用MATLAB编写PSO算法及实例
可以运行的pso算法MATLAB程序
maxiter=200;%最大循环次数,影响时间
minfit=0.001;%最小适应值
vmax=0.01;
vmin=-0.01;
ub=[0.2,0.2,0.2,0.2,0.2,0.2];%解向量的最大限制
lb=[0.01,0.01,0.01,0.01,0.01,0.01];%解向量的最小限制
ylabel('基尼系数','fontsize',14);
figure(2)
plot(x1,'b')
hold on
plot(x2,'g')
hold on
plot(x3,'r')
hold on
plot(x4,'c')
hold on
plot(x5,'m')
hold on
plot(x6,'y')
fzbest=bestf;%全局最优适应值
%% 迭代寻优
iter=0;
yfitness=zeros(1,maxiter);%1行100列矩阵,存放100个最优值的空间矩阵
x1=zeros(1,maxiter);%存放x的空间
x2=zeros(1,maxiter);
x3=zeros(1,maxiter);
yxnew=newm(:,3);
yxnewsum=zeros(ym,yn);
for ii=1:ym
yxnewsum(ii,yn)=sum(yxnew(1:ii));
end
pso算法matlab程序 -回复
pso算法matlab程序-回复主题:PSO算法MATLAB程序PSO(粒子群优化)算法是一种模拟鸟群觅食行为的优化算法,它能够在搜索空间中寻找最优解。
在本文中,将详细介绍如何使用MATLAB 编写PSO算法程序,并进行一步一步的解释。
首先,我们需要明确PSO算法的基本原理。
PSO算法通过模拟鸟群搜索食物的行为,来搜索问题的最优解。
其中,群体中的每个粒子代表一个潜在的解,而每个粒子都有自己的位置和速度。
粒子根据自身经验和整个群体的经验来调整自己的位置和速度,以寻找最优解。
接下来,我们可以开始编写MATLAB程序来实现PSO算法。
第一步,我们需要定义问题的目标函数。
目标函数是确定问题最优解的函数,根据具体问题的不同而不同。
在本文中,以最小化函数为例进行讲解。
假设我们要最小化的函数为f(x),其中x为待求解的参数。
第二步,我们需要定义粒子的初始位置和速度。
粒子的初始位置可以是随机分布在搜索空间中的任意值,而速度可以初始化为零。
我们可以使用MATLAB的随机函数来生成初始位置。
第三步,定义粒子的个体和群体最优位置。
个体最优位置是指粒子自身搜索到的最优解,而群体最优位置是根据整个群体的搜索结果得到的最优解。
第四步,编写主循环。
在主循环中,我们更新每个粒子的速度和位置,直到满足一定的停止条件。
更新速度和位置的公式如下:速度更新公式:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t))位置更新公式:x(t+1) = x(t) + v(t+1)其中,v(t)表示t时刻的速度,x(t)表示t时刻的位置,w为惯性权重,c1和c2分别为加速因子1和2,pbest表示粒子的个体最优位置,gbest 表示群体最优位置。
第五步,更新个体和群体最优位置。
对于每个粒子而言,如果t时刻的位置优于个体最优位置,则更新个体最优位置;如果个体最优位置优于群体最优位置,则更新群体最优位置。
pso算法matlab代码
pso算法matlab代码pso算法是一种优化算法,全称为粒子群优化算法(Particle Swarm Optimization)。
它模拟了鸟群或者鱼群的行为,通过不断地迭代寻找最优解。
在许多优化问题中,pso算法都有着良好的表现,特别是在连续空间的优化问题中。
在matlab中实现pso算法并不复杂,以下是一个简单的例子:```matlabfunction [best_pos, best_val] = pso_algorithm(fitness_func,num_particles, num_iterations, range)% 初始化粒子的位置和速度positions = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);velocities = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);% 初始化每个粒子的最佳位置和适应度值personal_best_pos = positions;personal_best_val = arrayfun(fitness_func, personal_best_pos);% 初始化全局最佳位置和适应度值[global_best_val, global_best_idx] = min(personal_best_val);global_best_pos = personal_best_pos(global_best_idx, :);% 开始迭代for iter = 1:num_iterations% 更新粒子的速度和位置inertia_weight = 0.9 - iter * (0.5 / num_iterations); % 慢慢减小惯性权重cognitive_weight = 2;social_weight = 2;r1 = rand(num_particles, length(range));r2 = rand(num_particles, length(range));velocities = inertia_weight .* velocities + ...cognitive_weight .* r1 .* (personal_best_pos - positions) + ...social_weight .* r2 .* (global_best_pos - positions);positions = positions + velocities;% 更新每个粒子的最佳位置和适应度值new_vals = arrayfun(fitness_func, positions);update_idx = new_vals < personal_best_val;personal_best_pos(update_idx, :) = positions(update_idx, :);personal_best_val(update_idx) = new_vals(update_idx);% 更新全局最佳位置和适应度值[min_val, min_idx] = min(personal_best_val);if min_val < global_best_valglobal_best_val = min_val;global_best_pos = personal_best_pos(min_idx, :);endendbest_pos = global_best_pos;best_val = global_best_val;end```上面的代码实现了一个简单的pso算法,其中`fitness_func`是待优化的目标函数,`num_particles`是粒子数量,`num_iterations`是迭代次数,`range`是变量的范围。
(完整word版)用MATLAB编写PSO算法及实例
用MATLAB 编写PSO 算法及实例1.1 粒子群算法PSO 从这种模型中得到启示并用于解决优化问题。
PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。
所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。
在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。
另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量,。
第个粒子的“飞行 ”速度也是一个维的向量,记为,。
第个粒子迄今为止搜索到的最优位置称为个体极值,记为,。
整个粒子群迄今为止搜索到的最优位置为全局极值,记为在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置:(1.1) (1. 2)其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。
式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g )(2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。
pso算法matlab程序
pso算法matlab程序PSO(粒子群优化)算法是一种启发式优化算法,用于解决各种优化问题。
在Matlab中实现PSO算法可以通过以下步骤进行:1. 初始化粒子群:首先,定义需要优化的目标函数,然后确定粒子群的规模、搜索空间的范围、最大迭代次数等参数。
在Matlab中可以使用数组或矩阵来表示粒子群的位置和速度。
2. 计算适应度:根据目标函数,计算每个粒子的适应度值,以便评估其在搜索空间中的位置的好坏程度。
3. 更新粒子的速度和位置:根据PSO算法的公式,更新每个粒子的速度和位置。
这个过程涉及到调整粒子的速度和位置,使其朝着适应度更高的方向移动。
4. 更新全局最优解:在整个粒子群中找到最优的粒子,即具有最佳适应度值的粒子,然后更新全局最优解。
5. 循环迭代:重复步骤3和步骤4,直到满足停止迭代的条件(如达到最大迭代次数或达到精度要求)。
在Matlab中,可以使用循环结构和数组操作来实现上述步骤。
以下是一个简单的PSO算法的Matlab程序示例:matlab.% 定义目标函数。
function z = objective_function(x)。
z = x(1)^2 + x(2)^2; % 以x1和x2为变量的目标函数示例(可根据实际情况修改)。
% 初始化粒子群。
n = 30; % 粒子数量。
max_iter = 100; % 最大迭代次数。
c1 = 2; % 学习因子。
c2 = 2; % 学习因子。
w = 0.7; %惯性权重。
x = rand(n, 2); % 随机初始化粒子的位置。
v = rand(n, 2); % 随机初始化粒子的速度。
pbest = x; % 个体最佳位置。
pbest_val = zeros(n, 1); % 个体最佳适应度值。
gbest = zeros(1, 2); % 全局最佳位置。
gbest_val = inf; % 全局最佳适应度值。
% 迭代优化。
for iter = 1:max_iter.for i = 1:n.% 计算适应度。
matlab粒子群优化算法进行传感器优化配置程序
1.Pso算法function[xm,fv]=SAPSO(fitness,N,c1,c2,wmax,wmin,M)%fitness适应度函数%N种群个数%c1%c2%wmax最大权重%wmin最小权重%M迭代次数cg=32;%传感器个数format long;%-----------------------初始化种群个体-------------------------------------for i=1:N%粒子个数为na1=-17.5:10:12.5;a11=a1*(i+5)/10;[a2,a3]=meshgrid(a1,a11);a4=reshape(a2,1,16);a5=reshape(a3,1,16);b1=-12.5:10:17.5;b11=b1*(i+5)/10;[b2,b3]=meshgrid(b1,b11);b4=reshape(b2,1,16);b5=reshape(b3,1,16);x11=[a4,b4;a5,b5]+20;%Ó¦ÓõȱÈÀýÀ©É¢y¹Ì¶¨x(:,:,i)=x11';%初始化传感器个数为20v(:,:,i)=10*rand(cg,2);end%----------------------计算各个粒子适应度------------------------------for i=1:N;p(i)=fitness(x(:,:,i));y(:,:,i)=x(:,:,i);endpg=x(:,:,N);%pg为全局最优for i=1:(N-1)if fitness(x(:,:,i))<fitness(pg)pg=x(:,:,i);endend%------------------主循环函数Ñ-»·---------------------------------------for t=1:Mfor j=1:Nfv(j)=fitness(x(:,:,j));endfvag=sum(fv)/N;fmin=min(fv);for i=1:Nif fv(i)<=fvag%ÏßÐÔ¼ÓȨw=wmin+(fv(i)-fmin)*(wmax-wmin)/(fvag-fmin);%线性加权¨elsew=wmax;endv(:,:,i)=w*v(:,:,i)+c1*rand*(y(:,:,i)-x(:,:,i))+c2*rand*(pg-x(:,:,i));x(:,:,i)=x(:,:,i)+v(:,:,i);if fitness(x(:,:,i))<p(i)p(i)=fitness(x(:,:,i));y(:,:,i)=x(:,:,i);endif p(i)<fitness(pg)pg=y(:,:,i);endendPbest(t)=fitness(pg);endpbest1=1-Pbest;r=[1:1:M];plot(r,pbest1,'r--');xlabel('迭代次数')ylabel('适应度值')title('¸改进pso算法收敛曲线')legend('权重自适应pso算法·¨')hold onxm=pg';fv=1-fitness(pg);end2.目标函数function F=fitness(x)%求目标函数文件a1=10;a2=5;b1=6;b2=3;c=sqrt(a1^2-b1^2)/2;q=1;cg=32;%´传感器个数%--------------------------------------------------------------------------for xx=0:40;%³¤¿í·Ö±ðÊÇ40*40²âÊÔµãÊÇ40*40for xy=0:40;for k=1:cgm=x(k,1)-xx;%²âÊԵ㵽´«¸ÐÆ÷µÄ¾àÀ룬ÿ1¸öµ¥Î»Ò»¸ö²âÊÔµãn=x(k,2)-xy;cmn=c*sqrt((m/a1)^2+(n/b1)^2);D=sqrt((m-c/2)^2+n^2)+sqrt((m+c/2)^2+n^2);if D<2*a2p(k)=1;elseD=sqrt((m-cmn)^2+n^2)+sqrt((m+cmn)^2+n^2);if D<2*a1p(k)=((2*a1-D)/(2*a1-2*a2))^2;elsep(k)=0;endendq=q*(1-p(k));endxxx=ceil(xx+1);xyy=ceil(xy+1);pxy(xxx,xyy)=1-q;q=1;endendF=1-mean(pxy(:));end3.主函数clc;clear;[xm,fv]=SAPSO(@fitness,10,2,2,0.9,0.6,200)x=xm'figure(3)plot(x(:,2),x(:,1),'ok')zz=try2(x);%显示三维图x1=0:40;y1=0:40;surf(x1,y1,zz)shading flat101520253035400510152025303540。
pso matlab程序 函数最小值
pso matlab程序函数最小值下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,常用于求解函数的最小值。
matlab psosvm 适应度函数
【Introduction】1.介绍matlab psosvm算法是一种基于粒子裙优化的支持向量机模型,它通过优化支持向量机的超参数来提高分类性能。
2.说明适应度函数是PSOSVM算法中核心的部分,它通过评估超参数的组合来指导粒子裙优化的搜索过程。
【Definition of Fitness Function】3.定义适应度函数是PSOSVM算法中的一个重要概念,它用于评估每个粒子(即超参数组合)的性能。
4.说明适应度函数需要具备可衡量的性能指标,如分类准确率、泛化能力等。
5.列举适应度函数可以采用的各类性能指标,如错误率、F值、AUC 等。
【Design of Fitness Function】6.阐述设计好的适应度函数需要考虑支持向量机模型的特性,如核函数类型、惩罚因子等超参数。
7.对设计适应度函数的思路进行详细的展开,例如可以基于交叉验证来评估每个超参数组合的性能。
8.说明在实际应用中,适应度函数的设计将直接影响PSOSVM算法的收敛速度和最终的分类性能。
【Implementation of Fitness Function in PSOSVM】9.描述适应度函数在PSOSVM算法中的具体实现方法,如在每一代粒子裙优化过程中如何调用适应度函数。
10.详细解释适应度函数的计算过程,包括支持向量机模型的训练和测试过程。
11.提及如何利用适应度函数来指导PSOSVM算法的搜索方向,以期获得更优的超参数组合。
【Effectiveness of Fitness Function】12.陈述适应度函数的优劣将直接影响PSOSVM算法的性能和收敛速度,给出实验结果论证适应度函数的有效性。
13.通过对比使用不同适应度函数的PSOSVM算法在不同数据集上的分类性能,以展示适应度函数的重要性。
14.强调适应度函数需要根据具体问题的特性来设计,以提高PSOSVM算法的实际效用。
【Conclusion】15.总结PSOSVM算法的适应度函数的设计和实现方法,说明适应度函数对算法性能的重要影响。
智能优化算法及其matlab实例第三版引用
智能优化算法及其matlab实例第三版引用一、智能优化算法简介1.优化算法背景在工程实践中,我们常常遇到各种优化问题,如最优化、最小化、最大化等。
为了解决这些问题,传统优化算法如梯度下降、牛顿法等应运而生。
然而,在处理复杂非线性、高维、多峰优化问题时,传统优化算法往往表现出收敛速度慢、易陷入局部最优等缺点。
因此,智能优化算法作为一种自适应、全局搜索能力较强的算法,逐渐得到了广泛关注和应用。
2.智能优化算法分类智能优化算法主要包括以下几类:遗传算法、粒子群优化算法、模拟退火算法、蚁群算法等。
这些算法大多是基于自然界的生物进化过程、社会行为等启发而设计的,具有较好的全局搜索能力和适应性。
二、常见智能优化算法介绍1.遗传算法遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。
通过选择、交叉、变异等操作,逐步搜索问题空间,直至找到最优解。
2.粒子群优化算法粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式全局优化算法。
粒子群在搜索空间中不断更新自身位置,通过个体最优解和全局最优解的更新,实现对问题的求解。
3.模拟退火算法模拟退火算法(Simulated Annealing,SA)是一种基于统计物理学思想的优化算法。
通过模拟金属冶炼过程中的退火过程,实现对优化问题的求解。
4.蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种基于自然界蚂蚁觅食行为的优化算法。
通过蚂蚁的信息素更新和路径选择,逐步搜索问题空间,找到最优解。
三、MATLAB实现智能优化算法1.MATLAB编程基础MATLAB是一种功能强大的数学软件,可以方便地实现各种算法。
在本篇中,我们将以MATLAB为工具,演示如何实现智能优化算法。
2.智能优化算法MATLAB实现案例以遗传算法为例,我们选取一个经典优化问题进行MATLAB编程实现。
pso算法 matlab程序
pso算法 matlab程序PSO(粒子群优化)算法是一种启发式优化算法,它模拟了鸟群或鱼群等生物群体的行为,通过个体之间的协作和信息共享来寻找最优解。
在MATLAB中,你可以使用以下代码实现一个简单的PSO算法:matlab.function [gbest, gbestval, fitcount] = pso(func, dim, bound, particle_num, maxgen, inertia, c1, c2)。
% 初始化粒子群。
particle = rand(particle_num, dim) . (bound(2)-bound(1)) + bound(1);velocity = zeros(particle_num, dim);pbest = particle;pbestval = feval(func, pbest');[gbestval, gbestid] = min(pbestval);gbest = pbest(gbestid, :);fitcount = 0;for i = 1:maxgen.% 更新粒子群。
r1 = rand(particle_num, dim);r2 = rand(particle_num, dim);velocity = inertia velocity + c1 r1 . (pbest particle) + c2 r2 . (repmat(gbest, particle_num, 1) particle);particle = particle + velocity;% 边界处理。
particle = max(particle, repmat(bound(1), particle_num, 1));particle = min(particle, repmat(bound(2), particle_num, 1));% 更新个体最优。
pso算法matlab代码
pso算法matlab代码粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其基本思想是通过模拟鸟群觅食行为来寻找最优解。
以下是一个简单的 MATLAB 代码示例,用于实现 PSO 算法:matlab复制代码% 定义问题参数n_particles = 100; % 粒子数量n_iterations = 100; % 迭代次数n_dimensions = 2; % 问题的维度lb = [-10-10]; % 问题的下界ub = [1010]; % 问题的上界c1 = 2; % 个体学习因子c2 = 2; % 社会学习因子% 初始化粒子群particles = lb + (ub-lb).*rand(n_particles,n_dimensions);velocities = zeros(n_particles, n_dimensions);p_best = particles;g_best = particles(1, :);g_best_fitness = inf;% 主循环for i = 1:n_iterations% 计算每个粒子的适应度值fitness = evaluate(particles); % 更新个体最优解for j = 1:n_particlesif fitness(j) < p_best(j, :)p_best(j, :) = particles(j, :); endend% 更新全局最优解for j = 1:n_particlesif fitness(j) < g_best_fitness g_best_fitness = fitness(j);g_best = particles(j, :);endend% 更新粒子速度和位置for j = 1:n_particlesr1 = rand(); % 个体学习因子随机数r2 = rand(); % 社会学习因子随机数velocities(j, :) = velocities(j, :) +c1*r1*(p_best(j, :) - particles(j, :)) + c2*r2*(g_best - particles(j, :));particles(j, :) = particles(j, :) + velocities(j, :);% 边界条件处理particles(j, :) = max(particles(j, :) , lb);particles(j, :) = min(particles(j, :) , ub);endend% 输出结果disp('全局最优解:');disp(g_best);disp('全局最优解的适应度值:');disp(g_best_fitness);其中,evaluate函数用于计算每个粒子的适应度值,需要根据具体问题进行定义。
PSO优化算法代码
PSO优化算法代码Particle Swarm Optimization (PSO) 是一种基于群体智能的优化算法,通过模拟鸟群或鱼群的行为进行迭代优化。
在 PSO 中,每个个体被称为粒子,粒子通过不断地迭代来更新自身的位置和速度,从而寻找到最优解。
以下是一个用 Python 实现的 PSO 算法的示例代码:```pythonimport randomclass Particle:def __init__(self, position, velocity):self.position = positionself.velocity = velocityself.best_position = positionself.best_fitness = fitness(position)def update_velocity(self, global_best_position,inertia_weight, cognitive_weight, social_weight):for i in range(len(self.velocity)):def update_position(self):for i in range(len(self.position)):self.position[i] += self.velocity[i]self.best_fitness = fitness(self.position)if self.best_fitness > fitness(self.best_position):self.best_position = self.positiondef fitness(position):#计算适应度函数,这里以求解一元函数f(x)=x^2+5*x+6的最小值为例x = position[0]return x**2 + 5 * x + 6def pso(max_iterations, num_particles, inertia_weight, cognitive_weight, social_weight):particles = []global_best_position = Noneglobal_best_fitness = float('inf')#初始化粒子群体for _ in range(num_particles):position = [random.uniform(-10, 10)] # 初始位置随机生成velocity = [random.uniform(-1, 1)] # 初始速度随机生成particle = Particle(position, velocity)particles.append(particle)#更新全局最优解if particle.best_fitness < global_best_fitness: global_best_position = particle.best_positionglobal_best_fitness = particle.best_fitness#迭代更新粒子群体for _ in range(max_iterations):for particle in particles:particle.update_velocity(global_best_position, inertia_weight, cognitive_weight, social_weight) particle.update_position#更新全局最优解if particle.best_fitness < global_best_fitness: global_best_position = particle.best_positionglobal_best_fitness = particle.best_fitnessreturn global_best_position, global_best_fitness #参数设置max_iterations = 100num_particles = 50inertia_weight = 0.7cognitive_weight = 1.5social_weight = 1.5#运行PSO算法best_position, best_fitness = pso(max_iterations,num_particles, inertia_weight, cognitive_weight, social_weight) #打印结果print("Best position:", best_position)print("Best fitness:", best_fitness)```以上代码实现了一个简单的一维函数求解问题的 PSO 算法。
离散pso算法
离散pso算法下面是一个简单的离散粒子群优化(Discrete Particle Swarm Optimization, DPSO)算法的Python 实现示例。
在这个示例中,我们假设要最小化一个离散问题的目标函数,例如整数规划问题。
```pythonimport randomclass Particle:def __init__(self, position, velocity, best_position, best_fitness):self.position = positionself.velocity = velocityself.best_position = best_positionself.best_fitness = best_fitnessdef objective_function(x):# 这里是目标函数,根据具体问题自行定义return x**2 # 以x^2 为例def initialize_particle(num_particles, num_dimensions):particles = []for _ in range(num_particles):position = [random.randint(0, 10) for _ in range(num_dimensions)] # 初始化粒子的位置velocity = [random.randint(-1, 1) for _ in range(num_dimensions)] # 初始化粒子的速度fitness = objective_function(position) # 计算粒子的适应度particles.append(Particle(position, velocity, position, fitness))return particlesdef update_velocity(particle, global_best_position, inertia_weight, cognitive_param, social_param):for i in range(len(particle.velocity)):cognitive = cognitive_param * random.random() * (particle.best_position[i] -particle.position[i])social = social_param * random.random() * (global_best_position[i] -particle.position[i])new_velocity = inertia_weight * particle.velocity[i] + cognitive + socialparticle.velocity[i] = new_velocitydef update_position(particle):for i in range(len(particle.position)):new_position = particle.position[i] + particle.velocity[i]particle.position[i] = new_positiondef update_best_position(particle):current_fitness = objective_function(particle.position)if current_fitness < particle.best_fitness:particle.best_position = particle.positionparticle.best_fitness = current_fitnessdef find_global_best(particles):global_best = min(particles, key=lambda x: x.best_fitness)return global_best.best_positiondef discrete_pso(num_particles, num_dimensions, max_iterations):particles = initialize_particle(num_particles, num_dimensions)global_best_position = find_global_best(particles)inertia_weight = 0.7cognitive_param = 1.5social_param = 1.5for _ in range(max_iterations):for particle in particles:update_velocity(particle, global_best_position, inertia_weight, cognitive_param, social_param)update_position(particle)update_best_position(particle)global_best_position = find_global_best(particles)return global_best_position# 示例用法num_particles = 20num_dimensions = 5max_iterations = 100solution = discrete_pso(num_particles, num_dimensions, max_iterations)print("最优解为:", solution)```这是一个简单的离散粒子群优化算法的示例,用于解决离散问题的优化。
粒子群算法实验报告
算法分析与设计实验报告专业班号组别指导老师姓名同组者实验日期第十四周第 3 次实验实验名称基于粒子群算法的函数优化问题一、实验项目基于粒子群算法的函数优化问题实验,在Windows下基于Matlab完成编程。
二、实验目的粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为PSO,是近年来发展起来的一种新的进化算法((Evolu2tionary Algorithm - EA)。
这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
为学习其算法思想,有必要掌握并实现基于粒子群算法的函数优化问题实验。
三、实验原理粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究。
PSO同遗传算法类似,是一种基于迭代的优化算法。
系统初始化为一组随机解,通过迭代搜寻最优值。
但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
四、实验内容1、首先编写通用代码粒子群测试各个函数的主代码写出来,对于不同的测试函数,只需要调用相应的测试函数即可,将各个函数做成.m的文件。
matlab源代码程序如下:clear all;clc;format long;%------给定初始化条件----------------------------------------------c1=1.4902; %学习因子1c2=1.4901; %学习因子2w=0.7281; %惯性权重MaxDT=1000; %最大迭代次数D=5; %搜索空间维数(未知数个数)N=40;eps=10^(-6); %设置精度(在已知最小值时候用)%------初始化种群的个体(可以在这里限定位置和速度的范围)------------fori=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------fori=1:Np(i)=function(x(i,:));y(i,:)=x(i,:);end教师评阅意见签名:年月日pg=x(1,:); %Pg为全局最优fori=2:Nif function(x(i,:))<function(pg)pg=x(i,:);end%------进入主要循环,按照公式依次迭代,直到满足精度要求------------for t=1:MaxDTfori=1:Nv(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));x(i,:)=x(i,:)+v(i,:);if function(x(i,:))<p(i)p(i)=function(x(i,:));y(i,:)=x(i,:);endif p(i)<function(pg)pg=y(i,:);endendPbest(t)=function(pg);end%------最后给出计算结果disp('*************************************************************') disp('函数的全局最优位置为:')Solution=pg'plot(Solution)disp('最后得到的优化极值为:')Result=function(pg)disp('*************************************************************')2、对指定函数的优化(1)Rastrigins.m文件代码如下,即Rastrigins测试函数;function [out]=Rastrigin(x)x=-5.12:0.01:5.12;cos_in = cos(2*pi*x);out= sum((x.^2-10*cos_in + 10), 2); 在matlab中运行结果如下:函数的全局最优位置为:Solution =0.576475699699576-0.8607542255463701.2205658276826261.4207354825753010.552791439208896最后得到的优化极值为:Result =1.899896389267265e+004(2)函数2:使用粒子群算法对Griewank函数进行优化:将下面代码保存成Griewank.m文件,代码如下:Dx=length(in(1,:));tlenx=length(in(:,1));if isempty(D) | D~=Dx | tlen~=tlenxD=Dx; % dimension of probtlen=tlenx; % how many separate statesd=repmat([1:D],tlen,1);sqrtd=sqrt(d);enddat1= sum([(in-100).^2],2)./4000;dat2 = prod( (cos( (in-100)./sqrtd )) ,2);out = dat1 - dat2 + 1;然后将主函数中的function替换成Griewank,然后在matlab中运行即可,运行结果如下:函数的全局最优位置为:Solution =1.0e+002 *0.0893938350249221.3550750755471630.9456676451135421.188118773920475 0.929927307049068最后得到的优化极值为:Result =2.497904795831135 (3)函数3:使用粒子群算法对Foxhole函数进行优化:将下面代码保存成Foxhole.m文件,代码如下:function [out]=Foxhole(in)%x=in(,1);%y=in(,2);term_sum=0;x=in(:,1);y=in(:,1);a{1} = [...-32 -16 0 16 32 ;...-32 -16 0 16 32 ;...-32 -16 0 16 32 ;...-32 -16 0 16 32 ;...-32 -16 0 16 32 ;...];a{2} = [...-32 -32 -32 -32 -32 ;...-16 -16 -16 -16 -16 ;...0 0 0 0 0 ;...16 16 16 16 16 ;...32 32 32 32 32 ;...];term_sum=0;for j=1 :numel((a{1}))ax=a{1} (j);ay=a{2} (j);term_sum = (x - ax).^6 + (y - ay).^6;term_sum=term_sum+ 1.0/(j+term_sum);endout = .002 + term_sum;运行结果如下:函数的全局最优位置为:Solution =31.9995033209264196.742047876319869-4.28812078367820514.91807014291851313.732644871242318最后得到的优化极值为:Result =0.042000000000000。
pso算法代码
PSO算法代码1. PSO算法简介1.1 什么是PSO算法粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的随机优化算法。
它通过模拟鸟群觅食时个体间的信息共享和协同行为,在搜索空间中寻找最优解。
1.2 PSO算法原理PSO算法基于群体智能和其自适应能力,具有快速、全局搜索和简单的特点。
其基本原理如下: 1. 初始化粒子群,设置群体大小、位置和速度范围等参数。
2. 评估每个粒子的适应度,根据适应度确定个体最优解。
3. 更新全局最优解和个体最优解。
4. 根据公式更新粒子的速度和位置。
5. 重复步骤2-4,直到满足停止条件。
2. PSO算法代码实现2.1 PSO算法的伪代码以下是PSO算法的伪代码:初始化粒子群的位置和速度初始化全局最优解while (满足停止条件) dofor each 粒子 in 粒子群 do计算粒子的适应度更新个体最优解更新全局最优解for each 粒子 in 粒子群 do更新粒子速度更新粒子位置end while2.2 PSO算法的Python代码实现以下是一个简单的PSO算法的Python代码实现:import randomdef f(x):# 定义适应度函数,根据具体问题进行调整return x ** 2class Particle:def __init__(self, dim):self.position = [random.uniform(-5, 5) for _ in range(dim)]self.velocity = [random.uniform(-1, 1) for _ in range(dim)]self.best_position = self.positionself.best_fitness = f(self.position[0])class PSO:def __init__(self, dim, size, max_iter):self.dim = dimself.size = sizeself.max_iter = max_iterself.population = [Particle(dim) for _ in range(size)]self.global_best_position = self.population[0].positionself.global_best_fitness = self.population[0].best_fitnessdef update_particle(self, particle):# 更新粒子速度for i in range(self.dim):particle.velocity[i] = particle.velocity[i] + 2 * random.random() * \(particle.best_position[i] - particle.position[i]) + \2 * random.random() * (self.global_best_position[i] - particle. position[i])# 更新粒子位置for i in range(self.dim):particle.position[i] = particle.position[i] + particle.velocity[i]# 更新粒子最优解fitness = f(particle.position[0])if fitness < particle.best_fitness:particle.best_position = particle.positionparticle.best_fitness = fitness# 更新全局最优解if fitness < self.global_best_fitness:self.global_best_position = particle.positionself.global_best_fitness = fitnessdef optimize(self):for _ in range(self.max_iter):for particle in self.population:self.update_particle(particle)if __name__ == '__main__':pso = PSO(dim=1, size=50, max_iter=100)pso.optimize()print("Global Best:", pso.global_best_position, pso.global_best_fitness)3. PSO算法应用实例3.1 函数最小化问题假设有一个函数 f(x) = x^2,在定义域 [-5, 5] 内寻找最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用MATLAB编写PSO算法及实例
用MATLAB 编写PSO 算法及实例
1.1 粒子群算法
PSO 从这种模型中得到启示并用于解决优化问题。
PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。
所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。
在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。
另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量
,。
第个粒子的“飞行 ”速度也是一个维的向量,记为
,。
第个粒子迄今为止搜索到的最优位置称为个体极值,记为
,。
整个粒子群迄今为止搜索到的最优位置为全局极值,记为
在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度
D N i D ),,,(21iD i i i x x x X =N i ,,2,1 =i D ),,21i iD i i v v v V ,(=3,2,1 =i i ),,,(21iD i i best p p p p =N i ,,2,1 =),,,(21gD g g best p p p g =
和位置:
(1.1) (1. 2)
其中:和为学习因子,也称加速常数(acceleration constant),和为
[0,1]范围内的均匀随机数。
式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。
二、算法设计
2.1 算法流程图
2.2 算法实现
算法的流程如下:
())
(2211id gd id id id id x p r c x p r c v w v -+-+*=id id id v x x +=1c 2c 1r 2
r
① 初始化粒子群,包括群体规模N ,每个粒子的位置i x 和速度i V
② 计算每个粒子的适应度值][i F it ;%它的适应度就是指目标函数的值。
一般来说,目标函数的选择由具体问题来决定,假如是背包问题,适应度即放入包中物体的总价格。
初始粒子位置和速度的位置一般随机产生。
但是在某些领域,如果已有其他的算法可以产生可行解的话,可以用这个可行解来初始化,这样更容易得到最优的解
③ 对每个粒子,用它的适应度值][i F it 和个体极值)(i p best 比较,如果
)(][i p i F best it > ,则用][i Fit 替换掉)(i best p ;
④ 对每个粒子,用它的适应度值][i Fit 和全局极值best g 比较,如果)(][i p i F best it >则用][i F it 替best g ;
⑤ 根据公式(1.1),(1.2)更新粒子的速度i v 和位置i x ;
⑥ 如果满足结束条件(误差足够好或到达最大循环次数)退出,否则返回②。
2.3 参数选择
本算法中主要的参数变量为w (惯性权值),1c ,2c (加速因子),N (种群数),
M (迭代次数),D (粒子维数)。
(1)种群规模
通常,种群太小则不能提供足够的采样点,以致算法性能很差;种群太大尽管可以增加优化信息,阻止早熟收敛的发生,但无疑会增加计算量,造成收敛时间太长,表现为收敛速度缓慢。
种群规模一般设为100~1000。
本文选择种群规模为100。
(2)最大迭代次数
迭代次数越多能保证解的收敛性,但是影响运算速度,本文选1000次。
(3)惯性权值
惯性权重表示在多大程度上保留原来的速度。
较大,全局收敛能力强,局部收敛能力弱;较小,局部收敛能力强,全局收敛能力弱。
本文选0.6。
(4)加速因子
加速常数
和分别用于控制粒子指向自身或邻域最佳位置的运动。
文献[20]建议,并通常取。
本文也取。
(5)粒子维数
本文中粒子维数取决于待优化函数的维数。
需要说明的是,本文的程序允许改变这些参数,因为本文编写的程序参照matlab 工具箱,留给用户解决这类问题一个接口函数,上述的各个参数正是接口函数的参数,因此允许改变。
另外对于和c 也可采用变参数法,即随迭代次数增加,利用经验公式使它们动态调整,本文采用固定值。
3.1求三维函数f=x(1).^2+x(2).^2+x(3).^2 的最小值
步骤:1.初始化x,v; 2.求出每个粒子的适应值;3.初始化pb,pg 个体最优和全局最优;4.根据式子更新x,v; 5.是否满足条件,满足跳出
w w w 2c 2c 0.421≤+=c c φ221==c c 221==c c w
循环,否则重复2-4步
尝试编码:
(1)pso.m 文件
%此算法是PSO算法,汪汪的20161024号版本
function[xm,fv]=PSO(fitness,N,c1,c2,w,M,D)
%{
xm,fv算法最后得到的最优解时的x及最优解,fitness为适应度,即要优化的目标函数,N为种群数量,c1,c2为学习因子,w为惯性权重,M为迭代次数,D为粒子的维数
%}
format long;
%初始化种群
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%先计算各个粒子的适应度pi,并初始化y-粒子个体极值,pg-全局极值
for i=1:N
p(i)=fitness(x(i,:)); %适应度问题:将x(i,:)改成x(i,j)是否可以,答不能 y(i,:)=x(i,:); %个体极值
end
pg=x(N,:);%初始化全局极值/最优
for i=1:N-1
if fitness(x(i,:))<fitness(pg)
pg=x(i,:);%替换并选出全局极值
end
end
%进入粒子群算法主要循环,更新v及x
for t=1:M
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(1,:)-x(1,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:))<p(i)
p(i)=fitness(x(i,:));
y(i,:)=x(i,:);
end
if p(i)<fitness(pg)
pg=y(i,:);
end
end
pbest(t)=fitness(pg);%M次迭代后最优解
end
xm=pg';%为何要共轭转置?
fv=fitness(pg);
(2)目标函数fitness.m文件
function f=fitness(x)
f=x(1).^2+x(2).^2+x(3).^2 ;
end
需要说明的是,针对不同的函数优化,只需要改变目标函数就可以。
(3)在命令行输入或建立调用m文件
在命令行先后输入[xm,fv] = PSO(@fitness,100,2,2,0.6,1000,3),或建立包涵该语句的m文件,运行即可得到结果。
四、结果与分析
xm=1.0e-04 *
-0.285730140229565
0.676783696397148
-0.250529540096653
fv =
6.024429352056337e-09
fv是最优值,xm为最优值对应的自变量值。
3.2 高斯函数
[x y]=meshgrid(-100:100,-100:100); %生
成xy 坐标系且选取范围
sigma=50; %高斯函数中的sigma 为50
img = (1/(2*pi*sigma^2))*exp(-(x.^2+y.^2)/(2*si gma^2));
%目标函数,高斯函数
222b)(x ae (x)f c --= mesh(img); %
三维画图 hold on;。