac{100+p}{100-p}*\frac{100-m}{100+n}*C$解答题1. 已知 $\log_{5}{a}=\log_5{3}+\log_{10}{b}$,$\log_2{a}-\log_2{b}=2$,求 $a+b$ 的值。

解析:将 $\log_5{3}+\log_{10}{b}$ 合并,得$\log_5{a}=\log_5{3b}$,即 $a=3b$。

高中数学会考模拟试题(A)

高中数学会考模拟试题(A)

高中数学会考模拟试题(A)数学必修模块5期中试题第一卷选择题40一.选择题(本大题共10小题,每题4分,共40分,每小题给出的4个选项中,只有一项是符合题目要求的)1.在已知的算术序列{an}中,a7?a9?16,a4?1,那么A12的值是a.15bc.31d.6411?? 2.如果是AX2?bx?2.0的解决方案集是?x |??十、那么A-B的值是23??a.-10b.-14c.10d.143.在比例序列{an}中,S4=1,S8=3,然后是A17?a18?a19?A20的值为a.14b、十六c.18d、二十4、对于任意实数a、b、c、d,命题①若a?b,c?0,则ac?bc;②若a?b,则ac2?bc2③若ac?bc,则a?b;④若a?b,则2211?;⑤若a?b?0,c?d,则ac?bd.其ab中真命题的个数是(a) 1(b)2(c)3(d)435.如果已知序列{an}是具有公共比率Q的等比序列≠ 1,然后在“(1){Anan+1},(2){an+1-an},(3){an},(4){nan}”这四个数列中,成等比数列的个数是(a)1(b)2(c)3(d)46、下列结论正确的是(a) x什么时候?0和X?1点,lgx?1.2(b)x什么时候?0,x?1.二lgxx11的最小值为2(d)当0?x?2时,x?无最大值xxac7、若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则??Mn(c)当x?两点,x?(a) 4(b)3(c)2(d)1n8.在等比序列{an}中,已知对于任何自然数n,a1+A2+a3+?+那么An=2-12222a1+a2+a3+A等于nn2(a)(2?1)(b)(2?1)(c)4?1(d)(4?1)13n13n9。

有人向正东走x公里后,向右拐150,然后走3公里。

因此,他离起点正好3公里,所以X的值为(a)3(b)23(c)3或23(d)三,o10、某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为a、b两种规格的金22属板,每张面积分别为2m、3m,用a种金属板可造甲产品3个,乙产品5个,用b种金属板可分别制成a和B的6种产品。

高三数学会考试卷模拟题

高三数学会考试卷模拟题

一、选择题(每题5分,共50分)1. 若函数f(x) = x^2 - 2ax + 1在区间[0,1]上单调递增,则a的取值范围是()A. a ≤ 0B. 0 < a ≤ 1C. a > 1D. a ≤ 0 或 a ≥ 12. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角余弦值为()A. 1/√2B. -1/√2C. 1/2D. -1/23. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (2, 2)D. (3, 1)4. 已知等差数列{an}的前n项和为Sn,若S3 = 6,S6 = 24,则该数列的公差d是()A. 2B. 3C. 4D. 55. 下列命题中正确的是()A. 若函数f(x)在区间(a, b)内单调递增,则f(a) < f(b)B. 若函数f(x)在区间(a, b)内连续,则f(a) ≤ f(x) ≤ f(b)C. 若函数f(x)在区间(a, b)内可导,则f(a) < f(x) < f(b)D. 若函数f(x)在区间(a, b)内具有极值,则f(a) = f(b)6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 27. 下列不等式中正确的是()A. (x + 1)^2 > x^2 + 1B. (x + 1)^2 ≥ x^2 + 1C. (x + 1)^2 < x^2 + 1D. (x + 1)^2 ≤ x^2 + 18. 已知函数f(x) = x^3 - 3x^2 + 2x,则f'(x) = ()A. 3x^2 - 6x + 2B. 3x^2 - 6x - 2C. 3x^2 - 6x + 1D. 3x^2 - 6x - 19. 已知等比数列{an}的前n项和为Sn,若S3 = 8,S6 = 32,则该数列的公比q 是()A. 2B. 1/2C. 4D. 1/410. 若函数y = e^x在区间(a, b)内单调递减,则a、b的关系是()A. a > bB. a < bC. a = bD. a ≥ b 或 a ≤ b二、填空题(每题5分,共50分)11. 函数f(x) = x^2 - 4x + 3的图像与x轴的交点坐标为______。

浙江省杭州市高三数学1月普通高中会考模拟考试试题 新人教A版

浙江省杭州市高三数学1月普通高中会考模拟考试试题 新人教A版

高三数学试题卷考生须知:1.全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ.试卷共6页,有四大题,42小题,其中第二大题为选做题,其余为必做题,满分为100分.考试时间120分钟.2.本卷答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.3.请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,请用钢笔或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上.4.参考公式:球的表面积公式:S =4R2球的体积公式:334R V π=(其中R 为球的半径)试 卷 Ⅰ一、选择题(本题有26小题,120每小题2分,2126每小题3分,共58分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.设全集U ={1,2,3,4,5},则集合A ={1, 3,5},则C U A = (A){1, 4} (B){3, 4} (C){2, 4} (D){2, 3}2.函数x x f +=1)(的定义域是 (A)),1[+∞(B)(0,+∞)(C)),0[+∞(D)(∞,+∞)3.直线032=++y x 的斜率是 (A) 21- (B)21(C) 2-(D) 24.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是 (A)球 (B)圆锥 (C)圆柱 (D)圆台 5.已知角α的终边与单位圆相交于点),21,23(-P 则αsin 等于(A)23- (B)21- (C) 23 (D) 216.已知函数11)(+=x x f ,g (x )=x 2+1,则f [g (0)]的值等于(A )0 (B )21(C )1 (D )27.椭圆192522=+y x的焦点坐标是(A)(3,0),(3,0) (B)(4,0),(4,0) (C)(0,4),(0,4) (D)(0,3),(0,3)8.在等差数列{}n a 中,首项,21=a 公差2=d ,则它的通项公式是 (A) n a n 2=(B) 1+=n a n (C) 2+=n a n (D) 22-=n a n9.函数)62cos()(π-=x x f ,x ∈R 的最小正周期为(A)4π (B)2π (C) (D)210.函数xx x f 2)(+= (A)是奇函数,但不是偶函数 (B)是偶函数,但不是奇函数 (C)既是奇函数,又是偶函数 (D)既不是奇函数,又不是偶函数 11.右图是某职业篮球运动员在连续11场比赛中得分的茎叶统计图,则该组数据的中位数是 (A)36 (B)35 (C)32 (D)3112.已知向量),4,(),2,1(x b a ==且⊥a b ,则实数x 的值是(A)2- (B)2 (C)8 (D) 8- 13.若非零实数a , b 满足a >b ,则(A)b a 11< (B)2211ba > (C)a 2>b 2 (D)a 3>b 314.同时抛掷两枚质地均匀的硬币,出现两枚都是正面朝上的概率为(A)41 (B)31(C) 21 (D) 4315.若x x x f 2ln )(+=的零点个数是(A)0 (B)1 (C)2 (D)3 16.已知=+-=-∈)4tan(,54sin ),0,2(πααπα则 (A)71(B)71- (C) 7 (D) 7- 17.在空间直角坐标系中,设A (1,2,a ),B (2,3,4),若|AB |=3,则实数a 的值是(A)3或5 (B)3或 5 (C)3或 5 (D)3或518.某几何体的三视图如图所示,则该几何体的体积是(A)π34 (B)2 (C)π38(D)π31019.空间中,设n m ,表示直线,γβα,,表示平面,则下列命题正确的是(A)若,,γβγα⊥⊥ 则α∥β (B)若 ,,βα⊥⊥m m 则 α∥β (C),,βαβ⊥⊥m 则 m ∥α1 2 3 4 5 2 55 46 5 1 9 77 1(第11题)正视图俯视图侧视图(第18题)2 212 1(D) ,,α⊥⊥n m n 则 m ∥α 20.函数f (x )=log 2(1x )的图象为21.如图,在三棱锥S -ABC 中,SA =SC =AB =BC ,则直线SB 与AC 所成角的大小是 (A)30º (B)45º(C)60º(D)90º22.数列{}n a 中,),(1.,41,212221*++∈=++==N n a a a a a a n n n n 则65a a +等于(A) 43 (B) 65 (C) 127(D)151423.若log 2x +log 2y =3,则x +2y 的最小值是(A)24(B)8(C)10(D)1224.右图是某同学用于计算S =sin1+sin2+sin3+…+sin2012值的程序框图,则在判断框中填写(A)k <2011?(B)k <2012?(C)k >2011? (D)k >2012?25.设圆C :(x 5)2+(y 3)2=5,过圆心C 作直线l 与圆交于A ,B 两点,与x 轴交于P 点,若A 恰为线段BP 的中点,则直线l 的方程为 (A) x 3y +4=0,x +3y 14=0 (B)2x y 7=0,2x +y 13=0(C) x 2y +1=0,x +2y 11=0(D)3x y 12=0,3x +y 18=026.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤++≤--≥+-0012012a y x y x y x ,所围成的平面区域面积为23,则实数a 的值是 1 xyO (A)-1 x yO 1 xyO -1 x yO 开始 结束 输出S k =1 S =S +sin k k =k +1是 否(第23题)S =0 ABCS(第20题)(A)3 (B)1 (C)1 (D) 3二、选择题(本题分A 、B 两组,任选一组完成,每组各4小题,选做B 组的考生,填涂时注意第27-30题留空;若两组都做,以27-30题记分. 每小题3分,共12分,选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)A 组27.在复平面内,设复数33i 对应点关于实轴、虚轴的对称点分别是A ,B ,则点A ,B 对应的复数和是(A)0(B)6(C)32-i (D)632-i28.设x ∈R ,则“x >1”是“x 2>x ”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件29.直线y =kx +1与双曲线191622=-y x 的一条渐近线垂直,则实数k 的值是(A)54或54- (B)45或45- (C)43或43- (D)34或34- 30.已知函数b xaax x f ++=)((a ,b ∈R )的图象在点(1,f (1))处的切线在y 轴上的截距为3,若f (x )>x 在(1,+∞)上恒成立,则a 的取值范围是(A)]1,0((B)]891[,(C)),89(+∞(D)),1[+∞B 组31.若随机变量X 分布如右表所示, X 的数学期望EX =2,则实数a 的值是(A)0 (B)31 (C)1 (D)2332.函数y =x sin2x 的导数是 (A)y '=sin2x x cos2x (B)y '=sin2x 2x cos2x (C)y '=sin2x x cos2x(D)y '=sin2x +2x cos2x33.二项式6()x x展开式中的常数项为 X a 2 3 4P 31b 61 41(第33题)(A)240- (B)160 (C)160- (D)24034.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方体内部及面上的两个动点,则PQ AM ⋅的最大值是 (A)21 (B) 1(C)23 (D)45 试 卷 Ⅱ请将本卷的答案用钢笔或圆珠笔写在答卷Ⅱ上. 三、填空题(本题有5小题,每小题2分,共10分) 35.不等式x2x-6<0的解集是 ▲36.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 的样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时的人数为12人,则n = ▲37.已知非零向量b a ,满足|a |=1,3||=-b a ,a 与b 的夹角为120º,则|b |= ▲38.已知函数00,1,)(2≤>⎩⎨⎧-=x x x x x f ,则f (x )的值域是 ▲39.把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C变换成椭圆C ',称之为椭圆的一次“压缩”. 按上述定义把椭圆C i (i =0,1,2,…)“压缩”成椭圆C i +1,得到一系列椭圆C 1,C 2,C 3,…,当短轴长于截距相等时终止“压缩”. 经研究发现,某个椭圆C 0经过n (n ≥3)次“压缩”后能终止,则椭圆C n 2的离心率可能是:①23,②510,③33,④36中的 ▲ (填写所有正确结论的序号) 四、解答题(本题有3小题,共20分)40.(本题6分)在锐角ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求ABC 的面积及a 的值.O 2 4 6 8 0.04频率/组距(第37题)0.08 0.10 0.120.1641.(本题6分)如图,由半圆)0(122≤=+y y x 和部分抛物线)0,0)(1(2>≥-=a y x a y 合成的曲线C 称为“羽毛球形线”,且曲线C 经过点(2,3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考模拟试题(A )
一选择题(共20个小题,每小题3分,共60分)
在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是
A 4
B 3
C 2
D 1 2.0
600sin 的值为
A 23
B 23-
C 2
1- D 21 3."2
1
"=
m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的
A 充分必要条件
B 充分不必要条件
C 必要不充分条件
D 既不充分也不必要条件
4.设函数()log (0,1)a f x x a a =>≠的图象过点(1
8,–3),则a 的值
A 2
B –2
C – 12
D 1
2
5.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是
A 平行
B 在面内
C 相交
D 平行或相交或在面内
6.下列函数是奇函数的是 A 12
+=x y
B x y sin =
C )5(log 2+=x y
D 32-=x
y
7.点(2,5)关于直线01=++y x 的对称点的坐标是
A (6,3)
B (-6,-3)
C (3,6)
D (-3,-6)
8.2
1cos
12
π
+值为
B 24+
C 34
D 7
4
9.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 45
10.甲、乙两个人投篮,他们投进蓝的概率分别为21
,52
,现甲、乙两人各投篮1次
A 15
B 103
C 910
D 45
11.已知向量a 和b 的夹角为0
120,3,3a a b =⋅=-,则b 等于
A 1 B
2
3
C 3
D 2
12.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C
3:2 D 27:8
13.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A
558 B 554 C 338 D 3
3
4
14.
已知圆的参数方程为2()1x y θ
θθ
⎧=⎪⎨
=+⎪
⎩为参数,那么该圆的普通方程是 A 22
(2)(1)x y -+-=
B 22(2)(1)x y +++=
C 22
(2)(1)2x y -+-= D 2
2
(2)(1)2x y +++= 15.函数)32
1sin(+=x y 的最小正周期为 A
2
π
B π
C π2
D π4 16.双曲线12
2
=-y x 的离心率为
A
2
2
B 3
C 2 D
2
1
17.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A
51 B 53 C 41 D 5
2 18.圆020422
2
=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为 A 10 B-68 C 12 D 10或-68
19.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 120
20.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。

如果你有680元现金,在活动期间到该商场购物,最多可以获赠购物券累计
A 120元
B 136元
C 140元 D160元
二填空题(共4小题,每小题3分,共12分) 21.直线x y 3
3
=
与直线1=x 的夹角 22.直角坐标系xoy 中若定点A (1,2)与动点(x,y )满足4=⋅oA op ,则点P 的轨迹方程为 23.平面内三点A (0,-3),B (3,3),C (x ,-1)若AB ∥BC ,则x 的值 24.已知函数1
1
)(+=x x f ,则)]([x f f 的定义域为
三:解答题(3小题,共28分)
25.如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC ,E 是PC 的中点 (1)证明DE ⊥面PBC (2)求二面角D PB C --的大小
26.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(
(1) 求双曲线C 的方程 (2) 若直线2:+
=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点)
求 K 的取值范围
E
A
B
C
P D
27.已知函数)0(2
1)(>+-
=x x
a x f (1)判断)(x f 在),0(+∞上的增减性,并证明你的结论 (2)解关于x 的不等式0)(>x f
(3)若02)(≥+x x f 在),0(+∞上恒成立,求a 的取值范围
参考答案
21.3
π
22.042=-+y x
23.1
24.{x |1-≠x 且2-≠x }
25.简证(1)因为PD ⊥面ABCD 所以PD ⊥BC ,又BC ⊥DC 所以BC ⊥面PDC 所以BC ⊥DE ,又PD ⊥BC ,PD=DC ,E 是PC 的中点所以DE ⊥PC 所以DE ⊥面PBC
(2) 作EF ⊥PB 于F ,连DF ,因为DE ⊥面PBC 所以DF ⊥PB 所以EFD ∠是二面角的平面角 设PD=DC=2a,则DE=a DF a 3
6
2,2=
又DE ⊥面PBC (已证) DE ⊥EF 所以2
3sin =
∠EFD 即060=∠EFD 26.(1)解:设双曲线方程为)0,0(122
22>>=-b a b y a x
因为13
,1,4,2,322
2
2
2
=-∴=∴=+==y x b b a c a (2)将2:+
=kx y l 代入双曲线中得0926)31(22=---kx x k
由直线与双曲线交与不同两点的⎪⎩⎪
⎨⎧>-=-+=∆≠-0
)1(36)31(36)26(0312
222
k k k k 即1,3
122
<≠k k ------------------------(1)
设),(),,(2211y x B y x A 则2
2
1221319
,3126k x x k x x --=-=
+由2>⋅OB OA 得1373222121-+=+k k y y x x ,令21
3732
2>-+k k 解此不等式得1312
<<k 即k 的)1,3
3
()33,1(⋃-
- 27.(1)证明设210x x <<
0)
(222)21()21()()(2
112212121>-=-=+--+-
=-x x x x x x x a x a x f x f )(),()(21x f x f x f >∴在),0(+∞上为减函数
(2) 不等式0)(>x f 即02
1>+-
x
a 即 1) 当0)2(,0<->a x x a ,不等式的解a x 20<< 2) 当0)2(,0>-<a x x a 不等式的解0>x 或a x 2<(舍) (3)若
02)(≥+x x f 在),0(+∞恒成立即022
1≥++-
x x
a 所以
)1(21x x a +≤因为)1
(2x x +的最小值为4 所以41≤a 即0<a 或4
1≤a。

相关文档
最新文档